summaryrefslogtreecommitdiff
path: root/usr/src/lib/libm/common/C/__sincos.c
blob: f4158ab3abc34648004f98abd6b79391a212dcf6 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
/*
 * CDDL HEADER START
 *
 * The contents of this file are subject to the terms of the
 * Common Development and Distribution License (the "License").
 * You may not use this file except in compliance with the License.
 *
 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
 * or http://www.opensolaris.org/os/licensing.
 * See the License for the specific language governing permissions
 * and limitations under the License.
 *
 * When distributing Covered Code, include this CDDL HEADER in each
 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
 * If applicable, add the following below this CDDL HEADER, with the
 * fields enclosed by brackets "[]" replaced with your own identifying
 * information: Portions Copyright [yyyy] [name of copyright owner]
 *
 * CDDL HEADER END
 */
/*
 * Copyright 2011 Nexenta Systems, Inc.  All rights reserved.
 */
/*
 * Copyright 2005 Sun Microsystems, Inc.  All rights reserved.
 * Use is subject to license terms.
 */

/* INDENT OFF */
/*
 * double __k_sincos(double x, double y, double *c);
 * kernel sincos function on [-pi/4, pi/4], pi/4 ~ 0.785398164
 * Input x is assumed to be bounded by ~pi/4 in magnitude.
 * Input y is the tail of x.
 * return sin(x) with *c = cos(x)
 *
 * Accurate Table look-up algorithm by K.C. Ng, May, 1995.
 *
 * 1. Reduce x to x>0 by sin(-x)=-sin(x),cos(-x)=cos(x).
 * 2. For 0<= x < pi/4, let i = (64*x chopped)-10. Let d = x - a[i], where
 *    a[i] is a double that is close to (i+10.5)/64 and such that
 *    sin(a[i]) and cos(a[i]) is close to a double (with error less
 *    than 2**-8 ulp). Then
 *	cos(x) = cos(a[i]+d) = cos(a[i])cos(d) - sin(a[i])*sin(d)
 *	       = TBL_cos_a[i]*(1+QQ1*d^2+QQ2*d^4) -
 *			TBL_sin_a[i]*(d+PP1*d^3+PP2*d^5)
 *	       = TBL_cos_a[i] + (TBL_cos_a[i]*d^2*(QQ1+QQ2*d^2) -
 *			TBL_sin_a[i]*(d+PP1*d^3+PP2*d^5))
 *	sin(x) = sin(a[i]+d) = sin(a[i])cos(d) + cos(a[i])*sin(d)
 *	       = TBL_sin_a[i]*(1+QQ1*d^2+QQ2*d^4) +
 *			TBL_cos_a[i]*(d+PP1*d^3+PP2*d^5)
 *	       = TBL_sin_a[i] + (TBL_sin_a[i]*d^2*(QQ1+QQ2*d^2) +
 *			TBL_cos_a[i]*(d+PP1*d^3+PP2*d^5))
 *
 *    For |y| less than 10.5/64 = 0.1640625, use
 *	sin(y) = y + y^3*(p1+y^2*(p2+y^2*(p3+y^2*p4)))
 *	cos(y) = 1 + y^2*(q1+y^2*(q2+y^2*(q3+y^2*q4)))
 *
 *    For |y| less than 0.008, use
 *	sin(y) = y + y^3*(pp1+y^2*pp2)
 *	cos(y) = 1 + y^2*(qq1+y^2*qq2)
 *
 * Accuracy:
 *	TRIG(x) returns trig(x) nearly rounded (less than 1 ulp)
 */

#include "libm.h"

static const double sc[] = {
/* ONE	= */  1.0,
/* NONE	= */ -1.0,
/*
 * |sin(x) - (x+pp1*x^3+pp2*x^5)| <= 2^-58.79 for |x| < 0.008
 */
/* PP1	= */ -0.166666666666316558867252052378889521480627858683055567,
/* PP2	= */   .008333315652997472323564894248466758248475374977974017927,
/*
 * |(sin(x) - (x+p1*x^3+...+p4*x^9)|
 * |------------------------------ | <= 2^-57.63 for |x| < 0.1953125
 * |                 x             |
 */
/* P1  	= */ -1.666666666666629669805215138920301589656e-0001,
/* P2  	= */  8.333333332390951295683993455280336376663e-0003,
/* P3  	= */ -1.984126237997976692791551778230098403960e-0004,
/* P4  	= */  2.753403624854277237649987622848330351110e-0006,
/*
 * |cos(x) - (1+qq1*x^2+qq2*x^4)| <= 2^-55.99 for |x| <= 0.008 (0x3f80624d)
 */
/* QQ1	= */ -0.4999999999975492381842911981948418542742729,
/* QQ2	= */  0.041666542904352059294545209158357640398771740,
/*
 * |cos(x) - (1+q1*x^2+...+q4*x^8)| <= 2^-55.86 for |x| <= 0.1640625 (10.5/64)
 */
/* Q1  	= */ -0.5,
/* Q2  	= */  4.166666666500350703680945520860748617445e-0002,
/* Q3  	= */ -1.388888596436972210694266290577848696006e-0003,
/* Q4  	= */  2.478563078858589473679519517892953492192e-0005,
};
/* INDENT ON */

#define	ONE	sc[0]
#define	NONE	sc[1]
#define	PP1	sc[2]
#define	PP2	sc[3]
#define	P1	sc[4]
#define	P2	sc[5]
#define	P3	sc[6]
#define	P4	sc[7]
#define	QQ1	sc[8]
#define	QQ2	sc[9]
#define	Q1	sc[10]
#define	Q2	sc[11]
#define	Q3	sc[12]
#define	Q4	sc[13]

extern const double _TBL_sincos[], _TBL_sincosx[];

double
__k_sincos(double x, double y, double *c) {
	double	z, w, s, v, p, q;
	int	i, j, n, hx, ix;

	hx = ((int *)&x)[HIWORD];
	ix = hx & ~0x80000000;

	if (ix <= 0x3fc50000) {	/* |x| < 10.5/64 = 0.164062500 */
		if (ix < 0x3e400000) {	/* |x| < 2**-27 */
			if ((int)x == 0)
				*c = ONE;
			return (x + y);
		} else {
			z = x * x;
			if (ix < 0x3f800000) {	/* |x| < 0.008 */
				q = z * (QQ1 + z * QQ2);
				p = (x * z) * (PP1 + z * PP2) + y;
			} else {
				q = z * ((Q1 + z * Q2) + (z * z) * (Q3 +
				    z * Q4));
				p = (x * z) * ((P1 + z * P2) + (z * z) * (P3 +
				    z * P4)) + y;
			}
			*c = ONE + q;
			return (x + p);
		}
	} else {		/* 0.164062500 < |x| < ~pi/4 */
		n = ix >> 20;
		i = (((ix >> 12) & 0xff) | 0x100) >> (0x401 - n);
		j = i - 10;
		if (hx < 0)
			v = -y - (_TBL_sincosx[j] + x);
		else
			v = y - (_TBL_sincosx[j] - x);
		s = v * v;
		j <<= 1;
		w = _TBL_sincos[j];
		z = _TBL_sincos[j+1];
		p = s * (PP1 + s * PP2);
		q = s * (QQ1 + s * QQ2);
		p = v + v * p;
		*c = z - (w * p - z * q);
		s = w * q + z * p;
		return ((hx >= 0)? w + s : -(w + s));
	}
}