1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
|
/*
* CDDL HEADER START
*
* The contents of this file are subject to the terms of the
* Common Development and Distribution License (the "License").
* You may not use this file except in compliance with the License.
*
* You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
* or http://www.opensolaris.org/os/licensing.
* See the License for the specific language governing permissions
* and limitations under the License.
*
* When distributing Covered Code, include this CDDL HEADER in each
* file and include the License file at usr/src/OPENSOLARIS.LICENSE.
* If applicable, add the following below this CDDL HEADER, with the
* fields enclosed by brackets "[]" replaced with your own identifying
* information: Portions Copyright [yyyy] [name of copyright owner]
*
* CDDL HEADER END
*/
/*
* Copyright (c) 1983, 2010, Oracle and/or its affiliates. All rights reserved.
*/
/* Copyright (c) 1983, 1984, 1985, 1986, 1987, 1988, 1989 AT&T */
/* All Rights Reserved */
/*
* University Copyright- Copyright (c) 1982, 1986, 1988
* The Regents of the University of California
* All Rights Reserved
*
* University Acknowledgment- Portions of this document are derived from
* software developed by the University of California, Berkeley, and its
* contributors.
*/
#include <sys/types.h>
#include <sys/t_lock.h>
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/signal.h>
#include <sys/user.h>
#include <sys/vnode.h>
#include <sys/buf.h>
#include <sys/disp.h>
#include <sys/proc.h>
#include <sys/conf.h>
#include <sys/fs/ufs_inode.h>
#include <sys/fs/ufs_fs.h>
#include <sys/fs/ufs_quota.h>
#include <sys/fs/ufs_trans.h>
#include <sys/fs/ufs_bio.h>
#include <vm/seg.h>
#include <sys/errno.h>
#include <sys/sysmacros.h>
#include <sys/vfs.h>
#include <sys/debug.h>
#include <sys/kmem.h>
#include <sys/cmn_err.h>
/*
* This structure is used to track blocks as we allocate them, so that
* we can free them if we encounter an error during allocation. We
* keep track of five pieces of information for each allocated block:
* - The number of the newly allocated block
* - The size of the block (lets us deal with fragments if we want)
* - The number of the block containing a pointer to it; or whether
* the pointer is in the inode
* - The offset within the block (or inode) containing a pointer to it.
* - A flag indicating the usage of the block. (Logging needs to know
* this to avoid overwriting a data block if it was previously used
* for metadata.)
*/
enum ufs_owner_type {
ufs_no_owner, /* Owner has not yet been updated */
ufs_inode_direct, /* Listed in inode's direct block table */
ufs_inode_indirect, /* Listed in inode's indirect block table */
ufs_indirect_block /* Listed in an indirect block */
};
struct ufs_allocated_block {
daddr_t this_block; /* Number of this block */
off_t block_size; /* Size of this block, in bytes */
enum ufs_owner_type owner; /* Who points to this block? */
daddr_t owner_block; /* Number of the owning block */
uint_t owner_offset; /* Offset within that block or inode */
int usage_flags; /* Usage flags, as expected by free() */
};
static int findextent(struct fs *fs, daddr32_t *sbp, int n, int *lenp,
int maxtrans);
static void ufs_undo_allocation(inode_t *ip, int block_count,
struct ufs_allocated_block table[], int inode_sector_adjust);
/*
* Find the extent and the matching block number.
*
* bsize > PAGESIZE
* boff indicates that we want a page in the middle
* min expression is supposed to make sure no extra page[s] after EOF
* PAGESIZE >= bsize
* we assume that a page is a multiple of bsize, i.e.,
* boff always == 0
*
* We always return a length that is suitable for a disk transfer.
*/
#define DOEXTENT(fs, lbn, boff, bnp, lenp, size, tblp, n, chkfrag, maxtrans) {\
register daddr32_t *dp = (tblp); \
register int _chkfrag = chkfrag; /* for lint. sigh */ \
\
if (*dp == 0) { \
*(bnp) = UFS_HOLE; \
} else { \
register int len; \
\
len = findextent(fs, dp, (int)(n), lenp, maxtrans) << \
(fs)->fs_bshift; \
if (_chkfrag) { \
register u_offset_t tmp; \
\
tmp = fragroundup((fs), size) - \
(((u_offset_t)lbn) << fs->fs_bshift); \
len = (int)MIN(tmp, len); \
} \
len -= (boff); \
if (len <= 0) { \
*(bnp) = UFS_HOLE; \
} else { \
*(bnp) = fsbtodb(fs, *dp) + btodb(boff); \
*(lenp) = len; \
} \
} \
}
/*
* The maximum supported file size is actually somewhat less that 1
* terabyte. This is because the total number of blocks used for the
* file and its metadata must fit into the ic_blocks field of the
* inode, which is a signed 32-bit quantity. The metadata allocated
* for a file (that is, the single, double, and triple indirect blocks
* used to reference the file blocks) is actually quite small,
* but just to make sure, we check for overflow in the ic_blocks
* ic_blocks fields for all files whose total block count is
* within 1 GB of a terabyte. VERYLARGEFILESIZE below is the number of
* 512-byte blocks in a terabyte (2^31), minus the number of 512-byte blocks
* in a gigabyte (2^21). We only check for overflow in the ic_blocks
* field if the number of blocks currently allocated to the file is
* greater than VERYLARGEFILESIZE.
*
* Note that file "size" is the not the same as file "length". A
* file's "size" is the number of blocks allocated to it. A file's
* "length" is the maximum offset in the file. A UFS FILE can have a
* length of a terabyte, but the size is limited to somewhat less than
* a terabyte, as described above.
*/
#define VERYLARGEFILESIZE 0x7FE00000
/*
* bmap{read,write} define the structure of file system storage by mapping
* a logical offset in a file to a physical block number on the device.
* It should be called with a locked inode when allocation is to be
* done (bmap_write). Note this strangeness: bmap_write is always called from
* getpage(), not putpage(), since getpage() is where all the allocation
* is done.
*
* S_READ, S_OTHER -> bmap_read; S_WRITE -> bmap_write.
*
* NOTICE: the block number returned is the disk block number, not the
* file system block number. All the worries about block offsets and
* page/block sizes are hidden inside of bmap. Well, not quite,
* unfortunately. It's impossible to find one place to hide all this
* mess. There are 3 cases:
*
* PAGESIZE < bsize
* In this case, the {get,put}page routines will attempt to align to
* a file system block boundry (XXX - maybe this is a mistake?). Since
* the kluster routines may be out of memory, we don't always get all
* the pages we wanted. If we called bmap first, to find out how much
* to kluster, we handed in the block aligned offset. If we didn't get
* all the pages, we have to chop off the amount we didn't get from the
* amount handed back by bmap.
*
* PAGESIZE == bsize
* Life is quite pleasant here, no extra work needed, mainly because we
* (probably?) won't kluster backwards, just forwards.
*
* PAGESIZE > bsize
* This one has a different set of problems, specifically, we may have to
* do N reads to fill one page. Let us hope that Sun will stay with small
* pages.
*
* Returns 0 on success, or a non-zero errno if an error occurs.
*
* TODO
* LMXXX - add a bmap cache. This could be a couple of extents in the
* inode. Two is nice for PAGESIZE > bsize.
*/
int
bmap_read(struct inode *ip, u_offset_t off, daddr_t *bnp, int *lenp)
{
daddr_t lbn;
ufsvfs_t *ufsvfsp = ip->i_ufsvfs;
struct fs *fs = ufsvfsp->vfs_fs;
struct buf *bp;
int i, j, boff;
int shft; /* we maintain sh = 1 << shft */
daddr_t ob, nb, tbn;
daddr32_t *bap;
int nindirshift, nindiroffset;
ASSERT(RW_LOCK_HELD(&ip->i_contents));
lbn = (daddr_t)lblkno(fs, off);
boff = (int)blkoff(fs, off);
if (lbn < 0)
return (EFBIG);
/*
* The first NDADDR blocks are direct blocks.
*/
if (lbn < NDADDR) {
DOEXTENT(fs, lbn, boff, bnp, lenp,
ip->i_size, &ip->i_db[lbn], NDADDR - lbn, 1,
ufsvfsp->vfs_iotransz);
return (0);
}
nindirshift = ufsvfsp->vfs_nindirshift;
nindiroffset = ufsvfsp->vfs_nindiroffset;
/*
* Determine how many levels of indirection.
*/
shft = 0; /* sh = 1 */
tbn = lbn - NDADDR;
for (j = NIADDR; j > 0; j--) {
longlong_t sh;
shft += nindirshift; /* sh *= nindir */
sh = 1LL << shft;
if (tbn < sh)
break;
tbn -= sh;
}
if (j == 0)
return (EFBIG);
/*
* Fetch the first indirect block.
*/
nb = ip->i_ib[NIADDR - j];
if (nb == 0) {
*bnp = UFS_HOLE;
return (0);
}
/*
* Fetch through the indirect blocks.
*/
for (; j <= NIADDR; j++) {
ob = nb;
bp = UFS_BREAD(ufsvfsp,
ip->i_dev, fsbtodb(fs, ob), fs->fs_bsize);
if (bp->b_flags & B_ERROR) {
brelse(bp);
return (EIO);
}
bap = bp->b_un.b_daddr;
ASSERT(!ufs_indir_badblock(ip, bap));
shft -= nindirshift; /* sh / nindir */
i = (tbn >> shft) & nindiroffset; /* (tbn / sh) % nindir */
nb = bap[i];
if (nb == 0) {
*bnp = UFS_HOLE;
brelse(bp);
return (0);
}
if (j != NIADDR)
brelse(bp);
}
DOEXTENT(fs, lbn, boff, bnp, lenp, ip->i_size, &bap[i],
MIN(NINDIR(fs) - i, (daddr_t)lblkno(fs, ip->i_size - 1) - lbn + 1),
0, ufsvfsp->vfs_iotransz);
brelse(bp);
return (0);
}
/*
* See bmap_read for general notes.
*
* The block must be at least size bytes and will be extended or
* allocated as needed. If alloc_type is of type BI_ALLOC_ONLY, then bmap
* will not create any in-core pages that correspond to the new disk allocation.
* If alloc_type is of BI_FALLOCATE, blocks will be stored as (-1) * block addr
* and security is maintained b/c upon reading a negative block number pages
* are zeroed. For all other allocation types (BI_NORMAL) the in-core pages will
* be created and initialized as needed.
*
* Returns 0 on success, or a non-zero errno if an error occurs.
*/
int
bmap_write(struct inode *ip, u_offset_t off, int size,
enum bi_type alloc_type, daddr_t *allocblk, struct cred *cr)
{
struct fs *fs;
struct buf *bp;
int i;
struct buf *nbp;
int j;
int shft; /* we maintain sh = 1 << shft */
daddr_t ob, nb, pref, lbn, llbn, tbn;
daddr32_t *bap;
struct vnode *vp = ITOV(ip);
long bsize = VBSIZE(vp);
long osize, nsize;
int issync, metaflag, isdirquota;
int err;
dev_t dev;
struct fbuf *fbp;
int nindirshift;
int nindiroffset;
struct ufsvfs *ufsvfsp;
int added_sectors; /* sectors added to this inode */
int alloced_blocks; /* fs blocks newly allocated */
struct ufs_allocated_block undo_table[NIADDR+1];
int verylargefile = 0;
ASSERT(RW_WRITE_HELD(&ip->i_contents));
if (allocblk)
*allocblk = 0;
ufsvfsp = ip->i_ufsvfs;
fs = ufsvfsp->vfs_bufp->b_un.b_fs;
lbn = (daddr_t)lblkno(fs, off);
if (lbn < 0)
return (EFBIG);
if (ip->i_blocks >= VERYLARGEFILESIZE)
verylargefile = 1;
llbn = (daddr_t)((ip->i_size) ? lblkno(fs, ip->i_size - 1) : 0);
metaflag = isdirquota = 0;
if (((ip->i_mode & IFMT) == IFDIR) ||
((ip->i_mode & IFMT) == IFATTRDIR))
isdirquota = metaflag = I_DIR;
else if ((ip->i_mode & IFMT) == IFSHAD)
metaflag = I_SHAD;
else if (ip->i_ufsvfs->vfs_qinod == ip)
isdirquota = metaflag = I_QUOTA;
issync = ((ip->i_flag & ISYNC) != 0);
if (isdirquota || issync) {
alloc_type = BI_NORMAL; /* make sure */
}
/*
* If the next write will extend the file into a new block,
* and the file is currently composed of a fragment
* this fragment has to be extended to be a full block.
*/
if (llbn < NDADDR && llbn < lbn && (ob = ip->i_db[llbn]) != 0) {
osize = blksize(fs, ip, llbn);
if (osize < bsize && osize > 0) {
/*
* Check to see if doing this will make the file too
* big. Only check if we are dealing with a very
* large file.
*/
if (verylargefile == 1) {
if (((unsigned)ip->i_blocks +
btodb(bsize - osize)) > INT_MAX) {
return (EFBIG);
}
}
/*
* Make sure we have all needed pages setup correctly.
*
* We pass S_OTHER to fbread here because we want
* an exclusive lock on the page in question
* (see ufs_getpage). I/O to the old block location
* may still be in progress and we are about to free
* the old block. We don't want anyone else to get
* a hold of the old block once we free it until
* the I/O is complete.
*/
err =
fbread(ITOV(ip), ((offset_t)llbn << fs->fs_bshift),
(uint_t)bsize, S_OTHER, &fbp);
if (err)
return (err);
pref = blkpref(ip, llbn, (int)llbn, &ip->i_db[0]);
err = realloccg(ip, ob, pref, (int)osize, (int)bsize,
&nb, cr);
if (err) {
if (fbp)
fbrelse(fbp, S_OTHER);
return (err);
}
ASSERT(!ufs_badblock(ip, nb));
/*
* Update the inode before releasing the
* lock on the page. If we released the page
* lock first, the data could be written to it's
* old address and then destroyed.
*/
TRANS_MATA_ALLOC(ufsvfsp, ip, nb, bsize, 0);
ip->i_db[llbn] = nb;
UFS_SET_ISIZE(((u_offset_t)(llbn + 1)) << fs->fs_bshift,
ip);
ip->i_blocks += btodb(bsize - osize);
ASSERT((unsigned)ip->i_blocks <= INT_MAX);
TRANS_INODE(ufsvfsp, ip);
ip->i_flag |= IUPD | ICHG | IATTCHG;
/* Caller is responsible for updating i_seq */
/*
* Don't check metaflag here, directories won't do this
*
*/
if (issync) {
(void) ufs_fbiwrite(fbp, ip, nb, fs->fs_fsize);
} else {
ASSERT(fbp);
fbrelse(fbp, S_WRITE);
}
if (nb != ob) {
(void) free(ip, ob, (off_t)osize, metaflag);
}
}
}
/*
* The first NDADDR blocks are direct blocks.
*/
if (lbn < NDADDR) {
nb = ip->i_db[lbn];
if (nb == 0 ||
ip->i_size < ((u_offset_t)(lbn + 1)) << fs->fs_bshift) {
if (nb != 0) {
/* consider need to reallocate a frag */
osize = fragroundup(fs, blkoff(fs, ip->i_size));
nsize = fragroundup(fs, size);
if (nsize <= osize)
goto gotit;
/*
* Check to see if doing this will make the
* file too big. Only check if we are dealing
* with a very large file.
*/
if (verylargefile == 1) {
if (((unsigned)ip->i_blocks +
btodb(nsize - osize)) > INT_MAX) {
return (EFBIG);
}
}
/*
* need to re-allocate a block or frag
*/
ob = nb;
pref = blkpref(ip, lbn, (int)lbn,
&ip->i_db[0]);
err = realloccg(ip, ob, pref, (int)osize,
(int)nsize, &nb, cr);
if (err)
return (err);
if (allocblk)
*allocblk = nb;
ASSERT(!ufs_badblock(ip, nb));
} else {
/*
* need to allocate a block or frag
*/
osize = 0;
if (ip->i_size <
((u_offset_t)(lbn + 1)) << fs->fs_bshift)
nsize = fragroundup(fs, size);
else
nsize = bsize;
/*
* Check to see if doing this will make the
* file too big. Only check if we are dealing
* with a very large file.
*/
if (verylargefile == 1) {
if (((unsigned)ip->i_blocks +
btodb(nsize - osize)) > INT_MAX) {
return (EFBIG);
}
}
pref = blkpref(ip, lbn, (int)lbn, &ip->i_db[0]);
err = alloc(ip, pref, (int)nsize, &nb, cr);
if (err)
return (err);
if (allocblk)
*allocblk = nb;
ASSERT(!ufs_badblock(ip, nb));
ob = nb;
}
/*
* Read old/create new zero pages
*/
fbp = NULL;
if (osize == 0) {
/*
* mmap S_WRITE faults always enter here
*/
/*
* We zero it if its also BI_FALLOCATE, but
* only for direct blocks!
*/
if (alloc_type == BI_NORMAL ||
alloc_type == BI_FALLOCATE ||
P2ROUNDUP_TYPED(size,
PAGESIZE, u_offset_t) < nsize) {
/* fbzero doesn't cause a pagefault */
fbzero(ITOV(ip),
((offset_t)lbn << fs->fs_bshift),
(uint_t)nsize, &fbp);
}
} else {
err = fbread(vp,
((offset_t)lbn << fs->fs_bshift),
(uint_t)nsize, S_OTHER, &fbp);
if (err) {
if (nb != ob) {
(void) free(ip, nb,
(off_t)nsize, metaflag);
} else {
(void) free(ip,
ob + numfrags(fs, osize),
(off_t)(nsize - osize),
metaflag);
}
ASSERT(nsize >= osize);
(void) chkdq(ip,
-(long)btodb(nsize - osize),
0, cr, (char **)NULL,
(size_t *)NULL);
return (err);
}
}
TRANS_MATA_ALLOC(ufsvfsp, ip, nb, nsize, 0);
ip->i_db[lbn] = nb;
ip->i_blocks += btodb(nsize - osize);
ASSERT((unsigned)ip->i_blocks <= INT_MAX);
TRANS_INODE(ufsvfsp, ip);
ip->i_flag |= IUPD | ICHG | IATTCHG;
/* Caller is responsible for updating i_seq */
/*
* Write directory and shadow blocks synchronously so
* that they never appear with garbage in them on the
* disk.
*
*/
if (isdirquota && (ip->i_size ||
TRANS_ISTRANS(ufsvfsp))) {
/*
* XXX man not be necessary with harpy trans
* bug id 1130055
*/
(void) ufs_fbiwrite(fbp, ip, nb, fs->fs_fsize);
} else if (fbp) {
fbrelse(fbp, S_WRITE);
}
if (nb != ob)
(void) free(ip, ob, (off_t)osize, metaflag);
}
gotit:
return (0);
}
added_sectors = alloced_blocks = 0; /* No blocks alloced yet */
/*
* Determine how many levels of indirection.
*/
nindirshift = ip->i_ufsvfs->vfs_nindirshift;
nindiroffset = ip->i_ufsvfs->vfs_nindiroffset;
pref = 0;
shft = 0; /* sh = 1 */
tbn = lbn - NDADDR;
for (j = NIADDR; j > 0; j--) {
longlong_t sh;
shft += nindirshift; /* sh *= nindir */
sh = 1LL << shft;
if (tbn < sh)
break;
tbn -= sh;
}
if (j == 0)
return (EFBIG);
/*
* Fetch the first indirect block.
*/
dev = ip->i_dev;
nb = ip->i_ib[NIADDR - j];
if (nb == 0) {
/*
* Check to see if doing this will make the
* file too big. Only check if we are dealing
* with a very large file.
*/
if (verylargefile == 1) {
if (((unsigned)ip->i_blocks + btodb(bsize))
> INT_MAX) {
return (EFBIG);
}
}
/*
* Need to allocate an indirect block.
*/
pref = blkpref(ip, lbn, 0, (daddr32_t *)0);
err = alloc(ip, pref, (int)bsize, &nb, cr);
if (err)
return (err);
TRANS_MATA_ALLOC(ufsvfsp, ip, nb, bsize, 1);
ASSERT(!ufs_badblock(ip, nb));
/*
* Keep track of this allocation so we can undo it if we
* get an error later.
*/
ASSERT(alloced_blocks <= NIADDR);
undo_table[alloced_blocks].this_block = nb;
undo_table[alloced_blocks].block_size = bsize;
undo_table[alloced_blocks].owner = ufs_no_owner;
undo_table[alloced_blocks].usage_flags = metaflag | I_IBLK;
alloced_blocks++;
/*
* Write zero block synchronously so that
* indirect blocks never point at garbage.
*/
bp = UFS_GETBLK(ufsvfsp, dev, fsbtodb(fs, nb), bsize);
clrbuf(bp);
/* XXX Maybe special-case this? */
TRANS_BUF(ufsvfsp, 0, bsize, bp, DT_ABZERO);
UFS_BWRITE2(ufsvfsp, bp);
if (bp->b_flags & B_ERROR) {
err = geterror(bp);
brelse(bp);
ufs_undo_allocation(ip, alloced_blocks,
undo_table, added_sectors);
return (err);
}
brelse(bp);
ip->i_ib[NIADDR - j] = nb;
added_sectors += btodb(bsize);
ip->i_blocks += btodb(bsize);
ASSERT((unsigned)ip->i_blocks <= INT_MAX);
TRANS_INODE(ufsvfsp, ip);
ip->i_flag |= IUPD | ICHG | IATTCHG;
/* Caller is responsible for updating i_seq */
/*
* Update the 'undo table' now that we've linked this block
* to an inode.
*/
undo_table[alloced_blocks-1].owner = ufs_inode_indirect;
undo_table[alloced_blocks-1].owner_offset = NIADDR - j;
/*
* In the ISYNC case, wrip will notice that the block
* count on the inode has changed and will be sure to
* ufs_iupdat the inode at the end of wrip.
*/
}
/*
* Fetch through the indirect blocks.
*/
for (; j <= NIADDR; j++) {
ob = nb;
bp = UFS_BREAD(ufsvfsp, ip->i_dev, fsbtodb(fs, ob), bsize);
if (bp->b_flags & B_ERROR) {
err = geterror(bp);
brelse(bp);
/*
* Return any partial allocations.
*
* It is possible that we have not yet made any
* allocations at this point (if this is the first
* pass through the loop and we didn't have to
* allocate the first indirect block, above).
* In this case, alloced_blocks and added_sectors will
* be zero, and ufs_undo_allocation will do nothing.
*/
ufs_undo_allocation(ip, alloced_blocks,
undo_table, added_sectors);
return (err);
}
bap = bp->b_un.b_daddr;
shft -= nindirshift; /* sh /= nindir */
i = (tbn >> shft) & nindiroffset; /* (tbn / sh) % nindir */
nb = bap[i];
if (nb == 0) {
/*
* Check to see if doing this will make the
* file too big. Only check if we are dealing
* with a very large file.
*/
if (verylargefile == 1) {
if (((unsigned)ip->i_blocks + btodb(bsize))
> INT_MAX) {
brelse(bp);
ufs_undo_allocation(ip, alloced_blocks,
undo_table, added_sectors);
return (EFBIG);
}
}
if (pref == 0) {
if (j < NIADDR) {
/* Indirect block */
pref = blkpref(ip, lbn, 0,
(daddr32_t *)0);
} else {
/* Data block */
pref = blkpref(ip, lbn, i, &bap[0]);
}
}
/*
* release "bp" buf to avoid deadlock (re-bread later)
*/
brelse(bp);
err = alloc(ip, pref, (int)bsize, &nb, cr);
if (err) {
/*
* Return any partial allocations.
*/
ufs_undo_allocation(ip, alloced_blocks,
undo_table, added_sectors);
return (err);
}
ASSERT(!ufs_badblock(ip, nb));
ASSERT(alloced_blocks <= NIADDR);
if (allocblk)
*allocblk = nb;
undo_table[alloced_blocks].this_block = nb;
undo_table[alloced_blocks].block_size = bsize;
undo_table[alloced_blocks].owner = ufs_no_owner;
undo_table[alloced_blocks].usage_flags = metaflag |
((j < NIADDR) ? I_IBLK : 0);
alloced_blocks++;
if (j < NIADDR) {
TRANS_MATA_ALLOC(ufsvfsp, ip, nb, bsize, 1);
/*
* Write synchronously so indirect
* blocks never point at garbage.
*/
nbp = UFS_GETBLK(
ufsvfsp, dev, fsbtodb(fs, nb), bsize);
clrbuf(nbp);
/* XXX Maybe special-case this? */
TRANS_BUF(ufsvfsp, 0, bsize, nbp, DT_ABZERO);
UFS_BWRITE2(ufsvfsp, nbp);
if (nbp->b_flags & B_ERROR) {
err = geterror(nbp);
brelse(nbp);
/*
* Return any partial
* allocations.
*/
ufs_undo_allocation(ip,
alloced_blocks,
undo_table, added_sectors);
return (err);
}
brelse(nbp);
} else if (alloc_type == BI_NORMAL ||
P2ROUNDUP_TYPED(size,
PAGESIZE, u_offset_t) < bsize) {
TRANS_MATA_ALLOC(ufsvfsp, ip, nb, bsize, 0);
fbzero(ITOV(ip),
((offset_t)lbn << fs->fs_bshift),
(uint_t)bsize, &fbp);
/*
* Cases which we need to do a synchronous
* write of the zeroed data pages:
*
* 1) If we are writing a directory then we
* want to write synchronously so blocks in
* directories never contain garbage.
*
* 2) If we are filling in a hole and the
* indirect block is going to be synchronously
* written back below we need to make sure
* that the zeroes are written here before
* the indirect block is updated so that if
* we crash before the real data is pushed
* we will not end up with random data is
* the middle of the file.
*
* 3) If the size of the request rounded up
* to the system page size is smaller than
* the file system block size, we want to
* write out all the pages now so that
* they are not aborted before they actually
* make it to ufs_putpage since the length
* of the inode will not include the pages.
*/
if (isdirquota || (issync &&
lbn < llbn))
(void) ufs_fbiwrite(fbp, ip, nb,
fs->fs_fsize);
else
fbrelse(fbp, S_WRITE);
}
/*
* re-acquire "bp" buf
*/
bp = UFS_BREAD(ufsvfsp,
ip->i_dev, fsbtodb(fs, ob), bsize);
if (bp->b_flags & B_ERROR) {
err = geterror(bp);
brelse(bp);
/*
* Return any partial allocations.
*/
ufs_undo_allocation(ip,
alloced_blocks,
undo_table, added_sectors);
return (err);
}
bap = bp->b_un.b_daddr;
bap[i] = nb;
/*
* The magic explained: j will be equal to NIADDR
* when we are at the lowest level, this is where the
* array entries point directly to data blocks. Since
* we will be 'fallocate'ing we will go ahead and negate
* the addresses.
*/
if (alloc_type == BI_FALLOCATE && j == NIADDR)
bap[i] = -bap[i];
TRANS_BUF_ITEM_128(ufsvfsp, bap[i], bap, bp, DT_AB);
added_sectors += btodb(bsize);
ip->i_blocks += btodb(bsize);
ASSERT((unsigned)ip->i_blocks <= INT_MAX);
TRANS_INODE(ufsvfsp, ip);
ip->i_flag |= IUPD | ICHG | IATTCHG;
/* Caller is responsible for updating i_seq */
undo_table[alloced_blocks-1].owner =
ufs_indirect_block;
undo_table[alloced_blocks-1].owner_block = ob;
undo_table[alloced_blocks-1].owner_offset = i;
if (issync) {
UFS_BWRITE2(ufsvfsp, bp);
if (bp->b_flags & B_ERROR) {
err = geterror(bp);
brelse(bp);
/*
* Return any partial
* allocations.
*/
ufs_undo_allocation(ip,
alloced_blocks,
undo_table, added_sectors);
return (err);
}
brelse(bp);
} else {
bdrwrite(bp);
}
} else {
brelse(bp);
}
}
return (0);
}
/*
* Return 1 if inode has unmapped blocks (UFS holes) or if another thread
* is in the critical region of wrip().
*/
int
bmap_has_holes(struct inode *ip)
{
struct fs *fs = ip->i_fs;
uint_t dblks; /* # of data blocks */
uint_t mblks; /* # of data + metadata blocks */
int nindirshift;
int nindiroffset;
uint_t cnt;
int n, j, shft;
uint_t nindirblks;
int fsbshift = fs->fs_bshift;
int fsboffset = (1 << fsbshift) - 1;
/*
* Check for writer in critical region, if found then we
* cannot trust the values of i_size and i_blocks
* simply return true.
*/
if (ip->i_writer != NULL && ip->i_writer != curthread) {
return (1);
}
dblks = (ip->i_size + fsboffset) >> fsbshift;
mblks = (ldbtob((u_offset_t)ip->i_blocks) + fsboffset) >> fsbshift;
/*
* File has only direct blocks.
*/
if (dblks <= NDADDR)
return (mblks < dblks);
nindirshift = ip->i_ufsvfs->vfs_nindirshift;
nindiroffset = ip->i_ufsvfs->vfs_nindiroffset;
nindirblks = nindiroffset + 1;
dblks -= NDADDR;
shft = 0;
/*
* Determine how many levels of indirection.
*/
for (j = NIADDR; j > 0; j--) {
longlong_t sh;
shft += nindirshift; /* sh *= nindir */
sh = 1LL << shft;
if (dblks <= sh)
break;
dblks -= sh;
}
/* LINTED: warning: logical expression always true: op "||" */
ASSERT(NIADDR <= 3);
ASSERT(j <= NIADDR);
if (j == NIADDR) /* single level indirection */
cnt = NDADDR + 1 + dblks;
else if (j == NIADDR-1) /* double indirection */
cnt = NDADDR + 1 + nindirblks +
1 + (dblks + nindiroffset)/nindirblks + dblks;
else if (j == NIADDR-2) { /* triple indirection */
n = (dblks + nindiroffset)/nindirblks;
cnt = NDADDR + 1 + nindirblks +
1 + nindirblks + nindirblks*nindirblks +
1 + (n + nindiroffset)/nindirblks + n + dblks;
}
return (mblks < cnt);
}
/*
* find some contig blocks starting at *sbp and going for min(n, max_contig)
* return the number of blocks (not frags) found.
* The array passed in must be at least [0..n-1].
*/
static int
findextent(struct fs *fs, daddr32_t *sbp, int n, int *lenp, int maxtransfer)
{
register daddr_t bn, nextbn;
register daddr32_t *bp;
register int diff;
int maxtransblk;
if (n <= 0)
return (0);
bn = *sbp;
if (bn == 0)
return (0);
diff = fs->fs_frag;
if (*lenp) {
n = MIN(n, lblkno(fs, *lenp));
} else {
/*
* If the user has set the value for maxcontig lower than
* the drive transfer size, then assume they want this
* to be the maximum value for the size of the data transfer.
*/
maxtransblk = maxtransfer >> DEV_BSHIFT;
if (fs->fs_maxcontig < maxtransblk) {
n = MIN(n, fs->fs_maxcontig);
} else {
n = MIN(n, maxtransblk);
}
}
bp = sbp;
while (--n > 0) {
nextbn = *(bp + 1);
if (nextbn == 0 || bn + diff != nextbn)
break;
bn = nextbn;
bp++;
}
return ((int)(bp - sbp) + 1);
}
/*
* Free any blocks which had been successfully allocated. Always called
* as a result of an error, so we don't bother returning an error code
* from here.
*
* If block_count and inode_sector_adjust are both zero, we'll do nothing.
* Thus it is safe to call this as part of error handling, whether or not
* any blocks have been allocated.
*
* The ufs_inode_direct case is currently unused.
*/
static void
ufs_undo_allocation(
inode_t *ip,
int block_count,
struct ufs_allocated_block table[],
int inode_sector_adjust)
{
int i;
int inode_changed;
int error_updating_pointers;
struct ufsvfs *ufsvfsp;
inode_changed = 0;
error_updating_pointers = 0;
ufsvfsp = ip->i_ufsvfs;
/*
* Update pointers on disk before freeing blocks. If we fail,
* some blocks may remain busy; but they will be reclaimed by
* an fsck. (This is better than letting a block wind up with
* two owners if we successfully freed it but could not remove
* the pointer to it.)
*/
for (i = 0; i < block_count; i++) {
switch (table[i].owner) {
case ufs_no_owner:
/* Nothing to do here, nobody points to us */
break;
case ufs_inode_direct:
ASSERT(table[i].owner_offset < NDADDR);
ip->i_db[table[i].owner_offset] = 0;
inode_changed = 1;
break;
case ufs_inode_indirect:
ASSERT(table[i].owner_offset < NIADDR);
ip->i_ib[table[i].owner_offset] = 0;
inode_changed = 1;
break;
case ufs_indirect_block: {
buf_t *bp;
daddr32_t *block_data;
/* Read/modify/log/write. */
ASSERT(table[i].owner_offset <
(VBSIZE(ITOV(ip)) / sizeof (daddr32_t)));
bp = UFS_BREAD(ufsvfsp, ip->i_dev,
fsbtodb(ufsvfsp->vfs_fs, table[i].owner_block),
VBSIZE(ITOV(ip)));
if (bp->b_flags & B_ERROR) {
/* Couldn't read this block; give up. */
error_updating_pointers = 1;
brelse(bp);
break; /* out of SWITCH */
}
block_data = bp->b_un.b_daddr;
block_data[table[i].owner_offset] = 0;
/* Write a log entry which includes the zero. */
/* It might be possible to optimize this by using */
/* TRANS_BUF directly and zeroing only the four */
/* bytes involved, but an attempt to do that led */
/* to panics in the logging code. The attempt was */
/* TRANS_BUF(ufsvfsp, */
/* table[i].owner_offset * sizeof (daddr32_t), */
/* sizeof (daddr32_t), */
/* bp, */
/* DT_ABZERO); */
TRANS_BUF_ITEM_128(ufsvfsp,
block_data[table[i].owner_offset],
block_data, bp, DT_AB);
/* Now we can write the buffer itself. */
UFS_BWRITE2(ufsvfsp, bp);
if (bp->b_flags & B_ERROR) {
error_updating_pointers = 1;
}
brelse(bp);
break;
}
default:
(void) ufs_fault(ITOV(ip),
"ufs_undo_allocation failure\n");
break;
}
}
/*
* If the inode changed, or if we need to update its block count,
* then do that now. We update the inode synchronously on disk
* to ensure that it won't transiently point at a block we've
* freed (only necessary if we're not logging).
*
* NOTE: Currently ufs_iupdat() does not check for errors. When
* it is fixed, we should verify that we successfully updated the
* inode before freeing blocks below.
*/
if (inode_changed || (inode_sector_adjust != 0)) {
ip->i_blocks -= inode_sector_adjust;
ASSERT((unsigned)ip->i_blocks <= INT_MAX);
TRANS_INODE(ufsvfsp, ip);
ip->i_flag |= IUPD | ICHG | IATTCHG;
ip->i_seq++;
if (!TRANS_ISTRANS(ufsvfsp))
ufs_iupdat(ip, I_SYNC);
}
/*
* Now we go through and actually free the blocks, but only if we
* successfully removed the pointers to them.
*/
if (!error_updating_pointers) {
for (i = 0; i < block_count; i++) {
free(ip, table[i].this_block, table[i].block_size,
table[i].usage_flags);
}
}
}
/*
* Find the next hole or data block in file starting at *off
* Return found offset in *off, which can be less than the
* starting offset if not block aligned.
* This code is based on bmap_read().
* Errors: ENXIO for end of file
* EIO for block read error.
*/
int
bmap_find(struct inode *ip, boolean_t hole, u_offset_t *off)
{
ufsvfs_t *ufsvfsp = ip->i_ufsvfs;
struct fs *fs = ufsvfsp->vfs_fs;
buf_t *bp[NIADDR];
int i, j;
int shft; /* we maintain sh = 1 << shft */
int nindirshift, nindiroffset;
daddr_t ob, nb, tbn, lbn, skip;
daddr32_t *bap;
u_offset_t isz = (offset_t)ip->i_size;
int32_t bs = fs->fs_bsize; /* file system block size */
int32_t nindir = fs->fs_nindir;
dev_t dev;
int error = 0;
daddr_t limits[NIADDR];
ASSERT(*off < isz);
ASSERT(RW_LOCK_HELD(&ip->i_contents));
lbn = (daddr_t)lblkno(fs, *off);
ASSERT(lbn >= 0);
for (i = 0; i < NIADDR; i++)
bp[i] = NULL;
/*
* The first NDADDR blocks are direct blocks.
*/
if (lbn < NDADDR) {
for (; lbn < NDADDR; lbn++) {
if ((hole && (ip->i_db[lbn] == 0)) ||
(!hole && (ip->i_db[lbn] != 0))) {
goto out;
}
}
if ((u_offset_t)lbn << fs->fs_bshift >= isz)
goto out;
}
nindir = fs->fs_nindir;
nindirshift = ufsvfsp->vfs_nindirshift;
nindiroffset = ufsvfsp->vfs_nindiroffset;
dev = ip->i_dev;
/* Set up limits array */
for (limits[0] = NDADDR, j = 1; j < NIADDR; j++)
limits[j] = limits[j-1] + (1ULL << (nindirshift * j));
loop:
/*
* Determine how many levels of indirection.
*/
shft = 0; /* sh = 1 */
tbn = lbn - NDADDR;
for (j = NIADDR; j > 0; j--) {
longlong_t sh;
shft += nindirshift; /* sh *= nindir */
sh = 1LL << shft;
if (tbn < sh)
break;
tbn -= sh;
}
if (j == 0) {
/* must have passed end of file */
ASSERT(((u_offset_t)lbn << fs->fs_bshift) >= isz);
goto out;
}
/*
* Fetch the first indirect block.
*/
nb = ip->i_ib[NIADDR - j];
if (nb == 0) {
if (hole) {
lbn = limits[NIADDR - j];
goto out;
} else {
lbn = limits[NIADDR - j + 1];
if ((u_offset_t)lbn << fs->fs_bshift >= isz)
goto out;
goto loop;
}
}
/*
* Fetch through the indirect blocks.
*/
for (; ((j <= NIADDR) && (nb != 0)); j++) {
ob = nb;
/*
* if there's a different block at this level then release
* the old one and in with the new.
*/
if ((bp[j-1] == NULL) || bp[j-1]->b_blkno != fsbtodb(fs, ob)) {
if (bp[j-1] != NULL)
brelse(bp[j-1]);
bp[j-1] = UFS_BREAD(ufsvfsp, dev, fsbtodb(fs, ob), bs);
if (bp[j-1]->b_flags & B_ERROR) {
error = EIO;
goto out;
}
}
bap = bp[j-1]->b_un.b_daddr;
shft -= nindirshift; /* sh / nindir */
i = (tbn >> shft) & nindiroffset; /* (tbn / sh) % nindir */
nb = bap[i];
skip = 1LL << (nindirshift * (NIADDR - j));
}
/*
* Scan through the blocks in this array.
*/
for (; i < nindir; i++, lbn += skip) {
if (hole && (bap[i] == 0))
goto out;
if (!hole && (bap[i] != 0)) {
if (skip == 1) {
/* we're at the lowest level */
goto out;
} else {
goto loop;
}
}
}
if (((u_offset_t)lbn << fs->fs_bshift) < isz)
goto loop;
out:
for (i = 0; i < NIADDR; i++) {
if (bp[i])
brelse(bp[i]);
}
if (error == 0) {
if (((u_offset_t)lbn << fs->fs_bshift) >= isz) {
error = ENXIO;
} else {
/* success */
*off = (u_offset_t)lbn << fs->fs_bshift;
}
}
return (error);
}
/*
* Set a particular offset in the inode list to be a certain block.
* User is responsible for calling TRANS* functions
*/
int
bmap_set_bn(struct vnode *vp, u_offset_t off, daddr32_t bn)
{
daddr_t lbn;
struct inode *ip;
ufsvfs_t *ufsvfsp;
struct fs *fs;
struct buf *bp;
int i, j;
int shft; /* we maintain sh = 1 << shft */
int err;
daddr_t ob, nb, tbn;
daddr32_t *bap;
int nindirshift, nindiroffset;
ip = VTOI(vp);
ufsvfsp = ip->i_ufsvfs;
fs = ufsvfsp->vfs_fs;
lbn = (daddr_t)lblkno(fs, off);
ASSERT(RW_LOCK_HELD(&ip->i_contents));
if (lbn < 0)
return (EFBIG);
/*
* Take care of direct block assignment
*/
if (lbn < NDADDR) {
ip->i_db[lbn] = bn;
return (0);
}
nindirshift = ip->i_ufsvfs->vfs_nindirshift;
nindiroffset = ip->i_ufsvfs->vfs_nindiroffset;
/*
* Determine how many levels of indirection.
*/
shft = 0; /* sh = 1 */
tbn = lbn - NDADDR;
for (j = NIADDR; j > 0; j--) {
longlong_t sh;
shft += nindirshift; /* sh *= nindir */
sh = 1LL << shft;
if (tbn < sh)
break;
tbn -= sh;
}
if (j == 0)
return (EFBIG);
/*
* Fetch the first indirect block.
*/
nb = ip->i_ib[NIADDR - j];
if (nb == 0) {
err = ufs_fault(ITOV(ip), "ufs_set_bn: nb == UFS_HOLE");
return (err);
}
/*
* Fetch through the indirect blocks.
*/
for (; j <= NIADDR; j++) {
ob = nb;
bp = UFS_BREAD(ufsvfsp,
ip->i_dev, fsbtodb(fs, ob), fs->fs_bsize);
if (bp->b_flags & B_ERROR) {
err = geterror(bp);
brelse(bp);
return (err);
}
bap = bp->b_un.b_daddr;
ASSERT(!ufs_indir_badblock(ip, bap));
shft -= nindirshift; /* sh / nindir */
i = (tbn >> shft) & nindiroffset; /* (tbn / sh) % nindir */
nb = bap[i];
if (nb == 0) {
err = ufs_fault(ITOV(ip), "ufs_set_bn: nb == UFS_HOLE");
return (err);
}
if (j == NIADDR) {
bap[i] = bn;
bdrwrite(bp);
return (0);
}
brelse(bp);
}
return (0);
}
|