1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
|
/*
* CDDL HEADER START
*
* The contents of this file are subject to the terms of the
* Common Development and Distribution License (the "License").
* You may not use this file except in compliance with the License.
*
* You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
* or http://www.opensolaris.org/os/licensing.
* See the License for the specific language governing permissions
* and limitations under the License.
*
* When distributing Covered Code, include this CDDL HEADER in each
* file and include the License file at usr/src/OPENSOLARIS.LICENSE.
* If applicable, add the following below this CDDL HEADER, with the
* fields enclosed by brackets "[]" replaced with your own identifying
* information: Portions Copyright [yyyy] [name of copyright owner]
*
* CDDL HEADER END
*/
/*
* Copyright 2011 Nexenta Systems, Inc. All rights reserved.
*/
/*
* Copyright 2006 Sun Microsystems, Inc. All rights reserved.
* Use is subject to license terms.
*/
/* INDENT OFF */
/*
* double __k_cexp(double x, int *n);
* Returns the exponential of x in the form of 2**n * y, y=__k_cexp(x,&n).
*
* Method
* 1. Argument reduction:
* Reduce x to an r so that |r| <= 0.5*ln2 ~ 0.34658.
* Given x, find r and integer k such that
*
* x = k*ln2 + r, |r| <= 0.5*ln2.
*
* Here r will be represented as r = hi-lo for better
* accuracy.
*
* 2. Approximation of exp(r) by a special rational function on
* the interval [0,0.34658]:
* Write
* R(r**2) = r*(exp(r)+1)/(exp(r)-1) = 2 + r*r/6 - r**4/360 + ...
* We use a special Remez algorithm on [0,0.34658] to generate
* a polynomial of degree 5 to approximate R. The maximum error
* of this polynomial approximation is bounded by 2**-59. In
* other words,
* R(z) ~ 2.0 + P1*z + P2*z**2 + P3*z**3 + P4*z**4 + P5*z**5
* (where z=r*r, and the values of P1 to P5 are listed below)
* and
* | 5 | -59
* | 2.0+P1*z+...+P5*z - R(z) | <= 2
* | |
* The computation of exp(r) thus becomes
* 2*r
* exp(r) = 1 + -------
* R - r
* r*R1(r)
* = 1 + r + ----------- (for better accuracy)
* 2 - R1(r)
* where
* 2 4 10
* R1(r) = r - (P1*r + P2*r + ... + P5*r ).
*
* 3. Return n = k and __k_cexp = exp(r).
*
* Special cases:
* exp(INF) is INF, exp(NaN) is NaN;
* exp(-INF) is 0, and
* for finite argument, only exp(0)=1 is exact.
*
* Range and Accuracy:
* When |x| is really big, say |x| > 50000, the accuracy
* is not important because the ultimate result will over or under
* flow. So we will simply replace n = 50000 and r = 0.0. For
* moderate size x, according to an error analysis, the error is
* always less than 1 ulp (unit in the last place).
*
* Constants:
* The hexadecimal values are the intended ones for the following
* constants. The decimal values may be used, provided that the
* compiler will convert from decimal to binary accurately enough
* to produce the hexadecimal values shown.
*/
/* INDENT ON */
#include "libm.h" /* __k_cexp */
#include "complex_wrapper.h" /* HI_WORD/LO_WORD */
/* INDENT OFF */
static const double
one = 1.0,
two128 = 3.40282366920938463463e+38,
halF[2] = {
0.5, -0.5,
},
ln2HI[2] = {
6.93147180369123816490e-01, /* 0x3fe62e42, 0xfee00000 */
-6.93147180369123816490e-01, /* 0xbfe62e42, 0xfee00000 */
},
ln2LO[2] = {
1.90821492927058770002e-10, /* 0x3dea39ef, 0x35793c76 */
-1.90821492927058770002e-10, /* 0xbdea39ef, 0x35793c76 */
},
invln2 = 1.44269504088896338700e+00, /* 0x3ff71547, 0x652b82fe */
P1 = 1.66666666666666019037e-01, /* 0x3FC55555, 0x5555553E */
P2 = -2.77777777770155933842e-03, /* 0xBF66C16C, 0x16BEBD93 */
P3 = 6.61375632143793436117e-05, /* 0x3F11566A, 0xAF25DE2C */
P4 = -1.65339022054652515390e-06, /* 0xBEBBBD41, 0xC5D26BF1 */
P5 = 4.13813679705723846039e-08; /* 0x3E663769, 0x72BEA4D0 */
/* INDENT ON */
double
__k_cexp(double x, int *n) {
double hi = 0.0L, lo = 0.0L, c, t;
int k, xsb;
unsigned hx, lx;
hx = HI_WORD(x); /* high word of x */
lx = LO_WORD(x); /* low word of x */
xsb = (hx >> 31) & 1; /* sign bit of x */
hx &= 0x7fffffff; /* high word of |x| */
/* filter out non-finite argument */
if (hx >= 0x40e86a00) { /* if |x| > 50000 */
if (hx >= 0x7ff00000) {
*n = 1;
if (((hx & 0xfffff) | lx) != 0)
return (x + x); /* NaN */
else
return ((xsb == 0) ? x : 0.0);
/* exp(+-inf)={inf,0} */
}
*n = (xsb == 0) ? 50000 : -50000;
return (one + ln2LO[1] * ln2LO[1]); /* generate inexact */
}
*n = 0;
/* argument reduction */
if (hx > 0x3fd62e42) { /* if |x| > 0.5 ln2 */
if (hx < 0x3FF0A2B2) { /* and |x| < 1.5 ln2 */
hi = x - ln2HI[xsb];
lo = ln2LO[xsb];
k = 1 - xsb - xsb;
} else {
k = (int) (invln2 * x + halF[xsb]);
t = k;
hi = x - t * ln2HI[0];
/* t*ln2HI is exact for t<2**20 */
lo = t * ln2LO[0];
}
x = hi - lo;
*n = k;
} else if (hx < 0x3e300000) { /* when |x|<2**-28 */
return (one + x);
} else
k = 0;
/* x is now in primary range */
t = x * x;
c = x - t * (P1 + t * (P2 + t * (P3 + t * (P4 + t * P5))));
if (k == 0)
return (one - ((x * c) / (c - 2.0) - x));
else {
t = one - ((lo - (x * c) / (2.0 - c)) - hi);
if (k > 128) {
t *= two128;
*n = k - 128;
} else if (k > 0) {
HI_WORD(t) += (k << 20);
*n = 0;
}
return (t);
}
}
|