1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
|
/*
* CDDL HEADER START
*
* The contents of this file are subject to the terms of the
* Common Development and Distribution License (the "License").
* You may not use this file except in compliance with the License.
*
* You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
* or http://www.opensolaris.org/os/licensing.
* See the License for the specific language governing permissions
* and limitations under the License.
*
* When distributing Covered Code, include this CDDL HEADER in each
* file and include the License file at usr/src/OPENSOLARIS.LICENSE.
* If applicable, add the following below this CDDL HEADER, with the
* fields enclosed by brackets "[]" replaced with your own identifying
* information: Portions Copyright [yyyy] [name of copyright owner]
*
* CDDL HEADER END
*/
/*
* Copyright 2011 Nexenta Systems, Inc. All rights reserved.
*/
/*
* Copyright 2005 Sun Microsystems, Inc. All rights reserved.
* Use is subject to license terms.
*/
#pragma weak __log1p = log1p
/* INDENT OFF */
/*
* Method :
* 1. Argument Reduction: find k and f such that
* 1+x = 2^k * (1+f),
* where sqrt(2)/2 < 1+f < sqrt(2) .
*
* Note. If k=0, then f=x is exact. However, if k != 0, then f
* may not be representable exactly. In that case, a correction
* term is need. Let u=1+x rounded. Let c = (1+x)-u, then
* log(1+x) - log(u) ~ c/u. Thus, we proceed to compute log(u),
* and add back the correction term c/u.
* (Note: when x > 2**53, one can simply return log(x))
*
* 2. Approximation of log1p(f).
* Let s = f/(2+f) ; based on log(1+f) = log(1+s) - log(1-s)
* = 2s + 2/3 s**3 + 2/5 s**5 + .....,
* = 2s + s*R
* We use a special Reme algorithm on [0,0.1716] to generate
* a polynomial of degree 14 to approximate R The maximum error
* of this polynomial approximation is bounded by 2**-58.45. In
* other words,
* 2 4 6 8 10 12 14
* R(z) ~ Lp1*s +Lp2*s +Lp3*s +Lp4*s +Lp5*s +Lp6*s +Lp7*s
* (the values of Lp1 to Lp7 are listed in the program)
* and
* | 2 14 | -58.45
* | Lp1*s +...+Lp7*s - R(z) | <= 2
* | |
* Note that 2s = f - s*f = f - hfsq + s*hfsq, where hfsq = f*f/2.
* In order to guarantee error in log below 1ulp, we compute log
* by
* log1p(f) = f - (hfsq - s*(hfsq+R)).
*
* 3. Finally, log1p(x) = k*ln2 + log1p(f).
* = k*ln2_hi+(f-(hfsq-(s*(hfsq+R)+k*ln2_lo)))
* Here ln2 is splitted into two floating point number:
* ln2_hi + ln2_lo,
* where n*ln2_hi is always exact for |n| < 2000.
*
* Special cases:
* log1p(x) is NaN with signal if x < -1 (including -INF) ;
* log1p(+INF) is +INF; log1p(-1) is -INF with signal;
* log1p(NaN) is that NaN with no signal.
*
* Accuracy:
* according to an error analysis, the error is always less than
* 1 ulp (unit in the last place).
*
* Constants:
* The hexadecimal values are the intended ones for the following
* constants. The decimal values may be used, provided that the
* compiler will convert from decimal to binary accurately enough
* to produce the hexadecimal values shown.
*
* Note: Assuming log() return accurate answer, the following
* algorithm can be used to compute log1p(x) to within a few ULP:
*
* u = 1+x;
* if (u == 1.0) return x ; else
* return log(u)*(x/(u-1.0));
*
* See HP-15C Advanced Functions Handbook, p.193.
*/
/* INDENT ON */
#include "libm.h"
static const double xxx[] = {
/* ln2_hi */ 6.93147180369123816490e-01, /* 3fe62e42 fee00000 */
/* ln2_lo */ 1.90821492927058770002e-10, /* 3dea39ef 35793c76 */
/* two54 */ 1.80143985094819840000e+16, /* 43500000 00000000 */
/* Lp1 */ 6.666666666666735130e-01, /* 3FE55555 55555593 */
/* Lp2 */ 3.999999999940941908e-01, /* 3FD99999 9997FA04 */
/* Lp3 */ 2.857142874366239149e-01, /* 3FD24924 94229359 */
/* Lp4 */ 2.222219843214978396e-01, /* 3FCC71C5 1D8E78AF */
/* Lp5 */ 1.818357216161805012e-01, /* 3FC74664 96CB03DE */
/* Lp6 */ 1.531383769920937332e-01, /* 3FC39A09 D078C69F */
/* Lp7 */ 1.479819860511658591e-01, /* 3FC2F112 DF3E5244 */
/* zero */ 0.0
};
#define ln2_hi xxx[0]
#define ln2_lo xxx[1]
#define two54 xxx[2]
#define Lp1 xxx[3]
#define Lp2 xxx[4]
#define Lp3 xxx[5]
#define Lp4 xxx[6]
#define Lp5 xxx[7]
#define Lp6 xxx[8]
#define Lp7 xxx[9]
#define zero xxx[10]
double
log1p(double x) {
double hfsq, f, c = 0.0, s, z, R, u;
int k, hx, hu, ax;
hx = ((int *)&x)[HIWORD]; /* high word of x */
ax = hx & 0x7fffffff;
if (ax >= 0x7ff00000) { /* x is inf or nan */
if (((hx - 0xfff00000) | ((int *)&x)[LOWORD]) == 0) /* -inf */
return (_SVID_libm_err(x, x, 44));
return (x * x);
}
k = 1;
if (hx < 0x3FDA827A) { /* x < 0.41422 */
if (ax >= 0x3ff00000) /* x <= -1.0 */
return (_SVID_libm_err(x, x, x == -1.0 ? 43 : 44));
if (ax < 0x3e200000) { /* |x| < 2**-29 */
if (two54 + x > zero && /* raise inexact */
ax < 0x3c900000) /* |x| < 2**-54 */
return (x);
else
return (x - x * x * 0.5);
}
if (hx > 0 || hx <= (int)0xbfd2bec3) { /* -0.2929<x<0.41422 */
k = 0;
f = x;
hu = 1;
}
}
/* We will initialize 'c' here. */
if (k != 0) {
if (hx < 0x43400000) {
u = 1.0 + x;
hu = ((int *)&u)[HIWORD]; /* high word of u */
k = (hu >> 20) - 1023;
/*
* correction term
*/
c = k > 0 ? 1.0 - (u - x) : x - (u - 1.0);
c /= u;
} else {
u = x;
hu = ((int *)&u)[HIWORD]; /* high word of u */
k = (hu >> 20) - 1023;
c = 0;
}
hu &= 0x000fffff;
if (hu < 0x6a09e) { /* normalize u */
((int *)&u)[HIWORD] = hu | 0x3ff00000;
} else { /* normalize u/2 */
k += 1;
((int *)&u)[HIWORD] = hu | 0x3fe00000;
hu = (0x00100000 - hu) >> 2;
}
f = u - 1.0;
}
hfsq = 0.5 * f * f;
if (hu == 0) { /* |f| < 2**-20 */
if (f == zero) {
if (k == 0)
return (zero);
/* We already initialized 'c' before, when (k != 0) */
c += k * ln2_lo;
return (k * ln2_hi + c);
}
R = hfsq * (1.0 - 0.66666666666666666 * f);
if (k == 0)
return (f - R);
return (k * ln2_hi - ((R - (k * ln2_lo + c)) - f));
}
s = f / (2.0 + f);
z = s * s;
R = z * (Lp1 + z * (Lp2 + z * (Lp3 + z * (Lp4 + z * (Lp5 +
z * (Lp6 + z * Lp7))))));
if (k == 0)
return (f - (hfsq - s * (hfsq + R)));
return (k * ln2_hi - ((hfsq - (s * (hfsq + R) +
(k * ln2_lo + c))) - f));
}
|