1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
|
/*
* CDDL HEADER START
*
* The contents of this file are subject to the terms of the
* Common Development and Distribution License (the "License").
* You may not use this file except in compliance with the License.
*
* You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
* or http://www.opensolaris.org/os/licensing.
* See the License for the specific language governing permissions
* and limitations under the License.
*
* When distributing Covered Code, include this CDDL HEADER in each
* file and include the License file at usr/src/OPENSOLARIS.LICENSE.
* If applicable, add the following below this CDDL HEADER, with the
* fields enclosed by brackets "[]" replaced with your own identifying
* information: Portions Copyright [yyyy] [name of copyright owner]
*
* CDDL HEADER END
*/
/*
* Copyright 2007 Sun Microsystems, Inc. All rights reserved.
* Use is subject to license terms.
*/
#pragma ident "%Z%%M% %I% %E% SMI"
#include "lint.h"
#include "thr_uberdata.h"
#include <stdarg.h>
#include <poll.h>
#include <stropts.h>
#include <dlfcn.h>
#include <sys/uio.h>
/*
* fork_lock is special -- We can't use lmutex_lock() (and thereby enter
* a critical region) because the second thread to reach this point would
* become unstoppable and the first thread would hang waiting for the
* second thread to stop itself. Therefore we don't use lmutex_lock() in
* fork_lock_enter(), but we do defer signals (the other form of concurrency).
*
* fork_lock_enter() does triple-duty. Not only does it serialize
* calls to fork() and forkall(), but it also serializes calls to
* thr_suspend() (fork() and forkall() also suspend other threads),
* and furthermore it serializes I18N calls to functions in other
* dlopen()ed L10N objects that might be calling malloc()/free().
*/
static void
fork_lock_error(const char *who)
{
char msg[200];
(void) strlcpy(msg, "deadlock condition: ", sizeof (msg));
(void) strlcat(msg, who, sizeof (msg));
(void) strlcat(msg, "() called from a fork handler", sizeof (msg));
thread_error(msg);
}
int
fork_lock_enter(const char *who)
{
ulwp_t *self = curthread;
uberdata_t *udp = self->ul_uberdata;
int error = 0;
ASSERT(self->ul_critical == 0);
sigoff(self);
(void) _private_mutex_lock(&udp->fork_lock);
if (udp->fork_count) {
ASSERT(udp->fork_owner == self);
/*
* This is a simple recursive lock except that we
* inform the caller if we have been called from
* a fork handler and let it deal with that fact.
*/
if (self->ul_fork) {
/*
* We have been called from a fork handler.
*/
if (who != NULL &&
udp->uberflags.uf_thread_error_detection)
fork_lock_error(who);
error = EDEADLK;
}
}
udp->fork_owner = self;
udp->fork_count++;
return (error);
}
void
fork_lock_exit(void)
{
ulwp_t *self = curthread;
uberdata_t *udp = self->ul_uberdata;
ASSERT(self->ul_critical == 0);
ASSERT(udp->fork_count != 0 && udp->fork_owner == self);
if (--udp->fork_count == 0)
udp->fork_owner = NULL;
(void) _private_mutex_unlock(&udp->fork_lock);
sigon(self);
}
#pragma weak forkx = _private_forkx
#pragma weak _forkx = _private_forkx
static pid_t
_private_forkx(int flags)
{
ulwp_t *self = curthread;
uberdata_t *udp = self->ul_uberdata;
pid_t pid;
int error;
if (self->ul_vfork) {
/*
* We are a child of vfork(); omit all of the fork
* logic and go straight to the system call trap.
* A vfork() child of a multithreaded parent
* must never call fork().
*/
if (udp->uberflags.uf_mt) {
errno = ENOTSUP;
return (-1);
}
pid = __forkx(flags);
if (pid == 0) { /* child */
udp->pid = _private_getpid();
self->ul_vfork = 0;
}
return (pid);
}
if ((error = fork_lock_enter("fork")) != 0) {
/*
* Cannot call fork() from a fork handler.
*/
fork_lock_exit();
errno = error;
return (-1);
}
self->ul_fork = 1;
/*
* The functions registered by pthread_atfork() are defined by
* the application and its libraries and we must not hold any
* internal libc locks while invoking them. The fork_lock_enter()
* function serializes fork(), thr_suspend(), pthread_atfork() and
* dlclose() (which destroys whatever pthread_atfork() functions
* the library may have set up). If one of these pthread_atfork()
* functions attempts to fork or suspend another thread or call
* pthread_atfork() or dlclose a library, it will detect a deadlock
* in fork_lock_enter(). Otherwise, the pthread_atfork() functions
* are free to do anything they please (except they will not
* receive any signals).
*/
_prefork_handler();
/*
* Block all signals.
* Just deferring them via sigon() is not enough.
* We have to avoid taking a deferred signal in the child
* that was actually sent to the parent before __forkx().
*/
block_all_signals(self);
/*
* This suspends all threads but this one, leaving them
* suspended outside of any critical regions in the library.
* Thus, we are assured that no library locks are held
* while we invoke fork() from the current thread.
*/
suspend_fork();
pid = __forkx(flags);
if (pid == 0) { /* child */
/*
* Clear our schedctl pointer.
* Discard any deferred signal that was sent to the parent.
* Because we blocked all signals before __forkx(), a
* deferred signal cannot have been taken by the child.
*/
self->ul_schedctl_called = NULL;
self->ul_schedctl = NULL;
self->ul_cursig = 0;
self->ul_siginfo.si_signo = 0;
udp->pid = _private_getpid();
/* reset the library's data structures to reflect one thread */
postfork1_child();
restore_signals(self);
_postfork_child_handler();
} else {
/* restart all threads that were suspended for fork() */
continue_fork(0);
restore_signals(self);
_postfork_parent_handler();
}
self->ul_fork = 0;
fork_lock_exit();
return (pid);
}
/*
* fork() is fork1() for both Posix threads and Solaris threads.
* The forkall() interface exists for applications that require
* the semantics of replicating all threads.
*/
#pragma weak fork1 = _fork
#pragma weak _fork1 = _fork
#pragma weak fork = _fork
pid_t
_fork(void)
{
return (_private_forkx(0));
}
/*
* Much of the logic here is the same as in forkx().
* See the comments in forkx(), above.
*/
#pragma weak forkallx = _private_forkallx
#pragma weak _forkallx = _private_forkallx
static pid_t
_private_forkallx(int flags)
{
ulwp_t *self = curthread;
uberdata_t *udp = self->ul_uberdata;
pid_t pid;
int error;
if (self->ul_vfork) {
if (udp->uberflags.uf_mt) {
errno = ENOTSUP;
return (-1);
}
pid = __forkallx(flags);
if (pid == 0) { /* child */
udp->pid = _private_getpid();
self->ul_vfork = 0;
}
return (pid);
}
if ((error = fork_lock_enter("forkall")) != 0) {
fork_lock_exit();
errno = error;
return (-1);
}
self->ul_fork = 1;
block_all_signals(self);
suspend_fork();
pid = __forkallx(flags);
if (pid == 0) {
self->ul_schedctl_called = NULL;
self->ul_schedctl = NULL;
self->ul_cursig = 0;
self->ul_siginfo.si_signo = 0;
udp->pid = _private_getpid();
continue_fork(1);
} else {
continue_fork(0);
}
restore_signals(self);
self->ul_fork = 0;
fork_lock_exit();
return (pid);
}
#pragma weak forkall = _forkall
pid_t
_forkall(void)
{
return (_private_forkallx(0));
}
/*
* Hacks for system calls to provide cancellation
* and improve java garbage collection.
*/
#define PROLOGUE \
{ \
ulwp_t *self = curthread; \
int nocancel = (self->ul_vfork | self->ul_nocancel); \
if (nocancel == 0) { \
self->ul_save_async = self->ul_cancel_async; \
if (!self->ul_cancel_disabled) { \
self->ul_cancel_async = 1; \
if (self->ul_cancel_pending) \
_pthread_exit(PTHREAD_CANCELED); \
} \
self->ul_sp = stkptr(); \
}
#define EPILOGUE \
if (nocancel == 0) { \
self->ul_sp = 0; \
self->ul_cancel_async = self->ul_save_async; \
} \
}
/*
* Perform the body of the action required by most of the cancelable
* function calls. The return(function_call) part is to allow the
* compiler to make the call be executed with tail recursion, which
* saves a register window on sparc and slightly (not much) improves
* the code for x86/x64 compilations.
*/
#define PERFORM(function_call) \
PROLOGUE \
if (nocancel) \
return (function_call); \
rv = function_call; \
EPILOGUE \
return (rv);
/*
* Specialized prologue for sigsuspend() and pollsys().
* These system calls pass a signal mask to the kernel.
* The kernel replaces the thread's signal mask with the
* temporary mask before the thread goes to sleep. If
* a signal is received, the signal handler will execute
* with the temporary mask, as modified by the sigaction
* for the particular signal.
*
* We block all signals until we reach the kernel with the
* temporary mask. This eliminates race conditions with
* setting the signal mask while signals are being posted.
*/
#define PROLOGUE_MASK(sigmask) \
{ \
ulwp_t *self = curthread; \
int nocancel = (self->ul_vfork | self->ul_nocancel); \
if (!self->ul_vfork) { \
if (sigmask) { \
block_all_signals(self); \
self->ul_tmpmask.__sigbits[0] = sigmask->__sigbits[0]; \
self->ul_tmpmask.__sigbits[1] = sigmask->__sigbits[1]; \
delete_reserved_signals(&self->ul_tmpmask); \
self->ul_sigsuspend = 1; \
} \
if (nocancel == 0) { \
self->ul_save_async = self->ul_cancel_async; \
if (!self->ul_cancel_disabled) { \
self->ul_cancel_async = 1; \
if (self->ul_cancel_pending) { \
if (self->ul_sigsuspend) { \
self->ul_sigsuspend = 0;\
restore_signals(self); \
} \
_pthread_exit(PTHREAD_CANCELED);\
} \
} \
self->ul_sp = stkptr(); \
} \
}
/*
* If a signal is taken, we return from the system call wrapper with
* our original signal mask restored (see code in call_user_handler()).
* If not (self->ul_sigsuspend is still non-zero), we must restore our
* original signal mask ourself.
*/
#define EPILOGUE_MASK \
if (nocancel == 0) { \
self->ul_sp = 0; \
self->ul_cancel_async = self->ul_save_async; \
} \
if (self->ul_sigsuspend) { \
self->ul_sigsuspend = 0; \
restore_signals(self); \
} \
}
/*
* Cancellation prologue and epilogue functions,
* for cancellation points too complex to include here.
*/
void
_cancel_prologue(void)
{
ulwp_t *self = curthread;
self->ul_cancel_prologue = (self->ul_vfork | self->ul_nocancel);
if (self->ul_cancel_prologue == 0) {
self->ul_save_async = self->ul_cancel_async;
if (!self->ul_cancel_disabled) {
self->ul_cancel_async = 1;
if (self->ul_cancel_pending)
_pthread_exit(PTHREAD_CANCELED);
}
self->ul_sp = stkptr();
}
}
void
_cancel_epilogue(void)
{
ulwp_t *self = curthread;
if (self->ul_cancel_prologue == 0) {
self->ul_sp = 0;
self->ul_cancel_async = self->ul_save_async;
}
}
/*
* Called from _thrp_join() (thr_join() is a cancellation point)
*/
int
lwp_wait(thread_t tid, thread_t *found)
{
int error;
PROLOGUE
while ((error = __lwp_wait(tid, found)) == EINTR)
;
EPILOGUE
return (error);
}
ssize_t
read(int fd, void *buf, size_t size)
{
extern ssize_t _read(int, void *, size_t);
ssize_t rv;
PERFORM(_read(fd, buf, size))
}
ssize_t
write(int fd, const void *buf, size_t size)
{
extern ssize_t _write(int, const void *, size_t);
ssize_t rv;
PERFORM(_write(fd, buf, size))
}
int
getmsg(int fd, struct strbuf *ctlptr, struct strbuf *dataptr,
int *flagsp)
{
extern int _getmsg(int, struct strbuf *, struct strbuf *, int *);
int rv;
PERFORM(_getmsg(fd, ctlptr, dataptr, flagsp))
}
int
getpmsg(int fd, struct strbuf *ctlptr, struct strbuf *dataptr,
int *bandp, int *flagsp)
{
extern int _getpmsg(int, struct strbuf *, struct strbuf *,
int *, int *);
int rv;
PERFORM(_getpmsg(fd, ctlptr, dataptr, bandp, flagsp))
}
int
putmsg(int fd, const struct strbuf *ctlptr,
const struct strbuf *dataptr, int flags)
{
extern int _putmsg(int, const struct strbuf *,
const struct strbuf *, int);
int rv;
PERFORM(_putmsg(fd, ctlptr, dataptr, flags))
}
int
__xpg4_putmsg(int fd, const struct strbuf *ctlptr,
const struct strbuf *dataptr, int flags)
{
extern int _putmsg(int, const struct strbuf *,
const struct strbuf *, int);
int rv;
PERFORM(_putmsg(fd, ctlptr, dataptr, flags|MSG_XPG4))
}
int
putpmsg(int fd, const struct strbuf *ctlptr,
const struct strbuf *dataptr, int band, int flags)
{
extern int _putpmsg(int, const struct strbuf *,
const struct strbuf *, int, int);
int rv;
PERFORM(_putpmsg(fd, ctlptr, dataptr, band, flags))
}
int
__xpg4_putpmsg(int fd, const struct strbuf *ctlptr,
const struct strbuf *dataptr, int band, int flags)
{
extern int _putpmsg(int, const struct strbuf *,
const struct strbuf *, int, int);
int rv;
PERFORM(_putpmsg(fd, ctlptr, dataptr, band, flags|MSG_XPG4))
}
#pragma weak nanosleep = _nanosleep
int
_nanosleep(const timespec_t *rqtp, timespec_t *rmtp)
{
int error;
PROLOGUE
error = __nanosleep(rqtp, rmtp);
EPILOGUE
if (error) {
errno = error;
return (-1);
}
return (0);
}
#pragma weak clock_nanosleep = _clock_nanosleep
int
_clock_nanosleep(clockid_t clock_id, int flags,
const timespec_t *rqtp, timespec_t *rmtp)
{
timespec_t reltime;
hrtime_t start;
hrtime_t rqlapse;
hrtime_t lapse;
int error;
switch (clock_id) {
case CLOCK_VIRTUAL:
case CLOCK_PROCESS_CPUTIME_ID:
case CLOCK_THREAD_CPUTIME_ID:
return (ENOTSUP);
case CLOCK_REALTIME:
case CLOCK_HIGHRES:
break;
default:
return (EINVAL);
}
if (flags & TIMER_ABSTIME) {
abstime_to_reltime(clock_id, rqtp, &reltime);
rmtp = NULL;
} else {
reltime = *rqtp;
if (clock_id == CLOCK_HIGHRES)
start = gethrtime();
}
restart:
PROLOGUE
error = __nanosleep(&reltime, rmtp);
EPILOGUE
if (error == 0 && clock_id == CLOCK_HIGHRES) {
/*
* Don't return yet if we didn't really get a timeout.
* This can happen if we return because someone resets
* the system clock.
*/
if (flags & TIMER_ABSTIME) {
if ((hrtime_t)(uint32_t)rqtp->tv_sec * NANOSEC +
rqtp->tv_nsec > gethrtime()) {
abstime_to_reltime(clock_id, rqtp, &reltime);
goto restart;
}
} else {
rqlapse = (hrtime_t)(uint32_t)rqtp->tv_sec * NANOSEC +
rqtp->tv_nsec;
lapse = gethrtime() - start;
if (rqlapse > lapse) {
hrt2ts(rqlapse - lapse, &reltime);
goto restart;
}
}
}
if (error == 0 && clock_id == CLOCK_REALTIME &&
(flags & TIMER_ABSTIME)) {
/*
* Don't return yet just because someone reset the
* system clock. Recompute the new relative time
* and reissue the nanosleep() call if necessary.
*
* Resetting the system clock causes all sorts of
* problems and the SUSV3 standards body should
* have made the behavior of clock_nanosleep() be
* implementation-defined in such a case rather than
* being specific about honoring the new system time.
* Standards bodies are filled with fools and idiots.
*/
abstime_to_reltime(clock_id, rqtp, &reltime);
if (reltime.tv_sec != 0 || reltime.tv_nsec != 0)
goto restart;
}
return (error);
}
#pragma weak sleep = _sleep
unsigned int
_sleep(unsigned int sec)
{
unsigned int rem = 0;
int error;
timespec_t ts;
timespec_t tsr;
ts.tv_sec = (time_t)sec;
ts.tv_nsec = 0;
PROLOGUE
error = __nanosleep(&ts, &tsr);
EPILOGUE
if (error == EINTR) {
rem = (unsigned int)tsr.tv_sec;
if (tsr.tv_nsec >= NANOSEC / 2)
rem++;
}
return (rem);
}
#pragma weak usleep = _usleep
int
_usleep(useconds_t usec)
{
timespec_t ts;
ts.tv_sec = usec / MICROSEC;
ts.tv_nsec = (long)(usec % MICROSEC) * 1000;
PROLOGUE
(void) __nanosleep(&ts, NULL);
EPILOGUE
return (0);
}
int
close(int fildes)
{
extern void _aio_close(int);
extern int _close(int);
int rv;
_aio_close(fildes);
PERFORM(_close(fildes))
}
int
creat(const char *path, mode_t mode)
{
extern int _creat(const char *, mode_t);
int rv;
PERFORM(_creat(path, mode))
}
#if !defined(_LP64)
int
creat64(const char *path, mode_t mode)
{
extern int _creat64(const char *, mode_t);
int rv;
PERFORM(_creat64(path, mode))
}
#endif /* !_LP64 */
int
fcntl(int fildes, int cmd, ...)
{
extern int _fcntl(int, int, ...);
intptr_t arg;
int rv;
va_list ap;
va_start(ap, cmd);
arg = va_arg(ap, intptr_t);
va_end(ap);
if (cmd != F_SETLKW)
return (_fcntl(fildes, cmd, arg));
PERFORM(_fcntl(fildes, cmd, arg))
}
int
fsync(int fildes)
{
extern int _fsync(int);
int rv;
PERFORM(_fsync(fildes))
}
int
lockf(int fildes, int function, off_t size)
{
extern int _lockf(int, int, off_t);
int rv;
PERFORM(_lockf(fildes, function, size))
}
#if !defined(_LP64)
int
lockf64(int fildes, int function, off64_t size)
{
extern int _lockf64(int, int, off64_t);
int rv;
PERFORM(_lockf64(fildes, function, size))
}
#endif /* !_LP64 */
ssize_t
msgrcv(int msqid, void *msgp, size_t msgsz, long msgtyp, int msgflg)
{
extern ssize_t _msgrcv(int, void *, size_t, long, int);
ssize_t rv;
PERFORM(_msgrcv(msqid, msgp, msgsz, msgtyp, msgflg))
}
int
msgsnd(int msqid, const void *msgp, size_t msgsz, int msgflg)
{
extern int _msgsnd(int, const void *, size_t, int);
int rv;
PERFORM(_msgsnd(msqid, msgp, msgsz, msgflg))
}
int
msync(caddr_t addr, size_t len, int flags)
{
extern int _msync(caddr_t, size_t, int);
int rv;
PERFORM(_msync(addr, len, flags))
}
int
open(const char *path, int oflag, ...)
{
extern int _open(const char *, int, ...);
mode_t mode;
int rv;
va_list ap;
va_start(ap, oflag);
mode = va_arg(ap, mode_t);
va_end(ap);
PERFORM(_open(path, oflag, mode))
}
#if !defined(_LP64)
int
open64(const char *path, int oflag, ...)
{
extern int _open64(const char *, int, ...);
mode_t mode;
int rv;
va_list ap;
va_start(ap, oflag);
mode = va_arg(ap, mode_t);
va_end(ap);
PERFORM(_open64(path, oflag, mode))
}
#endif /* !_LP64 */
int
pause(void)
{
extern int _pause(void);
int rv;
PERFORM(_pause())
}
ssize_t
pread(int fildes, void *buf, size_t nbyte, off_t offset)
{
extern ssize_t _pread(int, void *, size_t, off_t);
ssize_t rv;
PERFORM(_pread(fildes, buf, nbyte, offset))
}
#if !defined(_LP64)
ssize_t
pread64(int fildes, void *buf, size_t nbyte, off64_t offset)
{
extern ssize_t _pread64(int, void *, size_t, off64_t);
ssize_t rv;
PERFORM(_pread64(fildes, buf, nbyte, offset))
}
#endif /* !_LP64 */
ssize_t
pwrite(int fildes, const void *buf, size_t nbyte, off_t offset)
{
extern ssize_t _pwrite(int, const void *, size_t, off_t);
ssize_t rv;
PERFORM(_pwrite(fildes, buf, nbyte, offset))
}
#if !defined(_LP64)
ssize_t
pwrite64(int fildes, const void *buf, size_t nbyte, off64_t offset)
{
extern ssize_t _pwrite64(int, const void *, size_t, off64_t);
ssize_t rv;
PERFORM(_pwrite64(fildes, buf, nbyte, offset))
}
#endif /* !_LP64 */
ssize_t
readv(int fildes, const struct iovec *iov, int iovcnt)
{
extern ssize_t _readv(int, const struct iovec *, int);
ssize_t rv;
PERFORM(_readv(fildes, iov, iovcnt))
}
int
sigpause(int sig)
{
extern int _sigpause(int);
int rv;
PERFORM(_sigpause(sig))
}
#pragma weak sigsuspend = _sigsuspend
int
_sigsuspend(const sigset_t *set)
{
extern int __sigsuspend(const sigset_t *);
int rv;
PROLOGUE_MASK(set)
rv = __sigsuspend(set);
EPILOGUE_MASK
return (rv);
}
int
_pollsys(struct pollfd *fds, nfds_t nfd, const timespec_t *timeout,
const sigset_t *sigmask)
{
extern int __pollsys(struct pollfd *, nfds_t, const timespec_t *,
const sigset_t *);
int rv;
PROLOGUE_MASK(sigmask)
rv = __pollsys(fds, nfd, timeout, sigmask);
EPILOGUE_MASK
return (rv);
}
#pragma weak sigtimedwait = _sigtimedwait
int
_sigtimedwait(const sigset_t *set, siginfo_t *infop, const timespec_t *timeout)
{
extern int __sigtimedwait(const sigset_t *, siginfo_t *,
const timespec_t *);
siginfo_t info;
int sig;
PROLOGUE
sig = __sigtimedwait(set, &info, timeout);
if (sig == SIGCANCEL &&
(SI_FROMKERNEL(&info) || info.si_code == SI_LWP)) {
do_sigcancel();
errno = EINTR;
sig = -1;
}
EPILOGUE
if (sig != -1 && infop)
(void) _private_memcpy(infop, &info, sizeof (*infop));
return (sig);
}
#pragma weak sigwait = _sigwait
int
_sigwait(sigset_t *set)
{
return (_sigtimedwait(set, NULL, NULL));
}
#pragma weak sigwaitinfo = _sigwaitinfo
int
_sigwaitinfo(const sigset_t *set, siginfo_t *info)
{
return (_sigtimedwait(set, info, NULL));
}
#pragma weak sigqueue = _sigqueue
int
_sigqueue(pid_t pid, int signo, const union sigval value)
{
extern int __sigqueue(pid_t pid, int signo,
/* const union sigval */ void *value, int si_code, int block);
return (__sigqueue(pid, signo, value.sival_ptr, SI_QUEUE, 0));
}
int
tcdrain(int fildes)
{
extern int _tcdrain(int);
int rv;
PERFORM(_tcdrain(fildes))
}
pid_t
wait(int *stat_loc)
{
extern pid_t _wait(int *);
pid_t rv;
PERFORM(_wait(stat_loc))
}
pid_t
wait3(int *statusp, int options, struct rusage *rusage)
{
extern pid_t _wait3(int *, int, struct rusage *);
pid_t rv;
PERFORM(_wait3(statusp, options, rusage))
}
int
waitid(idtype_t idtype, id_t id, siginfo_t *infop, int options)
{
extern int _waitid(idtype_t, id_t, siginfo_t *, int);
int rv;
PERFORM(_waitid(idtype, id, infop, options))
}
/*
* waitpid_cancel() is a libc-private symbol for internal use
* where cancellation semantics is desired (see system()).
*/
#pragma weak waitpid_cancel = waitpid
pid_t
waitpid(pid_t pid, int *stat_loc, int options)
{
extern pid_t _waitpid(pid_t, int *, int);
pid_t rv;
PERFORM(_waitpid(pid, stat_loc, options))
}
ssize_t
writev(int fildes, const struct iovec *iov, int iovcnt)
{
extern ssize_t _writev(int, const struct iovec *, int);
ssize_t rv;
PERFORM(_writev(fildes, iov, iovcnt))
}
|