1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
|
/*
* CDDL HEADER START
*
* The contents of this file are subject to the terms of the
* Common Development and Distribution License (the "License").
* You may not use this file except in compliance with the License.
*
* You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
* or http://www.opensolaris.org/os/licensing.
* See the License for the specific language governing permissions
* and limitations under the License.
*
* When distributing Covered Code, include this CDDL HEADER in each
* file and include the License file at usr/src/OPENSOLARIS.LICENSE.
* If applicable, add the following below this CDDL HEADER, with the
* fields enclosed by brackets "[]" replaced with your own identifying
* information: Portions Copyright [yyyy] [name of copyright owner]
*
* CDDL HEADER END
*/
/*
* Copyright (c) 2003, 2010, Oracle and/or its affiliates. All rights reserved.
*/
/*
* The ascii_strcasecmp() function is a case insensitive versions of strcmp().
* It assumes the ASCII character set and ignores differences in case
* when comparing lower and upper case characters. In other words, it
* behaves as if both strings had been converted to lower case using
* tolower() in the "C" locale on each byte, and the results had then
* been compared using strcmp().
*
* The assembly code below is an optimized version of the following C
* reference:
*
* static const char charmap[] = {
* '\000', '\001', '\002', '\003', '\004', '\005', '\006', '\007',
* '\010', '\011', '\012', '\013', '\014', '\015', '\016', '\017',
* '\020', '\021', '\022', '\023', '\024', '\025', '\026', '\027',
* '\030', '\031', '\032', '\033', '\034', '\035', '\036', '\037',
* '\040', '\041', '\042', '\043', '\044', '\045', '\046', '\047',
* '\050', '\051', '\052', '\053', '\054', '\055', '\056', '\057',
* '\060', '\061', '\062', '\063', '\064', '\065', '\066', '\067',
* '\070', '\071', '\072', '\073', '\074', '\075', '\076', '\077',
* '\100', '\141', '\142', '\143', '\144', '\145', '\146', '\147',
* '\150', '\151', '\152', '\153', '\154', '\155', '\156', '\157',
* '\160', '\161', '\162', '\163', '\164', '\165', '\166', '\167',
* '\170', '\171', '\172', '\133', '\134', '\135', '\136', '\137',
* '\140', '\141', '\142', '\143', '\144', '\145', '\146', '\147',
* '\150', '\151', '\152', '\153', '\154', '\155', '\156', '\157',
* '\160', '\161', '\162', '\163', '\164', '\165', '\166', '\167',
* '\170', '\171', '\172', '\173', '\174', '\175', '\176', '\177',
* '\200', '\201', '\202', '\203', '\204', '\205', '\206', '\207',
* '\210', '\211', '\212', '\213', '\214', '\215', '\216', '\217',
* '\220', '\221', '\222', '\223', '\224', '\225', '\226', '\227',
* '\230', '\231', '\232', '\233', '\234', '\235', '\236', '\237',
* '\240', '\241', '\242', '\243', '\244', '\245', '\246', '\247',
* '\250', '\251', '\252', '\253', '\254', '\255', '\256', '\257',
* '\260', '\261', '\262', '\263', '\264', '\265', '\266', '\267',
* '\270', '\271', '\272', '\273', '\274', '\275', '\276', '\277',
* '\300', '\301', '\302', '\303', '\304', '\305', '\306', '\307',
* '\310', '\311', '\312', '\313', '\314', '\315', '\316', '\317',
* '\320', '\321', '\322', '\323', '\324', '\325', '\326', '\327',
* '\330', '\331', '\332', '\333', '\334', '\335', '\336', '\337',
* '\340', '\341', '\342', '\343', '\344', '\345', '\346', '\347',
* '\350', '\351', '\352', '\353', '\354', '\355', '\356', '\357',
* '\360', '\361', '\362', '\363', '\364', '\365', '\366', '\367',
* '\370', '\371', '\372', '\373', '\374', '\375', '\376', '\377',
* };
*
* int
* ascii_strcasecmp(const char *s1, const char *s2)
* {
* const unsigned char *cm = (const unsigned char *)charmap;
* const unsigned char *us1 = (const unsigned char *)s1;
* const unsigned char *us2 = (const unsigned char *)s2;
*
* while (cm[*us1] == cm[*us2++])
* if (*us1++ == '\0')
* return (0);
* return (cm[*us1] - cm[*(us2 - 1)]);
* }
*
* The following algorithm, from a 1987 news posting by Alan Mycroft, is
* used for finding null bytes in a word:
*
* #define has_null(word) ((word - 0x01010101) & (~word & 0x80808080))
*
* The following algorithm is used for a wordwise tolower() operation:
*
* unsigned int
* parallel_tolower (unsigned int x)
* {
* unsigned int p;
* unsigned int q;
*
* unsigned int m1 = 0x80808080;
* unsigned int m2 = 0x3f3f3f3f;
* unsigned int m3 = 0x25252525;
*
* q = x & ~m1;// newb = byte & 0x7F
* p = q + m2; // newb > 0x5A --> MSB set
* q = q + m3; // newb < 0x41 --> MSB clear
* p = p & ~q; // newb > 0x40 && newb < 0x5B --> MSB set
* q = m1 & ~x;// byte < 0x80 --> 0x80
* q = p & q; // newb > 0x40 && newb < 0x5B && byte < 0x80 -> 0x80,else 0
* q = q >> 2; // newb > 0x40 && newb < 0x5B && byte < 0x80 -> 0x20,else 0
* return (x + q); // translate uppercase characters to lowercase
* }
*
* Both algorithms have been tested exhaustively for all possible 2^32 inputs.
*/
#include <sys/asm_linkage.h>
! The first part of this algorithm walks through the beginning of
! both strings a byte at a time until the source ptr is aligned to
! a word boundary. During these steps, the bytes are translated to
! lower-case if they are upper-case, and are checked against
! the source string.
ENTRY(ascii_strcasecmp)
.align 32
save %sp, -SA(WINDOWSIZE), %sp
subcc %i0, %i1, %i2 ! s1 == s2 ?
bz,pn %ncc, .stringsequal ! yup, done, strings equal
andcc %i0, 3, %i3 ! s1 word-aligned ?
bz,pn %ncc, .s1aligned1 ! yup
sethi %hi(0x80808080), %i4 ! start loading Mycroft's magic1
ldub [%i1 + %i2], %i0 ! s1[0]
ldub [%i1], %g1 ! s2[0]
sub %i0, 'A', %l0 ! transform for faster uppercase check
sub %g1, 'A', %l1 ! transform for faster uppercase check
cmp %l0, ('Z' - 'A') ! s1[0] uppercase?
bleu,a .noxlate11 ! yes
add %i0, ('a' - 'A'), %i0 ! s1[0] = tolower(s1[0])
.noxlate11:
cmp %l1, ('Z' - 'A') ! s2[0] uppercase?
bleu,a .noxlate12 ! yes
add %g1, ('a' - 'A'), %g1 ! s2[0] = tolower(s2[0])
.noxlate12:
subcc %i0, %g1, %i0 ! tolower(s1[0]) != tolower(s2[0]) ?
bne,pn %ncc, .done ! yup, done
inc %i1 ! s1++, s2++
addcc %i0, %g1, %i0 ! s1[0] == 0 ?
bz,pn %ncc, .done ! yup, done, strings equal
cmp %i3, 3 ! s1 aligned now?
bz %ncc, .s1aligned2 ! yup
sethi %hi(0x01010101), %i5 ! start loading Mycroft's magic2
ldub [%i1 + %i2], %i0 ! s1[1]
ldub [%i1], %g1 ! s2[1]
sub %i0, 'A', %l0 ! transform for faster uppercase check
sub %g1, 'A', %l1 ! transform for faster uppercase check
cmp %l0, ('Z' - 'A') ! s1[1] uppercase?
bleu,a .noxlate21 ! yes
add %i0, ('a' - 'A'), %i0 ! s1[1] = tolower(s1[1])
.noxlate21:
cmp %l1, ('Z' - 'A') ! s2[1] uppercase?
bleu,a .noxlate22 ! yes
add %g1, ('a' - 'A'), %g1 ! s2[1] = tolower(s2[1])
.noxlate22:
subcc %i0, %g1, %i0 ! tolower(s1[1]) != tolower(s2[1]) ?
bne,pn %ncc, .done ! yup, done
inc %i1 ! s1++, s2++
addcc %i0, %g1, %i0 ! s1[1] == 0 ?
bz,pn %ncc, .done ! yup, done, strings equal
cmp %i3, 2 ! s1 aligned now?
bz %ncc, .s1aligned3 ! yup
or %i4, %lo(0x80808080),%i4! finish loading Mycroft's magic1
ldub [%i1 + %i2], %i0 ! s1[2]
ldub [%i1], %g1 ! s2[2]
sub %i0, 'A', %l0 ! transform for faster uppercase check
sub %g1, 'A', %l1 ! transform for faster uppercase check
cmp %l0, ('Z' - 'A') ! s1[2] uppercase?
bleu,a .noxlate31 ! yes
add %i0, ('a' - 'A'), %i0 ! s1[2] = tolower(s1[2])
.noxlate31:
cmp %l1, ('Z' - 'A') ! s2[2] uppercase?
bleu,a .noxlate32 ! yes
add %g1, ('a' - 'A'), %g1 ! s2[2] = tolower(s2[2])
.noxlate32:
subcc %i0, %g1, %i0 ! tolower(s1[2]) != tolower(s2[2]) ?
bne,pn %ncc, .done ! yup, done
inc %i1 ! s1++, s2++
addcc %i0, %g1, %i0 ! s1[2] == 0 ?
bz,pn %ncc, .done ! yup, done, strings equal
or %i5, %lo(0x01010101),%i5! finish loading Mycroft's magic2
ba .s1aligned4 ! s1 aligned now
andcc %i1, 3, %i3 ! s2 word-aligned ?
! Here, we initialize our checks for a zero byte and decide
! whether or not we can optimize further if we're fortunate
! enough to have a word aligned desintation
.s1aligned1:
sethi %hi(0x01010101), %i5 ! start loading Mycroft's magic2
.s1aligned2:
or %i4, %lo(0x80808080),%i4! finish loading Mycroft's magic1
.s1aligned3:
or %i5, %lo(0x01010101),%i5! finish loading Mycroft's magic2
andcc %i1, 3, %i3 ! s2 word aligned ?
.s1aligned4:
sethi %hi(0x3f3f3f3f), %l2 ! load m2 for parallel tolower()
sethi %hi(0x25252525), %l3 ! load m3 for parallel tolower()
or %l2, %lo(0x3f3f3f3f),%l2! finish loading m2
bz .word4 ! yup, s2 word-aligned
or %l3, %lo(0x25252525),%l3! finish loading m3
add %i2, %i3, %i2 ! start adjusting offset s1-s2
sll %i3, 3, %l6 ! shift factor for left shifts
andn %i1, 3, %i1 ! round s1 pointer down to next word
sub %g0, %l6, %l7 ! shift factor for right shifts
orn %i3, %g0, %i3 ! generate all ones
lduw [%i1], %i0 ! new lower word from s2
srl %i3, %l6, %i3 ! mask for fixing up bytes
sll %i0, %l6, %g1 ! partial unaligned word from s2
orn %i0, %i3, %i0 ! force start bytes to non-zero
nop ! pad to align loop to 16-byte boundary
nop ! pad to align loop to 16-byte boundary
! This is the comparision procedure used if the destination is not
! word aligned, if it is, we use word4 & cmp4
.cmp:
andn %i4, %i0, %l4 ! ~word & 0x80808080
sub %i0, %i5, %l5 ! word - 0x01010101
andcc %l5, %l4, %g0 ! (word - 0x01010101) & ~word & 0x80808080
bz,a,pt %ncc, .doload ! null byte in previous aligned s2 word
lduw [%i1 + 4], %i0 ! load next aligned word from s2
.doload:
srl %i0, %l7, %i3 ! byte 1 from new aligned word from s2
or %g1, %i3, %g1 ! merge to get unaligned word from s2
lduw [%i1 + %i2], %i3 ! x1 = word from s1
andn %i3, %i4, %l0 ! q1 = x1 & ~m1
andn %g1, %i4, %l4 ! q2 = x2 & ~m1
add %l0, %l2, %l1 ! p1 = q1 + m2
add %l4, %l2, %l5 ! p2 = q2 + m2
add %l0, %l3, %l0 ! q1 = q1 + m3
add %l4, %l3, %l4 ! q2 = q2 + m3
andn %l1, %l0, %l1 ! p1 = p1 & ~q1
andn %l5, %l4, %l5 ! p2 = p2 & ~q2
andn %i4, %i3, %l0 ! q1 = m1 & ~x1
andn %i4, %g1, %l4 ! q2 = m1 & ~x2
and %l0, %l1, %l0 ! q1 = p1 & q1
and %l4, %l5, %l4 ! q2 = p2 & q2
srl %l0, 2, %l0 ! q1 = q1 >> 2
srl %l4, 2, %l4 ! q2 = q2 >> 2
add %l0, %i3, %i3 ! lowercase word from s1
add %l4, %g1, %g1 ! lowercase word from s2
cmp %i3, %g1 ! tolower(*s1) != tolower(*s2) ?
bne %icc, .wordsdiffer ! yup, now find byte that is different
add %i1, 4, %i1 ! s1+=4, s2+=4
andn %i4, %i3, %l4 ! ~word & 0x80808080
sub %i3, %i5, %l5 ! word - 0x01010101
andcc %l5, %l4, %g0 ! (word - 0x01010101) & ~word & 0x80808080
bz,pt %ncc, .cmp ! no null-byte in s1 yet
sll %i0, %l6, %g1 ! partial unaligned word from s2
! words are equal but the end of s1 has been reached
! this means the strings must be equal
.stringsequal:
ret ! return
restore %g0, %g0, %o0 ! return 0, i.e. strings are equal
nop ! pad
! we have a word aligned source and destination! This means
! things get to go fast!
.word4:
lduw [%i1 + %i2], %i3 ! x1 = word from s1
.cmp4:
andn %i3, %i4, %l0 ! q1 = x1 & ~m1
lduw [%i1], %g1 ! x2 = word from s2
andn %g1, %i4, %l4 ! q2 = x2 & ~m1
add %l0, %l2, %l1 ! p1 = q1 + m2
add %l4, %l2, %l5 ! p2 = q2 + m2
add %l0, %l3, %l0 ! q1 = q1 + m3
add %l4, %l3, %l4 ! q2 = q2 + m3
andn %l1, %l0, %l1 ! p1 = p1 & ~q1
andn %l5, %l4, %l5 ! p2 = p2 & ~q2
andn %i4, %i3, %l0 ! q1 = m1 & ~x1
andn %i4, %g1, %l4 ! q2 = m1 & ~x2
and %l0, %l1, %l0 ! q1 = p1 & q1
and %l4, %l5, %l4 ! q2 = p2 & q2
srl %l0, 2, %l0 ! q1 = q1 >> 2
srl %l4, 2, %l4 ! q2 = q2 >> 2
add %l0, %i3, %i3 ! lowercase word from s1
add %l4, %g1, %g1 ! lowercase word from s2
cmp %i3, %g1 ! tolower(*s1) != tolower(*s2) ?
bne,pn %icc, .wordsdiffer ! yup, now find mismatching character
add %i1, 4, %i1 ! s1+=4, s2+=4
andn %i4, %i3, %l4 ! ~word & 0x80808080
sub %i3, %i5, %l5 ! word - 0x01010101
andcc %l5, %l4, %g0 ! (word - 0x01010101) & ~word & 0x80808080
bz,a,pt %icc, .cmp4 ! no null-byte in s1 yet
lduw [%i1 + %i2], %i3 ! load word from s1
! words are equal but the end of s1 has been reached
! this means the strings must be equal
.stringsequal4:
ret ! return
restore %g0, %g0, %o0 ! return 0, i.e. strings are equal
.wordsdiffer:
srl %g1, 24, %i2 ! first byte of mismatching word in s2
srl %i3, 24, %i1 ! first byte of mismatching word in s1
subcc %i1, %i2, %i0 ! *s1-*s2
bnz,pn %ncc, .done ! bytes differ, return difference
srl %g1, 16, %i2 ! second byte of mismatching word in s2
andcc %i1, 0xff, %i0 ! *s1 == 0 ?
bz,pn %ncc, .done ! yup
! we know byte 1 is equal, so can compare bytes 1,2 as a group
srl %i3, 16, %i1 ! second byte of mismatching word in s1
subcc %i1, %i2, %i0 ! *s1-*s2
bnz,pn %ncc, .done ! bytes differ, return difference
srl %g1, 8, %i2 ! third byte of mismatching word in s2
andcc %i1, 0xff, %i0 ! *s1 == 0 ?
bz,pn %ncc, .done ! yup
! we know bytes 1, 2 are equal, so can compare bytes 1,2,3 as a group
srl %i3, 8, %i1 ! third byte of mismatching word in s1
subcc %i1, %i2, %i0 ! *s1-*s2
bnz,pn %ncc, .done ! bytes differ, return difference
andcc %i1, 0xff, %g0 ! *s1 == 0 ?
bz,pn %ncc, .stringsequal ! yup
! we know bytes 1,2,3 are equal, so can compare bytes 1,2,3,4 as group
subcc %i3, %g1, %i0 ! *s1-*s2
bz,a .done ! bytes differ, return difference
andcc %i3, 0xff, %i0 ! *s1 == 0 ?
.done:
ret ! return
restore %i0, %g0, %o0 ! return tolower(*s1) - tolower(*s2)
SET_SIZE(ascii_strcasecmp)
|