summaryrefslogtreecommitdiff
path: root/usr/src/lib/libm/common/Q/logl.c
blob: 1cdf224c07fb1b021ba1fc842dfe930f7286bb8d (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
/*
 * CDDL HEADER START
 *
 * The contents of this file are subject to the terms of the
 * Common Development and Distribution License (the "License").
 * You may not use this file except in compliance with the License.
 *
 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
 * or http://www.opensolaris.org/os/licensing.
 * See the License for the specific language governing permissions
 * and limitations under the License.
 *
 * When distributing Covered Code, include this CDDL HEADER in each
 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
 * If applicable, add the following below this CDDL HEADER, with the
 * fields enclosed by brackets "[]" replaced with your own identifying
 * information: Portions Copyright [yyyy] [name of copyright owner]
 *
 * CDDL HEADER END
 */

/*
 * Copyright 2011 Nexenta Systems, Inc.  All rights reserved.
 */
/*
 * Copyright 2006 Sun Microsystems, Inc.  All rights reserved.
 * Use is subject to license terms.
 */

#pragma weak logl = __logl

/*
 * logl(x)
 * Table look-up algorithm
 * By K.C. Ng, March 6, 1989
 *
 * (a). For x in [31/33,33/31], using a special approximation:
 *	f = x - 1;
 *	s = f/(2.0+f);	... here |s| <= 0.03125
 *	z = s*s;
 *	return f-s*(f-z*(B1+z*(B2+z*(B3+z*(B4+...+z*B9)...))));
 *
 * (b). Otherwise, normalize x = 2^n * 1.f.
 *	Use a 6-bit table look-up: find a 6 bit g that match f to 6.5 bits,
 *	then
 *	    log(x) = n*ln2 + log(1.g) + log(1.f/1.g).
 *	Here the leading and trailing values of log(1.g) are obtained from
 *	a size-64 table.
 *	For log(1.f/1.g), let s = (1.f-1.g)/(1.f+1.g), then
 *	    log(1.f/1.g) = log((1+s)/(1-s)) = 2s + 2/3 s^3 + 2/5 s^5 +...
 *	Note that |s|<2**-8=0.00390625. We use an odd s-polynomial
 *	approximation to compute log(1.f/1.g):
 *		s*(A1+s^2*(A2+s^2*(A3+s^2*(A4+s^2*(A5+s^2*(A6+s^2*A7))))))
 *	(Precision is 2**-136.91 bits, absolute error)
 *
 * (c). The final result is computed by
 *		(n*ln2_hi+_TBL_logl_hi[j]) +
 *			( (n*ln2_lo+_TBL_logl_lo[j]) + s*(A1+...) )
 *
 * Note.
 *	For ln2_hi and _TBL_logl_hi[j], we force their last 32 bit to be zero
 *	so that n*ln2_hi + _TBL_logl_hi[j] is exact. Here
 *	_TBL_logl_hi[j] + _TBL_logl_lo[j] match log(1+j*2**-6) to 194 bits
 *
 *
 * Special cases:
 *	log(x) is NaN with signal if x < 0 (including -INF) ;
 *	log(+INF) is +INF; log(0) is -INF with signal;
 *	log(NaN) is that NaN with no signal.
 *
 * Constants:
 * The hexadecimal values are the intended ones for the following constants.
 * The decimal values may be used, provided that the compiler will convert
 * from decimal to binary accurately enough to produce the hexadecimal values
 * shown.
 */

#include "libm.h"

extern const long double _TBL_logl_hi[], _TBL_logl_lo[];

static const long double
	zero	=   0.0L,
	one	=   1.0L,
	two	=   2.0L,
	two113  =   10384593717069655257060992658440192.0L,
	ln2hi	=   6.931471805599453094172319547495844850203e-0001L,
	ln2lo	=   1.667085920830552208890449330400379754169e-0025L,
	A1	=   2.000000000000000000000000000000000000024e+0000L,
	A2	=   6.666666666666666666666666666666091393804e-0001L,
	A3	=   4.000000000000000000000000407167070220671e-0001L,
	A4	=   2.857142857142857142730077490612903681164e-0001L,
	A5	=   2.222222222222242577702836920812882605099e-0001L,
	A6	=   1.818181816435493395985912667105885828356e-0001L,
	A7	=   1.538537835211839751112067512805496931725e-0001L,
	B1	=   6.666666666666666666666666666666961498329e-0001L,
	B2	=   3.999999999999999999999999990037655042358e-0001L,
	B3	=   2.857142857142857142857273426428347457918e-0001L,
	B4	=   2.222222222222222221353229049747910109566e-0001L,
	B5	=   1.818181818181821503532559306309070138046e-0001L,
	B6	=   1.538461538453809210486356084587356788556e-0001L,
	B7	=   1.333333344463358756121456892645178795480e-0001L,
	B8	=   1.176460904783899064854645174603360383792e-0001L,
	B9	=   1.057293869956598995326368602518056990746e-0001L;

long double
logl(long double x) {
	long double f, s, z, qn, h, t;
	int *px = (int *) &x;
	int *pz = (int *) &z;
	int i, j, ix, i0, i1, n;

	/* get long double precision word ordering */
	if (*(int *) &one == 0) {
		i0 = 3;
		i1 = 0;
	} else {
		i0 = 0;
		i1 = 3;
	}

	n = 0;
	ix = px[i0];
	if (ix > 0x3ffee0f8) {	/* if x >  31/33 */
		if (ix < 0x3fff1084) {	/* if x < 33/31 */
			f = x - one;
			z = f * f;
			if (((ix - 0x3fff0000) | px[i1] | px[2] | px[1]) == 0) {
				return (zero);	/* log(1)= +0 */
			}
			s = f / (two + f);	/* |s|<2**-8 */
			z = s * s;
			return (f - s * (f - z * (B1 + z * (B2 + z * (B3 +
				z * (B4 + z * (B5 + z * (B6 + z * (B7 +
				z * (B8 + z * B9))))))))));
		}
		if (ix >= 0x7fff0000)
			return (x + x);	/* x is +inf or NaN */
		goto LARGE_N;
	}
	if (ix >= 0x00010000)
		goto LARGE_N;
	i = ix & 0x7fffffff;
	if ((i | px[i1] | px[2] | px[1]) == 0) {
		px[i0] |= 0x80000000;
		return (one / x);	/* log(0.0) = -inf */
	}
	if (ix < 0) {
		if ((unsigned) ix >= 0xffff0000)
			return (x - x);	/* x is -inf or NaN */
		return (zero / zero);	/* log(x<0) is NaN  */
	}
	/* subnormal x */
	x *= two113;
	n = -113;
	ix = px[i0];
LARGE_N:
	n += ((ix + 0x200) >> 16) - 0x3fff;
	ix = (ix & 0x0000ffff) | 0x3fff0000;	/* scale x to [1,2] */
	px[i0] = ix;
	i = ix + 0x200;
	pz[i0] = i & 0xfffffc00;
	pz[i1] = pz[1] = pz[2] = 0;
	s = (x - z) / (x + z);
	j = (i >> 10) & 0x3f;
	z = s * s;
	qn = (long double) n;
	t = qn * ln2lo + _TBL_logl_lo[j];
	h = qn * ln2hi + _TBL_logl_hi[j];
	f = t + s * (A1 + z * (A2 + z * (A3 + z * (A4 + z * (A5 +
		z * (A6 + z * A7))))));
	return (h + f);
}