summaryrefslogtreecommitdiff
path: root/usr/src/lib/libc/port/i18n/wstod.c
blob: 0be95caf13f9fdbd60dff292ee1be2bf5426fe84 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
/*
 * CDDL HEADER START
 *
 * The contents of this file are subject to the terms of the
 * Common Development and Distribution License (the "License").
 * You may not use this file except in compliance with the License.
 *
 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
 * or http://www.opensolaris.org/os/licensing.
 * See the License for the specific language governing permissions
 * and limitations under the License.
 *
 * When distributing Covered Code, include this CDDL HEADER in each
 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
 * If applicable, add the following below this CDDL HEADER, with the
 * fields enclosed by brackets "[]" replaced with your own identifying
 * information: Portions Copyright [yyyy] [name of copyright owner]
 *
 * CDDL HEADER END
 */

/*
 * Copyright 2008 Sun Microsystems, Inc.  All rights reserved.
 * Use is subject to license terms.
 */

/*	Copyright (c) 1988 AT&T	*/
/*	  All Rights Reserved  	*/

#pragma ident	"%Z%%M%	%I%	%E% SMI"

/*
 * This file is based on /usr/src/lib/libc/port/gen/strtod.c and
 * /usr/src/lib/libc/sparc/fp/string_decim.c
 */

#pragma weak _wcstod = wcstod
#pragma weak _wstod = wstod

#include "lint.h"
#include <errno.h>
#include <stdio.h>
#include <values.h>
#include <floatingpoint.h>
#include <stddef.h>
#include <wctype.h>
#include "base_conversion.h"	/* from usr/src/lib/libc/inc */
#include <locale.h>
#include "libc.h"
#include "xpg6.h"

static void wstring_to_decimal(const wchar_t **, int, decimal_record *, int *);

double
wcstod(const wchar_t *cp, wchar_t **ptr)
{
	double		x;
	decimal_mode	mr;
	decimal_record	dr;
	fp_exception_field_type fs;
	int 		form;

	wstring_to_decimal(&cp, __xpg6 & _C99SUSv3_recognize_hexfp, &dr, &form);
	if (ptr != NULL)
		*ptr = (wchar_t *)cp;
	if (form == 0)
		return (0.0);	/* Shameful kluge for SVID's sake. */
#if defined(__i386) || defined(__amd64)
	mr.rd = __xgetRD();
#elif defined(__sparc)
	mr.rd = _QgetRD();
#else
#error Unknown architecture!
#endif
	if (form < 0)
		__hex_to_double(&dr, mr.rd, &x, &fs);
	else
		decimal_to_double(&x, &mr, &dr, &fs);
	if (fs & ((1 << fp_overflow) | (1 << fp_underflow)))
		errno = ERANGE;
	return (x);
}

float
wcstof(const wchar_t *cp, wchar_t **ptr)
{
	float		x;
	decimal_mode	mr;
	decimal_record	dr;
	fp_exception_field_type fs;
	int		form;

	wstring_to_decimal(&cp, 1, &dr, &form);
	if (ptr != NULL)
		*ptr = (wchar_t *)cp;
	if (form == 0)
		return (0.0f);
#if defined(__i386) || defined(__amd64)
	mr.rd = __xgetRD();
#elif defined(__sparc)
	mr.rd = _QgetRD();
#else
#error Unknown architecture!
#endif
	if (form < 0)
		__hex_to_single(&dr, mr.rd, &x, &fs);
	else
		decimal_to_single(&x, &mr, &dr, &fs);
	if (fs & ((1 << fp_overflow) | (1 << fp_underflow)))
		errno = ERANGE;
	return (x);
}

long double
wcstold(const wchar_t *cp, wchar_t **ptr)
{
	long double	x;
	decimal_mode	mr;
	decimal_record	dr;
	fp_exception_field_type fs;
	int		form;

	wstring_to_decimal(&cp, 1, &dr, &form);
	if (ptr != NULL)
		*ptr = (wchar_t *)cp;
	if (form == 0)
		return (0.0L);
#if defined(__i386) || defined(__amd64)
	mr.rd = __xgetRD();
	if (form < 0)
		__hex_to_extended(&dr, mr.rd, (extended *)&x, &fs);
	else
		decimal_to_extended((extended *)&x, &mr, &dr, &fs);
#elif defined(__sparc)
	mr.rd = _QgetRD();
	if (form < 0)
		__hex_to_quadruple(&dr, mr.rd, &x, &fs);
	else
		decimal_to_quadruple(&x, &mr, &dr, &fs);
#else
#error Unknown architecture!
#endif
	if (fs & ((1 << fp_overflow) | (1 << fp_underflow)))
		errno = ERANGE;
	return (x);
}

double
wstod(const wchar_t *cp, wchar_t **ptr)
{
	return (wcstod(cp, ptr));
}

static const char *infstring = "INFINITY";
static const char *nanstring = "NAN";

/*
 * The following macro is applied to wchar_t arguments solely for the
 * purpose of comparing the result with one of the characters in the
 * strings above.
 */
#define	UCASE(c)	(((L'a' <= c) && (c <= L'z'))? c - 32 : c)

/*
 * The following macro yields an expression that is true whenever
 * the argument is a valid nonzero digit for the form being parsed.
 */
#define	NZDIGIT(c)	((L'1' <= c && c <= L'9') || (form < 0 && \
			((L'a' <= c && c <= L'f') || (L'A' <= c && c <= L'F'))))

/*
 * wstring_to_decimal is modelled on string_to_decimal, the majority
 * of which can be found in the common file char_to_decimal.h.  The
 * significant differences are:
 *
 * 1. This code recognizes only C99 (hex fp strings and restricted
 *    characters in parentheses following "nan") vs. C90 modes, no
 *    Fortran conventions.
 *
 * 2. *pform is an int rather than an enum decimal_string_form.  On
 *    return, *pform == 0 if no valid token was found, *pform < 0
 *    if a C99 hex fp string was found, and *pform > 0 if a decimal
 *    string was found.
 */
static void
wstring_to_decimal(const wchar_t **ppc, int c99, decimal_record *pd,
    int *pform)
{
	const wchar_t	*cp = *ppc; /* last character seen */
	const wchar_t	*good = cp - 1;	/* last character accepted */
	wchar_t		current; /* always equal to *cp */
	int		sigfound;
	int		ids = 0;
	int		i, agree;
	int		nzbp = 0; /* number of zeros before point */
	int		nzap = 0; /* number of zeros after point */
	char		decpt;
	int		nfast, nfastlimit;
	char		*pfast;
	int		e, esign;
	int		expshift = 0;
	int		form;

	/*
	 * This routine assumes that the radix point is a single
	 * ASCII character, so that following this assignment, the
	 * condition (current == decpt) will correctly detect it.
	 */
	decpt = *(localeconv()->decimal_point);

	/* input is invalid until we find something */
	pd->fpclass = fp_signaling;
	pd->sign = 0;
	pd->exponent = 0;
	pd->ds[0] = '\0';
	pd->more = 0;
	pd->ndigits = 0;
	*pform = form = 0;

	/* skip white space */
	current = *cp;
	while (iswspace((wint_t)current))
		current = *++cp;

	/* look for optional leading sign */
	if (current == L'+') {
		current = *++cp;
	} else if (current == L'-') {
		pd->sign = 1;
		current = *++cp;
	}

	sigfound = -1;		/* -1 = no digits found yet */

	/*
	 * Admissible first non-white-space, non-sign characters are
	 * 0-9, i, I, n, N, or the radix point.
	 */
	if (L'1' <= current && current <= L'9') {
		pd->fpclass = fp_normal;
		form = 1;
		good = cp;
		sigfound = 1;	/* 1 = significant digits found */
		pd->ds[ids++] = (char)current;
		current = *++cp;
	} else {
		switch (current) {
		case L'0':
			/*
			 * Accept the leading zero and set pd->fpclass
			 * accordingly, but don't set sigfound until we
			 * determine that this isn't a "fake" hex string
			 * (i.e., 0x.p...).
			 */
			good = cp;
			pd->fpclass = fp_zero;
			if (c99) {
				/* look for a hex fp string */
				current = *++cp;
				if (current == L'X' || current == L'x') {
					/* assume hex fp form */
					form = -1;
					expshift = 2;
					current = *++cp;
					/*
					 * Only a digit or radix point can
					 * follow "0x".
					 */
					if (NZDIGIT(current)) {
						pd->fpclass = fp_normal;
						good = cp;
						sigfound = 1;
						pd->ds[ids++] = (char)current;
						current = *++cp;
						break;
					} else if (current == (wchar_t)decpt) {
						current = *++cp;
						goto afterpoint;
					} else if (current != L'0') {
						/* not hex fp after all */
						form = 1;
						expshift = 0;
						goto done;
					}
				} else {
					form = 1;
				}
			} else {
				form = 1;
			}

			/* skip all leading zeros */
			while (current == L'0')
				current = *++cp;
			good = cp - 1;
			sigfound = 0;	/* 0 = only zeros found so far */
			break;

		case L'i':
		case L'I':
			/* look for inf or infinity */
			current = *++cp;
			agree = 1;
			while (agree <= 7 &&
			    UCASE(current) == (wchar_t)infstring[agree]) {
				current = *++cp;
				agree++;
			}
			if (agree >= 3) {
				/* found valid infinity */
				pd->fpclass = fp_infinity;
				form = 1;
				good = (agree < 8)? cp + 2 - agree : cp - 1;
				__inf_read = 1;
			}
			goto done;

		case L'n':
		case L'N':
			/* look for nan or nan(string) */
			current = *++cp;
			agree = 1;
			while (agree <= 2 &&
			    UCASE(current) == (wchar_t)nanstring[agree]) {
				current = *++cp;
				agree++;
			}
			if (agree == 3) {
				/* found valid NaN */
				pd->fpclass = fp_quiet;
				form = 1;
				good = cp - 1;
				__nan_read = 1;
				if (current == L'(') {
					/* accept parenthesized string */
					if (c99) {
						do {
							current = *++cp;
						} while (iswalnum(current) ||
						    current == L'_');
					} else {
						do {
							current = *++cp;
						} while (current &&
						    current != L')');
					}
					if (current == L')')
						good = cp;
				}
			}
			goto done;

		default:
			if (current == (wchar_t)decpt) {
				/*
				 * Don't accept the radix point just yet;
				 * we need to see at least one digit.
				 */
				current = *++cp;
				goto afterpoint;
			}
			goto done;
		}
	}

nextnumber:
	/*
	 * Admissible characters after the first digit are a valid
	 * digit, an exponent delimiter (E or e for decimal form,
	 * P or p for hex form), or the radix point.  (Note that we
	 * can't get here unless we've already found a digit.)
	 */
	if (NZDIGIT(current)) {
		/*
		 * Found another nonzero digit.  If there's enough room
		 * in pd->ds, store any intervening zeros we've found so far
		 * and then store this digit.  Otherwise, stop storing
		 * digits in pd->ds and set pd->more.
		 */
		if (ids + nzbp + 2 < DECIMAL_STRING_LENGTH) {
			for (i = 0; i < nzbp; i++)
				pd->ds[ids++] = '0';
			pd->ds[ids++] = (char)current;
		} else {
			pd->exponent += (nzbp + 1) << expshift;
			pd->more = 1;
			if (ids < DECIMAL_STRING_LENGTH) {
				pd->ds[ids] = '\0';
				pd->ndigits = ids;
				/* don't store any more digits */
				ids = DECIMAL_STRING_LENGTH;
			}
		}
		pd->fpclass = fp_normal;
		sigfound = 1;
		nzbp = 0;
		current = *++cp;

		/*
		 * Use an optimized loop to grab a consecutive sequence
		 * of nonzero digits quickly.
		 */
		nfastlimit = DECIMAL_STRING_LENGTH - 3 - ids;
		for (nfast = 0, pfast = &(pd->ds[ids]);
		    nfast < nfastlimit && NZDIGIT(current);
		    nfast++) {
			*pfast++ = (char)current;
			current = *++cp;
		}
		ids += nfast;
		if (current == L'0')
			goto nextnumberzero;	/* common case */
		/* advance good to the last accepted digit */
		good = cp - 1;
		goto nextnumber;
	} else {
		switch (current) {
		case L'0':
nextnumberzero:
			/*
			 * Count zeros before the radix point.  Later we
			 * will either put these zeros into pd->ds or add
			 * nzbp to pd->exponent to account for them.
			 */
			while (current == L'0') {
				nzbp++;
				current = *++cp;
			}
			good = cp - 1;
			goto nextnumber;

		case L'E':
		case L'e':
			if (form < 0)
				goto done;
			goto exponent;

		case L'P':
		case L'p':
			if (form > 0)
				goto done;
			goto exponent;

		default:
			if (current == decpt) {
				/* accept the radix point */
				good = cp;
				current = *++cp;
				goto afterpoint;
			}
			goto done;
		}
	}

afterpoint:
	/*
	 * Admissible characters after the radix point are a valid digit
	 * or an exponent delimiter.  (Note that it is possible to get
	 * here even though we haven't found any digits yet.)
	 */
	if (NZDIGIT(current)) {
		if (form == 0)
			form = 1;
		if (sigfound < 1) {
			/* no significant digits found until now */
			pd->fpclass = fp_normal;
			sigfound = 1;
			pd->ds[ids++] = (char)current;
			pd->exponent = (-(nzap + 1)) << expshift;
		} else {
			/* significant digits have been found */
			if (ids + nzbp + nzap + 2 < DECIMAL_STRING_LENGTH) {
				for (i = 0; i < nzbp + nzap; i++)
					pd->ds[ids++] = '0';
				pd->ds[ids++] = (char)current;
				pd->exponent -= (nzap + 1) << expshift;
			} else {
				pd->exponent += nzbp << expshift;
				pd->more = 1;
				if (ids < DECIMAL_STRING_LENGTH) {
					pd->ds[ids] = '\0';
					pd->ndigits = ids;
					/* don't store any more digits */
					ids = DECIMAL_STRING_LENGTH;
				}
			}
		}
		nzbp = 0;
		nzap = 0;
		current = *++cp;

		/*
		 * Use an optimized loop to grab a consecutive sequence
		 * of nonzero digits quickly.
		 */
		nfastlimit = DECIMAL_STRING_LENGTH - 3 - ids;
		for (nfast = 0, pfast = &(pd->ds[ids]);
		    nfast < nfastlimit && NZDIGIT(current);
		    nfast++) {
			*pfast++ = (char)current;
			current = *++cp;
		}
		ids += nfast;
		pd->exponent -= nfast << expshift;
		if (current == L'0')
			goto zeroafterpoint;
		/* advance good to the last accepted digit */
		good = cp - 1;
		goto afterpoint;
	} else {
		switch (current) {
		case L'0':
			if (form == 0)
				form = 1;
			if (sigfound == -1) {
				pd->fpclass = fp_zero;
				sigfound = 0;
			}
zeroafterpoint:
			/*
			 * Count zeros after the radix point.  If we find
			 * any more nonzero digits later, we will put these
			 * zeros into pd->ds and decrease pd->exponent by
			 * nzap.
			 */
			while (current == L'0') {
				nzap++;
				current = *++cp;
			}
			good = cp - 1;
			goto afterpoint;

		case L'E':
		case L'e':
			/* don't accept exponent without preceding digits */
			if (sigfound == -1 || form < 0)
				goto done;
			break;

		case L'P':
		case L'p':
			/* don't accept exponent without preceding digits */
			if (sigfound == -1 || form > 0)
				goto done;
			break;

		default:
			goto done;
		}
	}

exponent:
	e = 0;
	esign = 0;

	/* look for optional exponent sign */
	current = *++cp;
	if (current == L'+') {
		current = *++cp;
	} else if (current == L'-') {
		esign = 1;
		current = *++cp;
	}

	/*
	 * Accumulate explicit exponent.  Note that if we don't find at
	 * least one digit, good won't be updated and e will remain 0.
	 * Also, we keep e from getting too large so we don't overflow
	 * the range of int (but notice that the threshold is large
	 * enough that any larger e would cause the result to underflow
	 * or overflow anyway).
	 */
	while (L'0' <= current && current <= L'9') {
		good = cp;
		if (e <= 1000000)
			e = 10 * e + current - L'0';
		current = *++cp;
	}
	if (esign)
		pd->exponent -= e;
	else
		pd->exponent += e;

done:
	/*
	 * If we found any zeros before the radix point that were not
	 * accounted for earlier, adjust the exponent.  (This is only
	 * relevant when pd->fpclass == fp_normal, but it's harmless
	 * in all other cases.)
	 */
	pd->exponent += nzbp << expshift;

	/* terminate pd->ds if we haven't already */
	if (ids < DECIMAL_STRING_LENGTH) {
		pd->ds[ids] = '\0';
		pd->ndigits = ids;
	}

	/*
	 * If we accepted any characters, advance *ppc to point to the
	 * first character we didn't accept; otherwise, pass back a
	 * signaling nan.
	 */
	if (good >= *ppc) {
		*ppc = good + 1;
	} else {
		pd->fpclass = fp_signaling;
		pd->sign = 0;
		form = 0;
	}

	*pform = form;
}