summaryrefslogtreecommitdiff
path: root/usr/src/lib/libm/common/Q/erfl.c
blob: 424f840b58877f6ba82c78fe05f4ffc5df0f897e (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
/*
 * CDDL HEADER START
 *
 * The contents of this file are subject to the terms of the
 * Common Development and Distribution License (the "License").
 * You may not use this file except in compliance with the License.
 *
 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
 * or http://www.opensolaris.org/os/licensing.
 * See the License for the specific language governing permissions
 * and limitations under the License.
 *
 * When distributing Covered Code, include this CDDL HEADER in each
 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
 * If applicable, add the following below this CDDL HEADER, with the
 * fields enclosed by brackets "[]" replaced with your own identifying
 * information: Portions Copyright [yyyy] [name of copyright owner]
 *
 * CDDL HEADER END
 */

/*
 * Copyright 2011 Nexenta Systems, Inc.  All rights reserved.
 */
/*
 * Copyright 2006 Sun Microsystems, Inc.  All rights reserved.
 * Use is subject to license terms.
 */

/*
 * long double function erf,erfc (long double x)
 * K.C. Ng, September, 1989.
 *			     x
 *		      2      |\
 *     erf(x)  =  ---------  | exp(-t*t)dt
 *	 	   sqrt(pi) \|
 *			     0
 *
 *     erfc(x) =  1-erf(x)
 *
 * method:
 * 	Since erf(-x) = -erf(x), we assume x>=0.
 *	For x near 0, we have the expansion
 *
 *     	    erf(x) = (2/sqrt(pi))*(x - x^3/3 + x^5/10 - x^7/42 + ....).
 *
 * 	Since 2/sqrt(pi) = 1.128379167095512573896158903121545171688,
 *	we use x + x*P(x^2) to approximate erf(x). This formula will
 *	guarantee the error less than one ulp where x is not too far
 *	away from 0. We note that erf(x)=x at x = 0.6174...... After
 *	some experiment, we choose the following approximation on
 *	interval [0,0.84375].
 *
 *	For x in [0,0.84375]
 *		   2		    2        4		     40
 *	   P = 	P(x ) = (p0 + p1 * x + p2 * x + ... + p20 * x  )
 *
 *	   erf(x)  = x + x*P
 *	   erfc(x) = 1 - erf(x) 	  if x<=0.25
 *		   = 0.5 + ((0.5-x)-x*P)  if x in [0.25,0.84375]
 *	precision: |P(x^2)-(erf(x)-x)/x| <= 2**-122.50
 *
 *	For x in [0.84375,1.25], let s = x - 1, and
 *	c = 0.84506291151 rounded to single (24 bits)
 *	   erf(x)  = c  + P1(s)/Q1(s)
 *	   erfc(x) = (1-c)  - P1(s)/Q1(s)
 *	precision: |P1/Q1 - (erf(x)-c)| <= 2**-118.41
 *
 *
 *	For x in [1.25,1.75], let s = x - 1.5, and
 *	c = 0.95478588343 rounded to single (24 bits)
 *	   erf(x)  = c  + P2(s)/Q2(s)
 *	   erfc(x) = (1-c)  - P2(s)/Q2(s)
 *	precision: |P1/Q1 - (erf(x)-c)| <= 2**-123.83
 *
 *
 *	For x in [1.75,16/3]
 *	   erfc(x) = exp(-x*x)*(1/x)*R1(1/x)/S1(1/x)
 *	   erf(x)  = 1 - erfc(x)
 *	precision: absolute error of R1/S1 is bounded by 2**-124.03
 *
 *	For x in [16/3,107]
 *	   erfc(x) = exp(-x*x)*(1/x)*R2(1/x)/S2(1/x)
 *	   erf(x)  = 1 - erfc(x) (if x>=9 simple return erf(x)=1 with inexact)
 *	precision: absolute error of R2/S2 is bounded by 2**-120.07
 *
 *	Else if inf > x >= 107
 *	   erf(x)  = 1 with inexact
 *	   erfc(x) = 0 with underflow
 *
 *	Special case:
 *	   erf(inf)  = 1
 *	   erfc(inf) = 0
 */

#pragma weak __erfl = erfl
#pragma weak __erfcl = erfcl

#include "libm.h"
#include "longdouble.h"

static const long double
	tiny	    = 1e-40L,
	nearunfl    = 1e-4000L,
	half	    = 0.5L,
	one	    = 1.0L,
	onehalf	    = 1.5L,
	L16_3	    = 16.0L/3.0L;
/*
 * Coefficients for even polynomial P for erf(x)=x+x*P(x^2) on [0,0.84375]
 */
static const long double P[] = { 	/* 21 coeffs */
   1.283791670955125738961589031215451715556e-0001L,
  -3.761263890318375246320529677071815594603e-0001L,
   1.128379167095512573896158903121205899135e-0001L,
  -2.686617064513125175943235483344625046092e-0002L,
   5.223977625442187842111846652980454568389e-0003L,
  -8.548327023450852832546626271083862724358e-0004L,
   1.205533298178966425102164715902231976672e-0004L,
  -1.492565035840625097674944905027897838996e-0005L,
   1.646211436588924733604648849172936692024e-0006L,
  -1.636584469123491976815834704799733514987e-0007L,
   1.480719281587897445302529007144770739305e-0008L,
  -1.229055530170782843046467986464722047175e-0009L,
   9.422759064320307357553954945760654341633e-0011L,
  -6.711366846653439036162105104991433380926e-0012L,
   4.463224090341893165100275380693843116240e-0013L,
  -2.783513452582658245422635662559779162312e-0014L,
   1.634227412586960195251346878863754661546e-0015L,
  -9.060782672889577722765711455623117802795e-0017L,
   4.741341801266246873412159213893613602354e-0018L,
  -2.272417596497826188374846636534317381203e-0019L,
   8.069088733716068462496835658928566920933e-0021L,
};

/*
 * Rational erf(x) = ((float)0.84506291151) + P1(x-1)/Q1(x-1) on [0.84375,1.25]
 */
static const long double C1   = (long double)((float)0.84506291151);
static const long double P1[] = { 	/*  12 top coeffs */
  -2.362118560752659955654364917390741930316e-0003L,
   4.129623379624420034078926610650759979146e-0001L,
  -3.973857505403547283109417923182669976904e-0002L,
   4.357503184084022439763567513078036755183e-0002L,
   8.015593623388421371247676683754171456950e-0002L,
  -1.034459310403352486685467221776778474602e-0002L,
   5.671850295381046679675355719017720821383e-0003L,
   1.219262563232763998351452194968781174318e-0003L,
   5.390833481581033423020320734201065475098e-0004L,
  -1.978853912815115495053119023517805528300e-0004L,
   6.184234513953600118335017885706420552487e-0005L,
  -5.331802711697810861017518515816271808286e-0006L,
};
static const long double Q1[] = { 	/*  12 bottom coeffs with leading 1.0 hidden */
   9.081506296064882195280178373107623196655e-0001L,
   6.821049531968204097604392183650687642520e-0001L,
   4.067869178233539502315055970743271822838e-0001L,
   1.702332233546316765818144723063881095577e-0001L,
   7.498098377690553934266423088708614219356e-0002L,
   2.050154396918178697056927234366372760310e-0002L,
   7.012988534031999899054782333851905939379e-0003L,
   1.149904787014400354649843451234570731076e-0003L,
   3.185620255011299476196039491205159718620e-0004L,
   1.273405072153008775426376193374105840517e-0005L,
   4.753866999959432971956781228148402971454e-0006L,
  -1.002287602111660026053981728549540200683e-0006L,
};
/*
 * Rational erf(x) = ((float)0.95478588343) + P2(x-1.5)/Q2(x-1.5)
 * on [1.25,1.75]
 */
static const long double C2   = (long double)((float)0.95478588343);
static const long double P2[] = { 	/*  12 top coeffs */
   1.131926304864446730135126164594785863512e-0002L,
   1.273617996967754151544330055186210322832e-0001L,
  -8.169980734667512519897816907190281143423e-0002L,
   9.512267486090321197833634271787944271746e-0002L,
  -2.394251569804872160005274999735914368170e-0002L,
   1.108768660227528667525252333184520222905e-0002L,
   3.527435492933902414662043314373277494221e-0004L,
   4.946116273341953463584319006669474625971e-0004L,
  -4.289851942513144714600285769022420962418e-0005L,
   8.304719841341952705874781636002085119978e-0005L,
  -1.040460226177309338781902252282849903189e-0005L,
   2.122913331584921470381327583672044434087e-0006L,
};
static const long double Q2[] = { 	/*  13 bottom coeffs with leading 1.0 hidden */
   7.448815737306992749168727691042003832150e-0001L,
   7.161813850236008294484744312430122188043e-0001L,
   3.603134756584225766144922727405641236121e-0001L,
   1.955811609133766478080550795194535852653e-0001L,
   7.253059963716225972479693813787810711233e-0002L,
   2.752391253757421424212770221541238324978e-0002L,
   7.677654852085240257439050673446546828005e-0003L,
   2.141102244555509687346497060326630061069e-0003L,
   4.342123013830957093949563339130674364271e-0004L,
   8.664587895570043348530991997272212150316e-0005L,
   1.109201582511752087060167429397033701988e-0005L,
   1.357834375781831062713347000030984364311e-0006L,
   4.957746280594384997273090385060680016451e-0008L,
};
/*
 * erfc(x) = exp(-x*x)/x * R1(1/x)/S1(1/x) on [1.75, 16/3]
 */
static const long double R1[] = { 	/*  14 top coeffs */
   4.630195122654315016370705767621550602948e+0006L,
   1.257949521746494830700654204488675713628e+0007L,
   1.704153822720260272814743497376181625707e+0007L,
   1.502600568706061872381577539537315739943e+0007L,
   9.543710793431995284827024445387333922861e+0006L,
   4.589344808584091011652238164935949522427e+0006L,
   1.714660662941745791190907071920671844289e+0006L,
   5.034802147768798894307672256192466283867e+0005L,
   1.162286400443554670553152110447126850725e+0005L,
   2.086643834548901681362757308058660399137e+0004L,
   2.839793161868140305907004392890348777338e+0003L,
   2.786687241658423601778258694498655680778e+0002L,
   1.779177837102695602425897452623985786464e+0001L,
   5.641895835477470769043614623819144434731e-0001L,
};
static const long double S1[] = { 	/* 15 bottom coeffs with leading 1.0 hidden */
   4.630195122654331529595606896287596843110e+0006L,
   1.780411093345512024324781084220509055058e+0007L,
   3.250113097051800703707108623715776848283e+0007L,
   3.737857099176755050912193712123489115755e+0007L,
   3.029787497516578821459174055870781168593e+0007L,
   1.833850619965384765005769632103205777227e+0007L,
   8.562719999736915722210391222639186586498e+0006L,
   3.139684562074658971315545539760008136973e+0006L,
   9.106421313731384880027703627454366930945e+0005L,
   2.085108342384266508613267136003194920001e+0005L,
   3.723126272693120340730491416449539290600e+0004L,
   5.049169878567344046145695360784436929802e+0003L,
   4.944274532748010767670150730035392093899e+0002L,
   3.153510608818213929982940249162268971412e+0001L,
   1.0e00L,
};

/*
 * erfc(x) = exp(-x*x)/x * R2(1/x)/S2(1/x) on [16/3, 107]
 */
static const long double R2[] = { 	/*  15 top coeffs in reverse order!!*/
   2.447288012254302966796326587537136931669e+0005L,
   8.768592567189861896653369912716538739016e+0005L,
   1.552293152581780065761497908005779524953e+0006L,
   1.792075924835942935864231657504259926729e+0006L,
   1.504001463155897344947500222052694835875e+0006L,
   9.699485556326891411801230186016013019935e+0005L,
   4.961449933661807969863435013364796037700e+0005L,
   2.048726544693474028061176764716228273791e+0005L,
   6.891532964330949722479061090551896886635e+0004L,
   1.888014709010307507771964047905823237985e+0004L,
   4.189692064988957745054734809642495644502e+0003L,
   7.362346487427048068212968889642741734621e+0002L,
   9.980359714211411423007641056580813116207e+0001L,
   9.426910895135379181107191962193485174159e+0000L,
   5.641895835477562869480794515623601280429e-0001L,
};
static const long double S2[] = { 	/* 16 coefficients */
   2.447282203601902971246004716790604686880e+0005L,
   1.153009852759385309367759460934808489833e+0006L,
   2.608580649612639131548966265078663384849e+0006L,
   3.766673917346623308850202792390569025740e+0006L,
   3.890566255138383910789924920541335370691e+0006L,
   3.052882073900746207613166259994150527732e+0006L,
   1.885574519970380988460241047248519418407e+0006L,
   9.369722034759943185851450846811445012922e+0005L,
   3.792278350536686111444869752624492443659e+0005L,
   1.257750606950115799965366001773094058720e+0005L,
   3.410830600242369370645608634643620355058e+0004L,
   7.513984469742343134851326863175067271240e+0003L,
   1.313296320593190002554779998138695507840e+0003L,
   1.773972700887629157006326333696896516769e+0002L,
   1.670876451822586800422009013880457094162e+0001L,
   1.000L,
};

long double erfl(x)
long double x;
{
	long double s,y,t;

	if (!finitel(x)) {
	    if (x != x) return x+x; 	/* NaN */
	    return copysignl(one,x);	/* return +-1.0 is x=Inf */
	}

	y = fabsl(x);
	if (y <= 0.84375L) {
	    if (y<=tiny) return x+P[0]*x;
	    s = y*y;
	    t = __poly_libmq(s,21,P);
	    return  x+x*t;
	}
	if (y<=1.25L) {
	    s = y-one;
	    t = C1+__poly_libmq(s,12,P1)/(one+s*__poly_libmq(s,12,Q1));
	    return (signbitl(x))? -t: t;
	} else if (y<=1.75L) {
	    s = y-onehalf;
	    t = C2+__poly_libmq(s,12,P2)/(one+s*__poly_libmq(s,13,Q2));
	    return (signbitl(x))? -t: t;
	}
	if (y<=9.0L) t = erfcl(y); else t = tiny;
	return (signbitl(x))? t-one: one-t;
}

long double erfcl(x)
long double x;
{
	long double s,y,t;

	if (!finitel(x)) {
	    if (x != x) return x+x; 	/* NaN */
	    /* return 2.0 if x= -inf; 0.0 if x= +inf */
	    if (x < 0.0L) return 2.0L; else return 0.0L;
	}

	if (x <= 0.84375L) {
	    if (x<=0.25) return one-erfl(x);
	    s = x*x;
	    t = half-x;
	    t = t - x*__poly_libmq(s,21,P);
	    return  half+t;
	}
	if (x<=1.25L) {
	    s = x-one;
	    t = one-C1;
	    return t - __poly_libmq(s,12,P1)/(one+s*__poly_libmq(s,12,Q1));
	} else if (x<=1.75L) {
	    s = x-onehalf;
	    t = one-C2;
	    return t - __poly_libmq(s,12,P2)/(one+s*__poly_libmq(s,13,Q2));
	}
	if (x>=107.0L) return nearunfl*nearunfl;		/* underflow */
	else if (x >= L16_3) {
	    y = __poly_libmq(x,15,R2);
	    t = y/__poly_libmq(x,16,S2);
	} else {
	    y = __poly_libmq(x,14,R1);
	    t = y/__poly_libmq(x,15,S1);
	}
	/*
	 * Note that exp(-x*x+d) = exp(-x*x)*exp(d), so to compute
	 * exp(-x*x) with a small relative error, we need to compute
	 * -x*x with a small absolute error.  To this end, we set y
	 * equal to the leading part of x but with enough trailing
	 * zeros that y*y can be computed exactly and we rewrite x*x
	 * as y*y + (x-y)*(x+y), distributing the latter expression
	 * across the exponential.
	 *
	 * We could construct y in a portable way by setting
	 *
	 *   int i = (int)(x * ptwo);
	 *   y = (long double)i * 1/ptwo;
	 *
	 * where ptwo is some power of two large enough to make x-y
	 * small but not so large that the conversion to int overflows.
	 * When long double arithmetic is slow, however, the following
	 * non-portable code is preferable.
	 */
	y = x;
	*(2+(int*)&y) = *(3+(int*)&y) = 0;
	t *= expl(-y*y)*expl(-(x-y)*(x+y));
	return  t;
}