1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
|
/*
* CDDL HEADER START
*
* The contents of this file are subject to the terms of the
* Common Development and Distribution License (the "License").
* You may not use this file except in compliance with the License.
*
* You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
* or http://www.opensolaris.org/os/licensing.
* See the License for the specific language governing permissions
* and limitations under the License.
*
* When distributing Covered Code, include this CDDL HEADER in each
* file and include the License file at usr/src/OPENSOLARIS.LICENSE.
* If applicable, add the following below this CDDL HEADER, with the
* fields enclosed by brackets "[]" replaced with your own identifying
* information: Portions Copyright [yyyy] [name of copyright owner]
*
* CDDL HEADER END
*/
/*
* Copyright (c) 2003, 2010, Oracle and/or its affiliates. All rights reserved.
* Copyright 2014 Nexenta Systems, Inc. All rights reserved.
* Copyright 2019 Joyent, Inc.
* Copyright 2017 Jason King.
*/
#include <pthread.h>
#include <stdlib.h>
#include <string.h>
#include <strings.h>
#include <sys/debug.h>
#include <sys/types.h>
#include <security/cryptoki.h>
#include <aes_impl.h>
#include <cryptoutil.h>
#include "softSession.h"
#include "softObject.h"
#include "softCrypt.h"
#include "softOps.h"
/*
* Check that the mechanism parameter is present and the correct size if
* required and allocate an AES context.
*/
static CK_RV
soft_aes_check_mech_param(CK_MECHANISM_PTR mech, aes_ctx_t **ctxp)
{
void *(*allocf)(int) = NULL;
size_t param_len = 0;
boolean_t param_req = B_TRUE;
switch (mech->mechanism) {
case CKM_AES_ECB:
param_req = B_FALSE;
allocf = ecb_alloc_ctx;
break;
case CKM_AES_CMAC:
param_req = B_FALSE;
allocf = cmac_alloc_ctx;
break;
case CKM_AES_CMAC_GENERAL:
param_len = sizeof (CK_MAC_GENERAL_PARAMS);
allocf = cmac_alloc_ctx;
break;
case CKM_AES_CBC:
case CKM_AES_CBC_PAD:
param_len = AES_BLOCK_LEN;
allocf = cbc_alloc_ctx;
break;
case CKM_AES_CTR:
param_len = sizeof (CK_AES_CTR_PARAMS);
allocf = ctr_alloc_ctx;
break;
case CKM_AES_CCM:
param_len = sizeof (CK_CCM_PARAMS);
allocf = ccm_alloc_ctx;
break;
case CKM_AES_GCM:
param_len = sizeof (CK_GCM_PARAMS);
allocf = gcm_alloc_ctx;
break;
default:
return (CKR_MECHANISM_INVALID);
}
if (param_req && (mech->pParameter == NULL ||
mech->ulParameterLen != param_len)) {
return (CKR_MECHANISM_PARAM_INVALID);
}
*ctxp = allocf(0);
if (*ctxp == NULL) {
return (CKR_HOST_MEMORY);
}
return (CKR_OK);
}
/*
* Create an AES key schedule for the given AES context from the given key.
* If the key is not sensitive, cache a copy of the key schedule in the
* key object and/or use the cached copy of the key schedule.
*
* Must be called before the init function for a given mode is called.
*/
static CK_RV
soft_aes_init_key(aes_ctx_t *aes_ctx, soft_object_t *key_p)
{
void *ks = NULL;
size_t size = 0;
CK_RV rv = CKR_OK;
(void) pthread_mutex_lock(&key_p->object_mutex);
/*
* AES keys should be either 128, 192, or 256 bits long.
* soft_object_t stores the key size in bytes, so we check those sizes
* in bytes.
*
* While soft_build_secret_key_object() does these same validations for
* keys created by the user, it may be possible that a key loaded from
* disk could be invalid or corrupt. We err on the side of caution
* and check again that it's the correct size before performing any
* AES operations.
*/
switch (OBJ_SEC_VALUE_LEN(key_p)) {
case AES_MIN_KEY_BYTES:
case AES_MAX_KEY_BYTES:
case AES_192_KEY_BYTES:
break;
default:
rv = CKR_KEY_SIZE_RANGE;
goto done;
}
ks = aes_alloc_keysched(&size, 0);
if (ks == NULL) {
rv = CKR_HOST_MEMORY;
goto done;
}
/* If this is a sensitive key, always expand the key schedule */
if (key_p->bool_attr_mask & SENSITIVE_BOOL_ON) {
/* aes_init_keysched() requires key length in bits. */
#ifdef __sparcv9
/* LINTED */
aes_init_keysched(OBJ_SEC_VALUE(key_p), (uint_t)
(OBJ_SEC_VALUE_LEN(key_p) * NBBY), ks);
#else /* !__sparcv9 */
aes_init_keysched(OBJ_SEC_VALUE(key_p),
(OBJ_SEC_VALUE_LEN(key_p) * NBBY), ks);
#endif /* __sparcv9 */
goto done;
}
/* If a non-sensitive key and doesn't have a key schedule, create it */
if (OBJ_KEY_SCHED(key_p) == NULL) {
void *obj_ks = NULL;
obj_ks = aes_alloc_keysched(&size, 0);
if (obj_ks == NULL) {
rv = CKR_HOST_MEMORY;
goto done;
}
#ifdef __sparcv9
/* LINTED */
aes_init_keysched(OBJ_SEC_VALUE(key_p),
(uint_t)(OBJ_SEC_VALUE_LEN(key_p) * 8), obj_ks);
#else /* !__sparcv9 */
aes_init_keysched(OBJ_SEC_VALUE(key_p),
(OBJ_SEC_VALUE_LEN(key_p) * 8), obj_ks);
#endif /* __sparcv9 */
OBJ_KEY_SCHED_LEN(key_p) = size;
OBJ_KEY_SCHED(key_p) = obj_ks;
}
(void) memcpy(ks, OBJ_KEY_SCHED(key_p), OBJ_KEY_SCHED_LEN(key_p));
done:
(void) pthread_mutex_unlock(&key_p->object_mutex);
if (rv == CKR_OK) {
aes_ctx->ac_keysched = ks;
aes_ctx->ac_keysched_len = size;
} else {
freezero(ks, size);
}
return (rv);
}
/*
* Initialize the AES context for the given mode, including allocating and
* expanding the key schedule if required.
*/
static CK_RV
soft_aes_init_ctx(aes_ctx_t *aes_ctx, CK_MECHANISM_PTR mech_p,
boolean_t encrypt)
{
int rc = CRYPTO_SUCCESS;
switch (mech_p->mechanism) {
case CKM_AES_ECB:
aes_ctx->ac_flags |= ECB_MODE;
break;
case CKM_AES_CMAC:
case CKM_AES_CMAC_GENERAL:
rc = cmac_init_ctx((cbc_ctx_t *)aes_ctx, AES_BLOCK_LEN);
break;
case CKM_AES_CBC:
case CKM_AES_CBC_PAD:
rc = cbc_init_ctx((cbc_ctx_t *)aes_ctx, mech_p->pParameter,
mech_p->ulParameterLen, AES_BLOCK_LEN, aes_copy_block64);
break;
case CKM_AES_CTR:
{
/*
* soft_aes_check_param() verifies this is !NULL and is the
* correct size.
*/
CK_AES_CTR_PARAMS *pp = (CK_AES_CTR_PARAMS *)mech_p->pParameter;
rc = ctr_init_ctx((ctr_ctx_t *)aes_ctx, pp->ulCounterBits,
pp->cb, aes_encrypt_block, aes_copy_block);
break;
}
case CKM_AES_CCM: {
CK_CCM_PARAMS *pp = (CK_CCM_PARAMS *)mech_p->pParameter;
/*
* The illumos ccm mode implementation predates the PKCS#11
* version that specifies CK_CCM_PARAMS. As a result, the order
* and names of the struct members are different, so we must
* translate. ccm_init_ctx() does not store a ref ccm_params,
* so it is safe to allocate on the stack.
*/
CK_AES_CCM_PARAMS ccm_params = {
.ulMACSize = pp->ulMACLen,
.ulNonceSize = pp->ulNonceLen,
.ulAuthDataSize = pp->ulAADLen,
.ulDataSize = pp->ulDataLen,
.nonce = pp->pNonce,
.authData = pp->pAAD
};
rc = ccm_init_ctx((ccm_ctx_t *)aes_ctx, (char *)&ccm_params, 0,
encrypt, AES_BLOCK_LEN, aes_encrypt_block, aes_xor_block);
break;
}
case CKM_AES_GCM:
/*
* Similar to the ccm mode implementation, the gcm mode also
* predates PKCS#11 2.40, however in this instance
* CK_AES_GCM_PARAMS and CK_GCM_PARAMS are identical except
* for the member names, so we can just pass it along.
*/
rc = gcm_init_ctx((gcm_ctx_t *)aes_ctx, mech_p->pParameter,
AES_BLOCK_LEN, aes_encrypt_block, aes_copy_block,
aes_xor_block);
break;
}
return (crypto2pkcs11_error_number(rc));
}
/*
* Allocate context for the active encryption or decryption operation, and
* generate AES key schedule to speed up the operation.
*/
CK_RV
soft_aes_crypt_init_common(soft_session_t *session_p,
CK_MECHANISM_PTR pMechanism, soft_object_t *key_p,
boolean_t encrypt)
{
aes_ctx_t *aes_ctx = NULL;
CK_RV rv = CKR_OK;
if (key_p->key_type != CKK_AES)
return (CKR_KEY_TYPE_INCONSISTENT);
/* C_{Encrypt,Decrypt}Init() validate pMechanism != NULL */
rv = soft_aes_check_mech_param(pMechanism, &aes_ctx);
if (rv != CKR_OK) {
goto done;
}
rv = soft_aes_init_key(aes_ctx, key_p);
if (rv != CKR_OK) {
goto done;
}
rv = soft_aes_init_ctx(aes_ctx, pMechanism, encrypt);
if (rv != CKR_OK) {
goto done;
}
(void) pthread_mutex_lock(&session_p->session_mutex);
if (encrypt) {
/* Called by C_EncryptInit. */
session_p->encrypt.context = aes_ctx;
session_p->encrypt.mech.mechanism = pMechanism->mechanism;
} else {
/* Called by C_DecryptInit. */
session_p->decrypt.context = aes_ctx;
session_p->decrypt.mech.mechanism = pMechanism->mechanism;
}
(void) pthread_mutex_unlock(&session_p->session_mutex);
done:
if (rv != CKR_OK) {
soft_aes_free_ctx(aes_ctx);
}
return (rv);
}
CK_RV
soft_aes_encrypt(soft_session_t *session_p, CK_BYTE_PTR pData,
CK_ULONG ulDataLen, CK_BYTE_PTR pEncryptedData,
CK_ULONG_PTR pulEncryptedDataLen)
{
aes_ctx_t *aes_ctx = session_p->encrypt.context;
CK_MECHANISM_TYPE mech = session_p->encrypt.mech.mechanism;
size_t length_needed;
size_t remainder;
int rc = CRYPTO_SUCCESS;
CK_RV rv = CKR_OK;
crypto_data_t out = {
.cd_format = CRYPTO_DATA_RAW,
.cd_offset = 0,
.cd_length = *pulEncryptedDataLen,
.cd_raw.iov_base = (char *)pEncryptedData,
.cd_raw.iov_len = *pulEncryptedDataLen
};
/*
* A bit unusual, but it's permissible for ccm and gcm modes to not
* encrypt any data. This ends up being equivalent to CKM_AES_CMAC
* or CKM_AES_GMAC of the additional authenticated data (AAD).
*/
if ((pData == NULL || ulDataLen == 0) &&
!(aes_ctx->ac_flags & (CCM_MODE|GCM_MODE|CMAC_MODE))) {
return (CKR_ARGUMENTS_BAD);
}
remainder = ulDataLen % AES_BLOCK_LEN;
/*
* CTR, CCM, CMAC, and GCM modes do not require the plaintext
* to be a multiple of the AES block size. CKM_AES_CBC_PAD as the
* name suggests pads it's output, so it can also accept any
* size plaintext.
*/
switch (mech) {
case CKM_AES_CBC_PAD:
case CKM_AES_CMAC:
case CKM_AES_CMAC_GENERAL:
case CKM_AES_CTR:
case CKM_AES_CCM:
case CKM_AES_GCM:
break;
default:
if (remainder != 0) {
rv = CKR_DATA_LEN_RANGE;
goto cleanup;
}
}
switch (mech) {
case CKM_AES_CCM:
length_needed = ulDataLen + aes_ctx->ac_mac_len;
break;
case CKM_AES_GCM:
length_needed = ulDataLen + aes_ctx->ac_tag_len;
break;
case CKM_AES_CMAC:
case CKM_AES_CMAC_GENERAL:
length_needed = AES_BLOCK_LEN;
break;
case CKM_AES_CBC_PAD:
/* CKM_AES_CBC_PAD always adds 1..AES_BLOCK_LEN of padding */
length_needed = ulDataLen + AES_BLOCK_LEN - remainder;
break;
default:
length_needed = ulDataLen;
break;
}
if (pEncryptedData == NULL) {
/*
* The application can ask for the size of the output buffer
* with a NULL output buffer (pEncryptedData).
* C_Encrypt() guarantees pulEncryptedDataLen != NULL.
*/
*pulEncryptedDataLen = length_needed;
return (CKR_OK);
}
if (*pulEncryptedDataLen < length_needed) {
*pulEncryptedDataLen = length_needed;
return (CKR_BUFFER_TOO_SMALL);
}
if (ulDataLen > 0) {
rv = soft_aes_encrypt_update(session_p, pData, ulDataLen,
pEncryptedData, pulEncryptedDataLen);
if (rv != CKR_OK) {
rv = CKR_FUNCTION_FAILED;
goto cleanup;
}
/*
* Some modes (e.g. CCM and GCM) will append data such as a MAC
* to the ciphertext after the plaintext has been encrypted.
* Update out to reflect the amount of data in pEncryptedData
* after encryption.
*/
out.cd_offset = *pulEncryptedDataLen;
}
switch (mech) {
case CKM_AES_CBC_PAD: {
/*
* aes_encrypt_contiguous_blocks() accumulates plaintext
* in aes_ctx until it has at least one full block of
* plaintext. Any partial blocks of data remaining after
* encrypting are left for subsequent calls to
* aes_encrypt_contiguous_blocks(). If the input happened
* to be an exact multiple of AES_BLOCK_LEN, we must still
* append a block of padding (a full block in that case) so
* that the correct amount of padding to remove is known
* during decryption.
*
* soft_add_pkcs7_padding() is a bit overkill -- we just
* create a block filled with the pad amount using memset(),
* and encrypt 'amt' bytes of the block to pad out the input.
*/
char block[AES_BLOCK_LEN];
size_t amt = AES_BLOCK_LEN - remainder;
VERIFY3U(remainder, ==, aes_ctx->ac_remainder_len);
(void) memset(block, amt & 0xff, sizeof (block));
rc = aes_encrypt_contiguous_blocks(aes_ctx, block, amt, &out);
rv = crypto2pkcs11_error_number(rc);
explicit_bzero(block, sizeof (block));
break;
}
case CKM_AES_CCM:
rc = ccm_encrypt_final((ccm_ctx_t *)aes_ctx, &out,
AES_BLOCK_LEN, aes_encrypt_block, aes_xor_block);
rv = crypto2pkcs11_error_number(rc);
break;
case CKM_AES_GCM:
rc = gcm_encrypt_final((gcm_ctx_t *)aes_ctx, &out,
AES_BLOCK_LEN, aes_encrypt_block, aes_copy_block,
aes_xor_block);
rv = crypto2pkcs11_error_number(rc);
break;
case CKM_AES_CMAC:
case CKM_AES_CMAC_GENERAL:
rc = cmac_mode_final((cbc_ctx_t *)aes_ctx, &out,
aes_encrypt_block, aes_xor_block);
rv = crypto2pkcs11_error_number(rc);
aes_ctx->ac_remainder_len = 0;
break;
case CKM_AES_CTR:
/*
* As CKM_AES_CTR is a stream cipher, ctr_mode_final is always
* invoked in the xx_update() functions, so we do not need to
* call it again here.
*/
break;
case CKM_AES_ECB:
case CKM_AES_CBC:
/*
* These mechanisms do not have nor require a xx_final function.
*/
break;
default:
rv = CKR_MECHANISM_INVALID;
break;
}
cleanup:
switch (rv) {
case CKR_OK:
*pulEncryptedDataLen = out.cd_offset;
break;
case CKR_BUFFER_TOO_SMALL:
/* *pulEncryptedDataLen was set earlier */
break;
default:
/* something else failed */
*pulEncryptedDataLen = 0;
break;
}
(void) pthread_mutex_lock(&session_p->session_mutex);
soft_aes_free_ctx(aes_ctx);
session_p->encrypt.context = NULL;
(void) pthread_mutex_unlock(&session_p->session_mutex);
return (rv);
}
static CK_RV
soft_aes_cbc_pad_decrypt(aes_ctx_t *aes_ctx, CK_BYTE_PTR pEncryptedData,
CK_ULONG ulEncryptedDataLen, crypto_data_t *out_orig)
{
aes_ctx_t *ctx = aes_ctx;
uint8_t *buf = NULL;
uint8_t *outbuf = (uint8_t *)out_orig->cd_raw.iov_base;
crypto_data_t out = *out_orig;
size_t i;
int rc;
CK_RV rv = CKR_OK;
uint8_t pad_len;
boolean_t speculate = B_FALSE;
/*
* Just a query for the output size. When the output buffer is
* NULL, we are allowed to return a size slightly larger than
* necessary. We know the output will never be larger than the
* input ciphertext, so we use that as an estimate.
*/
if (out_orig->cd_raw.iov_base == NULL) {
out_orig->cd_length = ulEncryptedDataLen;
return (CKR_OK);
}
/*
* The output plaintext size will be 1..AES_BLOCK_LEN bytes
* smaller than the input ciphertext. However we cannot know
* exactly how much smaller until we decrypt the entire
* input ciphertext. If we are unsure we have enough output buffer
* space, we have to allocate our own memory to hold the output,
* then see if we have enough room to hold the result.
*
* Unfortunately, having an output buffer that's too small does
* not terminate the operation, nor are we allowed to return
* partial results. Therefore we must also duplicate the initial
* aes_ctx so that this can potentially be run again.
*/
if (out_orig->cd_length < ulEncryptedDataLen) {
void *ks = malloc(aes_ctx->ac_keysched_len);
ctx = malloc(sizeof (*aes_ctx));
buf = malloc(ulEncryptedDataLen);
if (ks == NULL || ctx == NULL || buf == NULL) {
free(ks);
free(ctx);
free(buf);
return (CKR_HOST_MEMORY);
}
bcopy(aes_ctx, ctx, sizeof (*ctx));
bcopy(aes_ctx->ac_keysched, ks, aes_ctx->ac_keysched_len);
ctx->ac_keysched = ks;
out.cd_length = ulEncryptedDataLen;
out.cd_raw.iov_base = (char *)buf;
out.cd_raw.iov_len = ulEncryptedDataLen;
outbuf = buf;
speculate = B_TRUE;
}
rc = aes_decrypt_contiguous_blocks(ctx, (char *)pEncryptedData,
ulEncryptedDataLen, &out);
if (rc != CRYPTO_SUCCESS) {
out_orig->cd_offset = 0;
rv = CKR_FUNCTION_FAILED;
goto done;
}
/*
* RFC5652 6.3 The amount of padding must be
* block_sz - (len mod block_size). This means
* the amount of padding must always be in the
* range [1..block_size].
*/
pad_len = outbuf[ulEncryptedDataLen - 1];
if (pad_len == 0 || pad_len > AES_BLOCK_LEN) {
rv = CKR_ENCRYPTED_DATA_INVALID;
goto done;
}
out.cd_offset -= pad_len;
/*
* Verify pad values, trying to do so in as close to constant
* time as possible.
*/
for (i = ulEncryptedDataLen - pad_len; i < ulEncryptedDataLen; i++) {
if (outbuf[i] != pad_len) {
rv = CKR_ENCRYPTED_DATA_INVALID;
}
}
if (rv != CKR_OK) {
goto done;
}
if (speculate) {
if (out.cd_offset <= out_orig->cd_length) {
bcopy(out.cd_raw.iov_base, out_orig->cd_raw.iov_base,
out.cd_offset);
} else {
rv = CKR_BUFFER_TOO_SMALL;
}
}
/*
* No matter what, we report the exact size required.
*/
out_orig->cd_offset = out.cd_offset;
done:
freezero(buf, ulEncryptedDataLen);
if (ctx != aes_ctx) {
VERIFY(speculate);
soft_aes_free_ctx(ctx);
}
return (rv);
}
CK_RV
soft_aes_decrypt(soft_session_t *session_p, CK_BYTE_PTR pEncryptedData,
CK_ULONG ulEncryptedDataLen, CK_BYTE_PTR pData, CK_ULONG_PTR pulDataLen)
{
aes_ctx_t *aes_ctx = session_p->decrypt.context;
CK_MECHANISM_TYPE mech = session_p->decrypt.mech.mechanism;
size_t length_needed;
size_t remainder;
int rc = CRYPTO_SUCCESS;
CK_RV rv = CKR_OK;
crypto_data_t out = {
.cd_format = CRYPTO_DATA_RAW,
.cd_offset = 0,
.cd_length = *pulDataLen,
.cd_raw.iov_base = (char *)pData,
.cd_raw.iov_len = *pulDataLen
};
/*
* A bit unusual, but it's permissible for ccm and gcm modes to not
* decrypt any data. This ends up being equivalent to CKM_AES_CMAC
* or CKM_AES_GMAC of the additional authenticated data (AAD).
*/
if ((pEncryptedData == NULL || ulEncryptedDataLen == 0) &&
!(aes_ctx->ac_flags & (CCM_MODE|GCM_MODE))) {
return (CKR_ARGUMENTS_BAD);
}
remainder = ulEncryptedDataLen % AES_BLOCK_LEN;
/*
* CTR, CCM, CMAC, and GCM modes do not require the ciphertext
* to be a multiple of the AES block size. Note that while
* CKM_AES_CBC_PAD accepts an arbitrary sized plaintext, the
* ciphertext is always a multiple of the AES block size
*/
switch (mech) {
case CKM_AES_CMAC:
case CKM_AES_CMAC_GENERAL:
case CKM_AES_CTR:
case CKM_AES_CCM:
case CKM_AES_GCM:
break;
default:
if (remainder != 0) {
rv = CKR_DATA_LEN_RANGE;
goto cleanup;
}
}
if (mech == CKM_AES_CBC_PAD) {
rv = soft_aes_cbc_pad_decrypt(aes_ctx, pEncryptedData,
ulEncryptedDataLen, &out);
if (pData == NULL || rv == CKR_BUFFER_TOO_SMALL) {
*pulDataLen = out.cd_offset;
return (rv);
}
goto cleanup;
}
switch (aes_ctx->ac_flags & (CCM_MODE|GCM_MODE)) {
case CCM_MODE:
length_needed = aes_ctx->ac_processed_data_len;
break;
case GCM_MODE:
length_needed = ulEncryptedDataLen - aes_ctx->ac_tag_len;
break;
default:
/*
* Note: for CKM_AES_CBC_PAD, we cannot know exactly how much
* space is needed for the plaintext until after we decrypt it.
* However, it is permissible to return a value 'somewhat'
* larger than necessary (PKCS#11 Base Specification, sec 5.2).
*
* Since CKM_AES_CBC_PAD adds at most AES_BLOCK_LEN bytes to
* the plaintext, we report the ciphertext length as the
* required plaintext length. This means we specify at most
* AES_BLOCK_LEN additional bytes of memory for the plaintext.
*
* This behavior is slightly different from the earlier
* version of this code which returned the value of
* (ulEncryptedDataLen - AES_BLOCK_LEN), which was only ever
* correct when the original plaintext was already a multiple
* of AES_BLOCK_LEN (i.e. when AES_BLOCK_LEN of padding was
* added). This should not be a concern for existing
* consumers -- if they were previously using the value of
* *pulDataLen to size the outbut buffer, the resulting
* plaintext would be truncated anytime the original plaintext
* wasn't a multiple of AES_BLOCK_LEN. No consumer should
* be relying on such wrong behavior. More likely they are
* using the size of the ciphertext or larger for the
* buffer to hold the decrypted plaintext (which is always
* acceptable).
*/
length_needed = ulEncryptedDataLen;
}
if (pData == NULL) {
/*
* The application can ask for the size of the output buffer
* with a NULL output buffer (pData).
* C_Decrypt() guarantees pulDataLen != NULL.
*/
*pulDataLen = length_needed;
return (CKR_OK);
}
if (*pulDataLen < length_needed) {
*pulDataLen = length_needed;
return (CKR_BUFFER_TOO_SMALL);
}
if (ulEncryptedDataLen > 0) {
rv = soft_aes_decrypt_update(session_p, pEncryptedData,
ulEncryptedDataLen, pData, pulDataLen);
}
if (rv != CKR_OK) {
rv = CKR_FUNCTION_FAILED;
goto cleanup;
}
/*
* Some modes (e.g. CCM and GCM) will output additional data
* after the plaintext (such as the MAC). Update out to
* reflect the amount of data in pData for the _final() functions.
*/
out.cd_offset = *pulDataLen;
/*
* As CKM_AES_CTR is a stream cipher, ctr_mode_final is always
* invoked in the _update() functions, so we do not need to call it
* here.
*/
if (aes_ctx->ac_flags & CCM_MODE) {
ASSERT3U(aes_ctx->ac_processed_data_len, ==,
aes_ctx->ac_data_len);
ASSERT3U(aes_ctx->ac_processed_mac_len, ==,
aes_ctx->ac_mac_len);
rc = ccm_decrypt_final((ccm_ctx_t *)aes_ctx, &out,
AES_BLOCK_LEN, aes_encrypt_block, aes_copy_block,
aes_xor_block);
rv = crypto2pkcs11_error_number(rc);
} else if (aes_ctx->ac_flags & GCM_MODE) {
rc = gcm_decrypt_final((gcm_ctx_t *)aes_ctx, &out,
AES_BLOCK_LEN, aes_encrypt_block, aes_xor_block);
rv = crypto2pkcs11_error_number(rc);
}
cleanup:
if (rv == CKR_OK) {
*pulDataLen = out.cd_offset;
} else {
*pulDataLen = 0;
}
(void) pthread_mutex_lock(&session_p->session_mutex);
soft_aes_free_ctx(aes_ctx);
session_p->decrypt.context = NULL;
(void) pthread_mutex_unlock(&session_p->session_mutex);
return (rv);
}
CK_RV
soft_aes_encrypt_update(soft_session_t *session_p, CK_BYTE_PTR pData,
CK_ULONG ulDataLen, CK_BYTE_PTR pEncryptedData,
CK_ULONG_PTR pulEncryptedDataLen)
{
aes_ctx_t *aes_ctx = session_p->encrypt.context;
crypto_data_t out = {
.cd_format = CRYPTO_DATA_RAW,
.cd_offset = 0,
.cd_length = *pulEncryptedDataLen,
.cd_raw.iov_base = (char *)pEncryptedData,
.cd_raw.iov_len = *pulEncryptedDataLen
};
CK_MECHANISM_TYPE mech = session_p->encrypt.mech.mechanism;
CK_RV rv = CKR_OK;
size_t out_len;
int rc;
/*
* If pData is NULL, we should have zero bytes to process, and
* the aes_encrypt_contiguous_blocks() call will be an effective no-op.
*/
IMPLY(pData == NULL, ulDataLen == 0);
/* Check size of the output buffer */
switch (mech) {
case CKM_AES_CMAC:
/*
* The underlying CMAC implementation handles the storing of
* extra bytes and does not output any data until *_final,
* so do not bother looking at the size of the output
* buffer at this time.
*/
out_len = 0;
break;
case CKM_AES_CTR:
/*
* CTR mode is a stream cipher, so we always output exactly as
* much ciphertext as input plaintext
*/
out_len = ulDataLen;
break;
default:
out_len = aes_ctx->ac_remainder_len + ulDataLen;
/*
* The number of complete blocks we can encrypt right now.
* The underlying implementation will buffer any remaining data
* until the next *_update call.
*/
out_len &= ~(AES_BLOCK_LEN - 1);
break;
}
if (pEncryptedData == NULL) {
*pulEncryptedDataLen = out_len;
return (CKR_OK);
}
if (*pulEncryptedDataLen < out_len) {
*pulEncryptedDataLen = out_len;
return (CKR_BUFFER_TOO_SMALL);
}
rc = aes_encrypt_contiguous_blocks(aes_ctx, (char *)pData, ulDataLen,
&out);
/*
* Since out.cd_offset is set to 0 initially and the underlying
* implementation increments out.cd_offset by the amount of output
* written, so we can just use the value as the amount written.
*/
*pulEncryptedDataLen = out.cd_offset;
if (rc != CRYPTO_SUCCESS) {
return (CKR_FUNCTION_FAILED);
}
rv = crypto2pkcs11_error_number(rc);
return (rv);
}
CK_RV
soft_aes_decrypt_update(soft_session_t *session_p, CK_BYTE_PTR pEncryptedData,
CK_ULONG ulEncryptedDataLen, CK_BYTE_PTR pData, CK_ULONG_PTR pulDataLen)
{
aes_ctx_t *aes_ctx = session_p->decrypt.context;
uint8_t *buffer_block = NULL;
crypto_data_t out = {
.cd_format = CRYPTO_DATA_RAW,
.cd_offset = 0,
.cd_length = *pulDataLen,
.cd_raw.iov_base = (char *)pData,
.cd_raw.iov_len = *pulDataLen
};
CK_MECHANISM_TYPE mech = session_p->decrypt.mech.mechanism;
CK_RV rv = CKR_OK;
size_t in_len = ulEncryptedDataLen;
size_t out_len;
int rc = CRYPTO_SUCCESS;
switch (mech) {
case CKM_AES_CCM:
case CKM_AES_GCM:
out_len = 0;
break;
case CKM_AES_CBC_PAD:
/*
* For CKM_AES_CBC_PAD, we use the existing code for CBC
* mode in libsoftcrypto (which itself uses the code in
* usr/src/common/crypto/modes for CBC mode). For
* non-padding AES CBC mode, aes_decrypt_contiguous_blocks()
* will accumulate ciphertext in aes_ctx->ac_remainder until
* there is at least AES_BLOCK_LEN bytes of ciphertext available
* to decrypt. At that point, as many blocks of AES_BLOCK_LEN
* sized ciphertext blocks are decrypted. Any remainder is
* copied into aes_ctx->ac_remainder for decryption in
* subsequent calls to aes_decrypt_contiguous_blocks().
*
* When PKCS#7 padding is used, the buffering
* aes_decrypt_contigous_blocks() performs is insufficient.
* PKCS#7 padding always adds [1..AES_BLOCK_LEN] bytes of
* padding to plaintext, so the resulting ciphertext is always
* larger than the input plaintext. However we cannot know
* which block is the final block (and needs its padding
* stripped) until C_DecryptFinal() is called. Additionally,
* it is permissible for a caller to use buffers sized to the
* output plaintext -- i.e. smaller than the input ciphertext.
* This leads to a more complicated buffering/accumulation
* strategy than what aes_decrypt_contiguous_blocks() provides
* us.
*
* Our buffering strategy works as follows:
* For each call to C_DecryptUpdate, we calculate the
* total amount of ciphertext available (buffered plus what's
* passed in) as the initial output size (out_len). Based
* on the value of out_len, there are three possibilties:
*
* 1. We have less than AES_BLOCK_LEN + 1 bytes of
* ciphertext available. Accumulate the ciphertext in
* aes_ctx->ac_remainder. Note that while we could let
* aes_decrypt_contiguous_blocks() buffer the input for us
* when we have less than AES_BLOCK_LEN bytes, we would still
* need to buffer when we have exactly AES_BLOCK_LEN
* bytes available, so we just handle both situations with
* one if clause.
*
* 2. We have at least AES_BLOCK_LEN + 1 bytes of
* ciphertext, and the total amount available is also an
* exact multiple of AES_BLOCK_LEN. We cannot know if the
* last block of input is the final block (yet), but we
* are an exact multiple of AES_BLOCK_LEN, and we have
* at least AES_BLOCK_LEN + 1 bytes available, therefore
* there must be at least 2 * AES_BLOCK_LEN bytes of input
* ciphertext available. It also means there's at least one
* full block of input ciphertext that can be decrypted. We
* reduce the size of the input (in_len) given to
* aes_decrypt_contiguous_bytes() by AES_BLOCK_LEN to prevent
* it from decrypting the last full block of data.
* aes_decrypt_contiguous_blocks() will when decrypt any
* buffered data in aex_ctx->ac_remainder, and then any
* input data passed. Since we have an exact multiple of
* AES_BLOCK_LEN, aes_ctx->ac_remainder will be empty
* (aes_ctx->ac_remainder_len == 0), once
* aes_decrypt_contiguout_block() completes, and we can
* copy the last block of data into aes_ctx->ac_remainder.
*
* 3. We have at least AES_BLOCK_LEN + 1 bytes of
* ciphertext, but the total amount available is not an
* exact multiple of AES_BLOCK_LEN. We decrypt all of
* full blocks of data we have. The remainder will be
* less than AES_BLOCK_LEN bytes. We let
* aes_decrypt_contiguous_blocks() buffer the remainder
* for us since it would normally do this anyway. Since there
* is a remainder, the full blocks that are present cannot
* be the last block, so we can safey decrypt all of them.
*
* Some things to note:
* - The above semantics will cause aes_ctx->ac_remainder to
* never accumulate more than AES_BLOCK_LEN bytes of
* ciphertext. Once we reach at least AES_BLOCK_LEN + 1 bytes,
* we will decrypt the contents of aes_ctx->ac_remainder by one
* of the last two scenarios described above.
*
* - We must always end up with AES_BLOCK_LEN bytes of data
* in aes_ctx->ac_remainder when C_DecryptFinal() is called.
* The first and third scenarios above may leave
* aes_ctx->ac_remainder with less than AES_BLOCK_LEN bytes,
* however the total size of the input ciphertext that's
* been decrypted must end up a multiple of AES_BLOCK_LEN.
* Therefore, we can always assume when there is a
* remainder that more data is coming. If we do end up
* with a remainder that's not AES_BLOCK_LEN bytes long
* when C_DecryptFinal() is called, the input is assumed
* invalid and we return CKR_DATA_LEN_RANGE (see
* soft_aes_decrypt_final()).
*/
VERIFY3U(aes_ctx->ac_remainder_len, <=, AES_BLOCK_LEN);
if (in_len >= SIZE_MAX - AES_BLOCK_LEN)
return (CKR_ENCRYPTED_DATA_LEN_RANGE);
out_len = aes_ctx->ac_remainder_len + in_len;
if (out_len <= AES_BLOCK_LEN) {
/*
* The first scenario detailed above, accumulate
* ciphertext in ac_remainder_len and return.
*/
uint8_t *dest = (uint8_t *)aes_ctx->ac_remainder +
aes_ctx->ac_remainder_len;
bcopy(pEncryptedData, dest, in_len);
aes_ctx->ac_remainder_len += in_len;
*pulDataLen = 0;
/*
* Since we aren't writing an output, and are returning
* here, we don't need to adjust out_len -- we never
* reach the output buffer size checks after the
* switch statement.
*/
return (CKR_OK);
} else if (out_len % AES_BLOCK_LEN == 0) {
/*
* The second scenario decribed above. The total amount
* available is a multiple of AES_BLOCK_LEN, and
* we have more than one block. We reduce the
* input size (in_len) by AES_BLOCK_LEN. We also
* reduce the output size (out_len) by AES_BLOCK_LEN
* for the output buffer size checks that follow
* the switch statement. In certain situations,
* PKCS#11 requires this to be an exact value, so
* the size check cannot occur for CKM_AES_CBC_PAD
* until after we've determine which scenario we
* have.
*
* Because we never accumulate more than AES_BLOCK_LEN
* bytes in aes_ctx->ac_remainder, when we are in
* this scenario, the following VERIFYs should always
* be true (and serve as a final safeguard against
* underflow).
*/
VERIFY3U(in_len, >=, AES_BLOCK_LEN);
buffer_block = pEncryptedData + in_len - AES_BLOCK_LEN;
in_len -= AES_BLOCK_LEN;
/*
* This else clause explicity checks
* out_len > AES_BLOCK_LEN, so this is also safe.
*/
out_len -= AES_BLOCK_LEN;
} else {
/*
* The third scenario above. We have at least
* AES_BLOCK_LEN + 1 bytes, but the total amount of
* input ciphertext available is not an exact
* multiple of AES_BLOCK_LEN. Let
* aes_decrypt_contiguous_blocks() handle the
* buffering of the remainder. Update the
* output size to reflect the actual amount of output
* we want to emit for the checks after the switch
* statement.
*/
out_len &= ~(AES_BLOCK_LEN - 1);
}
break;
case CKM_AES_CTR:
/*
* CKM_AES_CTR is a stream cipher, so we always output
* exactly as much output plaintext as input ciphertext
*/
out_len = in_len;
break;
default:
out_len = aes_ctx->ac_remainder_len + in_len;
out_len &= ~(AES_BLOCK_LEN - 1);
break;
}
/*
* C_DecryptUpdate() verifies that pulDataLen is not NULL prior
* to calling soft_decrypt_common() (which calls us).
*/
if (pData == NULL) {
/*
* If the output buffer (pData) is NULL, that means the
* caller is inquiring about the size buffer needed to
* complete the C_DecryptUpdate() request. While we are
* permitted to set *pulDataLen to an estimated value that can
* be 'slightly' larger than the actual value required,
* since we know the exact size we need, we stick with the
* exact size.
*/
*pulDataLen = out_len;
return (CKR_OK);
}
if (*pulDataLen < out_len) {
/*
* Not an inquiry, but the output buffer isn't large enough.
* PKCS#11 requires that this scenario not fail fatally (as
* well as return a different error value). This situation
* also requires us to set *pulDataLen to the _exact_ size
* required.
*/
*pulDataLen = out_len;
return (CKR_BUFFER_TOO_SMALL);
}
rc = aes_decrypt_contiguous_blocks(aes_ctx, (char *)pEncryptedData,
in_len, &out);
if (rc != CRYPTO_SUCCESS) {
rv = CKR_FUNCTION_FAILED;
goto done;
}
*pulDataLen = out.cd_offset;
switch (mech) {
case CKM_AES_CBC_PAD:
if (buffer_block == NULL) {
break;
}
VERIFY0(aes_ctx->ac_remainder_len);
/*
* We had multiple blocks of data to decrypt with nothing
* left over and deferred decrypting the last block of data.
* Copy it into aes_ctx->ac_remainder to decrypt on the
* next update call (or final).
*/
bcopy(buffer_block, aes_ctx->ac_remainder, AES_BLOCK_LEN);
aes_ctx->ac_remainder_len = AES_BLOCK_LEN;
break;
}
done:
return (rv);
}
CK_RV
soft_aes_encrypt_final(soft_session_t *session_p,
CK_BYTE_PTR pLastEncryptedPart, CK_ULONG_PTR pulLastEncryptedPartLen)
{
aes_ctx_t *aes_ctx = session_p->encrypt.context;
crypto_data_t data = {
.cd_format = CRYPTO_DATA_RAW,
.cd_offset = 0,
.cd_length = *pulLastEncryptedPartLen,
.cd_raw.iov_base = (char *)pLastEncryptedPart,
.cd_raw.iov_len = *pulLastEncryptedPartLen
};
CK_MECHANISM_TYPE mech = session_p->encrypt.mech.mechanism;
CK_RV rv = CKR_OK;
size_t out_len;
int rc = CRYPTO_SUCCESS;
switch (mech) {
case CKM_AES_CBC_PAD:
/*
* We always add 1..AES_BLOCK_LEN of padding to the input
* plaintext to round up to a multiple of AES_BLOCK_LEN.
* During encryption, we never output a partially encrypted
* block (that is the amount encrypted by each call of
* C_EncryptUpdate() is always either 0 or n * AES_BLOCK_LEN).
* As a result, at the end of the encryption operation, we
* output AES_BLOCK_LEN bytes of data -- this could be a full
* block of padding, or a combination of data + padding.
*/
out_len = AES_BLOCK_LEN;
break;
case CKM_AES_CTR:
/*
* Since CKM_AES_CTR is a stream cipher, we never buffer any
* input, so we always have 0 remaining bytes of output.
*/
out_len = 0;
break;
case CKM_AES_CCM:
out_len = aes_ctx->ac_remainder_len +
aes_ctx->acu.acu_ccm.ccm_mac_len;
break;
case CKM_AES_GCM:
out_len = aes_ctx->ac_remainder_len +
aes_ctx->acu.acu_gcm.gcm_tag_len;
break;
case CKM_AES_CMAC:
case CKM_AES_CMAC_GENERAL:
out_len = AES_BLOCK_LEN;
break;
default:
/*
* Everything other AES mechansism requires full blocks of
* input. If the input was not an exact multiple of
* AES_BLOCK_LEN, it is a fatal error.
*/
if (aes_ctx->ac_remainder_len > 0) {
rv = CKR_DATA_LEN_RANGE;
goto done;
}
out_len = 0;
}
if (*pulLastEncryptedPartLen < out_len || pLastEncryptedPart == NULL) {
*pulLastEncryptedPartLen = out_len;
return ((pLastEncryptedPart == NULL) ?
CKR_OK : CKR_BUFFER_TOO_SMALL);
}
switch (mech) {
case CKM_AES_CBC_PAD: {
char block[AES_BLOCK_LEN] = { 0 };
size_t padlen = AES_BLOCK_LEN - aes_ctx->ac_remainder_len;
if (padlen == 0) {
padlen = AES_BLOCK_LEN;
}
(void) memset(block, padlen & 0xff, sizeof (block));
rc = aes_encrypt_contiguous_blocks(aes_ctx, block,
padlen, &data);
explicit_bzero(block, sizeof (block));
break;
}
case CKM_AES_CTR:
/*
* Since CKM_AES_CTR is a stream cipher, we never
* buffer any data, and thus have no remaining data
* to output at the end
*/
break;
case CKM_AES_CCM:
rc = ccm_encrypt_final((ccm_ctx_t *)aes_ctx, &data,
AES_BLOCK_LEN, aes_encrypt_block, aes_xor_block);
break;
case CKM_AES_GCM:
rc = gcm_encrypt_final((gcm_ctx_t *)aes_ctx, &data,
AES_BLOCK_LEN, aes_encrypt_block, aes_copy_block,
aes_xor_block);
break;
case CKM_AES_CMAC:
case CKM_AES_CMAC_GENERAL:
rc = cmac_mode_final((cbc_ctx_t *)aes_ctx, &data,
aes_encrypt_block, aes_xor_block);
break;
default:
break;
}
rv = crypto2pkcs11_error_number(rc);
done:
if (rv == CKR_OK) {
*pulLastEncryptedPartLen = data.cd_offset;
}
soft_aes_free_ctx(aes_ctx);
session_p->encrypt.context = NULL;
return (rv);
}
CK_RV
soft_aes_decrypt_final(soft_session_t *session_p, CK_BYTE_PTR pLastPart,
CK_ULONG_PTR pulLastPartLen)
{
aes_ctx_t *aes_ctx = session_p->decrypt.context;
CK_MECHANISM_TYPE mech = session_p->decrypt.mech.mechanism;
CK_RV rv = CKR_OK;
int rc = CRYPTO_SUCCESS;
size_t out_len;
crypto_data_t out = {
.cd_format = CRYPTO_DATA_RAW,
.cd_offset = 0,
.cd_length = *pulLastPartLen,
.cd_raw.iov_base = (char *)pLastPart,
.cd_raw.iov_len = *pulLastPartLen
};
switch (mech) {
case CKM_AES_CBC_PAD:
/*
* PKCS#11 requires that a caller can discover the size of
* the output buffer required by calling
* C_DecryptFinal(hSession, NULL, &len) which sets
* *pulLastPartLen to the size required. However, it also
* allows if one calls C_DecryptFinal with a buffer (i.e.
* pLastPart != NULL) that is too small, to return
* CKR_BUFFER_TOO_SMALL with *pulLastPartLen set to the
* _exact_ size required (when pLastPart is NULL, the
* implementation is allowed to set a 'sightly' larger
* value than is strictly necessary. In either case, the
* caller is allowed to retry the operation (the operation
* is not terminated).
*
* With PKCS#7 padding, we cannot determine the exact size of
* the output until we decrypt the final block. As such, the
* first time for a given decrypt operation we are called,
* we decrypt the final block and stash it in the aes_ctx
* remainder block. On any subsequent calls in the
* current decrypt operation, we then can use the decrypted
* block as necessary to provide the correct semantics.
*
* The cleanup of aes_ctx when the operation terminates
* will take care of clearing out aes_ctx->ac_remainder_len.
*/
if ((aes_ctx->ac_flags & P11_DECRYPTED) == 0) {
uint8_t block[AES_BLOCK_LEN] = { 0 };
crypto_data_t block_out = {
.cd_format = CRYPTO_DATA_RAW,
.cd_offset = 0,
.cd_length = sizeof (block),
.cd_raw.iov_base = (char *)block,
.cd_raw.iov_len = sizeof (block)
};
size_t amt, i;
uint8_t pad_len;
if (aes_ctx->ac_remainder_len != AES_BLOCK_LEN) {
return (CKR_DATA_LEN_RANGE);
}
rc = aes_decrypt_contiguous_blocks(aes_ctx,
(char *)block, 0, &block_out);
if (rc != CRYPTO_SUCCESS) {
explicit_bzero(block, sizeof (block));
return (CKR_FUNCTION_FAILED);
}
pad_len = block[AES_BLOCK_LEN - 1];
/*
* RFC5652 6.3 The amount of padding must be
* block_sz - (len mod block_size). This means
* the amount of padding must always be in the
* range [1..block_size].
*/
if (pad_len == 0 || pad_len > AES_BLOCK_LEN) {
rv = CKR_ENCRYPTED_DATA_INVALID;
explicit_bzero(block, sizeof (block));
goto done;
}
amt = AES_BLOCK_LEN - pad_len;
/*
* Verify the padding is correct. Try to do so
* in as constant a time as possible.
*/
for (i = amt; i < AES_BLOCK_LEN; i++) {
if (block[i] != pad_len) {
rv = CKR_ENCRYPTED_DATA_INVALID;
}
}
if (rv != CKR_OK) {
explicit_bzero(block, sizeof (block));
goto done;
}
bcopy(block, aes_ctx->ac_remainder, amt);
explicit_bzero(block, sizeof (block));
aes_ctx->ac_flags |= P11_DECRYPTED;
aes_ctx->ac_remainder_len = amt;
}
out_len = aes_ctx->ac_remainder_len;
break;
case CKM_AES_CTR:
/*
* Since CKM_AES_CTR is a stream cipher, we never have
* any remaining bytes to output.
*/
out_len = 0;
break;
case CKM_AES_CCM:
out_len = aes_ctx->ac_data_len;
break;
case CKM_AES_GCM:
out_len = aes_ctx->acu.acu_gcm.gcm_processed_data_len -
aes_ctx->acu.acu_gcm.gcm_tag_len;
break;
default:
/*
* The remaining mechanims require an exact multiple of
* AES_BLOCK_LEN of ciphertext. Any other value is an error.
*/
if (aes_ctx->ac_remainder_len > 0) {
rv = CKR_DATA_LEN_RANGE;
goto done;
}
out_len = 0;
break;
}
if (*pulLastPartLen < out_len || pLastPart == NULL) {
*pulLastPartLen = out_len;
return ((pLastPart == NULL) ? CKR_OK : CKR_BUFFER_TOO_SMALL);
}
switch (mech) {
case CKM_AES_CBC_PAD:
*pulLastPartLen = out_len;
if (out_len == 0) {
break;
}
bcopy(aes_ctx->ac_remainder, pLastPart, out_len);
out.cd_offset += out_len;
break;
case CKM_AES_CCM:
ASSERT3U(aes_ctx->ac_processed_data_len, ==, out_len);
ASSERT3U(aes_ctx->ac_processed_mac_len, ==,
aes_ctx->ac_mac_len);
rc = ccm_decrypt_final((ccm_ctx_t *)aes_ctx, &out,
AES_BLOCK_LEN, aes_encrypt_block, aes_copy_block,
aes_xor_block);
break;
case CKM_AES_GCM:
rc = gcm_decrypt_final((gcm_ctx_t *)aes_ctx, &out,
AES_BLOCK_LEN, aes_encrypt_block, aes_xor_block);
break;
default:
break;
}
VERIFY3U(out.cd_offset, ==, out_len);
rv = crypto2pkcs11_error_number(rc);
done:
if (rv == CKR_OK) {
*pulLastPartLen = out.cd_offset;
}
soft_aes_free_ctx(aes_ctx);
session_p->decrypt.context = NULL;
return (rv);
}
/*
* Allocate and initialize AES contexts for sign and verify operations
* (including the underlying encryption context needed to sign or verify) --
* called by C_SignInit() and C_VerifyInit() to perform the CKM_AES_* MAC
* mechanisms. For general-length AES MAC, also validate the MAC length.
*/
CK_RV
soft_aes_sign_verify_init_common(soft_session_t *session_p,
CK_MECHANISM_PTR pMechanism, soft_object_t *key_p, boolean_t sign_op)
{
soft_aes_sign_ctx_t *ctx = NULL;
/* For AES CMAC (the only AES MAC currently), iv is always 0 */
CK_BYTE iv[AES_BLOCK_LEN] = { 0 };
CK_MECHANISM encrypt_mech = {
.mechanism = CKM_AES_CMAC,
.pParameter = iv,
.ulParameterLen = sizeof (iv)
};
CK_RV rv;
size_t mac_len = AES_BLOCK_LEN;
if (key_p->key_type != CKK_AES)
return (CKR_KEY_TYPE_INCONSISTENT);
/* C_{Sign,Verify}Init() validate pMechanism != NULL */
if (pMechanism->mechanism == CKM_AES_CMAC_GENERAL) {
if (pMechanism->pParameter == NULL) {
return (CKR_MECHANISM_PARAM_INVALID);
}
mac_len = *(CK_MAC_GENERAL_PARAMS *)pMechanism->pParameter;
if (mac_len > AES_BLOCK_LEN) {
return (CKR_MECHANISM_PARAM_INVALID);
}
}
ctx = calloc(1, sizeof (*ctx));
if (ctx == NULL) {
return (CKR_HOST_MEMORY);
}
rv = soft_aes_check_mech_param(pMechanism, &ctx->aes_ctx);
if (rv != CKR_OK) {
soft_aes_free_ctx(ctx->aes_ctx);
goto done;
}
if ((rv = soft_encrypt_init_internal(session_p, &encrypt_mech,
key_p)) != CKR_OK) {
soft_aes_free_ctx(ctx->aes_ctx);
goto done;
}
ctx->mac_len = mac_len;
(void) pthread_mutex_lock(&session_p->session_mutex);
if (sign_op) {
session_p->sign.context = ctx;
session_p->sign.mech.mechanism = pMechanism->mechanism;
} else {
session_p->verify.context = ctx;
session_p->verify.mech.mechanism = pMechanism->mechanism;
}
(void) pthread_mutex_unlock(&session_p->session_mutex);
done:
if (rv != CKR_OK) {
soft_aes_free_ctx(ctx->aes_ctx);
free(ctx);
}
return (rv);
}
CK_RV
soft_aes_sign_verify_common(soft_session_t *session_p, CK_BYTE_PTR pData,
CK_ULONG ulDataLen, CK_BYTE_PTR pSigned, CK_ULONG_PTR pulSignedLen,
boolean_t sign_op, boolean_t Final)
{
soft_aes_sign_ctx_t *soft_aes_ctx_sign_verify;
CK_RV rv;
CK_BYTE *pEncrypted = NULL;
CK_ULONG ulEncryptedLen = AES_BLOCK_LEN;
CK_BYTE last_block[AES_BLOCK_LEN];
if (sign_op) {
soft_aes_ctx_sign_verify =
(soft_aes_sign_ctx_t *)session_p->sign.context;
if (soft_aes_ctx_sign_verify->mac_len == 0) {
*pulSignedLen = 0;
goto clean_exit;
}
/* Application asks for the length of the output buffer. */
if (pSigned == NULL) {
*pulSignedLen = soft_aes_ctx_sign_verify->mac_len;
return (CKR_OK);
}
/* Is the application-supplied buffer large enough? */
if (*pulSignedLen < soft_aes_ctx_sign_verify->mac_len) {
*pulSignedLen = soft_aes_ctx_sign_verify->mac_len;
return (CKR_BUFFER_TOO_SMALL);
}
} else {
soft_aes_ctx_sign_verify =
(soft_aes_sign_ctx_t *)session_p->verify.context;
}
if (Final) {
rv = soft_encrypt_final(session_p, last_block,
&ulEncryptedLen);
} else {
rv = soft_encrypt(session_p, pData, ulDataLen,
last_block, &ulEncryptedLen);
}
if (rv == CKR_OK) {
*pulSignedLen = soft_aes_ctx_sign_verify->mac_len;
/* the leftmost mac_len bytes of last_block is our MAC */
(void) memcpy(pSigned, last_block, *pulSignedLen);
}
clean_exit:
(void) pthread_mutex_lock(&session_p->session_mutex);
/* soft_encrypt_common() has freed the encrypt context */
if (sign_op) {
free(session_p->sign.context);
session_p->sign.context = NULL;
} else {
free(session_p->verify.context);
session_p->verify.context = NULL;
}
session_p->encrypt.flags = 0;
(void) pthread_mutex_unlock(&session_p->session_mutex);
if (pEncrypted) {
free(pEncrypted);
}
return (rv);
}
/*
* Called by soft_sign_update()
*/
CK_RV
soft_aes_mac_sign_verify_update(soft_session_t *session_p, CK_BYTE_PTR pPart,
CK_ULONG ulPartLen)
{
CK_BYTE buf[AES_BLOCK_LEN];
CK_ULONG ulEncryptedLen = AES_BLOCK_LEN;
CK_RV rv;
rv = soft_encrypt_update(session_p, pPart, ulPartLen,
buf, &ulEncryptedLen);
explicit_bzero(buf, sizeof (buf));
return (rv);
}
void
soft_aes_free_ctx(aes_ctx_t *ctx)
{
size_t len = 0;
if (ctx == NULL)
return;
if (ctx->ac_flags & ECB_MODE) {
len = sizeof (ecb_ctx_t);
} else if (ctx->ac_flags & (CBC_MODE|CMAC_MODE)) {
len = sizeof (cbc_ctx_t);
} else if (ctx->ac_flags & CTR_MODE) {
len = sizeof (ctr_ctx_t);
} else if (ctx->ac_flags & CCM_MODE) {
len = sizeof (ccm_ctx_t);
} else if (ctx->ac_flags & GCM_MODE) {
len = sizeof (gcm_ctx_t);
}
freezero(ctx->ac_keysched, ctx->ac_keysched_len);
freezero(ctx, len);
}
|