summaryrefslogtreecommitdiff
path: root/usr/src/uts/common/fs/zfs/zfs_znode.c
blob: 1ff11e29b88d6db955e8e41026e7cef7d4814cd7 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
/*
 * CDDL HEADER START
 *
 * The contents of this file are subject to the terms of the
 * Common Development and Distribution License, Version 1.0 only
 * (the "License").  You may not use this file except in compliance
 * with the License.
 *
 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
 * or http://www.opensolaris.org/os/licensing.
 * See the License for the specific language governing permissions
 * and limitations under the License.
 *
 * When distributing Covered Code, include this CDDL HEADER in each
 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
 * If applicable, add the following below this CDDL HEADER, with the
 * fields enclosed by brackets "[]" replaced with your own identifying
 * information: Portions Copyright [yyyy] [name of copyright owner]
 *
 * CDDL HEADER END
 */
/*
 * Copyright 2005 Sun Microsystems, Inc.  All rights reserved.
 * Use is subject to license terms.
 */

#pragma ident	"%Z%%M%	%I%	%E% SMI"

#include <sys/types.h>
#include <sys/param.h>
#include <sys/time.h>
#include <sys/systm.h>
#include <sys/sysmacros.h>
#include <sys/resource.h>
#include <sys/mntent.h>
#include <sys/vfs.h>
#include <sys/vnode.h>
#include <sys/file.h>
#include <sys/kmem.h>
#include <sys/cmn_err.h>
#include <sys/errno.h>
#include <sys/unistd.h>
#include <sys/stat.h>
#include <sys/mode.h>
#include <sys/atomic.h>
#include <vm/pvn.h>
#include "fs/fs_subr.h"
#include <sys/zfs_dir.h>
#include <sys/zfs_acl.h>
#include <sys/zfs_ioctl.h>
#include <sys/zfs_znode.h>
#include <sys/zap.h>
#include <sys/dmu.h>
#include <sys/fs/zfs.h>

struct kmem_cache *znode_cache = NULL;

/*
 * Note that znodes can be on one of 2 states:
 *	ZCACHE_mru	- recently used, currently cached
 *	ZCACHE_mfu	- frequently used, currently cached
 * When there are no active references to the znode, they
 * are linked onto one of the lists in zcache.  These are the
 * only znodes that can be evicted.
 */

typedef struct zcache_state {
	list_t	list;	/* linked list of evictable znodes in state */
	uint64_t lcnt;	/* total number of znodes in the linked list */
	uint64_t cnt;	/* total number of all znodes in this state */
	uint64_t hits;
	kmutex_t mtx;
} zcache_state_t;

/* The 2 states: */
static zcache_state_t ZCACHE_mru;
static zcache_state_t ZCACHE_mfu;

static struct zcache {
	zcache_state_t	*mru;
	zcache_state_t	*mfu;
	uint64_t	p;		/* Target size of mru */
	uint64_t	c;		/* Target size of cache */
	uint64_t	c_max;		/* Maximum target cache size */

	/* performance stats */
	uint64_t	missed;
	uint64_t	evicted;
	uint64_t	skipped;
} zcache;

void zcache_kmem_reclaim(void);

#define	ZCACHE_MINTIME (hz>>4) /* 62 ms */

/*
 * Move the supplied znode to the indicated state.  The mutex
 * for the znode must be held by the caller.
 */
static void
zcache_change_state(zcache_state_t *new_state, znode_t *zp)
{
	/* ASSERT(MUTEX_HELD(hash_mtx)); */
	ASSERT(zp->z_active);

	if (zp->z_zcache_state) {
		ASSERT3U(zp->z_zcache_state->cnt, >=, 1);
		atomic_add_64(&zp->z_zcache_state->cnt, -1);
	}
	atomic_add_64(&new_state->cnt, 1);
	zp->z_zcache_state = new_state;
}

static void
zfs_zcache_evict(znode_t *zp, kmutex_t *hash_mtx)
{
	zfsvfs_t *zfsvfs = zp->z_zfsvfs;

	ASSERT(zp->z_phys);
	ASSERT(zp->z_dbuf_held);

	zp->z_dbuf_held = 0;
	mutex_exit(&zp->z_lock);
	dmu_buf_rele(zp->z_dbuf);
	mutex_exit(hash_mtx);
	VFS_RELE(zfsvfs->z_vfs);
}

/*
 * Evict znodes from list until we've removed the specified number
 */
static void
zcache_evict_state(zcache_state_t *state, int64_t cnt, zfsvfs_t *zfsvfs)
{
	int znodes_evicted = 0;
	znode_t *zp, *zp_prev;
	kmutex_t *hash_mtx;

	ASSERT(state == zcache.mru || state == zcache.mfu);

	mutex_enter(&state->mtx);

	for (zp = list_tail(&state->list); zp; zp = zp_prev) {
		zp_prev = list_prev(&state->list, zp);
		if (zfsvfs && zp->z_zfsvfs != zfsvfs)
			continue;
		hash_mtx = ZFS_OBJ_MUTEX(zp);
		if (mutex_tryenter(hash_mtx)) {
			mutex_enter(&zp->z_lock);
			list_remove(&zp->z_zcache_state->list, zp);
			zp->z_zcache_state->lcnt -= 1;
			ASSERT3U(zp->z_zcache_state->cnt, >=, 1);
			atomic_add_64(&zp->z_zcache_state->cnt, -1);
			zp->z_zcache_state = NULL;
			zp->z_zcache_access = 0;
			/* drops z_lock and hash_mtx */
			zfs_zcache_evict(zp, hash_mtx);
			znodes_evicted += 1;
			atomic_add_64(&zcache.evicted, 1);
			if (znodes_evicted >= cnt)
				break;
		} else {
			atomic_add_64(&zcache.skipped, 1);
		}
	}
	mutex_exit(&state->mtx);

	if (znodes_evicted < cnt)
		dprintf("only evicted %lld znodes from %x",
		    (longlong_t)znodes_evicted, state);
}

static void
zcache_adjust(void)
{
	uint64_t mrucnt = zcache.mru->lcnt;
	uint64_t mfucnt = zcache.mfu->lcnt;
	uint64_t p = zcache.p;
	uint64_t c = zcache.c;

	if (mrucnt > p)
		zcache_evict_state(zcache.mru, mrucnt - p, NULL);

	if (mfucnt > 0 && mrucnt + mfucnt > c) {
		int64_t toevict = MIN(mfucnt, mrucnt + mfucnt - c);
		zcache_evict_state(zcache.mfu, toevict, NULL);
	}
}

/*
 * Flush all *evictable* data from the cache.
 * NOTE: this will not touch "active" (i.e. referenced) data.
 */
void
zfs_zcache_flush(zfsvfs_t *zfsvfs)
{
	zcache_evict_state(zcache.mru, zcache.mru->lcnt, zfsvfs);
	zcache_evict_state(zcache.mfu, zcache.mfu->lcnt, zfsvfs);
}

static void
zcache_try_grow(int64_t cnt)
{
	int64_t size;
	/*
	 * If we're almost to the current target cache size,
	 * increment the target cache size
	 */
	size = zcache.mru->lcnt + zcache.mfu->lcnt;
	if ((zcache.c - size) <= 1) {
		atomic_add_64(&zcache.c, cnt);
		if (zcache.c > zcache.c_max)
			zcache.c = zcache.c_max;
		else if (zcache.p + cnt < zcache.c)
			atomic_add_64(&zcache.p, cnt);
	}
}

/*
 * This routine is called whenever a znode is accessed.
 */
static void
zcache_access(znode_t *zp, kmutex_t *hash_mtx)
{
	ASSERT(MUTEX_HELD(hash_mtx));

	if (zp->z_zcache_state == NULL) {
		/*
		 * This znode is not in the cache.
		 * Add the new znode to the MRU state.
		 */

		zcache_try_grow(1);

		ASSERT(zp->z_zcache_access == 0);
		zp->z_zcache_access = lbolt;
		zcache_change_state(zcache.mru, zp);
		mutex_exit(hash_mtx);

		/*
		 * If we are using less than 2/3 of our total target
		 * cache size, bump up the target size for the MRU
		 * list.
		 */
		if (zcache.mru->lcnt + zcache.mfu->lcnt < zcache.c*2/3) {
			zcache.p = zcache.mru->lcnt + zcache.c/6;
		}

		zcache_adjust();

		atomic_add_64(&zcache.missed, 1);
	} else if (zp->z_zcache_state == zcache.mru) {
		/*
		 * This znode has been "accessed" only once so far,
		 * Move it to the MFU state.
		 */
		if (lbolt > zp->z_zcache_access + ZCACHE_MINTIME) {
			/*
			 * More than 125ms have passed since we
			 * instantiated this buffer.  Move it to the
			 * most frequently used state.
			 */
			zp->z_zcache_access = lbolt;
			zcache_change_state(zcache.mfu, zp);
		}
		atomic_add_64(&zcache.mru->hits, 1);
		mutex_exit(hash_mtx);
	} else {
		ASSERT(zp->z_zcache_state == zcache.mfu);
		/*
		 * This buffer has been accessed more than once.
		 * Keep it in the MFU state.
		 */
		atomic_add_64(&zcache.mfu->hits, 1);
		mutex_exit(hash_mtx);
	}
}

static void
zcache_init(void)
{
	zcache.c = 20;
	zcache.c_max = 50;

	zcache.mru = &ZCACHE_mru;
	zcache.mfu = &ZCACHE_mfu;

	list_create(&zcache.mru->list, sizeof (znode_t),
	    offsetof(znode_t, z_zcache_node));
	list_create(&zcache.mfu->list, sizeof (znode_t),
	    offsetof(znode_t, z_zcache_node));
}

static void
zcache_fini(void)
{
	zfs_zcache_flush(NULL);

	list_destroy(&zcache.mru->list);
	list_destroy(&zcache.mfu->list);
}

/*ARGSUSED*/
static void
znode_pageout_func(dmu_buf_t *dbuf, void *user_ptr)
{
	znode_t *zp = user_ptr;
	vnode_t *vp = ZTOV(zp);

	if (vp->v_count == 0) {
		vn_invalid(vp);
		zfs_znode_free(zp);
	}
}

/*ARGSUSED*/
static int
zfs_znode_cache_constructor(void *buf, void *cdrarg, int kmflags)
{
	znode_t *zp = buf;

	zp->z_vnode = vn_alloc(KM_SLEEP);
	zp->z_vnode->v_data = (caddr_t)zp;
	mutex_init(&zp->z_lock, NULL, MUTEX_DEFAULT, NULL);
	rw_init(&zp->z_map_lock, NULL, RW_DEFAULT, NULL);
	rw_init(&zp->z_grow_lock, NULL, RW_DEFAULT, NULL);
	rw_init(&zp->z_append_lock, NULL, RW_DEFAULT, NULL);
	mutex_init(&zp->z_acl_lock, NULL, MUTEX_DEFAULT, NULL);
	zp->z_dbuf_held = 0;
	zp->z_dirlocks = 0;
	return (0);
}

/*ARGSUSED*/
static void
zfs_znode_cache_destructor(void *buf, void *cdarg)
{
	znode_t *zp = buf;

	ASSERT(zp->z_dirlocks == 0);
	mutex_destroy(&zp->z_lock);
	rw_destroy(&zp->z_map_lock);
	rw_destroy(&zp->z_grow_lock);
	rw_destroy(&zp->z_append_lock);
	mutex_destroy(&zp->z_acl_lock);

	ASSERT(zp->z_dbuf_held == 0);
	ASSERT(ZTOV(zp)->v_count == 0);
	vn_free(ZTOV(zp));
}

void
zfs_znode_init(void)
{
	/*
	 * Initialize zcache
	 */
	ASSERT(znode_cache == NULL);
	znode_cache = kmem_cache_create("zfs_znode_cache",
	    sizeof (znode_t), 0, zfs_znode_cache_constructor,
	    zfs_znode_cache_destructor, NULL, NULL, NULL, 0);

	zcache_init();
}

void
zfs_znode_fini(void)
{
	zcache_fini();

	/*
	 * Cleanup vfs & vnode ops
	 */
	zfs_remove_op_tables();

	/*
	 * Cleanup zcache
	 */
	if (znode_cache)
		kmem_cache_destroy(znode_cache);
	znode_cache = NULL;
}

struct vnodeops *zfs_dvnodeops;
struct vnodeops *zfs_fvnodeops;
struct vnodeops *zfs_symvnodeops;
struct vnodeops *zfs_xdvnodeops;
struct vnodeops *zfs_evnodeops;

void
zfs_remove_op_tables()
{
	/*
	 * Remove vfs ops
	 */
	ASSERT(zfsfstype);
	(void) vfs_freevfsops_by_type(zfsfstype);
	zfsfstype = 0;

	/*
	 * Remove vnode ops
	 */
	if (zfs_dvnodeops)
		vn_freevnodeops(zfs_dvnodeops);
	if (zfs_fvnodeops)
		vn_freevnodeops(zfs_fvnodeops);
	if (zfs_symvnodeops)
		vn_freevnodeops(zfs_symvnodeops);
	if (zfs_xdvnodeops)
		vn_freevnodeops(zfs_xdvnodeops);
	if (zfs_evnodeops)
		vn_freevnodeops(zfs_evnodeops);

	zfs_dvnodeops = NULL;
	zfs_fvnodeops = NULL;
	zfs_symvnodeops = NULL;
	zfs_xdvnodeops = NULL;
	zfs_evnodeops = NULL;
}

extern const fs_operation_def_t zfs_dvnodeops_template[];
extern const fs_operation_def_t zfs_fvnodeops_template[];
extern const fs_operation_def_t zfs_xdvnodeops_template[];
extern const fs_operation_def_t zfs_symvnodeops_template[];
extern const fs_operation_def_t zfs_evnodeops_template[];

int
zfs_create_op_tables()
{
	int error;

	/*
	 * zfs_dvnodeops can be set if mod_remove() calls mod_installfs()
	 * due to a failure to remove the the 2nd modlinkage (zfs_modldrv).
	 * In this case we just return as the ops vectors are already set up.
	 */
	if (zfs_dvnodeops)
		return (0);

	error = vn_make_ops(MNTTYPE_ZFS, zfs_dvnodeops_template,
	    &zfs_dvnodeops);
	if (error)
		return (error);

	error = vn_make_ops(MNTTYPE_ZFS, zfs_fvnodeops_template,
	    &zfs_fvnodeops);
	if (error)
		return (error);

	error = vn_make_ops(MNTTYPE_ZFS, zfs_symvnodeops_template,
	    &zfs_symvnodeops);
	if (error)
		return (error);

	error = vn_make_ops(MNTTYPE_ZFS, zfs_xdvnodeops_template,
	    &zfs_xdvnodeops);
	if (error)
		return (error);

	error = vn_make_ops(MNTTYPE_ZFS, zfs_evnodeops_template,
	    &zfs_evnodeops);

	return (error);
}

/*
 * zfs_init_fs - Initialize the zfsvfs struct and the file system
 *	incore "master" object.  Verify version compatibility.
 */
int
zfs_init_fs(zfsvfs_t *zfsvfs, znode_t **zpp, cred_t *cr)
{
	extern int zfsfstype;

	objset_t	*os = zfsvfs->z_os;
	uint64_t	zoid;
	uint64_t	version = ZFS_VERSION;
	int		i, error;
	dmu_object_info_t doi;
	dmu_objset_stats_t *stats;

	*zpp = NULL;

	/*
	 * XXX - hack to auto-create the pool root filesystem at
	 * the first attempted mount.
	 */
	if (dmu_object_info(os, MASTER_NODE_OBJ, &doi) == ENOENT) {
		dmu_tx_t *tx = dmu_tx_create(os);

		dmu_tx_hold_zap(tx, DMU_NEW_OBJECT, 3); /* master node */
		dmu_tx_hold_zap(tx, DMU_NEW_OBJECT, 1); /* delete queue */
		dmu_tx_hold_bonus(tx, DMU_NEW_OBJECT); /* root node */
		error = dmu_tx_assign(tx, TXG_WAIT);
		ASSERT3U(error, ==, 0);
		zfs_create_fs(os, cr, tx);
		dmu_tx_commit(tx);
	}

	if (zap_lookup(os, MASTER_NODE_OBJ, ZFS_VERSION_OBJ, 8, 1, &version)) {
		return (EINVAL);
	} else if (version != ZFS_VERSION) {
		(void) printf("Mismatched versions:  File system "
		    "is version %lld on-disk format, which is "
		    "incompatible with this software version %lld!",
		    (u_longlong_t)version, ZFS_VERSION);
		return (ENOTSUP);
	}

	/*
	 * The fsid is 64 bits, composed of an 8-bit fs type, which
	 * separates our fsid from any other filesystem types, and a
	 * 56-bit objset unique ID.  The objset unique ID is unique to
	 * all objsets open on this system, provided by unique_create().
	 * The 8-bit fs type must be put in the low bits of fsid[1]
	 * because that's where other Solaris filesystems put it.
	 */
	stats = kmem_alloc(sizeof (dmu_objset_stats_t), KM_SLEEP);
	dmu_objset_stats(os, stats);
	ASSERT((stats->dds_fsid_guid & ~((1ULL<<56)-1)) == 0);
	zfsvfs->z_vfs->vfs_fsid.val[0] = stats->dds_fsid_guid;
	zfsvfs->z_vfs->vfs_fsid.val[1] = ((stats->dds_fsid_guid>>32) << 8) |
	    zfsfstype & 0xFF;
	kmem_free(stats, sizeof (dmu_objset_stats_t));
	stats = NULL;

	if (zap_lookup(os, MASTER_NODE_OBJ, ZFS_ROOT_OBJ, 8, 1, &zoid)) {
		return (EINVAL);
	}
	ASSERT(zoid != 0);
	zfsvfs->z_root = zoid;

	/*
	 * Create the per mount vop tables.
	 */

	/*
	 * Initialize zget mutex's
	 */
	for (i = 0; i != ZFS_OBJ_MTX_SZ; i++)
		mutex_init(&zfsvfs->z_hold_mtx[i], NULL, MUTEX_DEFAULT, NULL);

	error = zfs_zget(zfsvfs, zoid, zpp);
	if (error)
		return (error);
	ASSERT3U((*zpp)->z_id, ==, zoid);

	if (zap_lookup(os, MASTER_NODE_OBJ, ZFS_DELETE_QUEUE, 8, 1, &zoid)) {
		return (EINVAL);
	}

	zfsvfs->z_dqueue = zoid;

	/*
	 * Initialize delete head structure
	 * Thread(s) will be started/stopped via
	 * readonly_changed_cb() depending
	 * on whether this is rw/ro mount.
	 */
	list_create(&zfsvfs->z_delete_head.z_znodes,
	    sizeof (znode_t), offsetof(znode_t, z_list_node));

	return (0);
}

/*
 * Construct a new znode/vnode and intialize.
 *
 * This does not do a call to dmu_set_user() that is
 * up to the caller to do, in case you don't want to
 * return the znode
 */
znode_t *
zfs_znode_alloc(zfsvfs_t *zfsvfs, dmu_buf_t *db, uint64_t obj_num, int blksz)
{
	znode_t	*zp;
	vnode_t *vp;

	zp = kmem_cache_alloc(znode_cache, KM_SLEEP);

	ASSERT(zp->z_dirlocks == NULL);

	zp->z_phys = db->db_data;
	zp->z_zfsvfs = zfsvfs;
	zp->z_active = 1;
	zp->z_reap = 0;
	zp->z_atime_dirty = 0;
	zp->z_dbuf_held = 0;
	zp->z_mapcnt = 0;
	zp->z_last_itx = 0;
	zp->z_dbuf = db;
	zp->z_id = obj_num;
	zp->z_blksz = blksz;
	zp->z_seq = 0x7A4653;

	bzero(&zp->z_zcache_node, sizeof (list_node_t));

	mutex_enter(&zfsvfs->z_znodes_lock);
	list_insert_tail(&zfsvfs->z_all_znodes, zp);
	mutex_exit(&zfsvfs->z_znodes_lock);

	vp = ZTOV(zp);
	vn_reinit(vp);

	vp->v_vfsp = zfsvfs->z_parent->z_vfs;
	vp->v_type = IFTOVT((mode_t)zp->z_phys->zp_mode);

	switch (vp->v_type) {
	case VDIR:
		if (zp->z_phys->zp_flags & ZFS_XATTR) {
			vn_setops(vp, zfs_xdvnodeops);
			vp->v_flag |= V_XATTRDIR;
		} else
			vn_setops(vp, zfs_dvnodeops);
		break;
	case VBLK:
	case VCHR:
		vp->v_rdev = (dev_t)zp->z_phys->zp_rdev;
		/*FALLTHROUGH*/
	case VFIFO:
	case VSOCK:
	case VDOOR:
		vn_setops(vp, zfs_fvnodeops);
		break;
	case VREG:
		vp->v_flag |= VMODSORT;
		vn_setops(vp, zfs_fvnodeops);
		break;
	case VLNK:
		vn_setops(vp, zfs_symvnodeops);
		break;
	default:
		vn_setops(vp, zfs_evnodeops);
		break;
	}

	return (zp);
}

static void
zfs_znode_dmu_init(znode_t *zp)
{
	znode_t		*nzp;
	zfsvfs_t	*zfsvfs = zp->z_zfsvfs;
	dmu_buf_t	*db = zp->z_dbuf;

	mutex_enter(&zp->z_lock);

	nzp = dmu_buf_set_user(db, zp, &zp->z_phys, znode_pageout_func);

	/*
	 * there should be no
	 * concurrent zgets on this object.
	 */
	ASSERT3P(nzp, ==, NULL);

	/*
	 * Slap on VROOT if we are the root znode
	 */
	if (zp->z_id == zfsvfs->z_root) {
		ZTOV(zp)->v_flag |= VROOT;
	}

	zp->z_zcache_state = NULL;
	zp->z_zcache_access = 0;

	ASSERT(zp->z_dbuf_held == 0);
	zp->z_dbuf_held = 1;
	VFS_HOLD(zfsvfs->z_vfs);
	mutex_exit(&zp->z_lock);
	vn_exists(ZTOV(zp));
}

/*
 * Create a new DMU object to hold a zfs znode.
 *
 *	IN:	dzp	- parent directory for new znode
 *		vap	- file attributes for new znode
 *		tx	- dmu transaction id for zap operations
 *		cr	- credentials of caller
 *		flag	- flags:
 *			  IS_ROOT_NODE	- new object will be root
 *			  IS_XATTR	- new object is an attribute
 *			  IS_REPLAY	- intent log replay
 *
 *	OUT:	oid	- ID of created object
 *
 */
void
zfs_mknode(znode_t *dzp, vattr_t *vap, uint64_t *oid, dmu_tx_t *tx, cred_t *cr,
	uint_t flag, znode_t **zpp, int bonuslen)
{
	dmu_buf_t	*dbp;
	znode_phys_t	*pzp;
	znode_t		*zp;
	zfsvfs_t	*zfsvfs = dzp->z_zfsvfs;
	timestruc_t	now;
	uint64_t	gen;
	int		err;

	ASSERT(vap && (vap->va_mask & (AT_TYPE|AT_MODE)) == (AT_TYPE|AT_MODE));

	if (zfsvfs->z_assign >= TXG_INITIAL) {		/* ZIL replay */
		*oid = vap->va_nodeid;
		flag |= IS_REPLAY;
		now = vap->va_ctime;		/* see zfs_replay_create() */
		gen = vap->va_nblocks;		/* ditto */
	} else {
		*oid = 0;
		gethrestime(&now);
		gen = dmu_tx_get_txg(tx);
	}

	/*
	 * Create a new DMU object.
	 */
	if (vap->va_type == VDIR) {
		if (flag & IS_REPLAY) {
			err = zap_create_claim(zfsvfs->z_os, *oid,
			    DMU_OT_DIRECTORY_CONTENTS,
			    DMU_OT_ZNODE, sizeof (znode_phys_t) + bonuslen, tx);
			ASSERT3U(err, ==, 0);
		} else {
			*oid = zap_create(zfsvfs->z_os,
			    DMU_OT_DIRECTORY_CONTENTS,
			    DMU_OT_ZNODE, sizeof (znode_phys_t) + bonuslen, tx);
		}
	} else {
		if (flag & IS_REPLAY) {
			err = dmu_object_claim(zfsvfs->z_os, *oid,
			    DMU_OT_PLAIN_FILE_CONTENTS, 0,
			    DMU_OT_ZNODE, sizeof (znode_phys_t) + bonuslen, tx);
			ASSERT3U(err, ==, 0);
		} else {
			*oid = dmu_object_alloc(zfsvfs->z_os,
			    DMU_OT_PLAIN_FILE_CONTENTS, 0,
			    DMU_OT_ZNODE, sizeof (znode_phys_t) + bonuslen, tx);
		}
	}
	dbp = dmu_bonus_hold(zfsvfs->z_os, *oid);
	dmu_buf_will_dirty(dbp, tx);

	/*
	 * Initialize the znode physical data to zero.
	 */
	ASSERT(dbp->db_size >= sizeof (znode_phys_t));
	bzero(dbp->db_data, dbp->db_size);
	pzp = dbp->db_data;

	/*
	 * If this is the root, fix up the half-initialized parent pointer
	 * to reference the just-allocated physical data area.
	 */
	if (flag & IS_ROOT_NODE) {
		dzp->z_phys = pzp;
		dzp->z_id = *oid;
	}

	/*
	 * If parent is an xattr, so am I.
	 */
	if (dzp->z_phys->zp_flags & ZFS_XATTR)
		flag |= IS_XATTR;

	if (vap->va_type == VBLK || vap->va_type == VCHR) {
		pzp->zp_rdev = vap->va_rdev;
	}

	if (vap->va_type == VDIR) {
		pzp->zp_size = 2;		/* contents ("." and "..") */
		pzp->zp_links = (flag & (IS_ROOT_NODE | IS_XATTR)) ? 2 : 1;
	}

	pzp->zp_parent = dzp->z_id;
	if (flag & IS_XATTR)
		pzp->zp_flags |= ZFS_XATTR;

	pzp->zp_gen = gen;

	ZFS_TIME_ENCODE(&now, pzp->zp_crtime);
	ZFS_TIME_ENCODE(&now, pzp->zp_ctime);

	if (vap->va_mask & AT_ATIME) {
		ZFS_TIME_ENCODE(&vap->va_atime, pzp->zp_atime);
	} else {
		ZFS_TIME_ENCODE(&now, pzp->zp_atime);
	}

	if (vap->va_mask & AT_MTIME) {
		ZFS_TIME_ENCODE(&vap->va_mtime, pzp->zp_mtime);
	} else {
		ZFS_TIME_ENCODE(&now, pzp->zp_mtime);
	}

	pzp->zp_mode = MAKEIMODE(vap->va_type, vap->va_mode);
	zp = zfs_znode_alloc(zfsvfs, dbp, *oid, 0);

	zfs_perm_init(zp, dzp, flag, vap, tx, cr);

	if (zpp) {
		kmutex_t *hash_mtx = ZFS_OBJ_MUTEX(zp);

		mutex_enter(hash_mtx);
		zfs_znode_dmu_init(zp);
		zcache_access(zp, hash_mtx);
		*zpp = zp;
	} else {
		ZTOV(zp)->v_count = 0;
		dmu_buf_rele(dbp);
		zfs_znode_free(zp);
	}
}

int
zfs_zget(zfsvfs_t *zfsvfs, uint64_t obj_num, znode_t **zpp)
{
	dmu_object_info_t doi;
	dmu_buf_t	*db;
	znode_t		*zp;

	*zpp = NULL;

	ZFS_OBJ_HOLD_ENTER(zfsvfs, obj_num);

	db = dmu_bonus_hold(zfsvfs->z_os, obj_num);
	if (db == NULL) {
		ZFS_OBJ_HOLD_EXIT(zfsvfs, obj_num);
		return (ENOENT);
	}

	dmu_object_info_from_db(db, &doi);
	if (doi.doi_bonus_type != DMU_OT_ZNODE ||
	    doi.doi_bonus_size < sizeof (znode_phys_t)) {
		dmu_buf_rele(db);
		ZFS_OBJ_HOLD_EXIT(zfsvfs, obj_num);
		return (EINVAL);
	}
	dmu_buf_read(db);

	ASSERT(db->db_object == obj_num);
	ASSERT(db->db_offset == -1);
	ASSERT(db->db_data != NULL);

	zp = dmu_buf_get_user(db);

	if (zp != NULL) {
		mutex_enter(&zp->z_lock);

		ASSERT3U(zp->z_id, ==, obj_num);
		if (zp->z_reap) {
			dmu_buf_rele(db);
			mutex_exit(&zp->z_lock);
			ZFS_OBJ_HOLD_EXIT(zfsvfs, obj_num);
			return (ENOENT);
		} else if (zp->z_dbuf_held) {
			dmu_buf_rele(db);
		} else {
			zp->z_dbuf_held = 1;
			VFS_HOLD(zfsvfs->z_vfs);
		}

		if (zp->z_active == 0) {
			zp->z_active = 1;
			if (list_link_active(&zp->z_zcache_node)) {
				mutex_enter(&zp->z_zcache_state->mtx);
				list_remove(&zp->z_zcache_state->list, zp);
				zp->z_zcache_state->lcnt -= 1;
				mutex_exit(&zp->z_zcache_state->mtx);
			}
		}
		VN_HOLD(ZTOV(zp));
		mutex_exit(&zp->z_lock);
		zcache_access(zp, ZFS_OBJ_MUTEX(zp));
		*zpp = zp;
		return (0);
	}

	/*
	 * Not found create new znode/vnode
	 */
	zp = zfs_znode_alloc(zfsvfs, db, obj_num, doi.doi_data_block_size);
	ASSERT3U(zp->z_id, ==, obj_num);
	zfs_znode_dmu_init(zp);
	zcache_access(zp, ZFS_OBJ_MUTEX(zp));
	*zpp = zp;
	return (0);
}

void
zfs_znode_delete(znode_t *zp, dmu_tx_t *tx)
{
	zfsvfs_t *zfsvfs = zp->z_zfsvfs;
	int error;

	ZFS_OBJ_HOLD_ENTER(zfsvfs, zp->z_id);
	if (zp->z_phys->zp_acl.z_acl_extern_obj) {
		error = dmu_object_free(zfsvfs->z_os,
		    zp->z_phys->zp_acl.z_acl_extern_obj, tx);
		ASSERT3U(error, ==, 0);
	}
	if (zp->z_zcache_state) {
		ASSERT3U(zp->z_zcache_state->cnt, >=, 1);
		atomic_add_64(&zp->z_zcache_state->cnt, -1);
	}
	error = dmu_object_free(zfsvfs->z_os, zp->z_id, tx);
	ASSERT3U(error, ==, 0);
	zp->z_dbuf_held = 0;
	ZFS_OBJ_HOLD_EXIT(zfsvfs, zp->z_id);
	dmu_buf_rele(zp->z_dbuf);
}

void
zfs_zinactive(znode_t *zp)
{
	vnode_t	*vp = ZTOV(zp);
	zfsvfs_t *zfsvfs = zp->z_zfsvfs;
	uint64_t z_id = zp->z_id;

	ASSERT(zp->z_dbuf_held && zp->z_phys);

	/*
	 * Don't allow a zfs_zget() while were trying to release this znode
	 */
	ZFS_OBJ_HOLD_ENTER(zfsvfs, z_id);

	mutex_enter(&zp->z_lock);
	mutex_enter(&vp->v_lock);
	vp->v_count--;
	if (vp->v_count > 0 || vn_has_cached_data(vp)) {
		/*
		 * If the hold count is greater than zero, somebody has
		 * obtained a new reference on this znode while we were
		 * processing it here, so we are done.  If we still have
		 * mapped pages then we are also done, since we don't
		 * want to inactivate the znode until the pages get pushed.
		 *
		 * XXX - if vn_has_cached_data(vp) is true, but count == 0,
		 * this seems like it would leave the znode hanging with
		 * no chance to go inactive...
		 */
		mutex_exit(&vp->v_lock);
		mutex_exit(&zp->z_lock);
		ZFS_OBJ_HOLD_EXIT(zfsvfs, z_id);
		return;
	}
	mutex_exit(&vp->v_lock);
	zp->z_active = 0;

	/*
	 * If this was the last reference to a file with no links,
	 * remove the file from the file system.
	 */
	if (zp->z_reap) {
		mutex_exit(&zp->z_lock);
		ZFS_OBJ_HOLD_EXIT(zfsvfs, z_id);
		ASSERT3U(zp->z_zcache_state->cnt, >=, 1);
		atomic_add_64(&zp->z_zcache_state->cnt, -1);
		zp->z_zcache_state = NULL;
		/* XATTR files are not put on the delete queue */
		if (zp->z_phys->zp_flags & ZFS_XATTR) {
			zfs_rmnode(zp);
		} else {
			mutex_enter(&zfsvfs->z_delete_head.z_mutex);
			list_insert_tail(&zfsvfs->z_delete_head.z_znodes, zp);
			zfsvfs->z_delete_head.z_znode_count++;
			cv_broadcast(&zfsvfs->z_delete_head.z_cv);
			mutex_exit(&zfsvfs->z_delete_head.z_mutex);
		}
		VFS_RELE(zfsvfs->z_vfs);
		return;
	}

	/*
	 * If the file system for this znode is no longer mounted,
	 * evict the znode now, don't put it in the cache.
	 */
	if (zfsvfs->z_unmounted1) {
		zfs_zcache_evict(zp, ZFS_OBJ_MUTEX(zp));
		return;
	}

	/* put znode on evictable list */
	mutex_enter(&zp->z_zcache_state->mtx);
	list_insert_head(&zp->z_zcache_state->list, zp);
	zp->z_zcache_state->lcnt += 1;
	mutex_exit(&zp->z_zcache_state->mtx);
	mutex_exit(&zp->z_lock);
	ZFS_OBJ_HOLD_EXIT(zfsvfs, z_id);
}

void
zfs_znode_free(znode_t *zp)
{
	zfsvfs_t *zfsvfs = zp->z_zfsvfs;

	mutex_enter(&zfsvfs->z_znodes_lock);
	list_remove(&zfsvfs->z_all_znodes, zp);
	mutex_exit(&zfsvfs->z_znodes_lock);

	kmem_cache_free(znode_cache, zp);
}

void
zfs_time_stamper_locked(znode_t *zp, uint_t flag, dmu_tx_t *tx)
{
	timestruc_t	now;

	ASSERT(MUTEX_HELD(&zp->z_lock));

	gethrestime(&now);

	if (tx) {
		dmu_buf_will_dirty(zp->z_dbuf, tx);
		zp->z_atime_dirty = 0;
		zp->z_seq++;
	} else {
		zp->z_atime_dirty = 1;
	}

	if (flag & AT_ATIME)
		ZFS_TIME_ENCODE(&now, zp->z_phys->zp_atime);

	if (flag & AT_MTIME)
		ZFS_TIME_ENCODE(&now, zp->z_phys->zp_mtime);

	if (flag & AT_CTIME)
		ZFS_TIME_ENCODE(&now, zp->z_phys->zp_ctime);
}

/*
 * Update the requested znode timestamps with the current time.
 * If we are in a transaction, then go ahead and mark the znode
 * dirty in the transaction so the timestamps will go to disk.
 * Otherwise, we will get pushed next time the znode is updated
 * in a transaction, or when this znode eventually goes inactive.
 *
 * Why is this OK?
 *  1 - Only the ACCESS time is ever updated outside of a transaction.
 *  2 - Multiple consecutive updates will be collapsed into a single
 *	znode update by the transaction grouping semantics of the DMU.
 */
void
zfs_time_stamper(znode_t *zp, uint_t flag, dmu_tx_t *tx)
{
	mutex_enter(&zp->z_lock);
	zfs_time_stamper_locked(zp, flag, tx);
	mutex_exit(&zp->z_lock);
}

/*
 * Grow the block size for a file.  This may involve migrating data
 * from the bonus buffer into a data block (when we grow beyond the
 * bonus buffer data area).
 *
 *	IN:	zp	- znode of file to free data in.
 *		size	- requested block size
 *		tx	- open transaction.
 *
 * 	RETURN:	0 if success
 *		error code if failure
 *
 * NOTE: this function assumes that the znode is write locked.
 */
int
zfs_grow_blocksize(znode_t *zp, uint64_t size, dmu_tx_t *tx)
{
	int		error;
	u_longlong_t	dummy;

	ASSERT(rw_write_held(&zp->z_grow_lock));

	if (size <= zp->z_blksz)
		return (0);
	/*
	 * If the file size is already greater than the current blocksize,
	 * we will not grow.  If there is more than one block in a file,
	 * the blocksize cannot change.
	 */
	if (zp->z_blksz && zp->z_phys->zp_size > zp->z_blksz)
		return (0);

	error = dmu_object_set_blocksize(zp->z_zfsvfs->z_os, zp->z_id,
	    size, 0, tx);
	if (error == ENOTSUP)
		return (0);
	ASSERT3U(error, ==, 0);

	/* What blocksize did we actually get? */
	dmu_object_size_from_db(zp->z_dbuf, &zp->z_blksz, &dummy);

	return (0);
}

/*
 * This is a dummy interface used when pvn_vplist_dirty() should *not*
 * be calling back into the fs for a putpage().  E.g.: when truncating
 * a file, the pages being "thrown away* don't need to be written out.
 */
/* ARGSUSED */
static int
zfs_no_putpage(vnode_t *vp, page_t *pp, u_offset_t *offp, size_t *lenp,
    int flags, cred_t *cr)
{
	ASSERT(0);
	return (0);
}

/*
 * Free space in a file.  Currently, this function only
 * supports freeing space at the end of the file.
 *
 *	IN:	zp	- znode of file to free data in.
 *		from	- start of section to free.
 *		len	- length of section to free (0 => to EOF).
 *		flag	- current file open mode flags.
 *		tx	- open transaction.
 *
 * 	RETURN:	0 if success
 *		error code if failure
 */
int
zfs_freesp(znode_t *zp, uint64_t from, uint64_t len, int flag, dmu_tx_t *tx,
	cred_t *cr)
{
	vnode_t *vp = ZTOV(zp);
	uint64_t size = zp->z_phys->zp_size;
	uint64_t end = from + len;
	int have_grow_lock, error;

	have_grow_lock = RW_WRITE_HELD(&zp->z_grow_lock);

	/*
	 * Nothing to do if file already at desired length.
	 */
	if (len == 0 && size == from) {
		return (0);
	}

	/*
	 * Check for any locks in the region to be freed.
	 */
	if (MANDLOCK(vp, (mode_t)zp->z_phys->zp_mode)) {
		uint64_t	start;

		if (size > from)
			start = from;
		else
			start = size;
		if (error = chklock(vp, FWRITE, start, 0, flag, NULL))
			return (error);
	}

	if (end > zp->z_blksz && (!ISP2(zp->z_blksz) ||
	    zp->z_blksz < zp->z_zfsvfs->z_max_blksz)) {
		uint64_t new_blksz;
		/*
		 * We are growing the file past the current block size.
		 */
		if (zp->z_blksz > zp->z_zfsvfs->z_max_blksz) {
			ASSERT(!ISP2(zp->z_blksz));
			new_blksz = MIN(end, SPA_MAXBLOCKSIZE);
		} else {
			new_blksz = MIN(end, zp->z_zfsvfs->z_max_blksz);
		}
		error = zfs_grow_blocksize(zp, new_blksz, tx);
		ASSERT(error == 0);
	}
	if (end > size || len == 0)
		zp->z_phys->zp_size = end;
	if (from > size)
		return (0);

	if (have_grow_lock)
		rw_downgrade(&zp->z_grow_lock);
	/*
	 * Clear any mapped pages in the truncated region.
	 */
	rw_enter(&zp->z_map_lock, RW_WRITER);
	if (vn_has_cached_data(vp)) {
		page_t *pp;
		uint64_t start = from & PAGEMASK;
		int off = from & PAGEOFFSET;

		if (off != 0 && (pp = page_lookup(vp, start, SE_SHARED))) {
			/*
			 * We need to zero a partial page.
			 */
			pagezero(pp, off, PAGESIZE - off);
			start += PAGESIZE;
			page_unlock(pp);
		}
		error = pvn_vplist_dirty(vp, start, zfs_no_putpage,
		    B_INVAL | B_TRUNC, cr);
		ASSERT(error == 0);
	}
	rw_exit(&zp->z_map_lock);

	if (!have_grow_lock)
		rw_enter(&zp->z_grow_lock, RW_READER);

	if (len == 0)
		len = -1;
	else if (end > size)
		len = size - from;
	dmu_free_range(zp->z_zfsvfs->z_os, zp->z_id, from, len, tx);

	if (!have_grow_lock)
		rw_exit(&zp->z_grow_lock);

	return (0);
}


void
zfs_create_fs(objset_t *os, cred_t *cr, dmu_tx_t *tx)
{
	zfsvfs_t	zfsvfs;
	uint64_t	moid, doid, roid = 0;
	uint64_t	version = ZFS_VERSION;
	int		error;
	znode_t		*rootzp = NULL;
	vnode_t		*vp;
	vattr_t		vattr;

	/*
	 * First attempt to create master node.
	 */
	moid = MASTER_NODE_OBJ;
	error = zap_create_claim(os, moid, DMU_OT_MASTER_NODE,
	    DMU_OT_NONE, 0, tx);
	ASSERT(error == 0);

	/*
	 * Set starting attributes.
	 */

	error = zap_update(os, moid, ZFS_VERSION_OBJ, 8, 1, &version, tx);
	ASSERT(error == 0);

	/*
	 * Create a delete queue.
	 */
	doid = zap_create(os, DMU_OT_DELETE_QUEUE, DMU_OT_NONE, 0, tx);

	error = zap_add(os, moid, ZFS_DELETE_QUEUE, 8, 1, &doid, tx);
	ASSERT(error == 0);

	/*
	 * Create root znode.  Create minimal znode/vnode/zfsvfs
	 * to allow zfs_mknode to work.
	 */
	vattr.va_mask = AT_MODE|AT_UID|AT_GID|AT_TYPE;
	vattr.va_type = VDIR;
	vattr.va_mode = S_IFDIR|0755;
	vattr.va_uid = 0;
	vattr.va_gid = 3;

	rootzp = kmem_cache_alloc(znode_cache, KM_SLEEP);
	rootzp->z_zfsvfs = &zfsvfs;
	rootzp->z_active = 1;
	rootzp->z_reap = 0;
	rootzp->z_atime_dirty = 0;
	rootzp->z_dbuf_held = 0;

	vp = ZTOV(rootzp);
	vn_reinit(vp);
	vp->v_type = VDIR;

	bzero(&zfsvfs, sizeof (zfsvfs_t));

	zfsvfs.z_os = os;
	zfsvfs.z_assign = TXG_NOWAIT;
	zfsvfs.z_parent = &zfsvfs;

	mutex_init(&zfsvfs.z_znodes_lock, NULL, MUTEX_DEFAULT, NULL);
	list_create(&zfsvfs.z_all_znodes, sizeof (znode_t),
	    offsetof(znode_t, z_link_node));

	zfs_mknode(rootzp, &vattr, &roid, tx, cr, IS_ROOT_NODE, NULL, 0);
	ASSERT3U(rootzp->z_id, ==, roid);
	error = zap_add(os, moid, ZFS_ROOT_OBJ, 8, 1, &roid, tx);
	ASSERT(error == 0);

	ZTOV(rootzp)->v_count = 0;
	kmem_cache_free(znode_cache, rootzp);
}