summaryrefslogtreecommitdiff
path: root/usr/src/lib/libm/common/C/__rem_pio2.c
blob: c5cbeedc2a3a26cfabdb8ff8ca0f918883fec19b (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
/*
 * CDDL HEADER START
 *
 * The contents of this file are subject to the terms of the
 * Common Development and Distribution License (the "License").
 * You may not use this file except in compliance with the License.
 *
 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
 * or http://www.opensolaris.org/os/licensing.
 * See the License for the specific language governing permissions
 * and limitations under the License.
 *
 * When distributing Covered Code, include this CDDL HEADER in each
 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
 * If applicable, add the following below this CDDL HEADER, with the
 * fields enclosed by brackets "[]" replaced with your own identifying
 * information: Portions Copyright [yyyy] [name of copyright owner]
 *
 * CDDL HEADER END
 */
/*
 * Copyright 2011 Nexenta Systems, Inc.  All rights reserved.
 */
/*
 * Copyright 2005 Sun Microsystems, Inc.  All rights reserved.
 * Use is subject to license terms.
 */

/*
 * __rem_pio2(x, y) passes back a better-than-double-precision
 * approximation to x mod pi/2 in y[0]+y[1] and returns an integer
 * congruent mod 8 to the integer part of x/(pi/2).
 *
 * This implementation tacitly assumes that x is finite and at
 * least about pi/4 in magnitude.
 */

#include "libm.h"

extern const int _TBL_ipio2_inf[];

/* INDENT OFF */
/*
 * invpio2:  53 bits of 2/pi
 * pio2_1:   first  33 bit of pi/2
 * pio2_1t:  pi/2 - pio2_1
 * pio2_2:   second 33 bit of pi/2
 * pio2_2t:  pi/2 - pio2_2
 * pio2_3:   third  33 bit of pi/2
 * pio2_3t:  pi/2 - pio2_3
 */
static const double
	half	= 0.5,
	invpio2	= 0.636619772367581343075535,	/* 2^ -1  * 1.45F306DC9C883 */
	pio2_1	= 1.570796326734125614166,	/* 2^  0  * 1.921FB54400000 */
	pio2_1t	= 6.077100506506192601475e-11,	/* 2^-34  * 1.0B4611A626331 */
	pio2_2	= 6.077100506303965976596e-11,	/* 2^-34  * 1.0B4611A600000 */
	pio2_2t	= 2.022266248795950732400e-21,	/* 2^-69  * 1.3198A2E037073 */
	pio2_3	= 2.022266248711166455796e-21,	/* 2^-69  * 1.3198A2E000000 */
	pio2_3t	= 8.478427660368899643959e-32;	/* 2^-104 * 1.B839A252049C1 */
/* INDENT ON */

int
__rem_pio2(double x, double *y) {
	double	w, t, r, fn;
	double	tx[3];
	int	e0, i, j, nx, n, ix, hx, lx;

	hx = ((int *)&x)[HIWORD];
	ix = hx & 0x7fffffff;

	if (ix < 0x4002d97c) {
		/* |x| < 3pi/4, special case with n=1 */
		t = fabs(x) - pio2_1;
		if (ix != 0x3ff921fb) {	/* 33+53 bit pi is good enough */
			y[0] = t - pio2_1t;
			y[1] = (t - y[0]) - pio2_1t;
		} else {		/* near pi/2, use 33+33+53 bit pi */
			t -= pio2_2;
			y[0] = t - pio2_2t;
			y[1] = (t - y[0]) - pio2_2t;
		}
		if (hx < 0) {
			y[0] = -y[0];
			y[1] = -y[1];
			return (-1);
		}
		return (1);
	}

	if (ix <= 0x413921fb) {
		/* |x| <= 2^19 pi */
		t = fabs(x);
		n = (int)(t * invpio2 + half);
		fn = (double)n;
		r = t - fn * pio2_1;
		j = ix >> 20;
		w = fn * pio2_1t;	/* 1st round good to 85 bit */
		y[0] = r - w;
		i = j - ((((int *)y)[HIWORD] >> 20) & 0x7ff);
		if (i > 16) {	/* 2nd iteration (rare) */
			/* 2nd round good to 118 bit */
			if (i < 35) {
				t = r;	/* r-fn*pio2_2 may not be exact */
				w = fn * pio2_2;
				r = t - w;
				w = fn * pio2_2t - ((t - r) - w);
				y[0] = r - w;
			} else {
				r -= fn * pio2_2;
				w = fn * pio2_2t;
				y[0] = r - w;
				i = j - ((((int *)y)[HIWORD] >> 20) & 0x7ff);
				if (i > 49) {
					/* 3rd iteration (extremely rare) */
					if (i < 68) {
						t = r;
						w = fn * pio2_3;
						r = t - w;
						w = fn * pio2_3t -
						    ((t - r) - w);
						y[0] = r - w;
					} else {
						/*
						 * 3rd round good to 151 bits;
						 * covered all possible cases
						 */
						r -= fn * pio2_3;
						w = fn * pio2_3t;
						y[0] = r - w;
					}
				}
			}
		}
		y[1] = (r - y[0]) - w;
		if (hx < 0) {
			y[0] = -y[0];
			y[1] = -y[1];
			return (-n);
		}
		return (n);
	}

	e0 = (ix >> 20) - 1046;	/* e0 = ilogb(x)-23; */

	/* break x into three 24 bit pieces */
	lx = ((int *)&x)[LOWORD];
	i = (lx & 0x1f) << 19;
	tx[2] = (double)i;
	j = (lx >> 5) & 0xffffff;
	tx[1] = (double)j;
	tx[0] = (double)((((ix & 0xfffff) | 0x100000) << 3) |
	    ((unsigned)lx >> 29));
	nx = 3;
	if (i == 0) {
		/* skip zero term */
		nx--;
		if (j == 0)
			nx--;
	}
	n = __rem_pio2m(tx, y, e0, nx, 2, _TBL_ipio2_inf);
	if (hx < 0) {
		y[0] = -y[0];
		y[1] = -y[1];
		return (-n);
	}
	return (n);
}