summaryrefslogtreecommitdiff
path: root/usr/src/lib/libm/common/C/sincos.c
blob: 461ba30f7f5211444ddf35fd8eae37903f427bad (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
/*
 * CDDL HEADER START
 *
 * The contents of this file are subject to the terms of the
 * Common Development and Distribution License (the "License").
 * You may not use this file except in compliance with the License.
 *
 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
 * or http://www.opensolaris.org/os/licensing.
 * See the License for the specific language governing permissions
 * and limitations under the License.
 *
 * When distributing Covered Code, include this CDDL HEADER in each
 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
 * If applicable, add the following below this CDDL HEADER, with the
 * fields enclosed by brackets "[]" replaced with your own identifying
 * information: Portions Copyright [yyyy] [name of copyright owner]
 *
 * CDDL HEADER END
 */
/*
 * Copyright 2011 Nexenta Systems, Inc.  All rights reserved.
 */
/*
 * Copyright 2005 Sun Microsystems, Inc.  All rights reserved.
 * Use is subject to license terms.
 */

#pragma weak sincos = __sincos

/* INDENT OFF */
/*
 * sincos(x,s,c)
 * Accurate Table look-up algorithm by K.C. Ng, 2000.
 *
 * 1. Reduce x to x>0 by cos(-x)=cos(x), sin(-x)=-sin(x).
 * 2. For 0<= x < 8, let i = (64*x chopped)-10. Let d = x - a[i], where
 *    a[i] is a double that is close to (i+10.5)/64 (and hence |d|< 10.5/64)
 *    and such that sin(a[i]) and cos(a[i]) is close to a double (with error
 *    less than 2**-8 ulp). Then
 *
 *	cos(x) = cos(a[i]+d) = cos(a[i])cos(d) - sin(a[i])*sin(d)
 *	       = TBL_cos_a[i]*(1+QQ1*d^2+QQ2*d^4) -
 *			TBL_sin_a[i]*(d+PP1*d^3+PP2*d^5)
 *	       = TBL_cos_a[i] + (TBL_cos_a[i]*d^2*(QQ1+QQ2*d^2) -
 *			TBL_sin_a[i]*(d+PP1*d^3+PP2*d^5))
 *
 *      sin(x) = sin(a[i]+d) = sin(a[i])cos(d) + cos(a[i])*sin(d)
 *             = TBL_sin_a[i]*(1+QQ1*d^2+QQ2*d^4) +
 *			TBL_cos_a[i]*(d+PP1*d^3+PP2*d^5)
 *             = TBL_sin_a[i] + (TBL_sin_a[i]*d^2*(QQ1+QQ2*d^2) +
 *			TBL_cos_a[i]*(d+PP1*d^3+PP2*d^5))
 *
 *    Note: for x close to n*pi/2, special treatment is need for either
 *    sin or cos:
 *    i in [81, 100] (  pi/2 +-10.5/64 => tiny cos(x) = sin(pi/2-x)
 *    i in [181,200] (  pi   +-10.5/64 => tiny sin(x) = sin(pi-x)
 *    i in [282,301] (  3pi/2+-10.5/64 => tiny cos(x) = sin(x-3pi/2)
 *    i in [382,401] (  2pi  +-10.5/64 => tiny sin(x) = sin(x-2pi)
 *    i in [483,502] (  5pi/2+-10.5/64 => tiny cos(x) = sin(5pi/2-x)
 *
 * 3. For x >= 8.0, use kernel function __rem_pio2 to perform argument
 *    reduction and call __k_sincos_ to compute sin and cos.
 *
 * kernel function:
 *	__rem_pio2	... argument reduction routine
 *	__k_sincos_	... sine and cosine function on [-pi/4,pi/4]
 *
 * Method.
 *      Let S and C denote the sin and cos respectively on [-PI/4, +PI/4].
 *      1. Assume the argument x is reduced to y1+y2 = x-k*pi/2 in
 *	   [-pi/2 , +pi/2], and let n = k mod 4.
 *	2. Let S=S(y1+y2), C=C(y1+y2). Depending on n, we have
 *
 *          n        sin(x)      cos(x)        tan(x)
 *     ----------------------------------------------------------
 *	    0	       S	   C		 S/C
 *	    1	       C	  -S		-C/S
 *	    2	      -S	  -C		 S/C
 *	    3	      -C	   S		-C/S
 *     ----------------------------------------------------------
 *
 * Special cases:
 *      Let trig be any of sin, cos, or tan.
 *      trig(+-INF)  is NaN, with signals;
 *      trig(NaN)    is that NaN;
 *
 * Accuracy:
 *	TRIG(x) returns trig(x) nearly rounded (less than 1 ulp)
 */

#include "libm.h"

static const double sc[] = {
/* ONE	= */  1.0,
/* NONE	= */ -1.0,
/*
 * |sin(x) - (x+pp1*x^3+pp2*x^5)| <= 2^-58.79 for |x| < 0.008
 */
/* PP1	= */ -0.166666666666316558867252052378889521480627858683055567,
/* PP2	= */   .008333315652997472323564894248466758248475374977974017927,
/*
 * |(sin(x) - (x+p1*x^3+...+p4*x^9)|
 * |------------------------------ | <= 2^-57.63 for |x| < 0.1953125
 * |                 x             |
 */
/* P1  	= */ -1.666666666666629669805215138920301589656e-0001,
/* P2  	= */  8.333333332390951295683993455280336376663e-0003,
/* P3  	= */ -1.984126237997976692791551778230098403960e-0004,
/* P4  	= */  2.753403624854277237649987622848330351110e-0006,
/*
 * |cos(x) - (1+qq1*x^2+qq2*x^4)| <= 2^-55.99 for |x| <= 0.008 (0x3f80624d)
 */
/* QQ1	= */ -0.4999999999975492381842911981948418542742729,
/* QQ2	= */  0.041666542904352059294545209158357640398771740,
/* Q1  	= */ -0.5,
/* Q2  	= */  4.166666666500350703680945520860748617445e-0002,
/* Q3  	= */ -1.388888596436972210694266290577848696006e-0003,
/* Q4  	= */  2.478563078858589473679519517892953492192e-0005,
/* PIO2_H    = */  1.570796326794896557999,
/* PIO2_L    = */  6.123233995736765886130e-17,
/* PIO2_L0   = */  6.123233995727922165564e-17,
/* PIO2_L1   = */  8.843720566135701120255e-29,
/* PI_H      = */  3.1415926535897931159979634685,
/* PI_L      = */  1.22464679914735317722606593227425e-16,
/* PI_L0     = */  1.22464679914558443311283879205095e-16,
/* PI_L1     = */  1.768744113227140223300005233735517376e-28,
/* PI3O2_H   = */  4.712388980384689673997,
/* PI3O2_L   = */  1.836970198721029765839e-16,
/* PI3O2_L0  = */  1.836970198720396133587e-16,
/* PI3O2_L1  = */  6.336322524749201142226e-29,
/* PI2_H     = */  6.2831853071795862319959269370,
/* PI2_L     = */  2.44929359829470635445213186454850e-16,
/* PI2_L0    = */  2.44929359829116886622567758410190e-16,
/* PI2_L1    = */  3.537488226454280446600010467471034752e-28,
/* PI5O2_H   = */  7.853981633974482789995,
/* PI5O2_L   = */  3.061616997868382943065e-16,
/* PI5O2_L0  = */  3.061616997861941598865e-16,
/* PI5O2_L1  = */  6.441344200433640781982e-28,
};
/* INDENT ON */

#define	ONE		sc[0]
#define	PP1		sc[2]
#define	PP2		sc[3]
#define	P1		sc[4]
#define	P2		sc[5]
#define	P3		sc[6]
#define	P4		sc[7]
#define	QQ1		sc[8]
#define	QQ2		sc[9]
#define	Q1		sc[10]
#define	Q2		sc[11]
#define	Q3		sc[12]
#define	Q4		sc[13]
#define	PIO2_H		sc[14]
#define	PIO2_L		sc[15]
#define	PIO2_L0		sc[16]
#define	PIO2_L1		sc[17]
#define	PI_H		sc[18]
#define	PI_L		sc[19]
#define	PI_L0		sc[20]
#define	PI_L1		sc[21]
#define	PI3O2_H		sc[22]
#define	PI3O2_L		sc[23]
#define	PI3O2_L0	sc[24]
#define	PI3O2_L1	sc[25]
#define	PI2_H		sc[26]
#define	PI2_L		sc[27]
#define	PI2_L0		sc[28]
#define	PI2_L1		sc[29]
#define	PI5O2_H		sc[30]
#define	PI5O2_L		sc[31]
#define	PI5O2_L0	sc[32]
#define	PI5O2_L1	sc[33]
#define	PoS(x, z)	((x * z) * (PP1 + z * PP2))
#define	PoL(x, z)	((x * z) * ((P1 + z * P2) + (z * z) * (P3 + z * P4)))

extern const double _TBL_sincos[], _TBL_sincosx[];

void
sincos(double x, double *s, double *c) {
	double	z, y[2], w, t, v, p, q;
	int	i, j, n, hx, ix, lx;

	hx = ((int *)&x)[HIWORD];
	lx = ((int *)&x)[LOWORD];
	ix = hx & ~0x80000000;

	if (ix <= 0x3fc50000) {	/* |x| < 10.5/64 = 0.164062500 */
		if (ix < 0x3e400000) {	/* |x| < 2**-27 */
			if ((int)x == 0)
				*c = ONE;
			*s = x;
		} else {
			z = x * x;
			if (ix < 0x3f800000) {	/* |x| < 0.008 */
				q = z * (QQ1 + z * QQ2);
				p = PoS(x, z);
			} else {
				q = z * ((Q1 + z * Q2) + (z * z) *
				    (Q3 + z * Q4));
				p = PoL(x, z);
			}
			*c = ONE + q;
			*s = x + p;
		}
		return;
	}

	n = ix >> 20;
	i = (((ix >> 12) & 0xff) | 0x100) >> (0x401 - n);
	j = i - 10;
	if (n < 0x402) {	/* |x| < 8 */
		x = fabs(x);
		v = x - _TBL_sincosx[j];
		t = v * v;
		w = _TBL_sincos[(j<<1)];
		z = _TBL_sincos[(j<<1)+1];
		p = v + PoS(v, t);
		q = t * (QQ1 + t * QQ2);
		if ((((j - 81) ^ (j - 101)) |
		    ((j - 282) ^ (j - 302)) |
		    ((j - 483) ^ (j - 503)) |
		    ((j - 181) ^ (j - 201)) |
		    ((j - 382) ^ (j - 402))) < 0) {
			if (j <= 101) {
				/* near pi/2, cos(x) = sin(pi/2-x) */
				t = w * q + z * p;
				*s = (hx >= 0)? w + t : -w - t;
				p = PIO2_H - x;
				i = ix - 0x3ff921fb;
				x = p + PIO2_L;
				if ((i | ((lx - 0x54442D00) &
				    0xffffff00)) == 0) {
					/* very close to pi/2 */
					x = p + PIO2_L0;
					*c = x + PIO2_L1;
				} else {
					z = x * x;
					if (((ix - 0x3ff92000) >> 12) == 0) {
						/* |pi/2-x|<2**-8 */
						w = PIO2_L + PoS(x, z);
					} else {
						w = PIO2_L + PoL(x, z);
					}
					*c = p + w;
				}
			} else if (j <= 201) {
				/* near pi, sin(x) = sin(pi-x) */
				*c = z - (w * p - z * q);
				p = PI_H - x;
				i = ix - 0x400921fb;
				x = p + PI_L;
				if ((i | ((lx - 0x54442D00) &
				    0xffffff00)) == 0) {
					/* very close to pi */
					x = p + PI_L0;
					*s = (hx >= 0)? x + PI_L1 :
					    -(x + PI_L1);
				} else {
					z = x * x;
					if (((ix - 0x40092000) >> 11) == 0) {
						/* |pi-x|<2**-8 */
						w = PI_L + PoS(x, z);
					} else {
						w = PI_L + PoL(x, z);
					}
					*s = (hx >= 0)? p + w : -p - w;
				}
			} else if (j <= 302) {
				/* near 3/2pi, cos(x)=sin(x-3/2pi) */
				t = w * q + z * p;
				*s = (hx >= 0)? w + t : -w - t;
				p = x - PI3O2_H;
				i = ix - 0x4012D97C;
				x = p - PI3O2_L;
				if ((i | ((lx - 0x7f332100) &
				    0xffffff00)) == 0) {
					/* very close to 3/2pi */
					x = p - PI3O2_L0;
					*c = x - PI3O2_L1;
				} else {
					z = x * x;
					if (((ix - 0x4012D800) >> 9) == 0) {
						/* |3/2pi-x|<2**-8 */
						w = PoS(x, z) - PI3O2_L;
					} else {
						w = PoL(x, z) - PI3O2_L;
					}
					*c = p + w;
				}
			} else if (j <= 402) {
				/* near 2pi, sin(x)=sin(x-2pi) */
				*c = z - (w * p - z * q);
				p = x - PI2_H;
				i = ix - 0x401921fb;
				x = p - PI2_L;
				if ((i | ((lx - 0x54442D00) &
				    0xffffff00)) == 0) {
					/* very close to 2pi */
					x = p - PI2_L0;
					*s = (hx >= 0)? x - PI2_L1 :
					    -(x - PI2_L1);
				} else {
					z = x * x;
					if (((ix - 0x40192000) >> 10) == 0) {
						/* |x-2pi|<2**-8 */
						w = PoS(x, z) - PI2_L;
					} else {
						w = PoL(x, z) - PI2_L;
					}
					*s = (hx >= 0)? p + w : -p - w;
				}
			} else {
				/* near 5pi/2, cos(x) = sin(5pi/2-x) */
				t = w * q + z * p;
				*s = (hx >= 0)? w + t : -w - t;
				p = PI5O2_H - x;
				i = ix - 0x401F6A7A;
				x = p + PI5O2_L;
				if ((i | ((lx - 0x29553800) &
				    0xffffff00)) == 0) {
					/* very close to pi/2 */
					x = p + PI5O2_L0;
					*c = x + PI5O2_L1;
				} else {
					z = x * x;
					if (((ix - 0x401F6A7A) >> 7) == 0) {
						/* |5pi/2-x|<2**-8 */
						w = PI5O2_L + PoS(x, z);
					} else {
						w = PI5O2_L + PoL(x, z);
					}
					*c = p + w;
				}
			}
		} else {
			*c = z - (w * p - z * q);
			t = w * q + z * p;
			*s = (hx >= 0)? w + t : -w - t;
		}
		return;
	}

	if (ix >= 0x7ff00000) {
		*s = *c = x / x;
		return;
	}

	/* argument reduction needed */
	n = __rem_pio2(x, y);
	switch (n & 3) {
	case 0:
		*s = __k_sincos(y[0], y[1], c);
		break;
	case 1:
		*c = -__k_sincos(y[0], y[1], s);
		break;
	case 2:
		*s = -__k_sincos(y[0], y[1], c);
		*c = -*c;
		break;
	default:
		*c = __k_sincos(y[0], y[1], s);
		*s = -*s;
	}
}