1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
|
/*
* CDDL HEADER START
*
* The contents of this file are subject to the terms of the
* Common Development and Distribution License (the "License").
* You may not use this file except in compliance with the License.
*
* You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
* or http://www.opensolaris.org/os/licensing.
* See the License for the specific language governing permissions
* and limitations under the License.
*
* When distributing Covered Code, include this CDDL HEADER in each
* file and include the License file at usr/src/OPENSOLARIS.LICENSE.
* If applicable, add the following below this CDDL HEADER, with the
* fields enclosed by brackets "[]" replaced with your own identifying
* information: Portions Copyright [yyyy] [name of copyright owner]
*
* CDDL HEADER END
*/
/*
* Copyright 2011 Nexenta Systems, Inc. All rights reserved.
*/
/*
* Copyright 2006 Sun Microsystems, Inc. All rights reserved.
* Use is subject to license terms.
*/
#pragma weak __log2 = log2
/* INDENT OFF */
/*
* log2(x) = log(x)/log2
*
* Base on Table look-up algorithm with product polynomial
* approximation for log(x).
*
* By K.C. Ng, Nov 29, 2004
*
* (a). For x in [1-0.125, 1+0.125], from log.c we have
* log(x) = f + ((a1*f^2) *
* ((a2 + (a3*f)*(a4+f)) + (f^3)*(a5+f))) *
* (((a6 + f*(a7+f)) + (f^3)*(a8+f)) *
* ((a9 + (a10*f)*(a11+f)) + (f^3)*(a12+f)))
* where f = x - 1.
* (i) modify a1 <- a1 / log2
* (ii) 1/log2 = 1.4426950408889634...
* = 1.5 - 0.057304959... (4 bit shift)
* Let lv = 1.5 - 1/log2, then
* lv = 0.057304959111036592640075318998107956665325,
* (iii) f*1.5 is exact because f has 3 trailing zero.
* (iv) Thus, log2(x) = f*1.5 - (lv*f - PPoly)
*
* (b). For 0.09375 <= x < 24
* Let j = (ix - 0x3fb80000) >> 15. Look up Y[j], 1/Y[j], and log(Y[j])
* from _TBL_log.c. Then
* log2(x) = log2(Y[j]) + log2(1 + (x-Y[j])*(1/Y[j]))
* = log(Y[j])(1/log2) + log2(1 + s)
* where
* s = (x-Y[j])*(1/Y[j])
* From log.c, we have log(1+s) =
* 2 2 2
* (b s) (b + b s + s ) [b + b s + s (b + s)] (b + b s + s )
* 1 2 3 4 5 6 7 8
*
* By setting b1 <- b1/log2, we have
* log2(x) = 1.5 * T - (lv * T - POLY(s))
*
* (c). Otherwise, get "n", the exponent of x, and then normalize x to
* z in [1,2). Then similar to (b) find a Y[i] that matches z to 5.5
* significant bits. Then
* log2(x) = n + log2(z).
*
* Special cases:
* log2(x) is NaN with signal if x < 0 (including -INF) ;
* log2(+INF) is +INF; log2(0) is -INF with signal;
* log2(NaN) is that NaN with no signal.
*
* Maximum error observed: less than 0.84 ulp
*
* Constants:
* The hexadecimal values are the intended ones for the following constants.
* The decimal values may be used, provided that the compiler will convert
* from decimal to binary accurately enough to produce the hexadecimal values
* shown.
*/
/* INDENT ON */
#include "libm.h"
#include "libm_protos.h"
extern const double _TBL_log[];
static const double P[] = {
/* ONE */ 1.0,
/* TWO52 */ 4503599627370496.0,
/* LN10V */ 1.4426950408889634073599246810018920433347, /* 1/log10 */
/* ZERO */ 0.0,
/* A1 */ -9.6809362455249638217841932228967194640116e-02,
/* A2 */ 1.99628461483039965074226529395673424005508422852e+0000,
/* A3 */ 2.26812367662950720159642514772713184356689453125e+0000,
/* A4 */ -9.05030639084976384900471657601883634924888610840e-0001,
/* A5 */ -1.48275767132434044270894446526654064655303955078e+0000,
/* A6 */ 1.88158320939722756293122074566781520843505859375e+0000,
/* A7 */ 1.83309386046986411145098827546462416648864746094e+0000,
/* A8 */ 1.24847063988317086291601754055591300129890441895e+0000,
/* A9 */ 1.98372421445537705508854742220137268304824829102e+0000,
/* A10 */ -3.94711735767898475035764249696512706577777862549e-0001,
/* A11 */ 3.07890395362954372160402272129431366920471191406e+0000,
/* A12 */ -9.60099585275022149311041630426188930869102478027e-0001,
/* B1 */ -1.8039695622547469514898963204616532885451e-01,
/* B2 */ 1.87161713283355151891381127914642725337613123482e+0000,
/* B3 */ -1.89082956295731507978530316904652863740921020508e+0000,
/* B4 */ -2.50562891673640253387134180229622870683670043945e+0000,
/* B5 */ 1.64822828085258366037635369139024987816810607910e+0000,
/* B6 */ -1.24409107065868340669112512841820716857910156250e+0000,
/* B7 */ 1.70534231658220414296067701798165217041969299316e+0000,
/* B8 */ 1.99196833784655646937267192697618156671524047852e+0000,
/* LGH */ 1.5,
/* LGL */ 0.057304959111036592640075318998107956665325,
};
#define ONE P[0]
#define TWO52 P[1]
#define LN10V P[2]
#define ZERO P[3]
#define A1 P[4]
#define A2 P[5]
#define A3 P[6]
#define A4 P[7]
#define A5 P[8]
#define A6 P[9]
#define A7 P[10]
#define A8 P[11]
#define A9 P[12]
#define A10 P[13]
#define A11 P[14]
#define A12 P[15]
#define B1 P[16]
#define B2 P[17]
#define B3 P[18]
#define B4 P[19]
#define B5 P[20]
#define B6 P[21]
#define B7 P[22]
#define B8 P[23]
#define LGH P[24]
#define LGL P[25]
double
log2(double x) {
int i, hx, ix, n, lx;
n = 0;
hx = ((int *) &x)[HIWORD]; ix = hx & 0x7fffffff;
lx = ((int *) &x)[LOWORD];
/* subnormal,0,negative,inf,nan */
if ((hx + 0x100000) < 0x200000) {
#if defined(FPADD_TRAPS_INCOMPLETE_ON_NAN)
if (ix >= 0x7ff80000) /* assumes sparc-like QNaN */
return (x); /* for Cheetah when x is QNaN */
#endif
if (((hx << 1) | lx) == 0) /* log(0.0) = -inf */
return (A5 / fabs(x));
if (hx < 0) { /* x < 0 */
if (ix >= 0x7ff00000)
return (x - x); /* x is -inf or NaN */
else
return (ZERO / (x - x));
}
if (((hx - 0x7ff00000) | lx) == 0) /* log(inf) = inf */
return (x);
if (ix >= 0x7ff00000) /* log(NaN) = NaN */
return (x - x);
x *= TWO52;
n = -52;
hx = ((int *) &x)[HIWORD]; ix = hx & 0x7fffffff;
lx = ((int *) &x)[LOWORD];
}
/* 0.09375 (0x3fb80000) <= x < 24 (0x40380000) */
i = ix >> 19;
if (i >= 0x7f7 && i <= 0x806) {
/* 0.875 <= x < 1.125 */
if (ix >= 0x3fec0000 && ix < 0x3ff20000) {
double s, z, r, w;
s = x - ONE; z = s * s; r = (A10 * s) * (A11 + s);
w = z * s;
if (((ix << 12) | lx) == 0)
return (z);
else
return (LGH * s - (LGL * s - ((A1 * z) *
((A2 + (A3 * s) * (A4 + s)) + w * (A5 + s))) *
(((A6 + s * (A7 + s)) + w * (A8 + s)) *
((A9 + r) + w * (A12 + s)))));
} else {
double *tb, s;
i = (ix - 0x3fb80000) >> 15;
tb = (double *) _TBL_log + (i + i + i);
if (((ix << 12) | lx) == 0) /* 2's power */
return ((double) ((ix >> 20) - 0x3ff));
s = (x - tb[0]) * tb[1];
return (LGH * tb[2] - (LGL * tb[2] - ((B1 * s) *
(B2 + s * (B3 + s))) *
(((B4 + s * B5) + (s * s) * (B6 + s)) *
(B7 + s * (B8 + s)))));
}
} else {
double *tb, dn, s;
dn = (double) (n + ((ix >> 20) - 0x3ff));
ix <<= 12;
if ((ix | lx) == 0)
return (dn);
i = ((unsigned) ix >> 12) | 0x3ff00000; /* scale x to [1,2) */
((int *) &x)[HIWORD] = i;
i = (i - 0x3fb80000) >> 15;
tb = (double *) _TBL_log + (i + i + i);
s = (x - tb[0]) * tb[1];
return (dn + (tb[2] * LN10V + ((B1 * s) *
(B2 + s * (B3 + s))) *
(((B4 + s * B5) + (s * s) * (B6 + s)) *
(B7 + s * (B8 + s)))));
}
}
|