1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
|
/*
* CDDL HEADER START
*
* The contents of this file are subject to the terms of the
* Common Development and Distribution License, Version 1.0 only
* (the "License"). You may not use this file except in compliance
* with the License.
*
* You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
* or http://www.opensolaris.org/os/licensing.
* See the License for the specific language governing permissions
* and limitations under the License.
*
* When distributing Covered Code, include this CDDL HEADER in each
* file and include the License file at usr/src/OPENSOLARIS.LICENSE.
* If applicable, add the following below this CDDL HEADER, with the
* fields enclosed by brackets "[]" replaced with your own identifying
* information: Portions Copyright [yyyy] [name of copyright owner]
*
* CDDL HEADER END
*/
/*
* Copyright 2005 Sun Microsystems, Inc. All rights reserved.
* Use is subject to license terms.
*/
#if !defined(lint)
.ident "%Z%%M% %I% %E% SMI"
.file "muldiv.s"
#endif
#if defined(__i386) && !defined(__amd64)
/*
* Helper routines for 32-bit compilers to perform 64-bit math.
* These are used both by the Sun and GCC compilers.
*/
#include <sys/asm_linkage.h>
#include <sys/asm_misc.h>
#if defined(__lint)
#include <sys/types.h>
/* ARGSUSED */
int64_t
__mul64(int64_t a, int64_t b)
{
return (0);
}
#else /* __lint */
/
/ function __mul64(A,B:Longint):Longint;
/ {Overflow is not checked}
/
/ We essentially do multiply by longhand, using base 2**32 digits.
/ a b parameter A
/ x c d parameter B
/ ---------
/ ad bd
/ ac bc
/ -----------------
/ ac ad+bc bd
/
/ We can ignore ac and top 32 bits of ad+bc: if <> 0, overflow happened.
/
ENTRY(__mul64)
push %ebp
mov %esp,%ebp
pushl %esi
mov 12(%ebp),%eax / A.hi (a)
mull 16(%ebp) / Multiply A.hi by B.lo (produces ad)
xchg %ecx,%eax / ecx = bottom half of ad.
movl 8(%ebp),%eax / A.Lo (b)
movl %eax,%esi / Save A.lo for later
mull 16(%ebp) / Multiply A.Lo by B.LO (dx:ax = bd.)
addl %edx,%ecx / cx is ad
xchg %eax,%esi / esi is bd, eax = A.lo (d)
mull 20(%ebp) / Multiply A.lo * B.hi (producing bc)
addl %ecx,%eax / Produce ad+bc
movl %esi,%edx
xchg %eax,%edx
popl %esi
movl %ebp,%esp
popl %ebp
ret $16
SET_SIZE(__mul64)
#endif /* __lint */
/*
* C support for 64-bit modulo and division.
* Hand-customized compiler output - see comments for details.
*/
#if defined(__lint)
/* ARGSUSED */
uint64_t
__udiv64(uint64_t a, uint64_t b)
{ return (0); }
/* ARGSUSED */
uint64_t
__urem64(int64_t a, int64_t b)
{ return (0); }
/* ARGSUSED */
int64_t
__div64(int64_t a, int64_t b)
{ return (0); }
/* ARGSUSED */
int64_t
__rem64(int64_t a, int64_t b)
{ return (0); }
#else /* __lint */
/ /*
/ * Unsigned division with remainder.
/ * Divide two uint64_ts, and calculate remainder.
/ */
/ uint64_t
/ UDivRem(uint64_t x, uint64_t y, uint64_t * pmod)
/ {
/ /* simple cases: y is a single uint32_t */
/ if (HI(y) == 0) {
/ uint32_t div_hi, div_rem;
/ uint32_t q0, q1;
/
/ /* calculate q1 */
/ if (HI(x) < LO(y)) {
/ /* result is a single uint32_t, use one division */
/ q1 = 0;
/ div_hi = HI(x);
/ } else {
/ /* result is a double uint32_t, use two divisions */
/ A_DIV32(HI(x), 0, LO(y), q1, div_hi);
/ }
/
/ /* calculate q0 and remainder */
/ A_DIV32(LO(x), div_hi, LO(y), q0, div_rem);
/
/ /* return remainder */
/ *pmod = div_rem;
/
/ /* return result */
/ return (HILO(q1, q0));
/
/ } else if (HI(x) < HI(y)) {
/ /* HI(x) < HI(y) => x < y => result is 0 */
/
/ /* return remainder */
/ *pmod = x;
/
/ /* return result */
/ return (0);
/
/ } else {
/ /*
/ * uint64_t by uint64_t division, resulting in a one-uint32_t
/ * result
/ */
/ uint32_t y0, y1;
/ uint32_t x1, x0;
/ uint32_t q0;
/ uint32_t normshift;
/
/ /* normalize by shifting x and y so MSB(y) == 1 */
/ HIBIT(HI(y), normshift); /* index of highest 1 bit */
/ normshift = 31 - normshift;
/
/ if (normshift == 0) {
/ /* no shifting needed, and x < 2*y so q <= 1 */
/ y1 = HI(y);
/ y0 = LO(y);
/ x1 = HI(x);
/ x0 = LO(x);
/
/ /* if x >= y then q = 1 (note x1 >= y1) */
/ if (x1 > y1 || x0 >= y0) {
/ q0 = 1;
/ /* subtract y from x to get remainder */
/ A_SUB2(y0, y1, x0, x1);
/ } else {
/ q0 = 0;
/ }
/
/ /* return remainder */
/ *pmod = HILO(x1, x0);
/
/ /* return result */
/ return (q0);
/
/ } else {
/ /*
/ * the last case: result is one uint32_t, but we need to
/ * normalize
/ */
/ uint64_t dt;
/ uint32_t t0, t1, x2;
/
/ /* normalize y */
/ dt = (y << normshift);
/ y1 = HI(dt);
/ y0 = LO(dt);
/
/ /* normalize x (we need 3 uint32_ts!!!) */
/ x2 = (HI(x) >> (32 - normshift));
/ dt = (x << normshift);
/ x1 = HI(dt);
/ x0 = LO(dt);
/
/ /* estimate q0, and reduce x to a two uint32_t value */
/ A_DIV32(x1, x2, y1, q0, x1);
/
/ /* adjust q0 down if too high */
/ /*
/ * because of the limited range of x2 we can only be
/ * one off
/ */
/ A_MUL32(y0, q0, t0, t1);
/ if (t1 > x1 || (t1 == x1 && t0 > x0)) {
/ q0--;
/ A_SUB2(y0, y1, t0, t1);
/ }
/ /* return remainder */
/ /* subtract product from x to get remainder */
/ A_SUB2(t0, t1, x0, x1);
/ *pmod = (HILO(x1, x0) >> normshift);
/
/ /* return result */
/ return (q0);
/ }
/ }
/ }
ENTRY(UDivRem)
pushl %ebp
pushl %edi
pushl %esi
subl $48, %esp
movl 68(%esp), %edi / y,
testl %edi, %edi / tmp63
movl %eax, 40(%esp) / x, x
movl %edx, 44(%esp) / x, x
movl %edi, %esi /, tmp62
movl %edi, %ecx / tmp62, tmp63
jne .LL2
movl %edx, %eax /, tmp68
cmpl 64(%esp), %eax / y, tmp68
jae .LL21
.LL4:
movl 72(%esp), %ebp / pmod,
xorl %esi, %esi / <result>
movl 40(%esp), %eax / x, q0
movl %ecx, %edi / <result>, <result>
divl 64(%esp) / y
movl %edx, (%ebp) / div_rem,
xorl %edx, %edx / q0
addl %eax, %esi / q0, <result>
movl $0, 4(%ebp)
adcl %edx, %edi / q0, <result>
addl $48, %esp
movl %esi, %eax / <result>, <result>
popl %esi
movl %edi, %edx / <result>, <result>
popl %edi
popl %ebp
ret
.align 16
.LL2:
movl 44(%esp), %eax / x,
xorl %edx, %edx
cmpl %esi, %eax / tmp62, tmp5
movl %eax, 32(%esp) / tmp5,
movl %edx, 36(%esp)
jae .LL6
movl 72(%esp), %esi / pmod,
movl 40(%esp), %ebp / x,
movl 44(%esp), %ecx / x,
movl %ebp, (%esi)
movl %ecx, 4(%esi)
xorl %edi, %edi / <result>
xorl %esi, %esi / <result>
.LL22:
addl $48, %esp
movl %esi, %eax / <result>, <result>
popl %esi
movl %edi, %edx / <result>, <result>
popl %edi
popl %ebp
ret
.align 16
.LL21:
movl %edi, %edx / tmp63, div_hi
divl 64(%esp) / y
movl %eax, %ecx /, q1
jmp .LL4
.align 16
.LL6:
movl $31, %edi /, tmp87
bsrl %esi,%edx / tmp62, normshift
subl %edx, %edi / normshift, tmp87
movl %edi, 28(%esp) / tmp87,
jne .LL8
movl 32(%esp), %edx /, x1
cmpl %ecx, %edx / y1, x1
movl 64(%esp), %edi / y, y0
movl 40(%esp), %esi / x, x0
ja .LL10
xorl %ebp, %ebp / q0
cmpl %edi, %esi / y0, x0
jb .LL11
.LL10:
movl $1, %ebp /, q0
subl %edi,%esi / y0, x0
sbbl %ecx,%edx / tmp63, x1
.LL11:
movl %edx, %ecx / x1, x1
xorl %edx, %edx / x1
xorl %edi, %edi / x0
addl %esi, %edx / x0, x1
adcl %edi, %ecx / x0, x1
movl 72(%esp), %esi / pmod,
movl %edx, (%esi) / x1,
movl %ecx, 4(%esi) / x1,
xorl %edi, %edi / <result>
movl %ebp, %esi / q0, <result>
jmp .LL22
.align 16
.LL8:
movb 28(%esp), %cl
movl 64(%esp), %esi / y, dt
movl 68(%esp), %edi / y, dt
shldl %esi, %edi /, dt, dt
sall %cl, %esi /, dt
andl $32, %ecx
jne .LL23
.LL17:
movl $32, %ecx /, tmp102
subl 28(%esp), %ecx /, tmp102
movl %esi, %ebp / dt, y0
movl 32(%esp), %esi
shrl %cl, %esi / tmp102,
movl %edi, 24(%esp) / tmp99,
movb 28(%esp), %cl
movl %esi, 12(%esp) /, x2
movl 44(%esp), %edi / x, dt
movl 40(%esp), %esi / x, dt
shldl %esi, %edi /, dt, dt
sall %cl, %esi /, dt
andl $32, %ecx
je .LL18
movl %esi, %edi / dt, dt
xorl %esi, %esi / dt
.LL18:
movl %edi, %ecx / dt,
movl %edi, %eax / tmp2,
movl %ecx, (%esp)
movl 12(%esp), %edx / x2,
divl 24(%esp)
movl %edx, %ecx /, x1
xorl %edi, %edi
movl %eax, 20(%esp)
movl %ebp, %eax / y0, t0
mull 20(%esp)
cmpl %ecx, %edx / x1, t1
movl %edi, 4(%esp)
ja .LL14
je .LL24
.LL15:
movl %ecx, %edi / x1,
subl %eax,%esi / t0, x0
sbbl %edx,%edi / t1,
movl %edi, %eax /, x1
movl %eax, %edx / x1, x1
xorl %eax, %eax / x1
xorl %ebp, %ebp / x0
addl %esi, %eax / x0, x1
adcl %ebp, %edx / x0, x1
movb 28(%esp), %cl
shrdl %edx, %eax /, x1, x1
shrl %cl, %edx /, x1
andl $32, %ecx
je .LL16
movl %edx, %eax / x1, x1
xorl %edx, %edx / x1
.LL16:
movl 72(%esp), %ecx / pmod,
movl 20(%esp), %esi /, <result>
xorl %edi, %edi / <result>
movl %eax, (%ecx) / x1,
movl %edx, 4(%ecx) / x1,
jmp .LL22
.align 16
.LL24:
cmpl %esi, %eax / x0, t0
jbe .LL15
.LL14:
decl 20(%esp)
subl %ebp,%eax / y0, t0
sbbl 24(%esp),%edx /, t1
jmp .LL15
.LL23:
movl %esi, %edi / dt, dt
xorl %esi, %esi / dt
jmp .LL17
SET_SIZE(UDivRem)
/*
* Unsigned division without remainder.
*/
/ uint64_t
/ UDiv(uint64_t x, uint64_t y)
/ {
/ if (HI(y) == 0) {
/ /* simple cases: y is a single uint32_t */
/ uint32_t div_hi, div_rem;
/ uint32_t q0, q1;
/
/ /* calculate q1 */
/ if (HI(x) < LO(y)) {
/ /* result is a single uint32_t, use one division */
/ q1 = 0;
/ div_hi = HI(x);
/ } else {
/ /* result is a double uint32_t, use two divisions */
/ A_DIV32(HI(x), 0, LO(y), q1, div_hi);
/ }
/
/ /* calculate q0 and remainder */
/ A_DIV32(LO(x), div_hi, LO(y), q0, div_rem);
/
/ /* return result */
/ return (HILO(q1, q0));
/
/ } else if (HI(x) < HI(y)) {
/ /* HI(x) < HI(y) => x < y => result is 0 */
/
/ /* return result */
/ return (0);
/
/ } else {
/ /*
/ * uint64_t by uint64_t division, resulting in a one-uint32_t
/ * result
/ */
/ uint32_t y0, y1;
/ uint32_t x1, x0;
/ uint32_t q0;
/ unsigned normshift;
/
/ /* normalize by shifting x and y so MSB(y) == 1 */
/ HIBIT(HI(y), normshift); /* index of highest 1 bit */
/ normshift = 31 - normshift;
/
/ if (normshift == 0) {
/ /* no shifting needed, and x < 2*y so q <= 1 */
/ y1 = HI(y);
/ y0 = LO(y);
/ x1 = HI(x);
/ x0 = LO(x);
/
/ /* if x >= y then q = 1 (note x1 >= y1) */
/ if (x1 > y1 || x0 >= y0) {
/ q0 = 1;
/ /* subtract y from x to get remainder */
/ /* A_SUB2(y0, y1, x0, x1); */
/ } else {
/ q0 = 0;
/ }
/
/ /* return result */
/ return (q0);
/
/ } else {
/ /*
/ * the last case: result is one uint32_t, but we need to
/ * normalize
/ */
/ uint64_t dt;
/ uint32_t t0, t1, x2;
/
/ /* normalize y */
/ dt = (y << normshift);
/ y1 = HI(dt);
/ y0 = LO(dt);
/
/ /* normalize x (we need 3 uint32_ts!!!) */
/ x2 = (HI(x) >> (32 - normshift));
/ dt = (x << normshift);
/ x1 = HI(dt);
/ x0 = LO(dt);
/
/ /* estimate q0, and reduce x to a two uint32_t value */
/ A_DIV32(x1, x2, y1, q0, x1);
/
/ /* adjust q0 down if too high */
/ /*
/ * because of the limited range of x2 we can only be
/ * one off
/ */
/ A_MUL32(y0, q0, t0, t1);
/ if (t1 > x1 || (t1 == x1 && t0 > x0)) {
/ q0--;
/ }
/ /* return result */
/ return (q0);
/ }
/ }
/ }
ENTRY(UDiv)
pushl %ebp
pushl %edi
pushl %esi
subl $40, %esp
movl %edx, 36(%esp) / x, x
movl 60(%esp), %edx / y,
testl %edx, %edx / tmp62
movl %eax, 32(%esp) / x, x
movl %edx, %ecx / tmp61, tmp62
movl %edx, %eax /, tmp61
jne .LL26
movl 36(%esp), %esi / x,
cmpl 56(%esp), %esi / y, tmp67
movl %esi, %eax /, tmp67
movl %esi, %edx / tmp67, div_hi
jb .LL28
movl %ecx, %edx / tmp62, div_hi
divl 56(%esp) / y
movl %eax, %ecx /, q1
.LL28:
xorl %esi, %esi / <result>
movl %ecx, %edi / <result>, <result>
movl 32(%esp), %eax / x, q0
xorl %ecx, %ecx / q0
divl 56(%esp) / y
addl %eax, %esi / q0, <result>
adcl %ecx, %edi / q0, <result>
.LL25:
addl $40, %esp
movl %esi, %eax / <result>, <result>
popl %esi
movl %edi, %edx / <result>, <result>
popl %edi
popl %ebp
ret
.align 16
.LL26:
movl 36(%esp), %esi / x,
xorl %edi, %edi
movl %esi, 24(%esp) / tmp1,
movl %edi, 28(%esp)
xorl %esi, %esi / <result>
xorl %edi, %edi / <result>
cmpl %eax, 24(%esp) / tmp61,
jb .LL25
bsrl %eax,%ebp / tmp61, normshift
movl $31, %eax /, tmp85
subl %ebp, %eax / normshift, normshift
jne .LL32
movl 24(%esp), %eax /, x1
cmpl %ecx, %eax / tmp62, x1
movl 56(%esp), %esi / y, y0
movl 32(%esp), %edx / x, x0
ja .LL34
xorl %eax, %eax / q0
cmpl %esi, %edx / y0, x0
jb .LL35
.LL34:
movl $1, %eax /, q0
.LL35:
movl %eax, %esi / q0, <result>
xorl %edi, %edi / <result>
.LL45:
addl $40, %esp
movl %esi, %eax / <result>, <result>
popl %esi
movl %edi, %edx / <result>, <result>
popl %edi
popl %ebp
ret
.align 16
.LL32:
movb %al, %cl
movl 56(%esp), %esi / y,
movl 60(%esp), %edi / y,
shldl %esi, %edi
sall %cl, %esi
andl $32, %ecx
jne .LL43
.LL40:
movl $32, %ecx /, tmp96
subl %eax, %ecx / normshift, tmp96
movl %edi, %edx
movl %edi, 20(%esp) /, dt
movl 24(%esp), %ebp /, x2
xorl %edi, %edi
shrl %cl, %ebp / tmp96, x2
movl %esi, 16(%esp) /, dt
movb %al, %cl
movl 32(%esp), %esi / x, dt
movl %edi, 12(%esp)
movl 36(%esp), %edi / x, dt
shldl %esi, %edi /, dt, dt
sall %cl, %esi /, dt
andl $32, %ecx
movl %edx, 8(%esp)
je .LL41
movl %esi, %edi / dt, dt
xorl %esi, %esi / dt
.LL41:
xorl %ecx, %ecx
movl %edi, %eax / tmp1,
movl %ebp, %edx / x2,
divl 8(%esp)
movl %edx, %ebp /, x1
movl %ecx, 4(%esp)
movl %eax, %ecx /, q0
movl 16(%esp), %eax / dt,
mull %ecx / q0
cmpl %ebp, %edx / x1, t1
movl %edi, (%esp)
movl %esi, %edi / dt, x0
ja .LL38
je .LL44
.LL39:
movl %ecx, %esi / q0, <result>
.LL46:
xorl %edi, %edi / <result>
jmp .LL45
.LL44:
cmpl %edi, %eax / x0, t0
jbe .LL39
.LL38:
decl %ecx / q0
movl %ecx, %esi / q0, <result>
jmp .LL46
.LL43:
movl %esi, %edi
xorl %esi, %esi
jmp .LL40
SET_SIZE(UDiv)
/*
* __udiv64
*
* Perform division of two unsigned 64-bit quantities, returning the
* quotient in %edx:%eax. __udiv64 pops the arguments on return,
*/
ENTRY(__udiv64)
movl 4(%esp), %eax / x, x
movl 8(%esp), %edx / x, x
pushl 16(%esp) / y
pushl 16(%esp)
call UDiv
addl $8, %esp
ret $16
SET_SIZE(__udiv64)
/*
* __urem64
*
* Perform division of two unsigned 64-bit quantities, returning the
* remainder in %edx:%eax. __urem64 pops the arguments on return
*/
ENTRY(__urem64)
subl $12, %esp
movl %esp, %ecx /, tmp65
movl 16(%esp), %eax / x, x
movl 20(%esp), %edx / x, x
pushl %ecx / tmp65
pushl 32(%esp) / y
pushl 32(%esp)
call UDivRem
movl 12(%esp), %eax / rem, rem
movl 16(%esp), %edx / rem, rem
addl $24, %esp
ret $16
SET_SIZE(__urem64)
/*
* __div64
*
* Perform division of two signed 64-bit quantities, returning the
* quotient in %edx:%eax. __div64 pops the arguments on return.
*/
/ int64_t
/ __div64(int64_t x, int64_t y)
/ {
/ int negative;
/ uint64_t xt, yt, r;
/
/ if (x < 0) {
/ xt = -(uint64_t) x;
/ negative = 1;
/ } else {
/ xt = x;
/ negative = 0;
/ }
/ if (y < 0) {
/ yt = -(uint64_t) y;
/ negative ^= 1;
/ } else {
/ yt = y;
/ }
/ r = UDiv(xt, yt);
/ return (negative ? (int64_t) - r : r);
/ }
ENTRY(__div64)
pushl %ebp
pushl %edi
pushl %esi
subl $8, %esp
movl 28(%esp), %edx / x, x
testl %edx, %edx / x
movl 24(%esp), %eax / x, x
movl 32(%esp), %esi / y, y
movl 36(%esp), %edi / y, y
js .LL84
xorl %ebp, %ebp / negative
testl %edi, %edi / y
movl %eax, (%esp) / x, xt
movl %edx, 4(%esp) / x, xt
movl %esi, %eax / y, yt
movl %edi, %edx / y, yt
js .LL85
.LL82:
pushl %edx / yt
pushl %eax / yt
movl 8(%esp), %eax / xt, xt
movl 12(%esp), %edx / xt, xt
call UDiv
popl %ecx
testl %ebp, %ebp / negative
popl %esi
je .LL83
negl %eax / r
adcl $0, %edx /, r
negl %edx / r
.LL83:
addl $8, %esp
popl %esi
popl %edi
popl %ebp
ret $16
.align 16
.LL84:
negl %eax / x
adcl $0, %edx /, x
negl %edx / x
testl %edi, %edi / y
movl %eax, (%esp) / x, xt
movl %edx, 4(%esp) / x, xt
movl $1, %ebp /, negative
movl %esi, %eax / y, yt
movl %edi, %edx / y, yt
jns .LL82
.align 16
.LL85:
negl %eax / yt
adcl $0, %edx /, yt
negl %edx / yt
xorl $1, %ebp /, negative
jmp .LL82
SET_SIZE(__div64)
/*
* __rem64
*
* Perform division of two signed 64-bit quantities, returning the
* remainder in %edx:%eax. __rem64 pops the arguments on return.
*/
/ int64_t
/ __rem64(int64_t x, int64_t y)
/ {
/ uint64_t xt, yt, rem;
/
/ if (x < 0) {
/ xt = -(uint64_t) x;
/ } else {
/ xt = x;
/ }
/ if (y < 0) {
/ yt = -(uint64_t) y;
/ } else {
/ yt = y;
/ }
/ (void) UDivRem(xt, yt, &rem);
/ return (x < 0 ? (int64_t) - rem : rem);
/ }
ENTRY(__rem64)
pushl %edi
pushl %esi
subl $20, %esp
movl 36(%esp), %ecx / x,
movl 32(%esp), %esi / x,
movl 36(%esp), %edi / x,
testl %ecx, %ecx
movl 40(%esp), %eax / y, y
movl 44(%esp), %edx / y, y
movl %esi, (%esp) /, xt
movl %edi, 4(%esp) /, xt
js .LL92
testl %edx, %edx / y
movl %eax, %esi / y, yt
movl %edx, %edi / y, yt
js .LL93
.LL90:
leal 8(%esp), %eax /, tmp66
pushl %eax / tmp66
pushl %edi / yt
pushl %esi / yt
movl 12(%esp), %eax / xt, xt
movl 16(%esp), %edx / xt, xt
call UDivRem
addl $12, %esp
movl 36(%esp), %edi / x,
testl %edi, %edi
movl 8(%esp), %eax / rem, rem
movl 12(%esp), %edx / rem, rem
js .LL94
addl $20, %esp
popl %esi
popl %edi
ret $16
.align 16
.LL92:
negl %esi
adcl $0, %edi
negl %edi
testl %edx, %edx / y
movl %esi, (%esp) /, xt
movl %edi, 4(%esp) /, xt
movl %eax, %esi / y, yt
movl %edx, %edi / y, yt
jns .LL90
.align 16
.LL93:
negl %esi / yt
adcl $0, %edi /, yt
negl %edi / yt
jmp .LL90
.align 16
.LL94:
negl %eax / rem
adcl $0, %edx /, rem
addl $20, %esp
popl %esi
negl %edx / rem
popl %edi
ret $16
SET_SIZE(__rem64)
#endif /* __lint */
#if defined(__lint)
/*
* C support for 64-bit modulo and division.
* GNU routines callable from C (though generated by the compiler).
* Hand-customized compiler output - see comments for details.
*/
/*ARGSUSED*/
unsigned long long
__udivdi3(unsigned long long a, unsigned long long b)
{ return (0); }
/*ARGSUSED*/
unsigned long long
__umoddi3(unsigned long long a, unsigned long long b)
{ return (0); }
/*ARGSUSED*/
long long
__divdi3(long long a, long long b)
{ return (0); }
/*ARGSUSED*/
long long
__moddi3(long long a, long long b)
{ return (0); }
/* ARGSUSED */
int64_t __divrem64(int64_t a, int64_t b)
{ return (0); }
/* ARGSUSED */
uint64_t __udivrem64(uint64_t a, uint64_t b)
{ return (0); }
#else /* __lint */
/*
* int32_t/int64_t division/manipulation
*
* Hand-customized compiler output: the non-GCC entry points depart from
* the SYS V ABI by requiring their arguments to be popped, and in the
* [u]divrem64 cases returning the remainder in %ecx:%esi. Note the
* compiler-generated use of %edx:%eax for the first argument of
* internal entry points.
*
* Inlines for speed:
* - counting the number of leading zeros in a word
* - multiplying two 32-bit numbers giving a 64-bit result
* - dividing a 64-bit number by a 32-bit number, giving both quotient
* and remainder
* - subtracting two 64-bit results
*/
/ #define LO(X) ((uint32_t)(X) & 0xffffffff)
/ #define HI(X) ((uint32_t)((X) >> 32) & 0xffffffff)
/ #define HILO(H, L) (((uint64_t)(H) << 32) + (L))
/
/ /* give index of highest bit */
/ #define HIBIT(a, r) \
/ asm("bsrl %1,%0": "=r"((uint32_t)(r)) : "g" (a))
/
/ /* multiply two uint32_ts resulting in a uint64_t */
/ #define A_MUL32(a, b, lo, hi) \
/ asm("mull %2" \
/ : "=a"((uint32_t)(lo)), "=d"((uint32_t)(hi)) : "g" (b), "0"(a))
/
/ /* divide a uint64_t by a uint32_t */
/ #define A_DIV32(lo, hi, b, q, r) \
/ asm("divl %2" \
/ : "=a"((uint32_t)(q)), "=d"((uint32_t)(r)) \
/ : "g" (b), "0"((uint32_t)(lo)), "1"((uint32_t)hi))
/
/ /* subtract two uint64_ts (with borrow) */
/ #define A_SUB2(bl, bh, al, ah) \
/ asm("subl %4,%0\n\tsbbl %5,%1" \
/ : "=&r"((uint32_t)(al)), "=r"((uint32_t)(ah)) \
/ : "0"((uint32_t)(al)), "1"((uint32_t)(ah)), "g"((uint32_t)(bl)), \
/ "g"((uint32_t)(bh)))
/*
* __udivdi3
*
* Perform division of two unsigned 64-bit quantities, returning the
* quotient in %edx:%eax.
*/
ENTRY(__udivdi3)
movl 4(%esp), %eax / x, x
movl 8(%esp), %edx / x, x
pushl 16(%esp) / y
pushl 16(%esp)
call UDiv
addl $8, %esp
ret
SET_SIZE(__udivdi3)
/*
* __umoddi3
*
* Perform division of two unsigned 64-bit quantities, returning the
* remainder in %edx:%eax.
*/
ENTRY(__umoddi3)
subl $12, %esp
movl %esp, %ecx /, tmp65
movl 16(%esp), %eax / x, x
movl 20(%esp), %edx / x, x
pushl %ecx / tmp65
pushl 32(%esp) / y
pushl 32(%esp)
call UDivRem
movl 12(%esp), %eax / rem, rem
movl 16(%esp), %edx / rem, rem
addl $24, %esp
ret
SET_SIZE(__umoddi3)
/*
* __divdi3
*
* Perform division of two signed 64-bit quantities, returning the
* quotient in %edx:%eax.
*/
/ int64_t
/ __divdi3(int64_t x, int64_t y)
/ {
/ int negative;
/ uint64_t xt, yt, r;
/
/ if (x < 0) {
/ xt = -(uint64_t) x;
/ negative = 1;
/ } else {
/ xt = x;
/ negative = 0;
/ }
/ if (y < 0) {
/ yt = -(uint64_t) y;
/ negative ^= 1;
/ } else {
/ yt = y;
/ }
/ r = UDiv(xt, yt);
/ return (negative ? (int64_t) - r : r);
/ }
ENTRY(__divdi3)
pushl %ebp
pushl %edi
pushl %esi
subl $8, %esp
movl 28(%esp), %edx / x, x
testl %edx, %edx / x
movl 24(%esp), %eax / x, x
movl 32(%esp), %esi / y, y
movl 36(%esp), %edi / y, y
js .LL55
xorl %ebp, %ebp / negative
testl %edi, %edi / y
movl %eax, (%esp) / x, xt
movl %edx, 4(%esp) / x, xt
movl %esi, %eax / y, yt
movl %edi, %edx / y, yt
js .LL56
.LL53:
pushl %edx / yt
pushl %eax / yt
movl 8(%esp), %eax / xt, xt
movl 12(%esp), %edx / xt, xt
call UDiv
popl %ecx
testl %ebp, %ebp / negative
popl %esi
je .LL54
negl %eax / r
adcl $0, %edx /, r
negl %edx / r
.LL54:
addl $8, %esp
popl %esi
popl %edi
popl %ebp
ret
.align 16
.LL55:
negl %eax / x
adcl $0, %edx /, x
negl %edx / x
testl %edi, %edi / y
movl %eax, (%esp) / x, xt
movl %edx, 4(%esp) / x, xt
movl $1, %ebp /, negative
movl %esi, %eax / y, yt
movl %edi, %edx / y, yt
jns .LL53
.align 16
.LL56:
negl %eax / yt
adcl $0, %edx /, yt
negl %edx / yt
xorl $1, %ebp /, negative
jmp .LL53
SET_SIZE(__divdi3)
/*
* __moddi3
*
* Perform division of two signed 64-bit quantities, returning the
* quotient in %edx:%eax.
*/
/ int64_t
/ __moddi3(int64_t x, int64_t y)
/ {
/ uint64_t xt, yt, rem;
/
/ if (x < 0) {
/ xt = -(uint64_t) x;
/ } else {
/ xt = x;
/ }
/ if (y < 0) {
/ yt = -(uint64_t) y;
/ } else {
/ yt = y;
/ }
/ (void) UDivRem(xt, yt, &rem);
/ return (x < 0 ? (int64_t) - rem : rem);
/ }
ENTRY(__moddi3)
pushl %edi
pushl %esi
subl $20, %esp
movl 36(%esp), %ecx / x,
movl 32(%esp), %esi / x,
movl 36(%esp), %edi / x,
testl %ecx, %ecx
movl 40(%esp), %eax / y, y
movl 44(%esp), %edx / y, y
movl %esi, (%esp) /, xt
movl %edi, 4(%esp) /, xt
js .LL63
testl %edx, %edx / y
movl %eax, %esi / y, yt
movl %edx, %edi / y, yt
js .LL64
.LL61:
leal 8(%esp), %eax /, tmp66
pushl %eax / tmp66
pushl %edi / yt
pushl %esi / yt
movl 12(%esp), %eax / xt, xt
movl 16(%esp), %edx / xt, xt
call UDivRem
addl $12, %esp
movl 36(%esp), %edi / x,
testl %edi, %edi
movl 8(%esp), %eax / rem, rem
movl 12(%esp), %edx / rem, rem
js .LL65
addl $20, %esp
popl %esi
popl %edi
ret
.align 16
.LL63:
negl %esi
adcl $0, %edi
negl %edi
testl %edx, %edx / y
movl %esi, (%esp) /, xt
movl %edi, 4(%esp) /, xt
movl %eax, %esi / y, yt
movl %edx, %edi / y, yt
jns .LL61
.align 16
.LL64:
negl %esi / yt
adcl $0, %edi /, yt
negl %edi / yt
jmp .LL61
.align 16
.LL65:
negl %eax / rem
adcl $0, %edx /, rem
addl $20, %esp
popl %esi
negl %edx / rem
popl %edi
ret
SET_SIZE(__moddi3)
/*
* __udivrem64
*
* Perform division of two unsigned 64-bit quantities, returning the
* quotient in %edx:%eax, and the remainder in %ecx:%esi. __udivrem64
* pops the arguments on return.
*/
ENTRY(__udivrem64)
subl $12, %esp
movl %esp, %ecx /, tmp64
movl 16(%esp), %eax / x, x
movl 20(%esp), %edx / x, x
pushl %ecx / tmp64
pushl 32(%esp) / y
pushl 32(%esp)
call UDivRem
movl 16(%esp), %ecx / rem, tmp63
movl 12(%esp), %esi / rem
addl $24, %esp
ret $16
SET_SIZE(__udivrem64)
/*
* Signed division with remainder.
*/
/ int64_t
/ SDivRem(int64_t x, int64_t y, int64_t * pmod)
/ {
/ int negative;
/ uint64_t xt, yt, r, rem;
/
/ if (x < 0) {
/ xt = -(uint64_t) x;
/ negative = 1;
/ } else {
/ xt = x;
/ negative = 0;
/ }
/ if (y < 0) {
/ yt = -(uint64_t) y;
/ negative ^= 1;
/ } else {
/ yt = y;
/ }
/ r = UDivRem(xt, yt, &rem);
/ *pmod = (x < 0 ? (int64_t) - rem : rem);
/ return (negative ? (int64_t) - r : r);
/ }
ENTRY(SDivRem)
pushl %ebp
pushl %edi
pushl %esi
subl $24, %esp
testl %edx, %edx / x
movl %edx, %edi / x, x
js .LL73
movl 44(%esp), %esi / y,
xorl %ebp, %ebp / negative
testl %esi, %esi
movl %edx, 12(%esp) / x, xt
movl %eax, 8(%esp) / x, xt
movl 40(%esp), %edx / y, yt
movl 44(%esp), %ecx / y, yt
js .LL74
.LL70:
leal 16(%esp), %eax /, tmp70
pushl %eax / tmp70
pushl %ecx / yt
pushl %edx / yt
movl 20(%esp), %eax / xt, xt
movl 24(%esp), %edx / xt, xt
call UDivRem
movl %edx, 16(%esp) /, r
movl %eax, 12(%esp) /, r
addl $12, %esp
testl %edi, %edi / x
movl 16(%esp), %edx / rem, rem
movl 20(%esp), %ecx / rem, rem
js .LL75
.LL71:
movl 48(%esp), %edi / pmod, pmod
testl %ebp, %ebp / negative
movl %edx, (%edi) / rem,* pmod
movl %ecx, 4(%edi) / rem,
movl (%esp), %eax / r, r
movl 4(%esp), %edx / r, r
je .LL72
negl %eax / r
adcl $0, %edx /, r
negl %edx / r
.LL72:
addl $24, %esp
popl %esi
popl %edi
popl %ebp
ret
.align 16
.LL73:
negl %eax
adcl $0, %edx
movl 44(%esp), %esi / y,
negl %edx
testl %esi, %esi
movl %edx, 12(%esp) /, xt
movl %eax, 8(%esp) /, xt
movl $1, %ebp /, negative
movl 40(%esp), %edx / y, yt
movl 44(%esp), %ecx / y, yt
jns .LL70
.align 16
.LL74:
negl %edx / yt
adcl $0, %ecx /, yt
negl %ecx / yt
xorl $1, %ebp /, negative
jmp .LL70
.align 16
.LL75:
negl %edx / rem
adcl $0, %ecx /, rem
negl %ecx / rem
jmp .LL71
SET_SIZE(SDivRem)
/*
* __divrem64
*
* Perform division of two signed 64-bit quantities, returning the
* quotient in %edx:%eax, and the remainder in %ecx:%esi. __divrem64
* pops the arguments on return.
*/
ENTRY(__divrem64)
subl $20, %esp
movl %esp, %ecx /, tmp64
movl 24(%esp), %eax / x, x
movl 28(%esp), %edx / x, x
pushl %ecx / tmp64
pushl 40(%esp) / y
pushl 40(%esp)
call SDivRem
movl 16(%esp), %ecx
movl 12(%esp),%esi / rem
addl $32, %esp
ret $16
SET_SIZE(__divrem64)
#endif /* __lint */
#endif /* defined(__i386) && !defined(__amd64) */
|