1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
|
/*
* CDDL HEADER START
*
* The contents of this file are subject to the terms of the
* Common Development and Distribution License (the "License").
* You may not use this file except in compliance with the License.
*
* You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
* or http://www.opensolaris.org/os/licensing.
* See the License for the specific language governing permissions
* and limitations under the License.
*
* When distributing Covered Code, include this CDDL HEADER in each
* file and include the License file at usr/src/OPENSOLARIS.LICENSE.
* If applicable, add the following below this CDDL HEADER, with the
* fields enclosed by brackets "[]" replaced with your own identifying
* information: Portions Copyright [yyyy] [name of copyright owner]
*
* CDDL HEADER END
*/
/*
* Copyright 2011 Nexenta Systems, Inc. All rights reserved.
*/
/*
* Copyright 2006 Sun Microsystems, Inc. All rights reserved.
* Use is subject to license terms.
*/
#pragma weak __tgamma = tgamma
/* INDENT OFF */
/*
* True gamma function
* double tgamma(double x)
*
* Error:
* ------
* Less that one ulp for both positive and negative arguments.
*
* Algorithm:
* ---------
* A: For negative argument
* (1) gamma(-n or -inf) is NaN
* (2) Underflow Threshold
* (3) Reduction to gamma(1+x)
* B: For x between 1 and 2
* C: For x between 0 and 1
* D: For x between 2 and 8
* E: Overflow thresold {see over.c}
* F: For overflow_threshold >= x >= 8
*
* Implementation details
* -----------------------
* -pi
* (A) For negative argument, use gamma(-x) = ------------------------.
* (sin(pi*x)*gamma(1+x))
*
* (1) gamma(-n or -inf) is NaN with invalid signal by SUSv3 spec.
* (Ideally, gamma(-n) = 1/sinpi(n) = (-1)**(n+1) * inf.)
*
* (2) Underflow Threshold. For each precision, there is a value T
* such that when x>T and when x is not an integer, gamma(-x) will
* always underflow. A table of the underflow threshold value is given
* below. For proof, see file "under.c".
*
* Precision underflow threshold T =
* ----------------------------------------------------------------------
* single 41.000041962 = 41 + 11 ULP
* (machine format) 4224000B
* double 183.000000000000312639 = 183 + 11 ULP
* (machine format) 4066E000 0000000B
* quad 1774.0000000000000000000000000000017749370 = 1774 + 9 ULP
* (machine format) 4009BB80000000000000000000000009
* ----------------------------------------------------------------------
*
* (3) Reduction to gamma(1+x).
* Because of (1) and (2), we need only consider non-integral x
* such that 0<x<T. Let k = [x] and z = x-[x]. Define
* sin(x*pi) cos(x*pi)
* kpsin(x) = --------- and kpcos(x) = --------- . Then
* pi pi
* 1
* gamma(-x) = --------------------.
* -kpsin(x)*gamma(1+x)
* Since x = k+z,
* k+1
* -sin(x*pi) = -sin(k*pi+z*pi) = (-1) *sin(z*pi),
* k+1
* we have -kpsin(x) = (-1) * kpsin(z). We can further
* reduce z to t by
* (I) t = z when 0.00000 <= z < 0.31830...
* (II) t = 0.5-z when 0.31830... <= z < 0.681690...
* (III) t = 1-z when 0.681690... <= z < 1.00000
* and correspondingly
* (I) kpsin(z) = kpsin(t) ... 0<= z < 0.3184
* (II) kpsin(z) = kpcos(t) ... |t| < 0.182
* (III) kpsin(z) = kpsin(t) ... 0<= t < 0.3184
*
* Using a special Remez algorithm, we obtain the following polynomial
* approximation for kpsin(t) for 0<=t<0.3184:
*
* Computation note: in simulating higher precision arithmetic, kcpsin
* return head = t and tail = ks[0]*t^3 + (...) to maintain extra bits.
*
* Quad precision, remez error <= 2**(-129.74)
* 3 5 27
* kpsin(t) = t + ks[0] * t + ks[1] * t + ... + ks[12] * t
*
* ks[ 0] = -1.64493406684822643647241516664602518705158902870e+0000
* ks[ 1] = 8.11742425283353643637002772405874238094995726160e-0001
* ks[ 2] = -1.90751824122084213696472111835337366232282723933e-0001
* ks[ 3] = 2.61478478176548005046532613563241288115395517084e-0002
* ks[ 4] = -2.34608103545582363750893072647117829448016479971e-0003
* ks[ 5] = 1.48428793031071003684606647212534027556262040158e-0004
* ks[ 6] = -6.97587366165638046518462722252768122615952898698e-0006
* ks[ 7] = 2.53121740413702536928659271747187500934840057929e-0007
* ks[ 8] = -7.30471182221385990397683641695766121301933621956e-0009
* ks[ 9] = 1.71653847451163495739958249695549313987973589884e-0010
* ks[10] = -3.34813314714560776122245796929054813458341420565e-0012
* ks[11] = 5.50724992262622033449487808306969135431411753047e-0014
* ks[12] = -7.67678132753577998601234393215802221104236979928e-0016
*
* Double precision, Remez error <= 2**(-62.9)
* 3 5 15
* kpsin(t) = t + ks[0] * t + ks[1] * t + ... + ks[6] * t
*
* ks[0] = -1.644934066848226406065691 (0x3ffa51a6 625307d3)
* ks[1] = 8.11742425283341655883668741874008920850698590621e-0001
* ks[2] = -1.90751824120862873825597279118304943994042258291e-0001
* ks[3] = 2.61478477632554278317289628332654539353521911570e-0002
* ks[4] = -2.34607978510202710377617190278735525354347705866e-0003
* ks[5] = 1.48413292290051695897242899977121846763824221705e-0004
* ks[6] = -6.87730769637543488108688726777687262485357072242e-0006
*
* Single precision, Remez error <= 2**(-34.09)
* 3 5 9
* kpsin(t) = t + ks[0] * t + ks[1] * t + ... + ks[3] * t
*
* ks[0] = -1.64493404985645811354476665052005342839447790544e+0000
* ks[1] = 8.11740794458351064092797249069438269367389272270e-0001
* ks[2] = -1.90703144603551216933075809162889536878854055202e-0001
* ks[3] = 2.55742333994264563281155312271481108635575331201e-0002
*
* Computation note: in simulating higher precision arithmetic, kcpsin
* return head = t and tail = kc[0]*t^3 + (...) to maintain extra bits
* precision.
*
* And for kpcos(t) for |t|< 0.183:
*
* Quad precision, remez <= 2**(-122.48)
* 2 4 22
* kpcos(t) = 1/pi + pi/2 * t + kc[2] * t + ... + kc[11] * t
*
* kc[2] = 1.29192819501249250731151312779548918765320728489e+0000
* kc[3] = -4.25027339979557573976029596929319207009444090366e-0001
* kc[4] = 7.49080661650990096109672954618317623888421628613e-0002
* kc[5] = -8.21458866111282287985539464173976555436050215120e-0003
* kc[6] = 6.14202578809529228503205255165761204750211603402e-0004
* kc[7] = -3.33073432691149607007217330302595267179545908740e-0005
* kc[8] = 1.36970959047832085796809745461530865597993680204e-0006
* kc[9] = -4.41780774262583514450246512727201806217271097336e-0008
* kc[10]= 1.14741409212381858820016567664488123478660705759e-0009
* kc[11]= -2.44261236114707374558437500654381006300502749632e-0011
*
* Double precision, remez < 2**(61.91)
* 2 4 12
* kpcos(t) = 1/pi + pi/2 *t + kc[2] * t + ... + kc[6] * t
*
* kc[2] = 1.29192819501230224953283586722575766189551966008e+0000
* kc[3] = -4.25027339940149518500158850753393173519732149213e-0001
* kc[4] = 7.49080625187015312373925142219429422375556727752e-0002
* kc[5] = -8.21442040906099210866977352284054849051348692715e-0003
* kc[6] = 6.10411356829515414575566564733632532333904115968e-0004
*
* Single precision, remez < 2**(-30.13)
* 2 6
* kpcos(t) = kc[0] + kc[1] * t + ... + kc[3] * t
*
* kc[0] = 3.18309886183790671537767526745028724068919291480e-0001
* kc[1] = -1.57079581447762568199467875065854538626594937791e+0000
* kc[2] = 1.29183528092558692844073004029568674027807393862e+0000
* kc[3] = -4.20232949771307685981015914425195471602739075537e-0001
*
* Computation note: in simulating higher precision arithmetic, kcpcos
* return head = 1/pi chopped, and tail = pi/2 *t^2 + (tail part of 1/pi
* + ...) to maintain extra bits precision. In particular, pi/2 * t^2
* is calculated with great care.
*
* Thus, the computation of gamma(-x), x>0, is:
* Let k = int(x), z = x-k.
* For z in (I)
* k+1
* (-1)
* gamma(-x) = ------------------- ;
* kpsin(z)*gamma(1+x)
*
* otherwise, for z in (II),
* k+1
* (-1)
* gamma(-x) = ----------------------- ;
* kpcos(0.5-z)*gamma(1+x)
*
* otherwise, for z in (III),
* k+1
* (-1)
* gamma(-x) = --------------------- .
* kpsin(1-z)*gamma(1+x)
*
* Thus, the computation of gamma(-x) reduced to the computation of
* gamma(1+x) and kpsin(), kpcos().
*
* (B) For x between 1 and 2. We break [1,2] into three parts:
* GT1 = [1.0000, 1.2845]
* GT2 = [1.2844, 1.6374]
* GT3 = [1.6373, 2.0000]
*
* For x in GTi, i=1,2,3, let
* z1 = 1.134861805732790769689793935774652917006
* gz1 = gamma(z1) = 0.9382046279096824494097535615803269576988
* tz1 = gamma'(z1) = -0.3517214357852935791015625000000000000000
*
* z2 = 1.461632144968362341262659542325721328468e+0000
* gz2 = gamma(z2) = 0.8856031944108887002788159005825887332080
* tz2 = gamma'(z2) = 0.00
*
* z3 = 1.819773101100500601787868704921606996312e+0000
* gz3 = gamma(z3) = 0.9367814114636523216188468970808378497426
* tz3 = gamma'(z3) = 0.2805306315422058105468750000000000000000
*
* and
* y = x-zi ... for extra precision, write y = y.h + y.l
* Then
* gamma(x) = gzi + tzi*(y.h+y.l) + y*y*Ri(y),
* = gzi.h + (tzi*y.h + ((tzi*y.l+gzi.l) + y*y*Ri(y)))
* = gy.h + gy.l
* where
* (I) For double precision
*
* Ri(y) = Pi(y)/Qi(y), i=1,2,3;
*
* P1(y) = p1[0] + p1[1]*y + ... + p1[4]*y^4
* Q1(y) = q1[0] + q1[1]*y + ... + q1[5]*y^5
*
* P2(y) = p2[0] + p2[1]*y + ... + p2[3]*y^3
* Q2(y) = q2[0] + q2[1]*y + ... + q2[6]*y^6
*
* P3(y) = p3[0] + p3[1]*y + ... + p3[4]*y^4
* Q3(y) = q3[0] + q3[1]*y + ... + q3[5]*y^5
*
* Remez precision of Ri(y):
* |gamma(x)-(gzi+tzi*y) - y*y*Ri(y)| <= 2**-62.3 ... for i = 1
* <= 2**-59.4 ... for i = 2
* <= 2**-62.1 ... for i = 3
*
* (II) For quad precision
*
* Ri(y) = Pi(y)/Qi(y), i=1,2,3;
*
* P1(y) = p1[0] + p1[1]*y + ... + p1[9]*y^9
* Q1(y) = q1[0] + q1[1]*y + ... + q1[8]*y^8
*
* P2(y) = p2[0] + p2[1]*y + ... + p2[9]*y^9
* Q2(y) = q2[0] + q2[1]*y + ... + q2[9]*y^9
*
* P3(y) = p3[0] + p3[1]*y + ... + p3[9]*y^9
* Q3(y) = q3[0] + q3[1]*y + ... + q3[9]*y^9
*
* Remez precision of Ri(y):
* |gamma(x)-(gzi+tzi*y) - y*y*Ri(y)| <= 2**-118.2 ... for i = 1
* <= 2**-126.8 ... for i = 2
* <= 2**-119.5 ... for i = 3
*
* (III) For single precision
*
* Ri(y) = Pi(y), i=1,2,3;
*
* P1(y) = p1[0] + p1[1]*y + ... + p1[5]*y^5
*
* P2(y) = p2[0] + p2[1]*y + ... + p2[5]*y^5
*
* P3(y) = p3[0] + p3[1]*y + ... + p3[4]*y^4
*
* Remez precision of Ri(y):
* |gamma(x)-(gzi+tzi*y) - y*y*Ri(y)| <= 2**-30.8 ... for i = 1
* <= 2**-31.6 ... for i = 2
* <= 2**-29.5 ... for i = 3
*
* Notes. (1) GTi and zi are choosen to balance the interval width and
* minimize the distant between gamma(x) and the tangent line at
* zi. In particular, we have
* |gamma(x)-(gzi+tzi*(x-zi))| <= 0.01436... for x in [1,z2]
* <= 0.01265... for x in [z2,2]
*
* (2) zi are slightly adjusted so that tzi=gamma'(zi) is very
* close to a single precision value.
*
* Coefficents: Single precision
* i= 1:
* P1[0] = 7.09087253435088360271451613398019280077561279443e-0001
* P1[1] = -5.17229560788652108545141978238701790105241761089e-0001
* P1[2] = 5.23403394528150789405825222323770647162337764327e-0001
* P1[3] = -4.54586308717075010784041566069480411732634814899e-0001
* P1[4] = 4.20596490915239085459964590559256913498190955233e-0001
* P1[5] = -3.57307589712377520978332185838241458642142185789e-0001
*
* i = 2:
* p2[0] = 4.28486983980295198166056119223984284434264344578e-0001
* p2[1] = -1.30704539487709138528680121627899735386650103914e-0001
* p2[2] = 1.60856285038051955072861219352655851542955430871e-0001
* p2[3] = -9.22285161346010583774458802067371182158937943507e-0002
* p2[4] = 7.19240511767225260740890292605070595560626179357e-0002
* p2[5] = -4.88158265593355093703112238534484636193260459574e-0002
*
* i = 3
* p3[0] = 3.82409531118807759081121479786092134814808872880e-0001
* p3[1] = 2.65309888180188647956400403013495759365167853426e-0002
* p3[2] = 8.06815109775079171923561169415370309376296739835e-0002
* p3[3] = -1.54821591666137613928840890835174351674007764799e-0002
* p3[4] = 1.76308239242717268530498313416899188157165183405e-0002
*
* Coefficents: Double precision
* i = 1:
* p1[0] = 0.70908683619977797008004927192814648151397705078125000
* p1[1] = 1.71987061393048558089579513384356441668351720061e-0001
* p1[2] = -3.19273345791990970293320316122813960527705450671e-0002
* p1[3] = 8.36172645419110036267169600390549973563534476989e-0003
* p1[4] = 1.13745336648572838333152213474277971244629758101e-0003
* q1[0] = 1.0
* q1[1] = 9.71980217826032937526460731778472389791321968082e-0001
* q1[2] = -7.43576743326756176594084137256042653497087666030e-0002
* q1[3] = -1.19345944932265559769719470515102012246995255372e-0001
* q1[4] = 1.59913445751425002620935120470781382215050284762e-0002
* q1[5] = 1.12601136853374984566572691306402321911547550783e-0003
* i = 2:
* p2[0] = 0.42848681585558601181418225678498856723308563232421875
* p2[1] = 6.53596762668970816023718845105667418483122103629e-0002
* p2[2] = -6.97280829631212931321050770925128264272768936731e-0003
* p2[3] = 6.46342359021981718947208605674813260166116632899e-0003
* q2[0] = 1.0
* q2[1] = 4.57572620560506047062553957454062012327519313936e-0001
* q2[2] = -2.52182594886075452859655003407796103083422572036e-0001
* q2[3] = -1.82970945407778594681348166040103197178711552827e-0002
* q2[4] = 2.43574726993169566475227642128830141304953840502e-0002
* q2[5] = -5.20390406466942525358645957564897411258667085501e-0003
* q2[6] = 4.79520251383279837635552431988023256031951133885e-0004
* i = 3:
* p3[0] = 0.382409479734567459008331979930517263710498809814453125
* p3[1] = 1.42876048697668161599069814043449301572928034140e-0001
* p3[2] = 3.42157571052250536817923866013561760785748899071e-0003
* p3[3] = -5.01542621710067521405087887856991700987709272937e-0004
* p3[4] = 8.89285814866740910123834688163838287618332122670e-0004
* q3[0] = 1.0
* q3[1] = 3.04253086629444201002215640948957897906299633168e-0001
* q3[2] = -2.23162407379999477282555672834881213873185520006e-0001
* q3[3] = -1.05060867741952065921809811933670131427552903636e-0002
* q3[4] = 1.70511763916186982473301861980856352005926669320e-0002
* q3[5] = -2.12950201683609187927899416700094630764182477464e-0003
*
* Note that all pi0 are exact in double, which is obtained by a
* special Remez Algorithm.
*
* Coefficents: Quad precision
* i = 1:
* p1[0] = 0.709086836199777919037185741507610124611513720557
* p1[1] = 4.45754781206489035827915969367354835667391606951e-0001
* p1[2] = 3.21049298735832382311662273882632210062918153852e-0002
* p1[3] = -5.71296796342106617651765245858289197369688864350e-0003
* p1[4] = 6.04666892891998977081619174969855831606965352773e-0003
* p1[5] = 8.99106186996888711939627812174765258822658645168e-0004
* p1[6] = -6.96496846144407741431207008527018441810175568949e-0005
* p1[7] = 1.52597046118984020814225409300131445070213882429e-0005
* p1[8] = 5.68521076168495673844711465407432189190681541547e-0007
* p1[9] = 3.30749673519634895220582062520286565610418952979e-0008
* q1[0] = 1.0+0000
* q1[1] = 1.35806511721671070408570853537257079579490650668e+0000
* q1[2] = 2.97567810153429553405327140096063086994072952961e-0001
* q1[3] = -1.52956835982588571502954372821681851681118097870e-0001
* q1[4] = -2.88248519561420109768781615289082053597954521218e-0002
* q1[5] = 1.03475311719937405219789948456313936302378395955e-0002
* q1[6] = 4.12310203243891222368965360124391297374822742313e-0004
* q1[7] = -3.12653708152290867248931925120380729518332507388e-0004
* q1[8] = 2.36672170850409745237358105667757760527014332458e-0005
*
* i = 2:
* p2[0] = 0.428486815855585429730209907810650616737756697477
* p2[1] = 2.63622124067885222919192651151581541943362617352e-0001
* p2[2] = 3.85520683670028865731877276741390421744971446855e-0002
* p2[3] = 3.05065978278128549958897133190295325258023525862e-0003
* p2[4] = 2.48232934951723128892080415054084339152450445081e-0003
* p2[5] = 3.67092777065632360693313762221411547741550105407e-0004
* p2[6] = 3.81228045616085789674530902563145250532194518946e-0006
* p2[7] = 4.61677225867087554059531455133839175822537617677e-0006
* p2[8] = 2.18209052385703200438239200991201916609364872993e-0007
* p2[9] = 1.00490538985245846460006244065624754421022542454e-0008
* q2[0] = 1.0
* q2[1] = 9.20276350207639290567783725273128544224570775056e-0001
* q2[2] = -4.79533683654165107448020515733883781138947771495e-0003
* q2[3] = -1.24538337585899300494444600248687901947684291683e-0001
* q2[4] = 4.49866050763472358547524708431719114204535491412e-0003
* q2[5] = 7.20715455697920560621638325356292640604078591907e-0003
* q2[6] = -8.68513169029126780280798337091982780598228096116e-0004
* q2[7] = -1.25104431629401181525027098222745544809974229874e-0004
* q2[8] = 3.10558344839000038489191304550998047521253437464e-0005
* q2[9] = -1.76829227852852176018537139573609433652506765712e-0006
*
* i = 3
* p3[0] = 0.3824094797345675048502747661075355640070439388902
* p3[1] = 3.42198093076618495415854906335908427159833377774e-0001
* p3[2] = 9.63828189500585568303961406863153237440702754858e-0002
* p3[3] = 8.76069421042696384852462044188520252156846768667e-0003
* p3[4] = 1.86477890389161491224872014149309015261897537488e-0003
* p3[5] = 8.16871354540309895879974742853701311541286944191e-0004
* p3[6] = 6.83783483674600322518695090864659381650125625216e-0005
* p3[7] = -1.10168269719261574708565935172719209272190828456e-0006
* p3[8] = 9.66243228508380420159234853278906717065629721016e-0007
* p3[9] = 2.31858885579177250541163820671121664974334728142e-0008
* q3[0] = 1.0
* q3[1] = 8.25479821168813634632437430090376252512793067339e-0001
* q3[2] = -1.62251363073937769739639623669295110346015576320e-0002
* q3[3] = -1.10621286905916732758745130629426559691187579852e-0001
* q3[4] = 3.48309693970985612644446415789230015515365291459e-0003
* q3[5] = 6.73553737487488333032431261131289672347043401328e-0003
* q3[6] = -7.63222008393372630162743587811004613050245128051e-0004
* q3[7] = -1.35792670669190631476784768961953711773073251336e-0004
* q3[8] = 3.19610150954223587006220730065608156460205690618e-0005
* q3[9] = -1.82096553862822346610109522015129585693354348322e-0006
*
* (C) For x between 0 and 1.
* Let P stand for the number of significant bits in the working precision.
* -P 1
* (1)For 0 <= x <= 2 , gamma(x) is computed by --- rounded to nearest.
* x
* The error is bound by 0.739 ulp(gamma(x)) in IEEE double precision.
* Proof.
* 1 2
* Since -------- ~ x + 0.577...*x - ..., we have, for small x,
* gamma(x)
* 1 1
* ----------- < gamma(x) < --- and
* x(1+0.578x) x
* 1 1 1
* 0 < --- - gamma(x) <= --- - ----------- < 0.578
* x x x(1+0.578x)
* 1 1 -P
* The error is thus bounded by --- ulp(---) + 0.578. Since x <= 2 ,
* 2 x
* 1 P 1 P 1
* --- >= 2 , ulp(---) >= ulp(2 ) >= 2. Thus 0.578=0.289*2<=0.289ulp(-)
* x x x
* Thus
* 1 1
* | gamma(x) - [---] rounded | <= (0.5+0.289)*ulp(---).
* x x
* -P 1
* Note that for x<= 2 , it is easy to see that ulp(---)=ulp(gamma(x))
* x
* n 1
* except only when x = 2 , (n<= -53). In such cases, --- is exact
* x
* and therefore the error is bounded by
* 1
* 0.298*ulp(---) = 0.298*2*ulp(gamma(x)) = 0.578ulp(gamma(x)).
* x
* Thus we conclude that the error in gamma is less than 0.739 ulp.
*
* (2)Otherwise, for x in GTi-1 (see B), let y = x-(zi-1). From (B) we obtain
* gamma(1+x)
* gamma(1+x) = gy.h + gy.l, then compute gamma(x) by -----------.
* x
* gy.h
* Implementaion note. Write x = x.h+x.l, and Let th = ----- chopped to
* x
* 20 bits, then
* gy.h+gy.l
* gamma(x) = th + (---------- - th )
* x
* 1
* = th + ---*(gy.h-th*x.h+gy.l-th*x.l)
* x
*
* (D) For x between 2 and 8. Let n = 1+x chopped to an integer. Then
*
* gamma(x)=(x-1)*(x-2)*...*(x-n)*gamma(x-n)
*
* Since x-n is between 1 and 2, we can apply (B) to compute gamma(x).
*
* Implementation detail. The computation of (x-1)(x-2)...(x-n) in simulated
* higher precision arithmetic can be somewhat optimized. For example, in
* computing (x-1)*(x-2)*(x-3)*(x-4), if we compute (x-1)*(x-4) = z.h+z.l,
* then (x-2)(x-3) = z.h+2+z.l readily. In below, we list the expression
* of the formula to compute gamma(x).
*
* Assume x-n is in GTi (i=1,2, or 3, see B for detail). Let y = x - n - zi.
* By (B) we have gamma(x-n) = gy.h+gy.l. If x = x.h+x.l, then we have
* n=1 (x in [2,3]):
* gamma(x) = (x-1)*gamma(x-1) = (x-1)*(gy.h+gy.l)
* = [(x.h-1)+x.l]*(gy.h+gy.l)
* n=2 (x in [3,4]):
* gamma(x) = (x-1)(x-2)*gamma(x-2) = (x-1)*(x-2)*(gy.h+gy.l)
* = ((x.h-2)+x.l)*((x.h-1)+x.l)*(gy.h+gy.l)
* = [x.h*(x.h-3)+2+x.l*(x+(x.h-3))]*(gy.h+gy.l)
* n=3 (x in [4,5])
* gamma(x) = (x-1)(x-2)(x-3)*(gy.h+gy.l)
* = (x.h*(x.h-3)+2+x.l*(x+(x.h-3)))*[((x.h-3)+x.l)(gy.h+gy.l)]
* n=4 (x in [5,6])
* gamma(x) = [(x-1)(x-4)]*[(x-2)(x-3)]*(gy.h+gy.l)
* = [(x.h*(x.h-5)+4+x.l(x+(x.h-5)))]*[(x-2)*(x-3)]*(gy.h+gy.l)
* = (y.h+y.l)*(y.h+1+y.l)*(gy.h+gy.l)
* n=5 (x in [6,7])
* gamma(x) = [(x-1)(x-4)]*[(x-2)(x-3)]*[(x-5)*(gy.h+gy.l)]
* n=6 (x in [7,8])
* gamma(x) = [(x-1)(x-6)]*[(x-2)(x-5)]*[(x-3)(x-4)]*(gy.h+gy.l)]
* = [(y.h+y.l)(y.h+4+y.l)][(y.h+6+y.l)(gy.h+gy.l)]
*
* (E)Overflow Thresold. For x > Overflow thresold of gamma,
* return huge*huge (overflow).
*
* By checking whether lgamma(x) >= 2**{128,1024,16384}, one can
* determine the overflow threshold for x in single, double, and
* quad precision. See over.c for details.
*
* The overflow threshold of gamma(x) are
*
* single: x = 3.5040096283e+01
* = 0x420C290F (IEEE single)
* double: x = 1.71624376956302711505e+02
* = 0x406573FAE561F647 (IEEE double)
* quad: x = 1.7555483429044629170038892160702032034177e+03
* = 0x4009B6E3180CD66A5C4206F128BA77F4 (quad)
*
* (F)For overflow_threshold >= x >= 8, we use asymptotic approximation.
* (1) Stirling's formula
*
* log(G(x)) ~= (x-.5)*(log(x)-1) + .5(log(2*pi)-1) + (1/x)*P(1/(x*x))
* = L1 + L2 + L3,
* where
* L1(x) = (x-.5)*(log(x)-1),
* L2 = .5(log(2pi)-1) = 0.41893853....,
* L3(x) = (1/x)P(1/(x*x)),
*
* The range of L1,L2, and L3 are as follows:
*
* ------------------------------------------------------------------
* Range(L1) = (single) [8.09..,88.30..] =[2** 3.01..,2** 6.46..]
* (double) [8.09..,709.3..] =[2** 3.01..,2** 9.47..]
* (quad) [8.09..,11356.10..]=[2** 3.01..,2** 13.47..]
* Range(L2) = 0.41893853.....
* Range(L3) = [0.0104...., 0.00048....] =[2**-6.58..,2**-11.02..]
* ------------------------------------------------------------------
*
* Gamma(x) is then computed by exp(L1+L2+L3).
*
* (2) Error analysis of (F):
* --------------------------
* The error in Gamma(x) depends on the error inherited in the computation
* of L= L1+L2+L3. Let L' be the computed value of L. The absolute error
* in L' is t = L-L'. Since exp(L') = exp(L-t) = exp(L)*exp(t) ~
* (1+t)*exp(L), the relative error in exp(L') is approximately t.
*
* To guarantee the relatively accuracy in exp(L'), we would like
* |t| < 2**(-P-5) where P denotes for the number of significant bits
* of the working precision. Consequently, each of the L1,L2, and L3
* must be computed with absolute error bounded by 2**(-P-5) in absolute
* value.
*
* Since L2 is a constant, it can be pre-computed to the desired accuracy.
* Also |L3| < 2**-6; therefore, it suffices to compute L3 with the
* working precision. That is,
* L3(x) approxmiate log(G(x))-(x-.5)(log(x)-1)-.5(log(2pi)-1)
* to a precision bounded by 2**(-P-5).
*
* 2**(-6)
* _________V___________________
* L1(x): |_________|___________________|
* __ ________________________
* L2: |__|________________________|
* __________________________
* + L3(x): |__________________________|
* -------------------------------------------
* [leading] + [Trailing]
*
* For L1(x)=(x-0.5)*(log(x)-1), we need ilogb(L1(x))+5 extra bits for
* both multiplicants to guarantee L1(x)'s absolute error is bounded by
* 2**(-P-5) in absolute value. Here ilogb(y) is defined to be the unbias
* binary exponent of y in IEEE format. We can get x-0.5 to the desire
* accuracy easily. It remains to compute log(x)-1 with ilogb(L1(x))+5
* extra bits accracy. Note that the range of L1 is 88.30.., 709.3.., and
* 11356.10... for single, double, and quadruple precision, we have
*
* single double quadruple
* ------------------------------------
* ilogb(L1(x))+5 <= 11 14 18
* ------------------------------------
*
* (3) Table Driven Method for log(x)-1:
* --------------------------------------
* Let x = 2**n * y, where 1 <= y < 2. Let Z={z(i),i=1,...,m}
* be a set of predetermined evenly distributed floating point numbers
* in [1, 2]. Let z(j) be the closest one to y, then
* log(x)-1 = n*log(2)-1 + log(y)
* = n*log(2)-1 + log(z(j)*y/z(j))
* = n*log(2)-1 + log(z(j)) + log(y/z(j))
* = T1(n) + T2(j) + T3,
*
* where T1(n) = n*log(2)-1 and T2(j) = log(z(j)). Both T1 and T2 can be
* pre-calculated and be looked-up in a table. Note that 8 <= x < 1756
* implies 3<=n<=10 implies 1.079.. < T1(n) < 6.931.
*
*
* y-z(i) y 1+s
* For T3, let s = --------; then ----- = ----- and
* y+z(i) z(i) 1-s
* 1+s 2 3 2 5
* T3 = log(-----) = 2s + --- s + --- s + ....
* 1-s 3 5
*
* Suppose the first term 2s is compute in extra precision. The
* dominating error in T3 would then be the rounding error of the
* second term 2/3*s**3. To force the rounding bounded by
* the required accuracy, we have
* single: |2/3*s**3| < 2**-11 == > |s|<0.09014...
* double: |2/3*s**3| < 2**-14 == > |s|<0.04507...
* quad : |2/3*s**3| < 2**-18 == > |s|<0.01788... = 2**(-5.80..)
*
* Base on this analysis, we choose Z = {z(i)|z(i)=1+i/64+1/128, 0<=i<=63}.
* For any y in [1,2), let j = [64*y] chopped to integer, then z(j) is
* the closest to y, and it is not difficult to see that |s| < 2**(-8).
* Please note that the polynomial approximation of T3 must be accurate
* -24-11 -35 -53-14 -67 -113-18 -131
* to 2 =2 , 2 = 2 , and 2 =2
* for single, double, and quadruple precision respectively.
*
* Inplementation notes.
* (1) Table look-up entries for T1(n) and T2(j), as well as the calculation
* of the leading term 2s in T3, are broken up into leading and trailing
* part such that (leading part)* 2**24 will always be an integer. That
* will guarantee the addition of the leading parts will be exact.
*
* 2**(-24)
* _________V___________________
* T1(n): |_________|___________________|
* _______ ______________________
* T2(j): |_______|______________________|
* ____ _______________________
* 2s: |____|_______________________|
* __________________________
* + T3(s)-2s: |__________________________|
* -------------------------------------------
* [leading] + [Trailing]
*
* (2) How to compute 2s accurately.
* (A) Compute v = 2s to the working precision. If |v| < 2**(-18),
* stop.
* (B) chopped v to 2**(-24): v = ((int)(v*2**24))/2**24
* (C) 2s = v + (2s - v), where
* 1
* 2s - v = --- * (2(y-z) - v*(y+z) )
* y+z
* 1
* = --- * ( [2(y-z) - v*(y+z)_h ] - v*(y+z)_l )
* y+z
* where (y+z)_h = (y+z) rounded to 24 bits by (double)(float),
* and (y+z)_l = ((z+z)-(y+z)_h)+(y-z). Note the the quantity
* in [] is exact.
* 2 4
* (3) Remez approximation for (T3(s)-2s)/s = T3[0]*s + T3[1]*s + ...:
* Single precision: 1 term (compute in double precision arithmetic)
* T3(s) = 2s + S1*s^3, S1 = 0.6666717231848518054693623697539230
* Remez error: |T3(s)/s - (2s+S1*s^3)| < 2**(-35.87)
* Double precision: 3 terms, Remez error is bounded by 2**(-72.40),
* see "tgamma_log"
* Quad precision: 7 terms, Remez error is bounded by 2**(-136.54),
* see "tgammal_log"
*
* The computation of 0.5*(ln(2pi)-1):
* 0.5*(ln(2pi)-1) = 0.4189385332046727417803297364056176398614...
* split 0.5*(ln(2pi)-1) to hln2pi_h + hln2pi_l, where hln2pi_h is the
* leading 21 bits of the constant.
* hln2pi_h= 0.4189383983612060546875
* hln2pi_l= 1.348434666870928297364056176398612173648e-07
*
* The computation of 1/x*P(1/x^2) = log(G(x))-(x-.5)(ln(x)-1)-(.5ln(2pi)-1):
* Let s = 1/x <= 1/8 < 0.125. We have
* quad precision
* |GP(s) - s*P(s^2)| <= 2**(-120.6), where
* 3 5 39
* GP(s) = GP0*s+GP1*s +GP2*s +... +GP19*s ,
* GP0 = 0.083333333333333333333333333333333172839171301
* hex 0x3ffe5555 55555555 55555555 55555548
* GP1 = -2.77777777777777777777777777492501211999399424104e-0003
* GP2 = 7.93650793650793650793635650541638236350020883243e-0004
* GP3 = -5.95238095238095238057299772679324503339241961704e-0004
* GP4 = 8.41750841750841696138422987977683524926142600321e-0004
* GP5 = -1.91752691752686682825032547823699662178842123308e-0003
* GP6 = 6.41025641022403480921891559356473451161279359322e-0003
* GP7 = -2.95506535798414019189819587455577003732808185071e-0002
* GP8 = 1.79644367229970031486079180060923073476568732136e-0001
* GP9 = -1.39243086487274662174562872567057200255649290646e+0000
* GP10 = 1.34025874044417962188677816477842265259608269775e+0001
* GP11 = -1.56803713480127469414495545399982508700748274318e+0002
* GP12 = 2.18739841656201561694927630335099313968924493891e+0003
* GP13 = -3.55249848644100338419187038090925410976237921269e+0004
* GP14 = 6.43464880437835286216768959439484376449179576452e+0005
* GP15 = -1.20459154385577014992600342782821389605893904624e+0007
* GP16 = 2.09263249637351298563934942349749718491071093210e+0008
* GP17 = -2.96247483183169219343745316433899599834685703457e+0009
* GP18 = 2.88984933605896033154727626086506756972327292981e+0010
* GP19 = -1.40960434146030007732838382416230610302678063984e+0011
*
* double precision
* |GP(s) - s*P(s^2)| <= 2**(-63.5), where
* 3 5 7 9 11 13 15
* GP(s) = GP0*s+GP1*s +GP2*s +GP3*s +GP4*s +GP5*s +GP6*s +GP7*s ,
*
* GP0= 0.0833333333333333287074040640618477 (3FB55555 55555555)
* GP1= -2.77777777776649355200565611114627670089130772843e-0003
* GP2= 7.93650787486083724805476194170211775784158551509e-0004
* GP3= -5.95236628558314928757811419580281294593903582971e-0004
* GP4= 8.41566473999853451983137162780427812781178932540e-0004
* GP5= -1.90424776670441373564512942038926168175921303212e-0003
* GP6= 5.84933161530949666312333949534482303007354299178e-0003
* GP7= -1.59453228931082030262124832506144392496561694550e-0002
* single precision
* |GP(s) - s*P(s^2)| <= 2**(-37.78), where
* 3 5
* GP(s) = GP0*s+GP1*s +GP2*s
* GP0 = 8.33333330959694065245736888749042811909994573178e-0002
* GP1 = -2.77765545601667179767706600890361535225507762168e-0003
* GP2 = 7.77830853479775281781085278324621033523037489883e-0004
*
*
* Implementation note:
* z = (1/x), z2 = z*z, z4 = z2*z2;
* p = z*(GP0+z2*(GP1+....+z2*GP7))
* = z*(GP0+(z4*(GP2+z4*(GP4+z4*GP6))+z2*(GP1+z4*(GP3+z4*(GP5+z4*GP7)))))
*
* Adding everything up:
* t = rr.h*ww.h+hln2pi_h ... exact
* w = (hln2pi_l + ((x-0.5)*ww.l+rr.l*ww.h)) + p
*
* Computing exp(t+w):
* s = t+w; write s = (n+j/32)*ln2+r, |r|<=(1/64)*ln2, then
* exp(s) = 2**n * (2**(j/32) + 2**(j/32)*expm1(r)), where
* expm1(r) = r + Et1*r^2 + Et2*r^3 + ... + Et5*r^6, and
* 2**(j/32) is obtained by table look-up S[j]+S_trail[j].
* Remez error bound:
* |exp(r) - (1+r+Et1*r^2+...+Et5*r^6)| <= 2^(-63).
*/
#include "libm.h"
#define __HI(x) ((int *) &x)[HIWORD]
#define __LO(x) ((unsigned *) &x)[LOWORD]
struct Double {
double h;
double l;
};
/* Hex value of GP0 shoule be 3FB55555 55555555 */
static const double c[] = {
+1.0,
+2.0,
+0.5,
+1.0e-300,
+6.66666666666666740682e-01, /* A1=T3[0] */
+3.99999999955626478023093908674902212920e-01, /* A2=T3[1] */
+2.85720221533145659809237398709372330980e-01, /* A3=T3[2] */
+0.0833333333333333287074040640618477, /* GP[0] */
-2.77777777776649355200565611114627670089130772843e-03,
+7.93650787486083724805476194170211775784158551509e-04,
-5.95236628558314928757811419580281294593903582971e-04,
+8.41566473999853451983137162780427812781178932540e-04,
-1.90424776670441373564512942038926168175921303212e-03,
+5.84933161530949666312333949534482303007354299178e-03,
-1.59453228931082030262124832506144392496561694550e-02,
+4.18937683105468750000e-01, /* hln2pi_h */
+8.50099203991780279640e-07, /* hln2pi_l */
+4.18938533204672741744150788368695779923320328369e-01, /* hln2pi */
+2.16608493865351192653e-02, /* ln2_32hi */
+5.96317165397058656257e-12, /* ln2_32lo */
+4.61662413084468283841e+01, /* invln2_32 */
+5.0000000000000000000e-1, /* Et1 */
+1.66666666665223585560605991943703896196054020060e-01, /* Et2 */
+4.16666666665895103520154073534275286743788421687e-02, /* Et3 */
+8.33336844093536520775865096538773197505523826029e-03, /* Et4 */
+1.38889201930843436040204096950052984793587640227e-03, /* Et5 */
};
#define one c[0]
#define two c[1]
#define half c[2]
#define tiny c[3]
#define A1 c[4]
#define A2 c[5]
#define A3 c[6]
#define GP0 c[7]
#define GP1 c[8]
#define GP2 c[9]
#define GP3 c[10]
#define GP4 c[11]
#define GP5 c[12]
#define GP6 c[13]
#define GP7 c[14]
#define hln2pi_h c[15]
#define hln2pi_l c[16]
#define hln2pi c[17]
#define ln2_32hi c[18]
#define ln2_32lo c[19]
#define invln2_32 c[20]
#define Et1 c[21]
#define Et2 c[22]
#define Et3 c[23]
#define Et4 c[24]
#define Et5 c[25]
/*
* double precision coefficients for computing log(x)-1 in tgamma.
* See "algorithm" for details
*
* log(x) - 1 = T1(n) + T2(j) + T3(s), where x = 2**n * y, 1<=y<2,
* j=[64*y], z[j]=1+j/64+1/128, s = (y-z[j])/(y+z[j]), and
* T1(n) = T1[2n,2n+1] = n*log(2)-1,
* T2(j) = T2[2j,2j+1] = log(z[j]),
* T3(s) = 2s + T3[0]s^3 + T3[1]s^5 + T3[2]s^7
* = 2s + A1*s^3 + A2*s^5 + A3*s^7 (see const A1,A2,A3)
* Note
* (1) the leading entries are truncated to 24 binary point.
* See Remezpak/sun/tgamma_log_64.c
* (2) Remez error for T3(s) is bounded by 2**(-72.4)
* See mpremez/work/Log/tgamma_log_4_outr2
*/
static const double T1[] = {
-1.00000000000000000000e+00, /* 0xBFF00000 0x00000000 */
+0.00000000000000000000e+00, /* 0x00000000 0x00000000 */
-3.06852817535400390625e-01, /* 0xBFD3A37A 0x00000000 */
-1.90465429995776763166e-09, /* 0xBE205C61 0x0CA86C38 */
+3.86294305324554443359e-01, /* 0x3FD8B90B 0xC0000000 */
+5.57953361754750897367e-08, /* 0x3E6DF473 0xDE6AF279 */
+1.07944148778915405273e+00, /* 0x3FF14564 0x70000000 */
+5.38906818755173187963e-08, /* 0x3E6CEEAD 0xCDA06BB5 */
+1.77258867025375366211e+00, /* 0x3FFC5C85 0xF0000000 */
+5.19860275755595544734e-08, /* 0x3E6BE8E7 0xBCD5E4F2 */
+2.46573585271835327148e+00, /* 0x4003B9D3 0xB8000000 */
+5.00813732756017835330e-08, /* 0x3E6AE321 0xAC0B5E2E */
+3.15888303518295288086e+00, /* 0x40094564 0x78000000 */
+4.81767189756440192100e-08, /* 0x3E69DD5B 0x9B40D76B */
+3.85203021764755249023e+00, /* 0x400ED0F5 0x38000000 */
+4.62720646756862482697e-08, /* 0x3E68D795 0x8A7650A7 */
+4.54517740011215209961e+00, /* 0x40122E42 0xFC000000 */
+4.43674103757284839467e-08, /* 0x3E67D1CF 0x79ABC9E4 */
+5.23832458257675170898e+00, /* 0x4014F40B 0x5C000000 */
+4.24627560757707130063e-08, /* 0x3E66CC09 0x68E14320 */
+5.93147176504135131836e+00, /* 0x4017B9D3 0xBC000000 */
+4.05581017758129486834e-08, /* 0x3E65C643 0x5816BC5D */
};
static const double T2[] = {
+7.78210163116455078125e-03, /* 0x3F7FE020 0x00000000 */
+3.88108903981662140884e-08, /* 0x3E64D620 0xCF11F86F */
+2.31670141220092773438e-02, /* 0x3F97B918 0x00000000 */
+4.51595251008850513740e-08, /* 0x3E683EAD 0x88D54940 */
+3.83188128471374511719e-02, /* 0x3FA39E86 0x00000000 */
+5.14549991480218823411e-08, /* 0x3E6B9FEB 0xD5FA9016 */
+5.32444715499877929688e-02, /* 0x3FAB42DC 0x00000000 */
+4.29688244898971182165e-08, /* 0x3E671197 0x1BEC28D1 */
+6.79506063461303710938e-02, /* 0x3FB16536 0x00000000 */
+5.55623773783008185114e-08, /* 0x3E6DD46F 0x5C1D0C4C */
+8.24436545372009277344e-02, /* 0x3FB51B07 0x00000000 */
+1.46738736635337847313e-08, /* 0x3E4F830C 0x1FB493C7 */
+9.67295765876770019531e-02, /* 0x3FB8C345 0x00000000 */
+4.98708741103424492282e-08, /* 0x3E6AC633 0x641EB597 */
+1.10814332962036132812e-01, /* 0x3FBC5E54 0x00000000 */
+3.33782539813823062226e-08, /* 0x3E61EB78 0xE862BAC3 */
+1.24703466892242431641e-01, /* 0x3FBFEC91 0x00000000 */
+1.16087148042227818450e-08, /* 0x3E48EDF5 0x5D551729 */
+1.38402283191680908203e-01, /* 0x3FC1B72A 0x80000000 */
+3.96674382274822001957e-08, /* 0x3E654BD9 0xE80A4181 */
+1.51916027069091796875e-01, /* 0x3FC371FC 0x00000000 */
+1.49567501781968021494e-08, /* 0x3E500F47 0xBA1DE6CB */
+1.65249526500701904297e-01, /* 0x3FC526E5 0x80000000 */
+4.63946052585787334062e-08, /* 0x3E68E86D 0x0DE8B900 */
+1.78407609462738037109e-01, /* 0x3FC6D60F 0x80000000 */
+4.80100802600100279538e-08, /* 0x3E69C674 0x8723551E */
+1.91394805908203125000e-01, /* 0x3FC87FA0 0x00000000 */
+4.70914263296092971436e-08, /* 0x3E694832 0x44240802 */
+2.04215526580810546875e-01, /* 0x3FCA23BC 0x00000000 */
+1.48478803446288209001e-08, /* 0x3E4FE2B5 0x63193712 */
+2.16873884201049804688e-01, /* 0x3FCBC286 0x00000000 */
+5.40995645549315919488e-08, /* 0x3E6D0B63 0x358A7E74 */
+2.29374051094055175781e-01, /* 0x3FCD5C21 0x00000000 */
+4.99707906542102284117e-08, /* 0x3E6AD3EE 0xE456E443 */
+2.41719901561737060547e-01, /* 0x3FCEF0AD 0x80000000 */
+3.53254081075974352804e-08, /* 0x3E62F716 0x4D948638 */
+2.53915190696716308594e-01, /* 0x3FD04025 0x80000000 */
+1.92842471355435739091e-08, /* 0x3E54B4D0 0x40DAE27C */
+2.65963494777679443359e-01, /* 0x3FD1058B 0xC0000000 */
+5.37194584979797487125e-08, /* 0x3E6CD725 0x6A8C4FD0 */
+2.77868449687957763672e-01, /* 0x3FD1C898 0xC0000000 */
+1.31549854251447496506e-09, /* 0x3E16999F 0xAFBC68E7 */
+2.89633274078369140625e-01, /* 0x3FD2895A 0x00000000 */
+1.85046735362538929911e-08, /* 0x3E53DE86 0xA35EB493 */
+3.01261305809020996094e-01, /* 0x3FD347DD 0x80000000 */
+2.47691407849191245052e-08, /* 0x3E5A987D 0x54D64567 */
+3.12755703926086425781e-01, /* 0x3FD40430 0x80000000 */
+6.07781046260499658610e-09, /* 0x3E3A1A9F 0x8EF4304A */
+3.24119448661804199219e-01, /* 0x3FD4BE5F 0x80000000 */
+1.99924077768719198045e-08, /* 0x3E557778 0xA0DB4C99 */
+3.35355520248413085938e-01, /* 0x3FD57677 0x00000000 */
+2.16727247443196802771e-08, /* 0x3E57455A 0x6C549AB7 */
+3.46466720104217529297e-01, /* 0x3FD62C82 0xC0000000 */
+4.72419910516215900493e-08, /* 0x3E695CE3 0xCA97B7B0 */
+3.57455849647521972656e-01, /* 0x3FD6E08E 0x80000000 */
+3.92742818015697624778e-08, /* 0x3E6515D0 0xF1C609CA */
+3.68325531482696533203e-01, /* 0x3FD792A5 0x40000000 */
+2.96760111198451042238e-08, /* 0x3E5FDD47 0xA27C15DA */
+3.79078328609466552734e-01, /* 0x3FD842D1 0xC0000000 */
+2.43255029056564770289e-08, /* 0x3E5A1E8B 0x17493B14 */
+3.89716744422912597656e-01, /* 0x3FD8F11E 0x80000000 */
+6.71711261571421332726e-09, /* 0x3E3CD98B 0x1DF85DA7 */
+4.00243163108825683594e-01, /* 0x3FD99D95 0x80000000 */
+1.01818702333557515008e-09, /* 0x3E117E08 0xACBA92EF */
+4.10659909248352050781e-01, /* 0x3FDA4840 0x80000000 */
+1.57369163351530571459e-08, /* 0x3E50E5BB 0x0A2BFCA7 */
+4.20969247817993164062e-01, /* 0x3FDAF129 0x00000000 */
+4.68261364720663662040e-08, /* 0x3E6923BC 0x358899C2 */
+4.31173443794250488281e-01, /* 0x3FDB9858 0x80000000 */
+2.10241208525779214510e-08, /* 0x3E569310 0xFB598FB1 */
+4.41274523735046386719e-01, /* 0x3FDC3DD7 0x80000000 */
+3.70698288427707487748e-08, /* 0x3E63E6D6 0xA6B9D9E1 */
+4.51274633407592773438e-01, /* 0x3FDCE1AF 0x00000000 */
+1.07318658117071930723e-08, /* 0x3E470BE7 0xD6F6FA58 */
+4.61175680160522460938e-01, /* 0x3FDD83E7 0x00000000 */
+3.49616477054305011286e-08, /* 0x3E62C517 0x9F2828AE */
+4.70979690551757812500e-01, /* 0x3FDE2488 0x00000000 */
+2.46670332000468969567e-08, /* 0x3E5A7C6C 0x261CBD8F */
+4.80688512325286865234e-01, /* 0x3FDEC399 0xC0000000 */
+1.70204650424422423704e-08, /* 0x3E52468C 0xC0175CEE */
+4.90303933620452880859e-01, /* 0x3FDF6123 0xC0000000 */
+5.44247409572909703749e-08, /* 0x3E6D3814 0x5630A2B6 */
+4.99827861785888671875e-01, /* 0x3FDFFD2E 0x00000000 */
+7.77056065794633071345e-09, /* 0x3E40AFE9 0x30AB2FA0 */
+5.09261846542358398438e-01, /* 0x3FE04BDF 0x80000000 */
+5.52474495483665749052e-08, /* 0x3E6DA926 0xD265FCC1 */
+5.18607735633850097656e-01, /* 0x3FE0986F 0x40000000 */
+2.85741955344967264536e-08, /* 0x3E5EAE6A 0x41723FB5 */
+5.27867078781127929688e-01, /* 0x3FE0E449 0x80000000 */
+1.08397144554263914271e-08, /* 0x3E474732 0x2FDBAB97 */
+5.37041425704956054688e-01, /* 0x3FE12F71 0x80000000 */
+4.01919275998792285777e-08, /* 0x3E6593EF 0xBC530123 */
+5.46132385730743408203e-01, /* 0x3FE179EA 0xA0000000 */
+5.18673922421792693237e-08, /* 0x3E6BD899 0xA0BFC60E */
+5.55141448974609375000e-01, /* 0x3FE1C3B8 0x00000000 */
+5.85658922177154808539e-08, /* 0x3E6F713C 0x24BC94F9 */
+5.64070105552673339844e-01, /* 0x3FE20CDC 0xC0000000 */
+3.27321296262276338905e-08, /* 0x3E6192AB 0x6D93503D */
+5.72919726371765136719e-01, /* 0x3FE2555B 0xC0000000 */
+2.71900203723740076878e-08, /* 0x3E5D31EF 0x96780876 */
+5.81691682338714599609e-01, /* 0x3FE29D37 0xE0000000 */
+5.72959078829112371070e-08, /* 0x3E6EC2B0 0x8AC85CD7 */
+5.90387403964996337891e-01, /* 0x3FE2E474 0x20000000 */
+4.26371800367512948470e-08, /* 0x3E66E402 0x68405422 */
+5.99008142948150634766e-01, /* 0x3FE32B13 0x20000000 */
+4.66979327646159769249e-08, /* 0x3E69121D 0x71320557 */
+6.07555210590362548828e-01, /* 0x3FE37117 0xA0000000 */
+3.96341792466729582847e-08, /* 0x3E654747 0xB5C5DD02 */
+6.16029858589172363281e-01, /* 0x3FE3B684 0x40000000 */
+1.86263416563663175432e-08, /* 0x3E53FFF8 0x455F1DBE */
+6.24433279037475585938e-01, /* 0x3FE3FB5B 0x80000000 */
+8.97441791510503832111e-09, /* 0x3E4345BD 0x096D3A75 */
+6.32766664028167724609e-01, /* 0x3FE43F9F 0xE0000000 */
+5.54287010493641158796e-09, /* 0x3E37CE73 0x3BD393DD */
+6.41031146049499511719e-01, /* 0x3FE48353 0xC0000000 */
+3.33714317793368531132e-08, /* 0x3E61EA88 0xDF73D5E9 */
+6.49227917194366455078e-01, /* 0x3FE4C679 0xA0000000 */
+2.94307433638127158696e-08, /* 0x3E5F99DC 0x7362D1DA */
+6.57358050346374511719e-01, /* 0x3FE50913 0xC0000000 */
+2.23619855184231409785e-08, /* 0x3E5802D0 0xD6979675 */
+6.65422618389129638672e-01, /* 0x3FE54B24 0x60000000 */
+1.41559608102782173188e-08, /* 0x3E4E6652 0x5EA4550A */
+6.73422634601593017578e-01, /* 0x3FE58CAD 0xA0000000 */
+4.06105737027198329700e-08, /* 0x3E65CD79 0x893092F2 */
+6.81359171867370605469e-01, /* 0x3FE5CDB1 0xC0000000 */
+5.29405324634793230630e-08, /* 0x3E6C6C17 0x648CF6E4 */
+6.89233243465423583984e-01, /* 0x3FE60E32 0xE0000000 */
+3.77733853963405370102e-08, /* 0x3E644788 0xD8CA7C89 */
};
/* S[j],S_trail[j] = 2**(j/32.) for the final computation of exp(t+w) */
static const double S[] = {
+1.00000000000000000000e+00, /* 3FF0000000000000 */
+1.02189714865411662714e+00, /* 3FF059B0D3158574 */
+1.04427378242741375480e+00, /* 3FF0B5586CF9890F */
+1.06714040067682369717e+00, /* 3FF11301D0125B51 */
+1.09050773266525768967e+00, /* 3FF172B83C7D517B */
+1.11438674259589243221e+00, /* 3FF1D4873168B9AA */
+1.13878863475669156458e+00, /* 3FF2387A6E756238 */
+1.16372485877757747552e+00, /* 3FF29E9DF51FDEE1 */
+1.18920711500272102690e+00, /* 3FF306FE0A31B715 */
+1.21524735998046895524e+00, /* 3FF371A7373AA9CB */
+1.24185781207348400201e+00, /* 3FF3DEA64C123422 */
+1.26905095719173321989e+00, /* 3FF44E086061892D */
+1.29683955465100964055e+00, /* 3FF4BFDAD5362A27 */
+1.32523664315974132322e+00, /* 3FF5342B569D4F82 */
+1.35425554693689265129e+00, /* 3FF5AB07DD485429 */
+1.38390988196383202258e+00, /* 3FF6247EB03A5585 */
+1.41421356237309514547e+00, /* 3FF6A09E667F3BCD */
+1.44518080697704665027e+00, /* 3FF71F75E8EC5F74 */
+1.47682614593949934623e+00, /* 3FF7A11473EB0187 */
+1.50916442759342284141e+00, /* 3FF82589994CCE13 */
+1.54221082540794074411e+00, /* 3FF8ACE5422AA0DB */
+1.57598084510788649659e+00, /* 3FF93737B0CDC5E5 */
+1.61049033194925428347e+00, /* 3FF9C49182A3F090 */
+1.64575547815396494578e+00, /* 3FFA5503B23E255D */
+1.68179283050742900407e+00, /* 3FFAE89F995AD3AD */
+1.71861929812247793414e+00, /* 3FFB7F76F2FB5E47 */
+1.75625216037329945351e+00, /* 3FFC199BDD85529C */
+1.79470907500310716820e+00, /* 3FFCB720DCEF9069 */
+1.83400808640934243066e+00, /* 3FFD5818DCFBA487 */
+1.87416763411029996256e+00, /* 3FFDFC97337B9B5F */
+1.91520656139714740007e+00, /* 3FFEA4AFA2A490DA */
+1.95714412417540017941e+00, /* 3FFF50765B6E4540 */
};
static const double S_trail[] = {
+0.00000000000000000000e+00,
+5.10922502897344389359e-17, /* 3C8D73E2A475B465 */
+8.55188970553796365958e-17, /* 3C98A62E4ADC610A */
-7.89985396684158212226e-17, /* BC96C51039449B3A */
-3.04678207981247114697e-17, /* BC819041B9D78A76 */
+1.04102784568455709549e-16, /* 3C9E016E00A2643C */
+8.91281267602540777782e-17, /* 3C99B07EB6C70573 */
+3.82920483692409349872e-17, /* 3C8612E8AFAD1255 */
+3.98201523146564611098e-17, /* 3C86F46AD23182E4 */
-7.71263069268148813091e-17, /* BC963AEABF42EAE2 */
+4.65802759183693679123e-17, /* 3C8ADA0911F09EBC */
+2.66793213134218609523e-18, /* 3C489B7A04EF80D0 */
+2.53825027948883149593e-17, /* 3C7D4397AFEC42E2 */
-2.85873121003886075697e-17, /* BC807ABE1DB13CAC */
+7.70094837980298946162e-17, /* 3C96324C054647AD */
-6.77051165879478628716e-17, /* BC9383C17E40B497 */
-9.66729331345291345105e-17, /* BC9BDD3413B26456 */
-3.02375813499398731940e-17, /* BC816E4786887A99 */
-3.48399455689279579579e-17, /* BC841577EE04992F */
-1.01645532775429503911e-16, /* BC9D4C1DD41532D8 */
+7.94983480969762085616e-17, /* 3C96E9F156864B27 */
-1.01369164712783039808e-17, /* BC675FC781B57EBC */
+2.47071925697978878522e-17, /* 3C7C7C46B071F2BE */
-1.01256799136747726038e-16, /* BC9D2F6EDB8D41E1 */
+8.19901002058149652013e-17, /* 3C97A1CD345DCC81 */
-1.85138041826311098821e-17, /* BC75584F7E54AC3B */
+2.96014069544887330703e-17, /* 3C811065895048DD */
+1.82274584279120867698e-17, /* 3C7503CBD1E949DB */
+3.28310722424562658722e-17, /* 3C82ED02D75B3706 */
-6.12276341300414256164e-17, /* BC91A5CD4F184B5C */
-1.06199460561959626376e-16, /* BC9E9C23179C2893 */
+8.96076779103666776760e-17, /* 3C99D3E12DD8A18B */
};
/* Primary interval GTi() */
static const double cr[] = {
/* p1, q1 */
+0.70908683619977797008004927192814648151397705078125000,
+1.71987061393048558089579513384356441668351720061e-0001,
-3.19273345791990970293320316122813960527705450671e-0002,
+8.36172645419110036267169600390549973563534476989e-0003,
+1.13745336648572838333152213474277971244629758101e-0003,
+1.0,
+9.71980217826032937526460731778472389791321968082e-0001,
-7.43576743326756176594084137256042653497087666030e-0002,
-1.19345944932265559769719470515102012246995255372e-0001,
+1.59913445751425002620935120470781382215050284762e-0002,
+1.12601136853374984566572691306402321911547550783e-0003,
/* p2, q2 */
+0.42848681585558601181418225678498856723308563232421875,
+6.53596762668970816023718845105667418483122103629e-0002,
-6.97280829631212931321050770925128264272768936731e-0003,
+6.46342359021981718947208605674813260166116632899e-0003,
+1.0,
+4.57572620560506047062553957454062012327519313936e-0001,
-2.52182594886075452859655003407796103083422572036e-0001,
-1.82970945407778594681348166040103197178711552827e-0002,
+2.43574726993169566475227642128830141304953840502e-0002,
-5.20390406466942525358645957564897411258667085501e-0003,
+4.79520251383279837635552431988023256031951133885e-0004,
/* p3, q3 */
+0.382409479734567459008331979930517263710498809814453125,
+1.42876048697668161599069814043449301572928034140e-0001,
+3.42157571052250536817923866013561760785748899071e-0003,
-5.01542621710067521405087887856991700987709272937e-0004,
+8.89285814866740910123834688163838287618332122670e-0004,
+1.0,
+3.04253086629444201002215640948957897906299633168e-0001,
-2.23162407379999477282555672834881213873185520006e-0001,
-1.05060867741952065921809811933670131427552903636e-0002,
+1.70511763916186982473301861980856352005926669320e-0002,
-2.12950201683609187927899416700094630764182477464e-0003,
};
#define P10 cr[0]
#define P11 cr[1]
#define P12 cr[2]
#define P13 cr[3]
#define P14 cr[4]
#define Q10 cr[5]
#define Q11 cr[6]
#define Q12 cr[7]
#define Q13 cr[8]
#define Q14 cr[9]
#define Q15 cr[10]
#define P20 cr[11]
#define P21 cr[12]
#define P22 cr[13]
#define P23 cr[14]
#define Q20 cr[15]
#define Q21 cr[16]
#define Q22 cr[17]
#define Q23 cr[18]
#define Q24 cr[19]
#define Q25 cr[20]
#define Q26 cr[21]
#define P30 cr[22]
#define P31 cr[23]
#define P32 cr[24]
#define P33 cr[25]
#define P34 cr[26]
#define Q30 cr[27]
#define Q31 cr[28]
#define Q32 cr[29]
#define Q33 cr[30]
#define Q34 cr[31]
#define Q35 cr[32]
static const double
GZ1_h = +0.938204627909682398190,
GZ1_l = +5.121952600248205157935e-17,
GZ2_h = +0.885603194410888749921,
GZ2_l = -4.964236872556339810692e-17,
GZ3_h = +0.936781411463652347038,
GZ3_l = -2.541923110834479415023e-17,
TZ1 = -0.3517214357852935791015625,
TZ3 = +0.280530631542205810546875;
/* INDENT ON */
/* compute gamma(y=yh+yl) for y in GT1 = [1.0000, 1.2845] */
/* assume yh got 20 significant bits */
static struct Double
GT1(double yh, double yl) {
double t3, t4, y, z;
struct Double r;
y = yh + yl;
z = y * y;
t3 = (z * (P10 + y * ((P11 + y * P12) + z * (P13 + y * P14)))) /
(Q10 + y * ((Q11 + y * Q12) + z * ((Q13 + Q14 * y) + z * Q15)));
t3 += (TZ1 * yl + GZ1_l);
t4 = TZ1 * yh;
r.h = (double) ((float) (t4 + GZ1_h + t3));
t3 += (t4 - (r.h - GZ1_h));
r.l = t3;
return (r);
}
/* compute gamma(y=yh+yl) for y in GT2 = [1.2844, 1.6374] */
/* assume yh got 20 significant bits */
static struct Double
GT2(double yh, double yl) {
double t3, y, z;
struct Double r;
y = yh + yl;
z = y * y;
t3 = (z * (P20 + y * P21 + z * (P22 + y * P23))) /
(Q20 + (y * ((Q21 + Q22 * y) + z * Q23) +
(z * z) * ((Q24 + Q25 * y) + z * Q26))) + GZ2_l;
r.h = (double) ((float) (GZ2_h + t3));
r.l = t3 - (r.h - GZ2_h);
return (r);
}
/* compute gamma(y=yh+yl) for y in GT3 = [1.6373, 2.0000] */
/* assume yh got 20 significant bits */
static struct Double
GT3(double yh, double yl) {
double t3, t4, y, z;
struct Double r;
y = yh + yl;
z = y * y;
t3 = (z * (P30 + y * ((P31 + y * P32) + z * (P33 + y * P34)))) /
(Q30 + y * ((Q31 + y * Q32) + z * ((Q33 + Q34 * y) + z * Q35)));
t3 += (TZ3 * yl + GZ3_l);
t4 = TZ3 * yh;
r.h = (double) ((float) (t4 + GZ3_h + t3));
t3 += (t4 - (r.h - GZ3_h));
r.l = t3;
return (r);
}
/* INDENT OFF */
/*
* return tgamma(x) scaled by 2**-m for 8<x<=171.62... using Stirling's formula
* log(G(x)) ~= (x-.5)*(log(x)-1) + .5(log(2*pi)-1) + (1/x)*P(1/(x*x))
* = L1 + L2 + L3,
*/
/* INDENT ON */
static struct Double
large_gam(double x, int *m) {
double z, t1, t2, t3, z2, t5, w, y, u, r, z4, v, t24 = 16777216.0,
p24 = 1.0 / 16777216.0;
int n2, j2, k, ix, j;
unsigned lx;
struct Double zz;
double u2, ss_h, ss_l, r_h, w_h, w_l, t4;
/* INDENT OFF */
/*
* compute ss = ss.h+ss.l = log(x)-1 (see tgamma_log.h for details)
*
* log(x) - 1 = T1(n) + T2(j) + T3(s), where x = 2**n * y, 1<=y<2,
* j=[64*y], z[j]=1+j/64+1/128, s = (y-z[j])/(y+z[j]), and
* T1(n) = T1[2n,2n+1] = n*log(2)-1,
* T2(j) = T2[2j,2j+1] = log(z[j]),
* T3(s) = 2s + A1[0]s^3 + A2[1]s^5 + A3[2]s^7
* Note
* (1) the leading entries are truncated to 24 binary point.
* (2) Remez error for T3(s) is bounded by 2**(-72.4)
* 2**(-24)
* _________V___________________
* T1(n): |_________|___________________|
* _______ ______________________
* T2(j): |_______|______________________|
* ____ _______________________
* 2s: |____|_______________________|
* __________________________
* + T3(s)-2s: |__________________________|
* -------------------------------------------
* [leading] + [Trailing]
*/
/* INDENT ON */
ix = __HI(x);
lx = __LO(x);
n2 = (ix >> 20) - 0x3ff; /* exponent of x, range:3-7 */
n2 += n2; /* 2n */
ix = (ix & 0x000fffff) | 0x3ff00000; /* y = scale x to [1,2] */
__HI(y) = ix;
__LO(y) = lx;
__HI(z) = (ix & 0xffffc000) | 0x2000; /* z[j]=1+j/64+1/128 */
__LO(z) = 0;
j2 = (ix >> 13) & 0x7e; /* 2j */
t1 = y + z;
t2 = y - z;
r = one / t1;
t1 = (double) ((float) t1);
u = r * t2; /* u = (y-z)/(y+z) */
t4 = T2[j2 + 1] + T1[n2 + 1];
z2 = u * u;
k = __HI(u) & 0x7fffffff;
t3 = T2[j2] + T1[n2];
if ((k >> 20) < 0x3ec) { /* |u|<2**-19 */
t2 = t4 + u * ((two + z2 * A1) + (z2 * z2) * (A2 + z2 * A3));
} else {
t5 = t4 + u * (z2 * A1 + (z2 * z2) * (A2 + z2 * A3));
u2 = u + u;
v = (double) ((int) (u2 * t24)) * p24;
t2 = t5 + r * ((two * t2 - v * t1) - v * (y - (t1 - z)));
t3 += v;
}
ss_h = (double) ((float) (t2 + t3));
ss_l = t2 - (ss_h - t3);
/*
* compute ww = (x-.5)*(log(x)-1) + .5*(log(2pi)-1) + 1/x*(P(1/x^2)))
* where ss = log(x) - 1 in already in extra precision
*/
z = one / x;
r = x - half;
r_h = (double) ((float) r);
w_h = r_h * ss_h + hln2pi_h;
z2 = z * z;
w = (r - r_h) * ss_h + r * ss_l;
z4 = z2 * z2;
t1 = z2 * (GP1 + z4 * (GP3 + z4 * (GP5 + z4 * GP7)));
t2 = z4 * (GP2 + z4 * (GP4 + z4 * GP6));
t1 += t2;
w += hln2pi_l;
w_l = z * (GP0 + t1) + w;
k = (int) ((w_h + w_l) * invln2_32 + half);
/* compute the exponential of w_h+w_l */
j = k & 0x1f;
*m = (k >> 5);
t3 = (double) k;
/* perform w - k*ln2_32 (represent as w_h - w_l) */
t1 = w_h - t3 * ln2_32hi;
t2 = t3 * ln2_32lo;
w = w_l - t2;
w_h = t1 + w_l;
w_l = t2 - (w_l - (w_h - t1));
/* compute exp(w_h+w_l) */
z = w_h - w_l;
z2 = z * z;
t1 = z2 * (Et1 + z2 * (Et3 + z2 * Et5));
t2 = z2 * (Et2 + z2 * Et4);
t3 = w_h - (w_l - (t1 + z * t2));
zz.l = S_trail[j] * (one + t3) + S[j] * t3;
zz.h = S[j];
return (zz);
}
/* INDENT OFF */
/*
* kpsin(x)= sin(pi*x)/pi
* 3 5 7 9 11 13 15
* = x+ks[0]*x +ks[1]*x +ks[2]*x +ks[3]*x +ks[4]*x +ks[5]*x +ks[6]*x
*/
static const double ks[] = {
-1.64493406684822640606569,
+8.11742425283341655883668741874008920850698590621e-0001,
-1.90751824120862873825597279118304943994042258291e-0001,
+2.61478477632554278317289628332654539353521911570e-0002,
-2.34607978510202710377617190278735525354347705866e-0003,
+1.48413292290051695897242899977121846763824221705e-0004,
-6.87730769637543488108688726777687262485357072242e-0006,
};
/* INDENT ON */
/* assume x is not tiny and positive */
static struct Double
kpsin(double x) {
double z, t1, t2, t3, t4;
struct Double xx;
z = x * x;
xx.h = x;
t1 = z * x;
t2 = z * z;
t4 = t1 * ks[0];
t3 = (t1 * z) * ((ks[1] + z * ks[2] + t2 * ks[3]) + (z * t2) *
(ks[4] + z * ks[5] + t2 * ks[6]));
xx.l = t4 + t3;
return (xx);
}
/* INDENT OFF */
/*
* kpcos(x)= cos(pi*x)/pi
* 2 4 6 8 10 12
* = 1/pi +kc[0]*x +kc[1]*x +kc[2]*x +kc[3]*x +kc[4]*x +kc[5]*x
*/
static const double one_pi_h = 0.318309886183790635705292970,
one_pi_l = 3.583247455607534006714276420e-17;
static const double npi_2_h = -1.5625,
npi_2_l = -0.00829632679489661923132169163975055099555883223;
static const double kc[] = {
-1.57079632679489661923132169163975055099555883223e+0000,
+1.29192819501230224953283586722575766189551966008e+0000,
-4.25027339940149518500158850753393173519732149213e-0001,
+7.49080625187015312373925142219429422375556727752e-0002,
-8.21442040906099210866977352284054849051348692715e-0003,
+6.10411356829515414575566564733632532333904115968e-0004,
};
/* INDENT ON */
/* assume x is not tiny and positive */
static struct Double
kpcos(double x) {
double z, t1, t2, t3, t4, x4, x8;
struct Double xx;
z = x * x;
xx.h = one_pi_h;
t1 = (double) ((float) x);
x4 = z * z;
t2 = npi_2_l * z + npi_2_h * (x + t1) * (x - t1);
t3 = one_pi_l + x4 * ((kc[1] + z * kc[2]) + x4 * (kc[3] + z *
kc[4] + x4 * kc[5]));
t4 = t1 * t1; /* 48 bits mantissa */
x8 = t2 + t3;
t4 *= npi_2_h; /* npi_2_h is 5 bits const. The product is exact */
xx.l = x8 + t4; /* that will minimized the rounding error in xx.l */
return (xx);
}
/* INDENT OFF */
static const double
/* 0.134861805732790769689793935774652917006 */
t0z1 = 0.1348618057327907737708,
t0z1_l = -4.0810077708578299022531e-18,
/* 0.461632144968362341262659542325721328468 */
t0z2 = 0.4616321449683623567850,
t0z2_l = -1.5522348162858676890521e-17,
/* 0.819773101100500601787868704921606996312 */
t0z3 = 0.8197731011005006118708,
t0z3_l = -1.0082945122487103498325e-17;
/* 1.134861805732790769689793935774652917006 */
/* INDENT ON */
/* gamma(x+i) for 0 <= x < 1 */
static struct Double
gam_n(int i, double x) {
struct Double rr = {0.0L, 0.0L}, yy;
double r1, r2, t2, z, xh, xl, yh, yl, zh, z1, z2, zl, x5, wh, wl;
/* compute yy = gamma(x+1) */
if (x > 0.2845) {
if (x > 0.6374) {
r1 = x - t0z3;
r2 = (double) ((float) (r1 - t0z3_l));
t2 = r1 - r2;
yy = GT3(r2, t2 - t0z3_l);
} else {
r1 = x - t0z2;
r2 = (double) ((float) (r1 - t0z2_l));
t2 = r1 - r2;
yy = GT2(r2, t2 - t0z2_l);
}
} else {
r1 = x - t0z1;
r2 = (double) ((float) (r1 - t0z1_l));
t2 = r1 - r2;
yy = GT1(r2, t2 - t0z1_l);
}
/* compute gamma(x+i) = (x+i-1)*...*(x+1)*yy, 0<i<8 */
switch (i) {
case 0: /* yy/x */
r1 = one / x;
xh = (double) ((float) x); /* x is not tiny */
rr.h = (double) ((float) ((yy.h + yy.l) * r1));
rr.l = r1 * (yy.h - rr.h * xh) -
((r1 * rr.h) * (x - xh) - r1 * yy.l);
break;
case 1: /* yy */
rr.h = yy.h;
rr.l = yy.l;
break;
case 2: /* (x+1)*yy */
z = x + one; /* may not be exact */
zh = (double) ((float) z);
rr.h = zh * yy.h;
rr.l = z * yy.l + (x - (zh - one)) * yy.h;
break;
case 3: /* (x+2)*(x+1)*yy */
z1 = x + one;
z2 = x + 2.0;
z = z1 * z2;
xh = (double) ((float) z);
zh = (double) ((float) z1);
xl = (x - (zh - one)) * (z2 + zh) - (xh - zh * (zh + one));
rr.h = xh * yy.h;
rr.l = z * yy.l + xl * yy.h;
break;
case 4: /* (x+1)*(x+3)*(x+2)*yy */
z1 = x + 2.0;
z2 = (x + one) * (x + 3.0);
zh = z1;
__LO(zh) = 0;
__HI(zh) &= 0xfffffff8; /* zh 18 bits mantissa */
zl = x - (zh - 2.0);
z = z1 * z2;
xh = (double) ((float) z);
xl = zl * (z2 + zh * (z1 + zh)) - (xh - zh * (zh * zh - one));
rr.h = xh * yy.h;
rr.l = z * yy.l + xl * yy.h;
break;
case 5: /* ((x+1)*(x+4)*(x+2)*(x+3))*yy */
z1 = x + 2.0;
z2 = x + 3.0;
z = z1 * z2;
zh = (double) ((float) z1);
yh = (double) ((float) z);
yl = (x - (zh - 2.0)) * (z2 + zh) - (yh - zh * (zh + one));
z2 = z - 2.0;
z *= z2;
xh = (double) ((float) z);
xl = yl * (z2 + yh) - (xh - yh * (yh - 2.0));
rr.h = xh * yy.h;
rr.l = z * yy.l + xl * yy.h;
break;
case 6: /* ((x+1)*(x+2)*(x+3)*(x+4)*(x+5))*yy */
z1 = x + 2.0;
z2 = x + 3.0;
z = z1 * z2;
zh = (double) ((float) z1);
yh = (double) ((float) z);
z1 = x - (zh - 2.0);
yl = z1 * (z2 + zh) - (yh - zh * (zh + one));
z2 = z - 2.0;
x5 = x + 5.0;
z *= z2;
xh = (double) ((float) z);
zh += 3.0;
xl = yl * (z2 + yh) - (xh - yh * (yh - 2.0));
/* xh+xl=(x+1)*...*(x+4) */
/* wh+wl=(x+5)*yy */
wh = (double) ((float) (x5 * (yy.h + yy.l)));
wl = (z1 * yy.h + x5 * yy.l) - (wh - zh * yy.h);
rr.h = wh * xh;
rr.l = z * wl + xl * wh;
break;
case 7: /* ((x+1)*(x+2)*(x+3)*(x+4)*(x+5)*(x+6))*yy */
z1 = x + 3.0;
z2 = x + 4.0;
z = z2 * z1;
zh = (double) ((float) z1);
yh = (double) ((float) z); /* yh+yl = (x+3)(x+4) */
yl = (x - (zh - 3.0)) * (z2 + zh) - (yh - (zh * (zh + one)));
z1 = x + 6.0;
z2 = z - 2.0; /* z2 = (x+2)*(x+5) */
z *= z2;
xh = (double) ((float) z);
xl = yl * (z2 + yh) - (xh - yh * (yh - 2.0));
/* xh+xl=(x+2)*...*(x+5) */
/* wh+wl=(x+1)(x+6)*yy */
z2 -= 4.0; /* z2 = (x+1)(x+6) */
wh = (double) ((float) (z2 * (yy.h + yy.l)));
wl = (z2 * yy.l + yl * yy.h) - (wh - (yh - 6.0) * yy.h);
rr.h = wh * xh;
rr.l = z * wl + xl * wh;
}
return (rr);
}
double
tgamma(double x) {
struct Double ss, ww;
double t, t1, t2, t3, t4, t5, w, y, z, z1, z2, z3, z5;
int i, j, k, m, ix, hx, xk;
unsigned lx;
hx = __HI(x);
lx = __LO(x);
ix = hx & 0x7fffffff;
y = x;
if (ix < 0x3ca00000)
return (one / x); /* |x| < 2**-53 */
if (ix >= 0x7ff00000)
/* +Inf -> +Inf, -Inf or NaN -> NaN */
return (x * ((hx < 0)? 0.0 : x));
if (hx > 0x406573fa || /* x > 171.62... overflow to +inf */
(hx == 0x406573fa && lx > 0xE561F647)) {
z = x / tiny;
return (z * z);
}
if (hx >= 0x40200000) { /* x >= 8 */
ww = large_gam(x, &m);
w = ww.h + ww.l;
__HI(w) += m << 20;
return (w);
}
if (hx > 0) { /* 0 < x < 8 */
i = (int) x;
ww = gam_n(i, x - (double) i);
return (ww.h + ww.l);
}
/* negative x */
/* INDENT OFF */
/*
* compute: xk =
* -2 ... x is an even int (-inf is even)
* -1 ... x is an odd int
* +0 ... x is not an int but chopped to an even int
* +1 ... x is not an int but chopped to an odd int
*/
/* INDENT ON */
xk = 0;
if (ix >= 0x43300000) {
if (ix >= 0x43400000)
xk = -2;
else
xk = -2 + (lx & 1);
} else if (ix >= 0x3ff00000) {
k = (ix >> 20) - 0x3ff;
if (k > 20) {
j = lx >> (52 - k);
if ((j << (52 - k)) == lx)
xk = -2 + (j & 1);
else
xk = j & 1;
} else {
j = ix >> (20 - k);
if ((j << (20 - k)) == ix && lx == 0)
xk = -2 + (j & 1);
else
xk = j & 1;
}
}
if (xk < 0)
/* ideally gamma(-n)= (-1)**(n+1) * inf, but c99 expect NaN */
return ((x - x) / (x - x)); /* 0/0 = NaN */
/* negative underflow thresold */
if (ix > 0x4066e000 || (ix == 0x4066e000 && lx > 11)) {
/* x < -183.0 - 11ulp */
z = tiny / x;
if (xk == 1)
z = -z;
return (z * tiny);
}
/* now compute gamma(x) by -1/((sin(pi*y)/pi)*gamma(1+y)), y = -x */
/*
* First compute ss = -sin(pi*y)/pi , so that
* gamma(x) = 1/(ss*gamma(1+y))
*/
y = -x;
j = (int) y;
z = y - (double) j;
if (z > 0.3183098861837906715377675)
if (z > 0.6816901138162093284622325)
ss = kpsin(one - z);
else
ss = kpcos(0.5 - z);
else
ss = kpsin(z);
if (xk == 0) {
ss.h = -ss.h;
ss.l = -ss.l;
}
/* Then compute ww = gamma(1+y), note that result scale to 2**m */
m = 0;
if (j < 7) {
ww = gam_n(j + 1, z);
} else {
w = y + one;
if ((lx & 1) == 0) { /* y+1 exact (note that y<184) */
ww = large_gam(w, &m);
} else {
t = w - one;
if (t == y) { /* y+one exact */
ww = large_gam(w, &m);
} else { /* use y*gamma(y) */
if (j == 7)
ww = gam_n(j, z);
else
ww = large_gam(y, &m);
t4 = ww.h + ww.l;
t1 = (double) ((float) y);
t2 = (double) ((float) t4);
/* t4 will not be too large */
ww.l = y * (ww.l - (t2 - ww.h)) + (y - t1) * t2;
ww.h = t1 * t2;
}
}
}
/* compute 1/(ss*ww) */
t3 = ss.h + ss.l;
t4 = ww.h + ww.l;
t1 = (double) ((float) t3);
t2 = (double) ((float) t4);
z1 = ss.l - (t1 - ss.h); /* (t1,z1) = ss */
z2 = ww.l - (t2 - ww.h); /* (t2,z2) = ww */
t3 = t3 * t4; /* t3 = ss*ww */
z3 = one / t3; /* z3 = 1/(ss*ww) */
t5 = t1 * t2;
z5 = z1 * t4 + t1 * z2; /* (t5,z5) = ss*ww */
t1 = (double) ((float) t3); /* (t1,z1) = ss*ww */
z1 = z5 - (t1 - t5);
t2 = (double) ((float) z3); /* leading 1/(ss*ww) */
z2 = z3 * (t2 * z1 - (one - t2 * t1));
z = t2 - z2;
/* check whether z*2**-m underflow */
if (m != 0) {
hx = __HI(z);
i = hx & 0x80000000;
ix = hx ^ i;
j = ix >> 20;
if (j > m) {
ix -= m << 20;
__HI(z) = ix ^ i;
} else if ((m - j) > 52) {
/* underflow */
if (xk == 0)
z = -tiny * tiny;
else
z = tiny * tiny;
} else {
/* subnormal */
m -= 60;
t = one;
__HI(t) -= 60 << 20;
ix -= m << 20;
__HI(z) = ix ^ i;
z *= t;
}
}
return (z);
}
|