1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
|
#include "FEATURE/uwin"
#if !_UWIN || _lib_crypt
void _STUB_crypt(){}
#else
/*
* Copyright (c) 1989, 1993
* The Regents of the University of California. All rights reserved.
*
* This code is derived from software contributed to Berkeley by
* Tom Truscott.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. Neither the name of the University nor the names of its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*/
#if defined(LIBC_SCCS) && !defined(lint)
static char sccsid[] = "@(#)crypt.c 8.1 (Berkeley) 6/4/93";
#endif /* LIBC_SCCS and not lint */
#define crypt ______crypt
#define encrypt ______encrypt
#define setkey ______setkey
/* #include <unistd.h> */
#include <stdio.h>
#include <limits.h>
#include <pwd.h>
#undef crypt
#undef encrypt
#undef setkey
#ifndef _PASSWORD_EFMT1
#define _PASSWORD_EFMT1 '-'
#endif
#if defined(__EXPORT__)
#define extern __EXPORT__
#endif
/*
* UNIX password, and DES, encryption.
* By Tom Truscott, trt@rti.rti.org,
* from algorithms by Robert W. Baldwin and James Gillogly.
*
* References:
* "Mathematical Cryptology for Computer Scientists and Mathematicians,"
* by Wayne Patterson, 1987, ISBN 0-8476-7438-X.
*
* "Password Security: A Case History," R. Morris and Ken Thompson,
* Communications of the ACM, vol. 22, pp. 594-597, Nov. 1979.
*
* "DES will be Totally Insecure within Ten Years," M.E. Hellman,
* IEEE Spectrum, vol. 16, pp. 32-39, July 1979.
*/
/* ===== Configuration ==================== */
/*
* define "MUST_ALIGN" if your compiler cannot load/store
* long integers at arbitrary (e.g. odd) memory locations.
* (Either that or never pass unaligned addresses to des_cipher!)
*/
#if !defined(vax)
#define MUST_ALIGN
#endif
#ifdef CHAR_BITS
#if CHAR_BITS != 8
#error C_block structure assumes 8 bit characters
#endif
#endif
/*
* define "LONG_IS_32_BITS" only if sizeof(long)==4.
* This avoids use of bit fields (your compiler may be sloppy with them).
*/
#if !defined(cray)
#define LONG_IS_32_BITS
#endif
/*
* define "B64" to be the declaration for a 64 bit integer.
* XXX this feature is currently unused, see "endian" comment below.
*/
#if defined(cray)
#define B64 long
#endif
#if defined(convex)
#define B64 long long
#endif
/*
* define "LARGEDATA" to get faster permutations, by using about 72 kilobytes
* of lookup tables. This speeds up des_setkey() and des_cipher(), but has
* little effect on crypt().
*/
#if defined(notdef)
#define LARGEDATA
#endif
/* ==================================== */
/*
* Cipher-block representation (Bob Baldwin):
*
* DES operates on groups of 64 bits, numbered 1..64 (sigh). One
* representation is to store one bit per byte in an array of bytes. Bit N of
* the NBS spec is stored as the LSB of the Nth byte (index N-1) in the array.
* Another representation stores the 64 bits in 8 bytes, with bits 1..8 in the
* first byte, 9..16 in the second, and so on. The DES spec apparently has
* bit 1 in the MSB of the first byte, but that is particularly noxious so we
* bit-reverse each byte so that bit 1 is the LSB of the first byte, bit 8 is
* the MSB of the first byte. Specifically, the 64-bit input data and key are
* converted to LSB format, and the output 64-bit block is converted back into
* MSB format.
*
* DES operates internally on groups of 32 bits which are expanded to 48 bits
* by permutation E and shrunk back to 32 bits by the S boxes. To speed up
* the computation, the expansion is applied only once, the expanded
* representation is maintained during the encryption, and a compression
* permutation is applied only at the end. To speed up the S-box lookups,
* the 48 bits are maintained as eight 6 bit groups, one per byte, which
* directly feed the eight S-boxes. Within each byte, the 6 bits are the
* most significant ones. The low two bits of each byte are zero. (Thus,
* bit 1 of the 48 bit E expansion is stored as the "4"-valued bit of the
* first byte in the eight byte representation, bit 2 of the 48 bit value is
* the "8"-valued bit, and so on.) In fact, a combined "SPE"-box lookup is
* used, in which the output is the 64 bit result of an S-box lookup which
* has been permuted by P and expanded by E, and is ready for use in the next
* iteration. Two 32-bit wide tables, SPE[0] and SPE[1], are used for this
* lookup. Since each byte in the 48 bit path is a multiple of four, indexed
* lookup of SPE[0] and SPE[1] is simple and fast. The key schedule and
* "salt" are also converted to this 8*(6+2) format. The SPE table size is
* 8*64*8 = 4K bytes.
*
* To speed up bit-parallel operations (such as XOR), the 8 byte
* representation is "union"ed with 32 bit values "i0" and "i1", and, on
* machines which support it, a 64 bit value "b64". This data structure,
* "C_block", has two problems. First, alignment restrictions must be
* honored. Second, the byte-order (e.g. little-endian or big-endian) of
* the architecture becomes visible.
*
* The byte-order problem is unfortunate, since on the one hand it is good
* to have a machine-independent C_block representation (bits 1..8 in the
* first byte, etc.), and on the other hand it is good for the LSB of the
* first byte to be the LSB of i0. We cannot have both these things, so we
* currently use the "little-endian" representation and avoid any multi-byte
* operations that depend on byte order. This largely precludes use of the
* 64-bit datatype since the relative order of i0 and i1 are unknown. It
* also inhibits grouping the SPE table to look up 12 bits at a time. (The
* 12 bits can be stored in a 16-bit field with 3 low-order zeroes and 1
* high-order zero, providing fast indexing into a 64-bit wide SPE.) On the
* other hand, 64-bit datatypes are currently rare, and a 12-bit SPE lookup
* requires a 128 kilobyte table, so perhaps this is not a big loss.
*
* Permutation representation (Jim Gillogly):
*
* A transformation is defined by its effect on each of the 8 bytes of the
* 64-bit input. For each byte we give a 64-bit output that has the bits in
* the input distributed appropriately. The transformation is then the OR
* of the 8 sets of 64-bits. This uses 8*256*8 = 16K bytes of storage for
* each transformation. Unless LARGEDATA is defined, however, a more compact
* table is used which looks up 16 4-bit "chunks" rather than 8 8-bit chunks.
* The smaller table uses 16*16*8 = 2K bytes for each transformation. This
* is slower but tolerable, particularly for password encryption in which
* the SPE transformation is iterated many times. The small tables total 9K
* bytes, the large tables total 72K bytes.
*
* The transformations used are:
* IE3264: MSB->LSB conversion, initial permutation, and expansion.
* This is done by collecting the 32 even-numbered bits and applying
* a 32->64 bit transformation, and then collecting the 32 odd-numbered
* bits and applying the same transformation. Since there are only
* 32 input bits, the IE3264 transformation table is half the size of
* the usual table.
* CF6464: Compression, final permutation, and LSB->MSB conversion.
* This is done by two trivial 48->32 bit compressions to obtain
* a 64-bit block (the bit numbering is given in the "CIFP" table)
* followed by a 64->64 bit "cleanup" transformation. (It would
* be possible to group the bits in the 64-bit block so that 2
* identical 32->32 bit transformations could be used instead,
* saving a factor of 4 in space and possibly 2 in time, but
* byte-ordering and other complications rear their ugly head.
* Similar opportunities/problems arise in the key schedule
* transforms.)
* PC1ROT: MSB->LSB, PC1 permutation, rotate, and PC2 permutation.
* This admittedly baroque 64->64 bit transformation is used to
* produce the first code (in 8*(6+2) format) of the key schedule.
* PC2ROT[0]: Inverse PC2 permutation, rotate, and PC2 permutation.
* It would be possible to define 15 more transformations, each
* with a different rotation, to generate the entire key schedule.
* To save space, however, we instead permute each code into the
* next by using a transformation that "undoes" the PC2 permutation,
* rotates the code, and then applies PC2. Unfortunately, PC2
* transforms 56 bits into 48 bits, dropping 8 bits, so PC2 is not
* invertible. We get around that problem by using a modified PC2
* which retains the 8 otherwise-lost bits in the unused low-order
* bits of each byte. The low-order bits are cleared when the
* codes are stored into the key schedule.
* PC2ROT[1]: Same as PC2ROT[0], but with two rotations.
* This is faster than applying PC2ROT[0] twice,
*
* The Bell Labs "salt" (Bob Baldwin):
*
* The salting is a simple permutation applied to the 48-bit result of E.
* Specifically, if bit i (1 <= i <= 24) of the salt is set then bits i and
* i+24 of the result are swapped. The salt is thus a 24 bit number, with
* 16777216 possible values. (The original salt was 12 bits and could not
* swap bits 13..24 with 36..48.)
*
* It is possible, but ugly, to warp the SPE table to account for the salt
* permutation. Fortunately, the conditional bit swapping requires only
* about four machine instructions and can be done on-the-fly with about an
* 8% performance penalty.
*/
typedef union {
unsigned char b[8];
struct {
#if defined(LONG_IS_32_BITS)
/* long is often faster than a 32-bit bit field */
long i0;
long i1;
#else
long i0: 32;
long i1: 32;
#endif
} b32;
#if defined(B64)
B64 b64;
#endif
} C_block;
/*
* Convert twenty-four-bit long in host-order
* to six bits (and 2 low-order zeroes) per char little-endian format.
*/
#define TO_SIX_BIT(rslt, src) { \
C_block cvt; \
cvt.b[0] = (unsigned char) src; src >>= 6; \
cvt.b[1] = (unsigned char) src; src >>= 6; \
cvt.b[2] = (unsigned char) src; src >>= 6; \
cvt.b[3] = (unsigned char) src; \
rslt = (cvt.b32.i0 & 0x3f3f3f3fL) << 2; \
}
/*
* These macros may someday permit efficient use of 64-bit integers.
*/
#define ZERO(d,d0,d1) d0 = 0, d1 = 0
#define LOAD(d,d0,d1,bl) d0 = (bl).b32.i0, d1 = (bl).b32.i1
#define LOADREG(d,d0,d1,s,s0,s1) d0 = s0, d1 = s1
#define OR(d,d0,d1,bl) d0 |= (bl).b32.i0, d1 |= (bl).b32.i1
#define STORE(s,s0,s1,bl) (bl).b32.i0 = s0, (bl).b32.i1 = s1
#define DCL_BLOCK(d,d0,d1) long d0, d1
/* proto(1) workarounds -- barf */
#define DCL_BLOCK_D DCL_BLOCK(D,D0,D1)
#define DCL_BLOCK_K DCL_BLOCK(K,K0,K1)
#if defined(LARGEDATA)
/* Waste memory like crazy. Also, do permutations in line */
#define LGCHUNKBITS 3
#define CHUNKBITS (1<<LGCHUNKBITS)
#define PERM6464(d,d0,d1,cpp,p) \
LOAD(d,d0,d1,(p)[(0<<CHUNKBITS)+(cpp)[0]]); \
OR (d,d0,d1,(p)[(1<<CHUNKBITS)+(cpp)[1]]); \
OR (d,d0,d1,(p)[(2<<CHUNKBITS)+(cpp)[2]]); \
OR (d,d0,d1,(p)[(3<<CHUNKBITS)+(cpp)[3]]); \
OR (d,d0,d1,(p)[(4<<CHUNKBITS)+(cpp)[4]]); \
OR (d,d0,d1,(p)[(5<<CHUNKBITS)+(cpp)[5]]); \
OR (d,d0,d1,(p)[(6<<CHUNKBITS)+(cpp)[6]]); \
OR (d,d0,d1,(p)[(7<<CHUNKBITS)+(cpp)[7]]);
#define PERM3264(d,d0,d1,cpp,p) \
LOAD(d,d0,d1,(p)[(0<<CHUNKBITS)+(cpp)[0]]); \
OR (d,d0,d1,(p)[(1<<CHUNKBITS)+(cpp)[1]]); \
OR (d,d0,d1,(p)[(2<<CHUNKBITS)+(cpp)[2]]); \
OR (d,d0,d1,(p)[(3<<CHUNKBITS)+(cpp)[3]]);
#else
/* "small data" */
#define LGCHUNKBITS 2
#define CHUNKBITS (1<<LGCHUNKBITS)
#define PERM6464(d,d0,d1,cpp,p) \
{ C_block tblk; permute(cpp,&tblk,p,8); LOAD (d,d0,d1,tblk); }
#define PERM3264(d,d0,d1,cpp,p) \
{ C_block tblk; permute(cpp,&tblk,p,4); LOAD (d,d0,d1,tblk); }
static void permute(unsigned char *cp, C_block *out, register C_block *p, int chars_in) {
register DCL_BLOCK_D;
register C_block *tp;
register int t;
ZERO(D,D0,D1);
do {
t = *cp++;
tp = &p[t&0xf]; OR(D,D0,D1,*tp); p += (1<<CHUNKBITS);
tp = &p[t>>4]; OR(D,D0,D1,*tp); p += (1<<CHUNKBITS);
} while (--chars_in > 0);
STORE(D,D0,D1,*out);
}
#endif /* LARGEDATA */
/* ===== (mostly) Standard DES Tables ==================== */
static unsigned char IP[] = { /* initial permutation */
58, 50, 42, 34, 26, 18, 10, 2,
60, 52, 44, 36, 28, 20, 12, 4,
62, 54, 46, 38, 30, 22, 14, 6,
64, 56, 48, 40, 32, 24, 16, 8,
57, 49, 41, 33, 25, 17, 9, 1,
59, 51, 43, 35, 27, 19, 11, 3,
61, 53, 45, 37, 29, 21, 13, 5,
63, 55, 47, 39, 31, 23, 15, 7,
};
/* The final permutation is the inverse of IP - no table is necessary */
static unsigned char ExpandTr[] = { /* expansion operation */
32, 1, 2, 3, 4, 5,
4, 5, 6, 7, 8, 9,
8, 9, 10, 11, 12, 13,
12, 13, 14, 15, 16, 17,
16, 17, 18, 19, 20, 21,
20, 21, 22, 23, 24, 25,
24, 25, 26, 27, 28, 29,
28, 29, 30, 31, 32, 1,
};
static unsigned char PC1[] = { /* permuted choice table 1 */
57, 49, 41, 33, 25, 17, 9,
1, 58, 50, 42, 34, 26, 18,
10, 2, 59, 51, 43, 35, 27,
19, 11, 3, 60, 52, 44, 36,
63, 55, 47, 39, 31, 23, 15,
7, 62, 54, 46, 38, 30, 22,
14, 6, 61, 53, 45, 37, 29,
21, 13, 5, 28, 20, 12, 4,
};
static unsigned char Rotates[] = { /* PC1 rotation schedule */
1, 1, 2, 2, 2, 2, 2, 2, 1, 2, 2, 2, 2, 2, 2, 1,
};
/* note: each "row" of PC2 is left-padded with bits that make it invertible */
static unsigned char PC2[] = { /* permuted choice table 2 */
9, 18, 14, 17, 11, 24, 1, 5,
22, 25, 3, 28, 15, 6, 21, 10,
35, 38, 23, 19, 12, 4, 26, 8,
43, 54, 16, 7, 27, 20, 13, 2,
0, 0, 41, 52, 31, 37, 47, 55,
0, 0, 30, 40, 51, 45, 33, 48,
0, 0, 44, 49, 39, 56, 34, 53,
0, 0, 46, 42, 50, 36, 29, 32,
};
static unsigned char S[8][64] = { /* 48->32 bit substitution tables */
/* S[1] */
14, 4, 13, 1, 2, 15, 11, 8, 3, 10, 6, 12, 5, 9, 0, 7,
0, 15, 7, 4, 14, 2, 13, 1, 10, 6, 12, 11, 9, 5, 3, 8,
4, 1, 14, 8, 13, 6, 2, 11, 15, 12, 9, 7, 3, 10, 5, 0,
15, 12, 8, 2, 4, 9, 1, 7, 5, 11, 3, 14, 10, 0, 6, 13,
/* S[2] */
15, 1, 8, 14, 6, 11, 3, 4, 9, 7, 2, 13, 12, 0, 5, 10,
3, 13, 4, 7, 15, 2, 8, 14, 12, 0, 1, 10, 6, 9, 11, 5,
0, 14, 7, 11, 10, 4, 13, 1, 5, 8, 12, 6, 9, 3, 2, 15,
13, 8, 10, 1, 3, 15, 4, 2, 11, 6, 7, 12, 0, 5, 14, 9,
/* S[3] */
10, 0, 9, 14, 6, 3, 15, 5, 1, 13, 12, 7, 11, 4, 2, 8,
13, 7, 0, 9, 3, 4, 6, 10, 2, 8, 5, 14, 12, 11, 15, 1,
13, 6, 4, 9, 8, 15, 3, 0, 11, 1, 2, 12, 5, 10, 14, 7,
1, 10, 13, 0, 6, 9, 8, 7, 4, 15, 14, 3, 11, 5, 2, 12,
/* S[4] */
7, 13, 14, 3, 0, 6, 9, 10, 1, 2, 8, 5, 11, 12, 4, 15,
13, 8, 11, 5, 6, 15, 0, 3, 4, 7, 2, 12, 1, 10, 14, 9,
10, 6, 9, 0, 12, 11, 7, 13, 15, 1, 3, 14, 5, 2, 8, 4,
3, 15, 0, 6, 10, 1, 13, 8, 9, 4, 5, 11, 12, 7, 2, 14,
/* S[5] */
2, 12, 4, 1, 7, 10, 11, 6, 8, 5, 3, 15, 13, 0, 14, 9,
14, 11, 2, 12, 4, 7, 13, 1, 5, 0, 15, 10, 3, 9, 8, 6,
4, 2, 1, 11, 10, 13, 7, 8, 15, 9, 12, 5, 6, 3, 0, 14,
11, 8, 12, 7, 1, 14, 2, 13, 6, 15, 0, 9, 10, 4, 5, 3,
/* S[6] */
12, 1, 10, 15, 9, 2, 6, 8, 0, 13, 3, 4, 14, 7, 5, 11,
10, 15, 4, 2, 7, 12, 9, 5, 6, 1, 13, 14, 0, 11, 3, 8,
9, 14, 15, 5, 2, 8, 12, 3, 7, 0, 4, 10, 1, 13, 11, 6,
4, 3, 2, 12, 9, 5, 15, 10, 11, 14, 1, 7, 6, 0, 8, 13,
/* S[7] */
4, 11, 2, 14, 15, 0, 8, 13, 3, 12, 9, 7, 5, 10, 6, 1,
13, 0, 11, 7, 4, 9, 1, 10, 14, 3, 5, 12, 2, 15, 8, 6,
1, 4, 11, 13, 12, 3, 7, 14, 10, 15, 6, 8, 0, 5, 9, 2,
6, 11, 13, 8, 1, 4, 10, 7, 9, 5, 0, 15, 14, 2, 3, 12,
/* S[8] */
13, 2, 8, 4, 6, 15, 11, 1, 10, 9, 3, 14, 5, 0, 12, 7,
1, 15, 13, 8, 10, 3, 7, 4, 12, 5, 6, 11, 0, 14, 9, 2,
7, 11, 4, 1, 9, 12, 14, 2, 0, 6, 10, 13, 15, 3, 5, 8,
2, 1, 14, 7, 4, 10, 8, 13, 15, 12, 9, 0, 3, 5, 6, 11,
};
static unsigned char P32Tr[] = { /* 32-bit permutation function */
16, 7, 20, 21,
29, 12, 28, 17,
1, 15, 23, 26,
5, 18, 31, 10,
2, 8, 24, 14,
32, 27, 3, 9,
19, 13, 30, 6,
22, 11, 4, 25,
};
static unsigned char CIFP[] = { /* compressed/interleaved permutation */
1, 2, 3, 4, 17, 18, 19, 20,
5, 6, 7, 8, 21, 22, 23, 24,
9, 10, 11, 12, 25, 26, 27, 28,
13, 14, 15, 16, 29, 30, 31, 32,
33, 34, 35, 36, 49, 50, 51, 52,
37, 38, 39, 40, 53, 54, 55, 56,
41, 42, 43, 44, 57, 58, 59, 60,
45, 46, 47, 48, 61, 62, 63, 64,
};
static unsigned char itoa64[] = /* 0..63 => ascii-64 */
"./0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz";
/* ===== Tables that are initialized at run time ==================== */
static unsigned char a64toi[128]; /* ascii-64 => 0..63 */
/* Initial key schedule permutation */
static C_block PC1ROT[64/CHUNKBITS][1<<CHUNKBITS];
/* Subsequent key schedule rotation permutations */
static C_block PC2ROT[2][64/CHUNKBITS][1<<CHUNKBITS];
/* Initial permutation/expansion table */
static C_block IE3264[32/CHUNKBITS][1<<CHUNKBITS];
/* Table that combines the S, P, and E operations. */
static long SPE[2][8][64];
/* compressed/interleaved => final permutation table */
static C_block CF6464[64/CHUNKBITS][1<<CHUNKBITS];
/* ==================================== */
static C_block constdatablock; /* encryption constant */
static char cryptresult[1+4+4+11+1]; /* encrypted result */
/*
* Initialize "perm" to represent transformation "p", which rearranges
* (perhaps with expansion and/or contraction) one packed array of bits
* (of size "chars_in" characters) into another array (of size "chars_out"
* characters).
*
* "perm" must be all-zeroes on entry to this routine.
*/
static void init_perm(C_block perm[64/CHUNKBITS][1<<CHUNKBITS],
unsigned char p[64], int chars_in, int chars_out) {
register int i, j, k, l;
for (k = 0; k < chars_out*8; k++) { /* each output bit position */
l = p[k] - 1; /* where this bit comes from */
if (l < 0)
continue; /* output bit is always 0 */
i = l>>LGCHUNKBITS; /* which chunk this bit comes from */
l = 1<<(l&(CHUNKBITS-1)); /* mask for this bit */
for (j = 0; j < (1<<CHUNKBITS); j++) { /* each chunk value */
if ((j & l) != 0)
perm[i][j].b[k>>3] |= 1<<(k&07);
}
}
}
/*
* Initialize various tables. This need only be done once. It could even be
* done at compile time, if the compiler were capable of that sort of thing.
*/
static void init_des(void) {
register int i, j;
register long k;
register int tableno;
static unsigned char perm[64], tmp32[32]; /* "static" for speed */
/*
* table that converts chars "./0-9A-Za-z"to integers 0-63.
*/
for (i = 0; i < 64; i++)
a64toi[itoa64[i]] = i;
/*
* PC1ROT - bit reverse, then PC1, then Rotate, then PC2.
*/
for (i = 0; i < 64; i++)
perm[i] = 0;
for (i = 0; i < 64; i++) {
if ((k = PC2[i]) == 0)
continue;
k += Rotates[0]-1;
if ((k%28) < Rotates[0]) k -= 28;
k = PC1[k];
if (k > 0) {
k--;
k = (k|07) - (k&07);
k++;
}
perm[i] = (unsigned char) k;
}
#ifdef DEBUG
prtab("pc1tab", perm, 8);
#endif
init_perm(PC1ROT, perm, 8, 8);
/*
* PC2ROT - PC2 inverse, then Rotate (once or twice), then PC2.
*/
for (j = 0; j < 2; j++) {
unsigned char pc2inv[64];
for (i = 0; i < 64; i++)
perm[i] = pc2inv[i] = 0;
for (i = 0; i < 64; i++) {
if ((k = PC2[i]) == 0)
continue;
pc2inv[k-1] = i+1;
}
for (i = 0; i < 64; i++) {
if ((k = PC2[i]) == 0)
continue;
k += j;
if ((k%28) <= j) k -= 28;
perm[i] = pc2inv[k];
}
#ifdef DEBUG
prtab("pc2tab", perm, 8);
#endif
init_perm(PC2ROT[j], perm, 8, 8);
}
/*
* Bit reverse, then initial permutation, then expansion.
*/
for (i = 0; i < 8; i++) {
for (j = 0; j < 8; j++) {
k = (j < 2)? 0: IP[ExpandTr[i*6+j-2]-1];
if (k > 32)
k -= 32;
else if (k > 0)
k--;
if (k > 0) {
k--;
k = (k|07) - (k&07);
k++;
}
perm[i*8+j] = (unsigned char) k;
}
}
#ifdef DEBUG
prtab("ietab", perm, 8);
#endif
init_perm(IE3264, perm, 4, 8);
/*
* Compression, then final permutation, then bit reverse.
*/
for (i = 0; i < 64; i++) {
k = IP[CIFP[i]-1];
if (k > 0) {
k--;
k = (k|07) - (k&07);
k++;
}
perm[k-1] = i+1;
}
#ifdef DEBUG
prtab("cftab", perm, 8);
#endif
init_perm(CF6464, perm, 8, 8);
/*
* SPE table
*/
for (i = 0; i < 48; i++)
perm[i] = P32Tr[ExpandTr[i]-1];
for (tableno = 0; tableno < 8; tableno++) {
for (j = 0; j < 64; j++) {
k = (((j >> 0) &01) << 5)|
(((j >> 1) &01) << 3)|
(((j >> 2) &01) << 2)|
(((j >> 3) &01) << 1)|
(((j >> 4) &01) << 0)|
(((j >> 5) &01) << 4);
k = S[tableno][k];
k = (((k >> 3)&01) << 0)|
(((k >> 2)&01) << 1)|
(((k >> 1)&01) << 2)|
(((k >> 0)&01) << 3);
for (i = 0; i < 32; i++)
tmp32[i] = 0;
for (i = 0; i < 4; i++)
tmp32[4 * tableno + i] = (k >> i) & 01;
k = 0;
for (i = 24; --i >= 0; )
k = (k<<1) | tmp32[perm[i]-1];
TO_SIX_BIT(SPE[0][tableno][j], k);
k = 0;
for (i = 24; --i >= 0; )
k = (k<<1) | tmp32[perm[i+24]-1];
TO_SIX_BIT(SPE[1][tableno][j], k);
}
}
}
/*
* The Key Schedule, filled in by des_setkey() or setkey().
*/
#define KS_SIZE 16
static C_block KS[KS_SIZE];
/*
* Set up the key schedule from the key.
*/
static int des_setkey(register const char *key) {
register DCL_BLOCK_K;
register C_block *ptabp;
register int i;
static int des_ready = 0;
if (!des_ready) {
init_des();
des_ready = 1;
}
PERM6464(K,K0,K1,(unsigned char *)key,(C_block *)PC1ROT);
key = (char *)&KS[0];
STORE(K&~0x03030303L, K0&~0x03030303L, K1, *(C_block *)key);
for (i = 1; i < 16; i++) {
key += sizeof(C_block);
STORE(K,K0,K1,*(C_block *)key);
ptabp = (C_block *)PC2ROT[Rotates[i]-1];
PERM6464(K,K0,K1,(unsigned char *)key,ptabp);
STORE(K&~0x03030303L, K0&~0x03030303L, K1, *(C_block *)key);
}
return (0);
}
/*
* Encrypt (or decrypt if num_iter < 0) the 8 chars at "in" with abs(num_iter)
* iterations of DES, using the the given 24-bit salt and the pre-computed key
* schedule, and store the resulting 8 chars at "out" (in == out is permitted).
*
* NOTE: the performance of this routine is critically dependent on your
* compiler and machine architecture.
*/
static int des_cipher(const char *in, char *out, long salt, int num_iter) {
/* variables that we want in registers, most important first */
#if defined(pdp11)
register int j;
#endif
register long L0, L1, R0, R1, k;
register C_block *kp;
register int ks_inc, loop_count;
C_block B;
L0 = salt;
TO_SIX_BIT(salt, L0); /* convert to 4*(6+2) format */
#if defined(vax) || defined(pdp11)
salt = ~salt; /* "x &~ y" is faster than "x & y". */
#define SALT (~salt)
#else
#define SALT salt
#endif
#if defined(MUST_ALIGN)
B.b[0] = in[0]; B.b[1] = in[1]; B.b[2] = in[2]; B.b[3] = in[3];
B.b[4] = in[4]; B.b[5] = in[5]; B.b[6] = in[6]; B.b[7] = in[7];
LOAD(L,L0,L1,B);
#else
LOAD(L,L0,L1,*(C_block *)in);
#endif
LOADREG(R,R0,R1,L,L0,L1);
L0 &= 0x55555555L;
L1 &= 0x55555555L;
L0 = (L0 << 1) | L1; /* L0 is the even-numbered input bits */
R0 &= 0xaaaaaaaaL;
R1 = (R1 >> 1) & 0x55555555L;
L1 = R0 | R1; /* L1 is the odd-numbered input bits */
STORE(L,L0,L1,B);
PERM3264(L,L0,L1,B.b, (C_block *)IE3264); /* even bits */
PERM3264(R,R0,R1,B.b+4,(C_block *)IE3264); /* odd bits */
if (num_iter >= 0)
{ /* encryption */
kp = &KS[0];
ks_inc = sizeof(*kp);
}
else
{ /* decryption */
num_iter = -num_iter;
kp = &KS[KS_SIZE-1];
ks_inc = -((int) sizeof(*kp));
}
while (--num_iter >= 0) {
loop_count = 8;
do {
#define SPTAB(t, i) (*(long *)((unsigned char *)t + i*(sizeof(long)/4)))
#if defined(gould)
/* use this if B.b[i] is evaluated just once ... */
#define DOXOR(x,y,i) x^=SPTAB(SPE[0][i],B.b[i]); y^=SPTAB(SPE[1][i],B.b[i]);
#else
#if defined(pdp11)
/* use this if your "long" int indexing is slow */
#define DOXOR(x,y,i) j=B.b[i]; x^=SPTAB(SPE[0][i],j); y^=SPTAB(SPE[1][i],j);
#else
/* use this if "k" is allocated to a register ... */
#define DOXOR(x,y,i) k=B.b[i]; x^=SPTAB(SPE[0][i],k); y^=SPTAB(SPE[1][i],k);
#endif
#endif
#define CRUNCH(p0, p1, q0, q1) \
k = (q0 ^ q1) & SALT; \
B.b32.i0 = k ^ q0 ^ kp->b32.i0; \
B.b32.i1 = k ^ q1 ^ kp->b32.i1; \
kp = (C_block *)((char *)kp+ks_inc); \
\
DOXOR(p0, p1, 0); \
DOXOR(p0, p1, 1); \
DOXOR(p0, p1, 2); \
DOXOR(p0, p1, 3); \
DOXOR(p0, p1, 4); \
DOXOR(p0, p1, 5); \
DOXOR(p0, p1, 6); \
DOXOR(p0, p1, 7);
CRUNCH(L0, L1, R0, R1);
CRUNCH(R0, R1, L0, L1);
} while (--loop_count != 0);
kp = (C_block *)((char *)kp-(ks_inc*KS_SIZE));
/* swap L and R */
L0 ^= R0; L1 ^= R1;
R0 ^= L0; R1 ^= L1;
L0 ^= R0; L1 ^= R1;
}
/* store the encrypted (or decrypted) result */
L0 = ((L0 >> 3) & 0x0f0f0f0fL) | ((L1 << 1) & 0xf0f0f0f0L);
L1 = ((R0 >> 3) & 0x0f0f0f0fL) | ((R1 << 1) & 0xf0f0f0f0L);
STORE(L,L0,L1,B);
PERM6464(L,L0,L1,B.b, (C_block *)CF6464);
#if defined(MUST_ALIGN)
STORE(L,L0,L1,B);
out[0] = B.b[0]; out[1] = B.b[1]; out[2] = B.b[2]; out[3] = B.b[3];
out[4] = B.b[4]; out[5] = B.b[5]; out[6] = B.b[6]; out[7] = B.b[7];
#else
STORE(L,L0,L1,*(C_block *)out);
#endif
return (0);
}
/*
* "setkey" routine (for backwards compatibility)
*/
extern int setkey(register const char *key) {
register int i, j, k;
C_block keyblock;
for (i = 0; i < 8; i++) {
k = 0;
for (j = 0; j < 8; j++) {
k <<= 1;
k |= (unsigned char)*key++;
}
keyblock.b[i] = k;
}
return (des_setkey((char *)keyblock.b));
}
/*
* "encrypt" routine (for backwards compatibility)
*/
extern int encrypt(register char *block, int flag) {
register int i, j, k;
C_block cblock;
for (i = 0; i < 8; i++) {
k = 0;
for (j = 0; j < 8; j++) {
k <<= 1;
k |= (unsigned char)*block++;
}
cblock.b[i] = k;
}
if (des_cipher((char *)&cblock, (char *)&cblock, 0L, (flag ? -1: 1)))
return (1);
for (i = 7; i >= 0; i--) {
k = cblock.b[i];
for (j = 7; j >= 0; j--) {
*--block = k&01;
k >>= 1;
}
}
return (0);
}
/*
* Return a pointer to static data consisting of the "setting"
* followed by an encryption produced by the "key" and "setting".
*/
extern char * crypt(register const char *key, register const char *setting) {
register char *encp;
register long i;
register int t;
long salt;
int num_iter, salt_size;
C_block keyblock, rsltblock;
#ifdef HL_NOENCRYPTION
char buff[1024];
strncpy(buff, key, 1024);
buff[1023] = 0;
return buff;
#endif
for (i = 0; i < 8; i++) {
if ((t = 2*(unsigned char)(*key)) != 0)
key++;
keyblock.b[i] = t;
}
if (des_setkey((char *)keyblock.b)) /* also initializes "a64toi" */
return (NULL);
encp = &cryptresult[0];
switch (*setting) {
case _PASSWORD_EFMT1:
/*
* Involve the rest of the password 8 characters at a time.
*/
while (*key) {
if (des_cipher((char *)&keyblock,
(char *)&keyblock, 0L, 1))
return (NULL);
for (i = 0; i < 8; i++) {
if ((t = 2*(unsigned char)(*key)) != 0)
key++;
keyblock.b[i] ^= t;
}
if (des_setkey((char *)keyblock.b))
return (NULL);
}
*encp++ = *setting++;
/* get iteration count */
num_iter = 0;
for (i = 4; --i >= 0; ) {
if ((t = (unsigned char)setting[i]) == '\0')
t = '.';
encp[i] = t;
num_iter = (num_iter<<6) | a64toi[t];
}
setting += 4;
encp += 4;
salt_size = 4;
break;
default:
num_iter = 25;
salt_size = 2;
}
salt = 0;
for (i = salt_size; --i >= 0; ) {
if ((t = (unsigned char)setting[i]) == '\0')
t = '.';
encp[i] = t;
salt = (salt<<6) | a64toi[t];
}
encp += salt_size;
if (des_cipher((char *)&constdatablock, (char *)&rsltblock,
salt, num_iter))
return (NULL);
/*
* Encode the 64 cipher bits as 11 ascii characters.
*/
i = ((long)((rsltblock.b[0]<<8) | rsltblock.b[1])<<8) | rsltblock.b[2];
encp[3] = itoa64[i&0x3f]; i >>= 6;
encp[2] = itoa64[i&0x3f]; i >>= 6;
encp[1] = itoa64[i&0x3f]; i >>= 6;
encp[0] = itoa64[i]; encp += 4;
i = ((long)((rsltblock.b[3]<<8) | rsltblock.b[4])<<8) | rsltblock.b[5];
encp[3] = itoa64[i&0x3f]; i >>= 6;
encp[2] = itoa64[i&0x3f]; i >>= 6;
encp[1] = itoa64[i&0x3f]; i >>= 6;
encp[0] = itoa64[i]; encp += 4;
i = ((long)((rsltblock.b[6])<<8) | rsltblock.b[7])<<2;
encp[2] = itoa64[i&0x3f]; i >>= 6;
encp[1] = itoa64[i&0x3f]; i >>= 6;
encp[0] = itoa64[i];
encp[3] = 0;
return (cryptresult);
}
#ifdef DEBUG
STATIC
prtab(s, t, num_rows)
char *s;
unsigned char *t;
int num_rows;
{
register int i, j;
(void)printf("%s:\n", s);
for (i = 0; i < num_rows; i++) {
for (j = 0; j < 8; j++) {
(void)printf("%3d", t[i*8+j]);
}
(void)printf("\n");
}
(void)printf("\n");
}
#endif
#endif
|