1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
|
/*
* This file and its contents are supplied under the terms of the
* Common Development and Distribution License ("CDDL"), version 1.0.
* You may only use this file in accordance with the terms of version
* 1.0 of the CDDL.
*
* A full copy of the text of the CDDL should have accompanied this
* source. A copy of the CDDL is also available via the Internet at
* http://www.illumos.org/license/CDDL.
*/
/*
* Copyright 2017 Joyent, Inc.
*/
#include <pthread.h>
#include <thread.h>
#include <synch.h>
#include <threads.h>
#include <errno.h>
#include <unistd.h>
#include <stdlib.h>
/*
* ISO/IEC C11 thread support.
*
* In illumos, the underlying implementation of lock related routines is the
* same between pthreads and traditional SunOS routines. The same is true with
* the C11 routines. Their types are actually just typedef's to other things.
* Thus in the implementation here, we treat this as a wrapper around existing
* thread related routines and don't sweet the extra indirection.
*
* Note that in many places the C standard doesn't allow for errors to be
* returned. In those cases, if we have an instance of programmer error
* (something resulting in EINVAL), we opt to abort the program as we don't have
* much other recourse available.
*/
void
call_once(once_flag *flag, void (*func)(void))
{
if (pthread_once(flag, func) != 0)
abort();
}
int
cnd_broadcast(cnd_t *cnd)
{
int ret;
ret = pthread_cond_broadcast(cnd);
if (ret == 0)
return (thrd_success);
else
return (thrd_error);
}
void
cnd_destroy(cnd_t *cnd)
{
if (pthread_cond_destroy(cnd) != 0)
abort();
}
int
cnd_init(cnd_t *cnd)
{
int ret;
ret = pthread_cond_init(cnd, NULL);
if (ret == 0)
return (thrd_success);
return (thrd_error);
}
int
cnd_signal(cnd_t *cnd)
{
int ret;
ret = pthread_cond_signal(cnd);
if (ret == 0)
return (thrd_success);
else
return (thrd_error);
}
/* ARGSUSED */
int
cnd_timedwait(cnd_t *_RESTRICT_KYWD cnd, mtx_t *_RESTRICT_KYWD mtx,
const struct timespec *_RESTRICT_KYWD ts)
{
int ret;
ret = pthread_cond_timedwait(cnd, mtx, ts);
if (ret == 0)
return (thrd_success);
if (ret == ETIMEDOUT)
return (thrd_timedout);
return (thrd_error);
}
/* ARGSUSED */
int
cnd_wait(cnd_t *cnd, mtx_t *mtx)
{
int ret;
ret = pthread_cond_wait(cnd, mtx);
if (ret == 0)
return (thrd_success);
return (thrd_error);
}
void
mtx_destroy(mtx_t *mtx)
{
if (pthread_mutex_destroy(mtx) != 0)
abort();
}
int
mtx_init(mtx_t *mtx, int type)
{
int mtype;
switch (type) {
case mtx_plain:
case mtx_timed:
mtype = USYNC_THREAD;
break;
case mtx_plain | mtx_recursive:
case mtx_timed | mtx_recursive:
mtype = USYNC_THREAD | LOCK_RECURSIVE;
break;
default:
return (thrd_error);
}
/*
* Here, we buck the trend and use the traditional SunOS routine. It's
* much simpler than fighting with pthread attributes.
*/
if (mutex_init((mutex_t *)mtx, mtype, NULL) == 0)
return (thrd_success);
return (thrd_error);
}
int
mtx_lock(mtx_t *mtx)
{
if (pthread_mutex_lock(mtx) == 0)
return (thrd_success);
return (thrd_error);
}
int
mtx_timedlock(mtx_t *_RESTRICT_KYWD mtx,
const struct timespec *_RESTRICT_KYWD abstime)
{
int ret;
ret = pthread_mutex_timedlock(mtx, abstime);
if (ret == ETIMEDOUT)
return (thrd_timedout);
else if (ret != 0)
return (thrd_error);
return (thrd_success);
}
int
mtx_trylock(mtx_t *mtx)
{
int ret;
ret = pthread_mutex_trylock(mtx);
if (ret == 0)
return (thrd_success);
else if (ret == EBUSY)
return (thrd_busy);
else
return (thrd_error);
}
int
mtx_unlock(mtx_t *mtx)
{
if (pthread_mutex_unlock(mtx) == 0)
return (thrd_success);
return (thrd_error);
}
int
thrd_create(thrd_t *thr, thrd_start_t func, void *arg)
{
int ret;
ret = pthread_create(thr, NULL,
(void *(*)(void *))(uintptr_t)func, arg);
if (ret == 0)
return (thrd_success);
else if (ret == -1 && errno == EAGAIN)
return (thrd_nomem);
else
return (thrd_error);
}
thrd_t
thrd_current(void)
{
return (pthread_self());
}
int
thrd_detach(thrd_t thr)
{
if (pthread_detach(thr) == 0)
return (thrd_success);
return (thrd_error);
}
int
thrd_equal(thrd_t t1, thrd_t t2)
{
return (pthread_equal(t1, t2));
}
_NORETURN_KYWD void
thrd_exit(int res)
{
pthread_exit((void *)(uintptr_t)res);
}
int
thrd_join(thrd_t thrd, int *res)
{
void *es;
if (pthread_join(thrd, &es) != 0)
return (thrd_error);
if (res != NULL)
*res = (uintptr_t)es;
return (thrd_success);
}
/*
* thrd_sleep has somewhat odd standardized return values. It doesn't use the
* same returns values as the thrd_* family of functions at all.
*/
int
thrd_sleep(const struct timespec *rqtp, struct timespec *rmtp)
{
int ret;
if ((ret = nanosleep(rqtp, rmtp)) == 0)
return (0);
if (ret == -1 && errno == EINTR)
return (-1);
return (-2);
}
void
thrd_yield(void)
{
thr_yield();
}
int
tss_create(tss_t *key, tss_dtor_t dtor)
{
if (pthread_key_create(key, dtor) == 0)
return (thrd_success);
return (thrd_error);
}
void
tss_delete(tss_t key)
{
if (pthread_key_delete(key) != 0)
abort();
}
void *
tss_get(tss_t key)
{
return (pthread_getspecific(key));
}
int
tss_set(tss_t key, void *val)
{
if (pthread_setspecific(key, val) == 0)
return (thrd_success);
return (thrd_error);
}
|