summaryrefslogtreecommitdiff
path: root/usr/src/lib/libm/common/C/asin.c
blob: a3f4a969a832cd94e56c80651fbbf0d44ce3eb5f (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
/*
 * CDDL HEADER START
 *
 * The contents of this file are subject to the terms of the
 * Common Development and Distribution License (the "License").
 * You may not use this file except in compliance with the License.
 *
 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
 * or http://www.opensolaris.org/os/licensing.
 * See the License for the specific language governing permissions
 * and limitations under the License.
 *
 * When distributing Covered Code, include this CDDL HEADER in each
 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
 * If applicable, add the following below this CDDL HEADER, with the
 * fields enclosed by brackets "[]" replaced with your own identifying
 * information: Portions Copyright [yyyy] [name of copyright owner]
 *
 * CDDL HEADER END
 */

/*
 * Copyright 2011 Nexenta Systems, Inc.  All rights reserved.
 */
/*
 * Copyright 2006 Sun Microsystems, Inc.  All rights reserved.
 * Use is subject to license terms.
 */

#pragma weak __asin = asin

/* INDENT OFF */
/*
 * asin(x)
 * Method :
 *	Since  asin(x) = x + x^3/6 + x^5*3/40 + x^7*15/336 + ...
 *	we approximate asin(x) on [0,0.5] by
 *		asin(x) = x + x*x^2*R(x^2)
 *	where
 *		R(x^2) is a rational approximation of (asin(x)-x)/x^3
 *	and its remez error is bounded by
 *		|(asin(x)-x)/x^3 - R(x^2)| < 2^(-58.75)
 *
 *	For x in [0.5,1]
 *		asin(x) = pi/2-2*asin(sqrt((1-x)/2))
 *	Let y = (1-x), z = y/2, s := sqrt(z), and pio2_hi+pio2_lo=pi/2;
 *	then for x>0.98
 *		asin(x) = pi/2 - 2*(s+s*z*R(z))
 *			= pio2_hi - (2*(s+s*z*R(z)) - pio2_lo)
 *	For x<=0.98, let pio4_hi = pio2_hi/2, then
 *		f = hi part of s;
 *		c = sqrt(z) - f = (z-f*f)/(s+f) 	...f+c=sqrt(z)
 *	and
 *		asin(x) = pi/2 - 2*(s+s*z*R(z))
 *			= pio4_hi+(pio4-2s)-(2s*z*R(z)-pio2_lo)
 *			= pio4_hi+(pio4-2f)-(2s*z*R(z)-(pio2_lo+2c))
 *
 * Special cases:
 *	if x is NaN, return x itself;
 *	if |x|>1, return NaN with invalid signal.
 *
 */
/* INDENT ON */

#include "libm_protos.h"	/* _SVID_libm_error */
#include "libm_macros.h"
#include <math.h>

/* INDENT OFF */
static const double xxx[] = {
/* one */	 1.00000000000000000000e+00,	/* 3FF00000, 00000000 */
/* huge */	 1.000e+300,
/* pio2_hi */	 1.57079632679489655800e+00,	/* 3FF921FB, 54442D18 */
/* pio2_lo */	 6.12323399573676603587e-17,	/* 3C91A626, 33145C07 */
/* pio4_hi */	 7.85398163397448278999e-01,	/* 3FE921FB, 54442D18 */
/* coefficient for R(x^2) */
/* pS0 */	 1.66666666666666657415e-01,	/* 3FC55555, 55555555 */
/* pS1 */	-3.25565818622400915405e-01,	/* BFD4D612, 03EB6F7D */
/* pS2 */	 2.01212532134862925881e-01,	/* 3FC9C155, 0E884455 */
/* pS3 */	-4.00555345006794114027e-02,	/* BFA48228, B5688F3B */
/* pS4 */	 7.91534994289814532176e-04,	/* 3F49EFE0, 7501B288 */
/* pS5 */	 3.47933107596021167570e-05,	/* 3F023DE1, 0DFDF709 */
/* qS1 */	-2.40339491173441421878e+00,	/* C0033A27, 1C8A2D4B */
/* qS2 */	 2.02094576023350569471e+00,	/* 40002AE5, 9C598AC8 */
/* qS3 */	-6.88283971605453293030e-01,	/* BFE6066C, 1B8D0159 */
/* qS4 */	 7.70381505559019352791e-02	/* 3FB3B8C5, B12E9282 */
};
#define	one	xxx[0]
#define	huge	xxx[1]
#define	pio2_hi	xxx[2]
#define	pio2_lo	xxx[3]
#define	pio4_hi	xxx[4]
#define	pS0	xxx[5]
#define	pS1	xxx[6]
#define	pS2	xxx[7]
#define	pS3	xxx[8]
#define	pS4	xxx[9]
#define	pS5	xxx[10]
#define	qS1	xxx[11]
#define	qS2	xxx[12]
#define	qS3	xxx[13]
#define	qS4	xxx[14]
/* INDENT ON */

double
asin(double x) {
	double t, w, p, q, c, r, s;
	int hx, ix, i;

	hx = ((int *) &x)[HIWORD];
	ix = hx & 0x7fffffff;
	if (ix >= 0x3ff00000) {	/* |x| >= 1 */
		if (((ix - 0x3ff00000) | ((int *) &x)[LOWORD]) == 0)
			/* asin(1)=+-pi/2 with inexact */
			return (x * pio2_hi + x * pio2_lo);
		else if (isnan(x))
#if defined(FPADD_TRAPS_INCOMPLETE_ON_NAN)
			return (ix >= 0x7ff80000 ? x : (x - x) / (x - x));
			/* assumes sparc-like QNaN */
#else
			return (x - x) / (x - x);	/* asin(|x|>1) is NaN */
#endif
		else
			return (_SVID_libm_err(x, x, 2));
	} else if (ix < 0x3fe00000) {	/* |x| < 0.5 */
		if (ix < 0x3e400000) {	/* if |x| < 2**-27 */
			if ((i = (int) x) == 0)
				/* return x with inexact if x != 0 */
				return (x);
		}
		t = x * x;
		p = t * (pS0 + t * (pS1 + t * (pS2 + t * (pS3 +
			t * (pS4 + t * pS5)))));
		q = one + t * (qS1 + t * (qS2 + t * (qS3 + t * qS4)));
		w = p / q;
		return (x + x * w);
	}
	/* 1 > |x| >= 0.5 */
	w = one - fabs(x);
	t = w * 0.5;
	p = t * (pS0 + t * (pS1 + t * (pS2 + t * (pS3 + t * (pS4 + t * pS5)))));
	q = one + t * (qS1 + t * (qS2 + t * (qS3 + t * qS4)));
	s = sqrt(t);
	if (ix >= 0x3FEF3333) {	/* if |x| > 0.975 */
		w = p / q;
		t = pio2_hi - (2.0 * (s + s * w) - pio2_lo);
	} else {
		w = s;
		((int *) &w)[LOWORD] = 0;
		c = (t - w * w) / (s + w);
		r = p / q;
		p = 2.0 * s * r - (pio2_lo - 2.0 * c);
		q = pio4_hi - 2.0 * w;
		t = pio4_hi - (p - q);
	}
	return (hx > 0 ? t : -t);
}