1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
|
/*
* CDDL HEADER START
*
* The contents of this file are subject to the terms of the
* Common Development and Distribution License (the "License").
* You may not use this file except in compliance with the License.
*
* You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
* or http://www.opensolaris.org/os/licensing.
* See the License for the specific language governing permissions
* and limitations under the License.
*
* When distributing Covered Code, include this CDDL HEADER in each
* file and include the License file at usr/src/OPENSOLARIS.LICENSE.
* If applicable, add the following below this CDDL HEADER, with the
* fields enclosed by brackets "[]" replaced with your own identifying
* information: Portions Copyright [yyyy] [name of copyright owner]
*
* CDDL HEADER END
*/
/*
* Copyright 2010 Sun Microsystems, Inc. All rights reserved.
* Use is subject to license terms.
*/
/*
* Redirection ld.so. Based on the 4.x binary compatibility ld.so, used
* to redirect aliases for ld.so to the real one.
*/
/*
* Import data structures
*/
#include "lint.h"
#include <sys/types.h>
#include <sys/mman.h>
#include <sys/fcntl.h>
#include <sys/stat.h>
#include <sys/sysconfig.h>
#include <sys/auxv.h>
#include <elf.h>
#include <link.h>
#include <string.h>
#include "alias_boot.h"
/*
* Local manifest constants and macros.
*/
#define ALIGN(x, a) ((uintptr_t)(x) & ~((a) - 1))
#define ROUND(x, a) (((uintptr_t)(x) + ((a) - 1)) & ~((a) - 1))
#define EMPTY strings[EMPTY_S]
#define LDSO strings[LDSO_S]
#define ZERO strings[ZERO_S]
#define CLOSE (*(funcs[CLOSE_F]))
#define FSTATAT (*(funcs[FSTATAT_F]))
#define MMAP (*(funcs[MMAP_F]))
#define MUNMAP (*(funcs[MUNMAP_F]))
#define OPENAT (*(funcs[OPENAT_F]))
#define PANIC (*(funcs[PANIC_F]))
#define SYSCONFIG (*(funcs[SYSCONFIG_F]))
/*
* Alias ld.so entry point -- receives a bootstrap structure and a vector
* of strings. The vector is "well-known" to us, and consists of pointers
* to string constants. This aliasing bootstrap requires no relocation in
* order to run, save for the pointers of constant strings. This second
* parameter provides this. Note that this program is carefully coded in
* order to maintain the "no bootstrapping" requirement -- it calls only
* local functions, uses no intrinsics, etc.
*/
void *
__rtld(Elf32_Boot *ebp, const char *strings[], int (*funcs[])())
{
int i, p; /* working */
long j; /* working */
long page_size = 0; /* size of a page */
const char *program_name = EMPTY; /* our name */
int ldfd; /* fd assigned to ld.so */
int dzfd = 0; /* fd assigned to /dev/zero */
Elf32_Ehdr *ehdr; /* ELF header of ld.so */
Elf32_Phdr *phdr; /* first Phdr in file */
Elf32_Phdr *pptr; /* working Phdr */
Elf32_Phdr *lph = NULL; /* last loadable Phdr */
Elf32_Phdr *fph = NULL; /* first loadable Phdr */
caddr_t maddr; /* pointer to mapping claim */
Elf32_Off mlen; /* total mapping claim */
caddr_t faddr; /* first program mapping of ld.so */
Elf32_Off foff; /* file offset for segment mapping */
Elf32_Off flen; /* file length for segment mapping */
caddr_t addr; /* working mapping address */
caddr_t zaddr; /* /dev/zero working mapping addr */
struct stat sb; /* stat buffer for sizing */
auxv_t *ap; /* working aux pointer */
/*
* Discover things about our environment: auxiliary vector (if
* any), arguments, program name, and the like.
*/
while (ebp->eb_tag != 0) {
switch (ebp->eb_tag) {
case EB_ARGV:
program_name = *((char **)ebp->eb_un.eb_ptr);
break;
case EB_AUXV:
for (ap = (auxv_t *)ebp->eb_un.eb_ptr;
ap->a_type != AT_NULL; ap++)
if (ap->a_type == AT_PAGESZ) {
page_size = ap->a_un.a_val;
break;
}
break;
}
ebp++;
}
/*
* If we didn't get a page size from looking in the auxiliary
* vector, we need to get one now.
*/
if (page_size == 0) {
page_size = SYSCONFIG(_CONFIG_PAGESIZE);
ebp->eb_tag = EB_PAGESIZE, (ebp++)->eb_un.eb_val =
(Elf32_Word)page_size;
}
/*
* Map in the real ld.so. Note that we're mapping it as
* an ELF database, not as a program -- we just want to walk it's
* data structures. Further mappings will actually establish the
* program in the address space.
*/
if ((ldfd = OPENAT(AT_FDCWD, LDSO, O_RDONLY)) == -1)
PANIC(program_name);
if (FSTATAT(ldfd, NULL, &sb, 0) == -1)
PANIC(program_name);
ehdr = (Elf32_Ehdr *)MMAP(0, sb.st_size, PROT_READ | PROT_EXEC,
MAP_SHARED, ldfd, 0);
if (ehdr == (Elf32_Ehdr *)-1)
PANIC(program_name);
/*
* Validate the file we're looking at, ensure it has the correct
* ELF structures, such as: ELF magic numbers, coded for SPARC,
* is a ".so", etc.
*/
if (ehdr->e_ident[EI_MAG0] != ELFMAG0 ||
ehdr->e_ident[EI_MAG1] != ELFMAG1 ||
ehdr->e_ident[EI_MAG2] != ELFMAG2 ||
ehdr->e_ident[EI_MAG3] != ELFMAG3)
PANIC(program_name);
if (ehdr->e_ident[EI_CLASS] != ELFCLASS32 ||
ehdr->e_ident[EI_DATA] != ELFDATA2MSB)
PANIC(program_name);
if (ehdr->e_type != ET_DYN)
PANIC(program_name);
if ((ehdr->e_machine != EM_SPARC) &&
(ehdr->e_machine != EM_SPARC32PLUS))
PANIC(program_name);
if (ehdr->e_version > EV_CURRENT)
PANIC(program_name);
/*
* Point at program headers and start figuring out what to load.
*/
phdr = (Elf32_Phdr *)((caddr_t)ehdr + ehdr->e_phoff);
for (p = 0, pptr = phdr; p < (int)ehdr->e_phnum; p++,
pptr = (Elf32_Phdr *)((caddr_t)pptr + ehdr->e_phentsize))
if (pptr->p_type == PT_LOAD) {
if (fph == 0) {
fph = pptr;
} else if (pptr->p_vaddr <= lph->p_vaddr)
PANIC(program_name);
lph = pptr;
}
/*
* We'd better have at least one loadable segment.
*/
if (fph == 0)
PANIC(program_name);
/*
* Map enough address space to hold the program (as opposed to the
* file) represented by ld.so. The amount to be assigned is the
* range between the end of the last loadable segment and the
* beginning of the first PLUS the alignment of the first segment.
* mmap() can assign us any page-aligned address, but the relocations
* assume the alignments included in the program header. As an
* optimization, however, let's assume that mmap() will actually
* give us an aligned address -- since if it does, we can save
* an munmap() later on. If it doesn't -- then go try it again.
*/
mlen = ROUND((lph->p_vaddr + lph->p_memsz) -
ALIGN(fph->p_vaddr, page_size), page_size);
maddr = (caddr_t)MMAP(0, mlen, PROT_READ | PROT_EXEC,
MAP_SHARED, ldfd, 0);
if (maddr == (caddr_t)-1)
PANIC(program_name);
faddr = (caddr_t)ROUND(maddr, fph->p_align);
/*
* Check to see whether alignment skew was really needed.
*/
if (faddr != maddr) {
(void) MUNMAP(maddr, mlen);
mlen = ROUND((lph->p_vaddr + lph->p_memsz) -
ALIGN(fph->p_vaddr, fph->p_align) + fph->p_align,
page_size);
maddr = (caddr_t)MMAP(0, mlen, PROT_READ | PROT_EXEC,
MAP_SHARED, ldfd, 0);
if (maddr == (caddr_t)-1)
PANIC(program_name);
faddr = (caddr_t)ROUND(maddr, fph->p_align);
}
/*
* We have the address space reserved, so map each loadable segment.
*/
for (p = 0, pptr = phdr; p < (int)ehdr->e_phnum; p++,
pptr = (Elf32_Phdr *)((caddr_t)pptr + ehdr->e_phentsize)) {
/*
* Skip non-loadable segments or segments that don't occupy
* any memory.
*/
if ((pptr->p_type != PT_LOAD) || (pptr->p_memsz == 0))
continue;
/*
* Determine the file offset to which the mapping will
* directed (must be aligned) and how much to map (might
* be more than the file in the case of .bss.)
*/
foff = ALIGN(pptr->p_offset, page_size);
flen = pptr->p_memsz + (pptr->p_offset - foff);
/*
* Set address of this segment relative to our base.
*/
addr = (caddr_t)ALIGN(faddr + pptr->p_vaddr, page_size);
/*
* If this is the first program header, record our base
* address for later use.
*/
if (pptr == phdr) {
ebp->eb_tag = EB_LDSO_BASE;
(ebp++)->eb_un.eb_ptr = (Elf32_Addr)addr;
}
/*
* Unmap anything from the last mapping address to this
* one.
*/
if (addr - maddr) {
(void) MUNMAP(maddr, addr - maddr);
mlen -= addr - maddr;
}
/*
* Determine the mapping protection from the section
* attributes.
*/
i = 0;
if (pptr->p_flags & PF_R)
i |= PROT_READ;
if (pptr->p_flags & PF_W)
i |= PROT_WRITE;
if (pptr->p_flags & PF_X)
i |= PROT_EXEC;
if ((caddr_t)MMAP((caddr_t)addr, flen, i,
MAP_FIXED | MAP_PRIVATE, ldfd, foff) == (caddr_t)-1)
PANIC(program_name);
/*
* If the memory occupancy of the segment overflows the
* definition in the file, we need to "zero out" the
* end of the mapping we've established, and if necessary,
* map some more space from /dev/zero.
*/
if (pptr->p_memsz > pptr->p_filesz) {
foff = (uintptr_t)faddr + pptr->p_vaddr +
pptr->p_filesz;
zaddr = (caddr_t)ROUND(foff, page_size);
for (j = 0; j < (int)(zaddr - foff); j++)
*((char *)foff + j) = 0;
j = (faddr + pptr->p_vaddr + pptr->p_memsz) - zaddr;
if (j > 0) {
if (dzfd == 0) {
dzfd = OPENAT(AT_FDCWD, ZERO, O_RDWR);
if (dzfd == -1)
PANIC(program_name);
}
if ((caddr_t)MMAP((caddr_t)zaddr, j, i,
MAP_FIXED | MAP_PRIVATE, dzfd,
0) == (caddr_t)-1)
PANIC(program_name);
}
}
/*
* Update the mapping claim pointer.
*/
maddr = addr + ROUND(flen, page_size);
mlen -= maddr - addr;
}
/*
* Unmap any final reservation.
*/
if (mlen != 0)
(void) MUNMAP(maddr, mlen);
/*
* Clean up file descriptor space we've consumed. Pass along
* the /dev/zero file descriptor we got -- every cycle counts.
*/
(void) CLOSE(ldfd);
if (dzfd != 0)
ebp->eb_tag = EB_DEVZERO, (ebp++)->eb_un.eb_val = dzfd;
/*
* The call itself. Note that we start 1 instruction word in.
* The ELF ld.so contains an "entry vector" of branch instructions,
* which, for our interest are:
* +0: ba, a <normal startup>
* +4: ba, a <compatibility startup>
* +8: ba, a <alias startup>
* By starting at the alias startup, the ELF ld.so knows
* that a pointer to "eb" is available to it and further knows
* how to calculate the offset to the program's arguments and
* other structures. We do the "call" by returning to our
* bootstrap and then jumping to the address that we return.
*/
ebp->eb_tag = EB_NULL, ebp->eb_un.eb_val = 0;
return ((void *)(ehdr->e_entry + faddr + 8));
}
|