summaryrefslogtreecommitdiff
path: root/usr/src/uts/common/fs/zfs/vdev_label.c
blob: 097fe26723302d91e1b0f58cca1c2f772d950f7d (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
/*
 * CDDL HEADER START
 *
 * The contents of this file are subject to the terms of the
 * Common Development and Distribution License (the "License").
 * You may not use this file except in compliance with the License.
 *
 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
 * or http://www.opensolaris.org/os/licensing.
 * See the License for the specific language governing permissions
 * and limitations under the License.
 *
 * When distributing Covered Code, include this CDDL HEADER in each
 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
 * If applicable, add the following below this CDDL HEADER, with the
 * fields enclosed by brackets "[]" replaced with your own identifying
 * information: Portions Copyright [yyyy] [name of copyright owner]
 *
 * CDDL HEADER END
 */
/*
 * Copyright 2008 Sun Microsystems, Inc.  All rights reserved.
 * Use is subject to license terms.
 */

#pragma ident	"%Z%%M%	%I%	%E% SMI"

/*
 * Virtual Device Labels
 * ---------------------
 *
 * The vdev label serves several distinct purposes:
 *
 *	1. Uniquely identify this device as part of a ZFS pool and confirm its
 *	   identity within the pool.
 *
 * 	2. Verify that all the devices given in a configuration are present
 *         within the pool.
 *
 * 	3. Determine the uberblock for the pool.
 *
 * 	4. In case of an import operation, determine the configuration of the
 *         toplevel vdev of which it is a part.
 *
 * 	5. If an import operation cannot find all the devices in the pool,
 *         provide enough information to the administrator to determine which
 *         devices are missing.
 *
 * It is important to note that while the kernel is responsible for writing the
 * label, it only consumes the information in the first three cases.  The
 * latter information is only consumed in userland when determining the
 * configuration to import a pool.
 *
 *
 * Label Organization
 * ------------------
 *
 * Before describing the contents of the label, it's important to understand how
 * the labels are written and updated with respect to the uberblock.
 *
 * When the pool configuration is altered, either because it was newly created
 * or a device was added, we want to update all the labels such that we can deal
 * with fatal failure at any point.  To this end, each disk has two labels which
 * are updated before and after the uberblock is synced.  Assuming we have
 * labels and an uberblock with the following transaction groups:
 *
 *              L1          UB          L2
 *           +------+    +------+    +------+
 *           |      |    |      |    |      |
 *           | t10  |    | t10  |    | t10  |
 *           |      |    |      |    |      |
 *           +------+    +------+    +------+
 *
 * In this stable state, the labels and the uberblock were all updated within
 * the same transaction group (10).  Each label is mirrored and checksummed, so
 * that we can detect when we fail partway through writing the label.
 *
 * In order to identify which labels are valid, the labels are written in the
 * following manner:
 *
 * 	1. For each vdev, update 'L1' to the new label
 * 	2. Update the uberblock
 * 	3. For each vdev, update 'L2' to the new label
 *
 * Given arbitrary failure, we can determine the correct label to use based on
 * the transaction group.  If we fail after updating L1 but before updating the
 * UB, we will notice that L1's transaction group is greater than the uberblock,
 * so L2 must be valid.  If we fail after writing the uberblock but before
 * writing L2, we will notice that L2's transaction group is less than L1, and
 * therefore L1 is valid.
 *
 * Another added complexity is that not every label is updated when the config
 * is synced.  If we add a single device, we do not want to have to re-write
 * every label for every device in the pool.  This means that both L1 and L2 may
 * be older than the pool uberblock, because the necessary information is stored
 * on another vdev.
 *
 *
 * On-disk Format
 * --------------
 *
 * The vdev label consists of two distinct parts, and is wrapped within the
 * vdev_label_t structure.  The label includes 8k of padding to permit legacy
 * VTOC disk labels, but is otherwise ignored.
 *
 * The first half of the label is a packed nvlist which contains pool wide
 * properties, per-vdev properties, and configuration information.  It is
 * described in more detail below.
 *
 * The latter half of the label consists of a redundant array of uberblocks.
 * These uberblocks are updated whenever a transaction group is committed,
 * or when the configuration is updated.  When a pool is loaded, we scan each
 * vdev for the 'best' uberblock.
 *
 *
 * Configuration Information
 * -------------------------
 *
 * The nvlist describing the pool and vdev contains the following elements:
 *
 * 	version		ZFS on-disk version
 * 	name		Pool name
 * 	state		Pool state
 * 	txg		Transaction group in which this label was written
 * 	pool_guid	Unique identifier for this pool
 * 	vdev_tree	An nvlist describing vdev tree.
 *
 * Each leaf device label also contains the following:
 *
 * 	top_guid	Unique ID for top-level vdev in which this is contained
 * 	guid		Unique ID for the leaf vdev
 *
 * The 'vs' configuration follows the format described in 'spa_config.c'.
 */

#include <sys/zfs_context.h>
#include <sys/spa.h>
#include <sys/spa_impl.h>
#include <sys/dmu.h>
#include <sys/zap.h>
#include <sys/vdev.h>
#include <sys/vdev_impl.h>
#include <sys/uberblock_impl.h>
#include <sys/metaslab.h>
#include <sys/zio.h>
#include <sys/fs/zfs.h>

/*
 * Basic routines to read and write from a vdev label.
 * Used throughout the rest of this file.
 */
uint64_t
vdev_label_offset(uint64_t psize, int l, uint64_t offset)
{
	ASSERT(offset < sizeof (vdev_label_t));
	ASSERT(P2PHASE_TYPED(psize, sizeof (vdev_label_t), uint64_t) == 0);

	return (offset + l * sizeof (vdev_label_t) + (l < VDEV_LABELS / 2 ?
	    0 : psize - VDEV_LABELS * sizeof (vdev_label_t)));
}

/*
 * Returns back the vdev label associated with the passed in offset.
 */
int
vdev_label_number(uint64_t psize, uint64_t offset)
{
	int l;

	if (offset >= psize - VDEV_LABEL_END_SIZE) {
		offset -= psize - VDEV_LABEL_END_SIZE;
		offset += (VDEV_LABELS / 2) * sizeof (vdev_label_t);
	}
	l = offset / sizeof (vdev_label_t);
	return (l < VDEV_LABELS ? l : -1);
}

static void
vdev_label_read(zio_t *zio, vdev_t *vd, int l, void *buf, uint64_t offset,
	uint64_t size, zio_done_func_t *done, void *private)
{
	ASSERT(vd->vdev_children == 0);

	zio_nowait(zio_read_phys(zio, vd,
	    vdev_label_offset(vd->vdev_psize, l, offset),
	    size, buf, ZIO_CHECKSUM_LABEL, done, private,
	    ZIO_PRIORITY_SYNC_READ,
	    ZIO_FLAG_CONFIG_HELD | ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE,
	    B_TRUE));
}

static void
vdev_label_write(zio_t *zio, vdev_t *vd, int l, void *buf, uint64_t offset,
	uint64_t size, zio_done_func_t *done, void *private, int flags)
{
	ASSERT(vd->vdev_children == 0);

	zio_nowait(zio_write_phys(zio, vd,
	    vdev_label_offset(vd->vdev_psize, l, offset),
	    size, buf, ZIO_CHECKSUM_LABEL, done, private,
	    ZIO_PRIORITY_SYNC_WRITE, flags, B_TRUE));
}

/*
 * Generate the nvlist representing this vdev's config.
 */
nvlist_t *
vdev_config_generate(spa_t *spa, vdev_t *vd, boolean_t getstats,
    boolean_t isspare, boolean_t isl2cache)
{
	nvlist_t *nv = NULL;

	VERIFY(nvlist_alloc(&nv, NV_UNIQUE_NAME, KM_SLEEP) == 0);

	VERIFY(nvlist_add_string(nv, ZPOOL_CONFIG_TYPE,
	    vd->vdev_ops->vdev_op_type) == 0);
	if (!isspare && !isl2cache)
		VERIFY(nvlist_add_uint64(nv, ZPOOL_CONFIG_ID, vd->vdev_id)
		    == 0);
	VERIFY(nvlist_add_uint64(nv, ZPOOL_CONFIG_GUID, vd->vdev_guid) == 0);

	if (vd->vdev_path != NULL)
		VERIFY(nvlist_add_string(nv, ZPOOL_CONFIG_PATH,
		    vd->vdev_path) == 0);

	if (vd->vdev_devid != NULL)
		VERIFY(nvlist_add_string(nv, ZPOOL_CONFIG_DEVID,
		    vd->vdev_devid) == 0);

	if (vd->vdev_physpath != NULL)
		VERIFY(nvlist_add_string(nv, ZPOOL_CONFIG_PHYS_PATH,
		    vd->vdev_physpath) == 0);

	if (vd->vdev_nparity != 0) {
		ASSERT(strcmp(vd->vdev_ops->vdev_op_type,
		    VDEV_TYPE_RAIDZ) == 0);

		/*
		 * Make sure someone hasn't managed to sneak a fancy new vdev
		 * into a crufty old storage pool.
		 */
		ASSERT(vd->vdev_nparity == 1 ||
		    (vd->vdev_nparity == 2 &&
		    spa_version(spa) >= SPA_VERSION_RAID6));

		/*
		 * Note that we'll add the nparity tag even on storage pools
		 * that only support a single parity device -- older software
		 * will just ignore it.
		 */
		VERIFY(nvlist_add_uint64(nv, ZPOOL_CONFIG_NPARITY,
		    vd->vdev_nparity) == 0);
	}

	if (vd->vdev_wholedisk != -1ULL)
		VERIFY(nvlist_add_uint64(nv, ZPOOL_CONFIG_WHOLE_DISK,
		    vd->vdev_wholedisk) == 0);

	if (vd->vdev_not_present)
		VERIFY(nvlist_add_uint64(nv, ZPOOL_CONFIG_NOT_PRESENT, 1) == 0);

	if (vd->vdev_isspare)
		VERIFY(nvlist_add_uint64(nv, ZPOOL_CONFIG_IS_SPARE, 1) == 0);

	if (!isspare && !isl2cache && vd == vd->vdev_top) {
		VERIFY(nvlist_add_uint64(nv, ZPOOL_CONFIG_METASLAB_ARRAY,
		    vd->vdev_ms_array) == 0);
		VERIFY(nvlist_add_uint64(nv, ZPOOL_CONFIG_METASLAB_SHIFT,
		    vd->vdev_ms_shift) == 0);
		VERIFY(nvlist_add_uint64(nv, ZPOOL_CONFIG_ASHIFT,
		    vd->vdev_ashift) == 0);
		VERIFY(nvlist_add_uint64(nv, ZPOOL_CONFIG_ASIZE,
		    vd->vdev_asize) == 0);
		VERIFY(nvlist_add_uint64(nv, ZPOOL_CONFIG_IS_LOG,
		    vd->vdev_islog) == 0);
	}

	if (vd->vdev_dtl.smo_object != 0)
		VERIFY(nvlist_add_uint64(nv, ZPOOL_CONFIG_DTL,
		    vd->vdev_dtl.smo_object) == 0);

	if (getstats) {
		vdev_stat_t vs;
		vdev_get_stats(vd, &vs);
		VERIFY(nvlist_add_uint64_array(nv, ZPOOL_CONFIG_STATS,
		    (uint64_t *)&vs, sizeof (vs) / sizeof (uint64_t)) == 0);
	}

	if (!vd->vdev_ops->vdev_op_leaf) {
		nvlist_t **child;
		int c;

		child = kmem_alloc(vd->vdev_children * sizeof (nvlist_t *),
		    KM_SLEEP);

		for (c = 0; c < vd->vdev_children; c++)
			child[c] = vdev_config_generate(spa, vd->vdev_child[c],
			    getstats, isspare, isl2cache);

		VERIFY(nvlist_add_nvlist_array(nv, ZPOOL_CONFIG_CHILDREN,
		    child, vd->vdev_children) == 0);

		for (c = 0; c < vd->vdev_children; c++)
			nvlist_free(child[c]);

		kmem_free(child, vd->vdev_children * sizeof (nvlist_t *));

	} else {
		if (vd->vdev_offline && !vd->vdev_tmpoffline)
			VERIFY(nvlist_add_uint64(nv, ZPOOL_CONFIG_OFFLINE,
			    B_TRUE) == 0);
		if (vd->vdev_faulted)
			VERIFY(nvlist_add_uint64(nv, ZPOOL_CONFIG_FAULTED,
			    B_TRUE) == 0);
		if (vd->vdev_degraded)
			VERIFY(nvlist_add_uint64(nv, ZPOOL_CONFIG_DEGRADED,
			    B_TRUE) == 0);
		if (vd->vdev_removed)
			VERIFY(nvlist_add_uint64(nv, ZPOOL_CONFIG_REMOVED,
			    B_TRUE) == 0);
		if (vd->vdev_unspare)
			VERIFY(nvlist_add_uint64(nv, ZPOOL_CONFIG_UNSPARE,
			    B_TRUE) == 0);
	}

	return (nv);
}

nvlist_t *
vdev_label_read_config(vdev_t *vd)
{
	spa_t *spa = vd->vdev_spa;
	nvlist_t *config = NULL;
	vdev_phys_t *vp;
	zio_t *zio;
	int l;

	ASSERT(spa_config_held(spa, RW_READER) ||
	    spa_config_held(spa, RW_WRITER));

	if (!vdev_readable(vd))
		return (NULL);

	vp = zio_buf_alloc(sizeof (vdev_phys_t));

	for (l = 0; l < VDEV_LABELS; l++) {

		zio = zio_root(spa, NULL, NULL, ZIO_FLAG_CANFAIL |
		    ZIO_FLAG_SPECULATIVE | ZIO_FLAG_CONFIG_HELD);

		vdev_label_read(zio, vd, l, vp,
		    offsetof(vdev_label_t, vl_vdev_phys),
		    sizeof (vdev_phys_t), NULL, NULL);

		if (zio_wait(zio) == 0 &&
		    nvlist_unpack(vp->vp_nvlist, sizeof (vp->vp_nvlist),
		    &config, 0) == 0)
			break;

		if (config != NULL) {
			nvlist_free(config);
			config = NULL;
		}
	}

	zio_buf_free(vp, sizeof (vdev_phys_t));

	return (config);
}

/*
 * Determine if a device is in use.  The 'spare_guid' parameter will be filled
 * in with the device guid if this spare is active elsewhere on the system.
 */
static boolean_t
vdev_inuse(vdev_t *vd, uint64_t crtxg, vdev_labeltype_t reason,
    uint64_t *spare_guid, uint64_t *l2cache_guid)
{
	spa_t *spa = vd->vdev_spa;
	uint64_t state, pool_guid, device_guid, txg, spare_pool;
	uint64_t vdtxg = 0;
	nvlist_t *label;

	if (spare_guid)
		*spare_guid = 0ULL;
	if (l2cache_guid)
		*l2cache_guid = 0ULL;

	/*
	 * Read the label, if any, and perform some basic sanity checks.
	 */
	if ((label = vdev_label_read_config(vd)) == NULL)
		return (B_FALSE);

	(void) nvlist_lookup_uint64(label, ZPOOL_CONFIG_CREATE_TXG,
	    &vdtxg);

	if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_STATE,
	    &state) != 0 ||
	    nvlist_lookup_uint64(label, ZPOOL_CONFIG_GUID,
	    &device_guid) != 0) {
		nvlist_free(label);
		return (B_FALSE);
	}

	if (state != POOL_STATE_SPARE && state != POOL_STATE_L2CACHE &&
	    (nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_GUID,
	    &pool_guid) != 0 ||
	    nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_TXG,
	    &txg) != 0)) {
		nvlist_free(label);
		return (B_FALSE);
	}

	nvlist_free(label);

	/*
	 * Check to see if this device indeed belongs to the pool it claims to
	 * be a part of.  The only way this is allowed is if the device is a hot
	 * spare (which we check for later on).
	 */
	if (state != POOL_STATE_SPARE && state != POOL_STATE_L2CACHE &&
	    !spa_guid_exists(pool_guid, device_guid) &&
	    !spa_spare_exists(device_guid, NULL) &&
	    !spa_l2cache_exists(device_guid, NULL))
		return (B_FALSE);

	/*
	 * If the transaction group is zero, then this an initialized (but
	 * unused) label.  This is only an error if the create transaction
	 * on-disk is the same as the one we're using now, in which case the
	 * user has attempted to add the same vdev multiple times in the same
	 * transaction.
	 */
	if (state != POOL_STATE_SPARE && state != POOL_STATE_L2CACHE &&
	    txg == 0 && vdtxg == crtxg)
		return (B_TRUE);

	/*
	 * Check to see if this is a spare device.  We do an explicit check for
	 * spa_has_spare() here because it may be on our pending list of spares
	 * to add.  We also check if it is an l2cache device.
	 */
	if (spa_spare_exists(device_guid, &spare_pool) ||
	    spa_has_spare(spa, device_guid)) {
		if (spare_guid)
			*spare_guid = device_guid;

		switch (reason) {
		case VDEV_LABEL_CREATE:
		case VDEV_LABEL_L2CACHE:
			return (B_TRUE);

		case VDEV_LABEL_REPLACE:
			return (!spa_has_spare(spa, device_guid) ||
			    spare_pool != 0ULL);

		case VDEV_LABEL_SPARE:
			return (spa_has_spare(spa, device_guid));
		}
	}

	/*
	 * Check to see if this is an l2cache device.
	 */
	if (spa_l2cache_exists(device_guid, NULL))
		return (B_TRUE);

	/*
	 * If the device is marked ACTIVE, then this device is in use by another
	 * pool on the system.
	 */
	return (state == POOL_STATE_ACTIVE);
}

/*
 * Initialize a vdev label.  We check to make sure each leaf device is not in
 * use, and writable.  We put down an initial label which we will later
 * overwrite with a complete label.  Note that it's important to do this
 * sequentially, not in parallel, so that we catch cases of multiple use of the
 * same leaf vdev in the vdev we're creating -- e.g. mirroring a disk with
 * itself.
 */
int
vdev_label_init(vdev_t *vd, uint64_t crtxg, vdev_labeltype_t reason)
{
	spa_t *spa = vd->vdev_spa;
	nvlist_t *label;
	vdev_phys_t *vp;
	vdev_boot_header_t *vb;
	uberblock_t *ub;
	zio_t *zio;
	int l, c, n;
	char *buf;
	size_t buflen;
	int error;
	uint64_t spare_guid, l2cache_guid;
	int flags = ZIO_FLAG_CONFIG_HELD | ZIO_FLAG_CANFAIL;

	ASSERT(spa_config_held(spa, RW_WRITER));

	for (c = 0; c < vd->vdev_children; c++)
		if ((error = vdev_label_init(vd->vdev_child[c],
		    crtxg, reason)) != 0)
			return (error);

	if (!vd->vdev_ops->vdev_op_leaf)
		return (0);

	/*
	 * Dead vdevs cannot be initialized.
	 */
	if (vdev_is_dead(vd))
		return (EIO);

	/*
	 * Determine if the vdev is in use.
	 */
	if (reason != VDEV_LABEL_REMOVE &&
	    vdev_inuse(vd, crtxg, reason, &spare_guid, &l2cache_guid))
		return (EBUSY);

	ASSERT(reason != VDEV_LABEL_REMOVE ||
	    vdev_inuse(vd, crtxg, reason, NULL, NULL));

	/*
	 * If this is a request to add or replace a spare or l2cache device
	 * that is in use elsewhere on the system, then we must update the
	 * guid (which was initialized to a random value) to reflect the
	 * actual GUID (which is shared between multiple pools).
	 */
	if (reason != VDEV_LABEL_REMOVE && reason != VDEV_LABEL_L2CACHE &&
	    spare_guid != 0ULL) {
		vdev_t *pvd = vd->vdev_parent;

		for (; pvd != NULL; pvd = pvd->vdev_parent) {
			pvd->vdev_guid_sum -= vd->vdev_guid;
			pvd->vdev_guid_sum += spare_guid;
		}

		vd->vdev_guid = vd->vdev_guid_sum = spare_guid;

		/*
		 * If this is a replacement, then we want to fallthrough to the
		 * rest of the code.  If we're adding a spare, then it's already
		 * labeled appropriately and we can just return.
		 */
		if (reason == VDEV_LABEL_SPARE)
			return (0);
		ASSERT(reason == VDEV_LABEL_REPLACE);
	}

	if (reason != VDEV_LABEL_REMOVE && reason != VDEV_LABEL_SPARE &&
	    l2cache_guid != 0ULL) {
		vdev_t *pvd = vd->vdev_parent;

		for (; pvd != NULL; pvd = pvd->vdev_parent) {
			pvd->vdev_guid_sum -= vd->vdev_guid;
			pvd->vdev_guid_sum += l2cache_guid;
		}

		vd->vdev_guid = vd->vdev_guid_sum = l2cache_guid;

		/*
		 * If this is a replacement, then we want to fallthrough to the
		 * rest of the code.  If we're adding an l2cache, then it's
		 * already labeled appropriately and we can just return.
		 */
		if (reason == VDEV_LABEL_L2CACHE)
			return (0);
		ASSERT(reason == VDEV_LABEL_REPLACE);
	}

	/*
	 * Initialize its label.
	 */
	vp = zio_buf_alloc(sizeof (vdev_phys_t));
	bzero(vp, sizeof (vdev_phys_t));

	/*
	 * Generate a label describing the pool and our top-level vdev.
	 * We mark it as being from txg 0 to indicate that it's not
	 * really part of an active pool just yet.  The labels will
	 * be written again with a meaningful txg by spa_sync().
	 */
	if (reason == VDEV_LABEL_SPARE ||
	    (reason == VDEV_LABEL_REMOVE && vd->vdev_isspare)) {
		/*
		 * For inactive hot spares, we generate a special label that
		 * identifies as a mutually shared hot spare.  We write the
		 * label if we are adding a hot spare, or if we are removing an
		 * active hot spare (in which case we want to revert the
		 * labels).
		 */
		VERIFY(nvlist_alloc(&label, NV_UNIQUE_NAME, KM_SLEEP) == 0);

		VERIFY(nvlist_add_uint64(label, ZPOOL_CONFIG_VERSION,
		    spa_version(spa)) == 0);
		VERIFY(nvlist_add_uint64(label, ZPOOL_CONFIG_POOL_STATE,
		    POOL_STATE_SPARE) == 0);
		VERIFY(nvlist_add_uint64(label, ZPOOL_CONFIG_GUID,
		    vd->vdev_guid) == 0);
	} else if (reason == VDEV_LABEL_L2CACHE ||
	    (reason == VDEV_LABEL_REMOVE && vd->vdev_isl2cache)) {
		/*
		 * For level 2 ARC devices, add a special label.
		 */
		VERIFY(nvlist_alloc(&label, NV_UNIQUE_NAME, KM_SLEEP) == 0);

		VERIFY(nvlist_add_uint64(label, ZPOOL_CONFIG_VERSION,
		    spa_version(spa)) == 0);
		VERIFY(nvlist_add_uint64(label, ZPOOL_CONFIG_POOL_STATE,
		    POOL_STATE_L2CACHE) == 0);
		VERIFY(nvlist_add_uint64(label, ZPOOL_CONFIG_GUID,
		    vd->vdev_guid) == 0);
	} else {
		label = spa_config_generate(spa, vd, 0ULL, B_FALSE);

		/*
		 * Add our creation time.  This allows us to detect multiple
		 * vdev uses as described above, and automatically expires if we
		 * fail.
		 */
		VERIFY(nvlist_add_uint64(label, ZPOOL_CONFIG_CREATE_TXG,
		    crtxg) == 0);
	}

	buf = vp->vp_nvlist;
	buflen = sizeof (vp->vp_nvlist);

	error = nvlist_pack(label, &buf, &buflen, NV_ENCODE_XDR, KM_SLEEP);
	if (error != 0) {
		nvlist_free(label);
		zio_buf_free(vp, sizeof (vdev_phys_t));
		/* EFAULT means nvlist_pack ran out of room */
		return (error == EFAULT ? ENAMETOOLONG : EINVAL);
	}

	/*
	 * Initialize boot block header.
	 */
	vb = zio_buf_alloc(sizeof (vdev_boot_header_t));
	bzero(vb, sizeof (vdev_boot_header_t));
	vb->vb_magic = VDEV_BOOT_MAGIC;
	vb->vb_version = VDEV_BOOT_VERSION;
	vb->vb_offset = VDEV_BOOT_OFFSET;
	vb->vb_size = VDEV_BOOT_SIZE;

	/*
	 * Initialize uberblock template.
	 */
	ub = zio_buf_alloc(VDEV_UBERBLOCK_SIZE(vd));
	bzero(ub, VDEV_UBERBLOCK_SIZE(vd));
	*ub = spa->spa_uberblock;
	ub->ub_txg = 0;

	/*
	 * Write everything in parallel.
	 */
	zio = zio_root(spa, NULL, NULL, flags);

	for (l = 0; l < VDEV_LABELS; l++) {

		vdev_label_write(zio, vd, l, vp,
		    offsetof(vdev_label_t, vl_vdev_phys),
		    sizeof (vdev_phys_t), NULL, NULL, flags);

		vdev_label_write(zio, vd, l, vb,
		    offsetof(vdev_label_t, vl_boot_header),
		    sizeof (vdev_boot_header_t), NULL, NULL, flags);

		for (n = 0; n < VDEV_UBERBLOCK_COUNT(vd); n++) {
			vdev_label_write(zio, vd, l, ub,
			    VDEV_UBERBLOCK_OFFSET(vd, n),
			    VDEV_UBERBLOCK_SIZE(vd), NULL, NULL, flags);
		}
	}

	error = zio_wait(zio);

	nvlist_free(label);
	zio_buf_free(ub, VDEV_UBERBLOCK_SIZE(vd));
	zio_buf_free(vb, sizeof (vdev_boot_header_t));
	zio_buf_free(vp, sizeof (vdev_phys_t));

	/*
	 * If this vdev hasn't been previously identified as a spare, then we
	 * mark it as such only if a) we are labeling it as a spare, or b) it
	 * exists as a spare elsewhere in the system.  Do the same for
	 * level 2 ARC devices.
	 */
	if (error == 0 && !vd->vdev_isspare &&
	    (reason == VDEV_LABEL_SPARE ||
	    spa_spare_exists(vd->vdev_guid, NULL)))
		spa_spare_add(vd);

	if (error == 0 && !vd->vdev_isl2cache &&
	    (reason == VDEV_LABEL_L2CACHE ||
	    spa_l2cache_exists(vd->vdev_guid, NULL)))
		spa_l2cache_add(vd);

	return (error);
}

/*
 * ==========================================================================
 * uberblock load/sync
 * ==========================================================================
 */

/*
 * Consider the following situation: txg is safely synced to disk.  We've
 * written the first uberblock for txg + 1, and then we lose power.  When we
 * come back up, we fail to see the uberblock for txg + 1 because, say,
 * it was on a mirrored device and the replica to which we wrote txg + 1
 * is now offline.  If we then make some changes and sync txg + 1, and then
 * the missing replica comes back, then for a new seconds we'll have two
 * conflicting uberblocks on disk with the same txg.  The solution is simple:
 * among uberblocks with equal txg, choose the one with the latest timestamp.
 */
static int
vdev_uberblock_compare(uberblock_t *ub1, uberblock_t *ub2)
{
	if (ub1->ub_txg < ub2->ub_txg)
		return (-1);
	if (ub1->ub_txg > ub2->ub_txg)
		return (1);

	if (ub1->ub_timestamp < ub2->ub_timestamp)
		return (-1);
	if (ub1->ub_timestamp > ub2->ub_timestamp)
		return (1);

	return (0);
}

static void
vdev_uberblock_load_done(zio_t *zio)
{
	uberblock_t *ub = zio->io_data;
	uberblock_t *ubbest = zio->io_private;
	spa_t *spa = zio->io_spa;

	ASSERT3U(zio->io_size, ==, VDEV_UBERBLOCK_SIZE(zio->io_vd));

	if (zio->io_error == 0 && uberblock_verify(ub) == 0) {
		mutex_enter(&spa->spa_uberblock_lock);
		if (vdev_uberblock_compare(ub, ubbest) > 0)
			*ubbest = *ub;
		mutex_exit(&spa->spa_uberblock_lock);
	}

	zio_buf_free(zio->io_data, zio->io_size);
}

void
vdev_uberblock_load(zio_t *zio, vdev_t *vd, uberblock_t *ubbest)
{
	int l, c, n;

	for (c = 0; c < vd->vdev_children; c++)
		vdev_uberblock_load(zio, vd->vdev_child[c], ubbest);

	if (!vd->vdev_ops->vdev_op_leaf)
		return;

	if (vdev_is_dead(vd))
		return;

	for (l = 0; l < VDEV_LABELS; l++) {
		for (n = 0; n < VDEV_UBERBLOCK_COUNT(vd); n++) {
			vdev_label_read(zio, vd, l,
			    zio_buf_alloc(VDEV_UBERBLOCK_SIZE(vd)),
			    VDEV_UBERBLOCK_OFFSET(vd, n),
			    VDEV_UBERBLOCK_SIZE(vd),
			    vdev_uberblock_load_done, ubbest);
		}
	}
}

/*
 * On success, increment root zio's count of good writes.
 * We only get credit for writes to known-visible vdevs; see spa_vdev_add().
 */
static void
vdev_uberblock_sync_done(zio_t *zio)
{
	uint64_t *good_writes = zio->io_private;

	if (zio->io_error == 0 && zio->io_vd->vdev_top->vdev_ms_array != 0)
		atomic_add_64(good_writes, 1);
}

/*
 * Write the uberblock to all labels of all leaves of the specified vdev.
 */
static void
vdev_uberblock_sync(zio_t *zio, uberblock_t *ub, vdev_t *vd)
{
	int l, c, n;
	uberblock_t *ubbuf;

	for (c = 0; c < vd->vdev_children; c++)
		vdev_uberblock_sync(zio, ub, vd->vdev_child[c]);

	if (!vd->vdev_ops->vdev_op_leaf)
		return;

	if (vdev_is_dead(vd))
		return;

	n = ub->ub_txg & (VDEV_UBERBLOCK_COUNT(vd) - 1);

	ubbuf = zio_buf_alloc(VDEV_UBERBLOCK_SIZE(vd));
	bzero(ubbuf, VDEV_UBERBLOCK_SIZE(vd));
	*ubbuf = *ub;

	for (l = 0; l < VDEV_LABELS; l++)
		vdev_label_write(zio, vd, l, ubbuf,
		    VDEV_UBERBLOCK_OFFSET(vd, n),
		    VDEV_UBERBLOCK_SIZE(vd),
		    vdev_uberblock_sync_done, zio->io_private,
		    ZIO_FLAG_CANFAIL | ZIO_FLAG_DONT_PROPAGATE);

	zio_buf_free(ubbuf, VDEV_UBERBLOCK_SIZE(vd));
}

static void
vdev_uberblock_sync_list_done(zio_t *zio)
{
	uint64_t *good_writes = zio->io_private;

	if (*good_writes == 0)
		zio->io_error = EIO;
}

int
vdev_uberblock_sync_list(vdev_t **svd, int svdcount, uberblock_t *ub, int flags)
{
	spa_t *spa = svd[0]->vdev_spa;
	int v;
	zio_t *zio, *nio;
	uint64_t good_writes = 0;
	int io_flags = flags;

	/*
	 * If we've been asked to update all the vdevs then we change
	 * our flags to ZIO_FLAG_MUSTSUCCEED so that the pipeline can
	 * handle error should all update fail.
	 */
	if (svdcount == spa->spa_root_vdev->vdev_children)
		io_flags &= ~ZIO_FLAG_CANFAIL;

	/*
	 * We rely on the value of good_writes and the root I/O to determine
	 * how a complete failure is handled. In the event that the root is a
	 * ZIO_FLAG_MUSTSUCCED, then the pipeline will block this I/O if we
	 * were unable to update any uberblock. Once the I/O is blocked the
	 * pipeline will retry it when the error is cleared. Unfortunately,
	 * the pipeline does not have the complete I/O tree so it will be
	 * unable to retry the actual uberblock update. Instead we rely on
	 * the value of good_writes to return the failed status to the caller
	 * which will retry on error and thus resubmit the complete I/O
	 * tree.
	 */
	zio = zio_root(spa, NULL, NULL, io_flags);
	nio = zio_null(zio, spa, vdev_uberblock_sync_list_done, &good_writes,
	    flags);
	for (v = 0; v < svdcount; v++)
		vdev_uberblock_sync(nio, ub, svd[v]);
	zio_nowait(nio);
	(void) zio_wait(zio);

	/*
	 * Flush the uberblocks to disk.  This ensures that the odd labels
	 * are no longer needed (because the new uberblocks and the even
	 * labels are safely on disk), so it is safe to overwrite them.
	 */
	zio = zio_root(spa, NULL, NULL, flags);

	for (v = 0; v < svdcount; v++)
		zio_flush(zio, svd[v]);

	(void) zio_wait(zio);

	return (good_writes >= 1 ? 0 : EIO);
}

/*
 * On success, increment the count of good writes for our top-level vdev.
 */
static void
vdev_label_sync_done(zio_t *zio)
{
	uint64_t *good_writes = zio->io_private;

	if (zio->io_error == 0)
		atomic_add_64(good_writes, 1);
}

/*
 * If there weren't enough good writes, indicate failure to the parent.
 */
static void
vdev_label_sync_top_done(zio_t *zio)
{
	uint64_t *good_writes = zio->io_private;

	if (*good_writes == 0)
		zio->io_error = EIO;

	kmem_free(good_writes, sizeof (uint64_t));
}

/*
 * We ignore errors for log devices, simply free the private data.
 */
static void
vdev_label_sync_log_done(zio_t *zio)
{
	kmem_free(zio->io_private, sizeof (uint64_t));
}

/*
 * Write all even or odd labels to all leaves of the specified vdev.
 */
static void
vdev_label_sync(zio_t *zio, vdev_t *vd, int l, uint64_t txg)
{
	nvlist_t *label;
	vdev_phys_t *vp;
	char *buf;
	size_t buflen;
	int c;

	for (c = 0; c < vd->vdev_children; c++)
		vdev_label_sync(zio, vd->vdev_child[c], l, txg);

	if (!vd->vdev_ops->vdev_op_leaf)
		return;

	if (vdev_is_dead(vd))
		return;

	/*
	 * Generate a label describing the top-level config to which we belong.
	 */
	label = spa_config_generate(vd->vdev_spa, vd, txg, B_FALSE);

	vp = zio_buf_alloc(sizeof (vdev_phys_t));
	bzero(vp, sizeof (vdev_phys_t));

	buf = vp->vp_nvlist;
	buflen = sizeof (vp->vp_nvlist);

	if (nvlist_pack(label, &buf, &buflen, NV_ENCODE_XDR, KM_SLEEP) == 0) {
		for (; l < VDEV_LABELS; l += 2) {
			vdev_label_write(zio, vd, l, vp,
			    offsetof(vdev_label_t, vl_vdev_phys),
			    sizeof (vdev_phys_t),
			    vdev_label_sync_done, zio->io_private,
			    ZIO_FLAG_CANFAIL | ZIO_FLAG_DONT_PROPAGATE);
		}
	}

	zio_buf_free(vp, sizeof (vdev_phys_t));
	nvlist_free(label);
}

int
vdev_label_sync_list(spa_t *spa, int l, int flags, uint64_t txg)
{
	list_t *dl = &spa->spa_dirty_list;
	vdev_t *vd;
	zio_t *zio, *nio;
	int error;
	int io_flags = flags & ~ZIO_FLAG_CANFAIL;

	/*
	 * The root I/O for all label updates must succeed and we track
	 * the error returned back from the null I/O to determine if we
	 * need to reissue the I/O tree from scratch. If we are unable
	 * to update any leaf vdev associated with a dirty top-level vdev,
	 * then the pipeline will either suspend or panic when the root I/O
	 * is issued. If the error is cleared, then the pipleine will retry
	 * the root I/O. Unfortunately we've lost the entire I/O tree so we
	 * return back the original error to the caller and allow the caller
	 * to call use again so that we can build the I/O tree from scratch.
	 */
	zio = zio_root(spa, NULL, NULL, io_flags);
	nio = zio_null(zio, spa, NULL, NULL, flags);

	for (vd = list_head(dl); vd != NULL; vd = list_next(dl, vd)) {
		uint64_t *good_writes = kmem_zalloc(sizeof (uint64_t),
		    KM_SLEEP);
		zio_t *vio = zio_null(nio, spa, vd->vdev_islog ?
		    vdev_label_sync_log_done : vdev_label_sync_top_done,
		    good_writes, flags);
		vdev_label_sync(vio, vd, l, txg);
		zio_nowait(vio);
	}
	error = zio_wait(nio);
	(void) zio_wait(zio);

	/*
	 * Flush the new labels to disk.
	 */
	zio = zio_root(spa, NULL, NULL, flags);

	for (vd = list_head(dl); vd != NULL; vd = list_next(dl, vd))
		zio_flush(zio, vd);

	(void) zio_wait(zio);

	return (error);
}

/*
 * Sync the uberblock and any changes to the vdev configuration.
 *
 * The order of operations is carefully crafted to ensure that
 * if the system panics or loses power at any time, the state on disk
 * is still transactionally consistent.  The in-line comments below
 * describe the failure semantics at each stage.
 *
 * Moreover, vdev_config_sync() is designed to be idempotent: if it fails
 * at any time, you can just call it again, and it will resume its work.
 */
void
vdev_config_sync(vdev_t **svd, int svdcount, uint64_t txg)
{
	spa_t *spa = svd[0]->vdev_spa;
	uberblock_t *ub = &spa->spa_uberblock;
	vdev_t *vd;
	zio_t *zio;
	int flags = ZIO_FLAG_CONFIG_HELD | ZIO_FLAG_CANFAIL;

	ASSERT(ub->ub_txg <= txg);

	/*
	 * If this isn't a resync due to I/O errors,
	 * and nothing changed in this transaction group,
	 * and the vdev configuration hasn't changed,
	 * then there's nothing to do.
	 */
	if (ub->ub_txg < txg &&
	    uberblock_update(ub, spa->spa_root_vdev, txg) == B_FALSE &&
	    list_is_empty(&spa->spa_dirty_list))
		return;

	if (txg > spa_freeze_txg(spa))
		return;

	ASSERT(txg <= spa->spa_final_txg);

	/*
	 * Flush the write cache of every disk that's been written to
	 * in this transaction group.  This ensures that all blocks
	 * written in this txg will be committed to stable storage
	 * before any uberblock that references them.
	 */
	zio = zio_root(spa, NULL, NULL, flags);

	for (vd = txg_list_head(&spa->spa_vdev_txg_list, TXG_CLEAN(txg)); vd;
	    vd = txg_list_next(&spa->spa_vdev_txg_list, vd, TXG_CLEAN(txg)))
		zio_flush(zio, vd);

	(void) zio_wait(zio);

	/*
	 * Sync out the even labels (L0, L2) for every dirty vdev.  If the
	 * system dies in the middle of this process, that's OK: all of the
	 * even labels that made it to disk will be newer than any uberblock,
	 * and will therefore be considered invalid.  The odd labels (L1, L3),
	 * which have not yet been touched, will still be valid.  We flush
	 * the new labels to disk to ensure that all even-label updates
	 * are committed to stable storage before the uberblock update.
	 * Failure to update any of the labels will invoke the 'failmode'
	 * code path. Thus we must retry the entire I/O tree once the error
	 * is cleared and we ar resumed.
	 */
	while (vdev_label_sync_list(spa, 0, flags, txg) != 0)
		;

	/*
	 * Sync the uberblocks to all vdevs in svd[]. If we are unable
	 * to do so, then we attempt to sync out to all top-level vdevs.
	 * If the system dies in the middle of this step, there are two cases
	 * to consider, and the on-disk state is consistent either way:
	 *
	 * (1)	If none of the new uberblocks made it to disk, then the
	 *	previous uberblock will be the newest, and the odd labels
	 *	(which had not yet been touched) will be valid with respect
	 *	to that uberblock.
	 *
	 * (2)	If one or more new uberblocks made it to disk, then they
	 *	will be the newest, and the even labels (which had all
	 *	been successfully committed) will be valid with respect
	 *	to the new uberblocks.
	 *
	 * In addition, if we have failed to update all the uberblocks then
	 * we will follow the 'failmode' code path. We must retry the entire
	 * I/O tree if we are resumed.
	 */
	if (vdev_uberblock_sync_list(svd, svdcount, ub, flags) != 0) {
		vdev_t *rvd = spa->spa_root_vdev;

		while (vdev_uberblock_sync_list(rvd->vdev_child,
		    rvd->vdev_children, ub, flags))
			;
	}

	/*
	 * Sync out odd labels for every dirty vdev.  If the system dies
	 * in the middle of this process, the even labels and the new
	 * uberblocks will suffice to open the pool.  The next time
	 * the pool is opened, the first thing we'll do -- before any
	 * user data is modified -- is mark every vdev dirty so that
	 * all labels will be brought up to date.  We flush the new labels
	 * to disk to ensure that all odd-label updates are committed to
	 * stable storage before the next transaction group begins.
	 * Failure to update any of the labels will invoke the 'failmode'
	 * code path. Thus we must retry the entire I/O tree once the error
	 * is cleared and we are resumed.
	 */
	while (vdev_label_sync_list(spa, 1, flags, txg) != 0)
		;
}