summaryrefslogtreecommitdiff
path: root/usr/src/uts/common/io/cpudrv.c
blob: 039eb1dfb6d7d0938a62f76f28aecd81280c7875 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
/*
 * CDDL HEADER START
 *
 * The contents of this file are subject to the terms of the
 * Common Development and Distribution License (the "License").
 * You may not use this file except in compliance with the License.
 *
 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
 * or http://www.opensolaris.org/os/licensing.
 * See the License for the specific language governing permissions
 * and limitations under the License.
 *
 * When distributing Covered Code, include this CDDL HEADER in each
 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
 * If applicable, add the following below this CDDL HEADER, with the
 * fields enclosed by brackets "[]" replaced with your own identifying
 * information: Portions Copyright [yyyy] [name of copyright owner]
 *
 * CDDL HEADER END
 */
/*
 * Copyright 2009 Sun Microsystems, Inc.  All rights reserved.
 * Use is subject to license terms.
 */
/*
 * Copyright (c) 2009,  Intel Corporation.
 * All Rights Reserved.
 */

/*
 * CPU Device driver. The driver is not DDI-compliant.
 *
 * The driver supports following features:
 *	- Power management.
 */

#include <sys/types.h>
#include <sys/param.h>
#include <sys/errno.h>
#include <sys/modctl.h>
#include <sys/kmem.h>
#include <sys/conf.h>
#include <sys/cmn_err.h>
#include <sys/stat.h>
#include <sys/debug.h>
#include <sys/systm.h>
#include <sys/ddi.h>
#include <sys/sunddi.h>
#include <sys/sdt.h>
#include <sys/epm.h>
#include <sys/machsystm.h>
#include <sys/x_call.h>
#include <sys/cpudrv_mach.h>
#include <sys/msacct.h>

/*
 * CPU power management
 *
 * The supported power saving model is to slow down the CPU (on SPARC by
 * dividing the CPU clock and on x86 by dropping down a P-state).
 * Periodically we determine the amount of time the CPU is running
 * idle thread and threads in user mode during the last quantum.  If the idle
 * thread was running less than its low water mark for current speed for
 * number of consecutive sampling periods, or number of running threads in
 * user mode are above its high water mark, we arrange to go to the higher
 * speed.  If the idle thread was running more than its high water mark without
 * dropping a number of consecutive times below the mark, and number of threads
 * running in user mode are below its low water mark, we arrange to go to the
 * next lower speed.  While going down, we go through all the speeds.  While
 * going up we go to the maximum speed to minimize impact on the user, but have
 * provisions in the driver to go to other speeds.
 *
 * The driver does not have knowledge of a particular implementation of this
 * scheme and will work with all CPUs supporting this model. On SPARC, the
 * driver determines supported speeds by looking at 'clock-divisors' property
 * created by OBP. On x86, the driver retrieves the supported speeds from
 * ACPI.
 */

/*
 * Configuration function prototypes and data structures
 */
static int cpudrv_attach(dev_info_t *dip, ddi_attach_cmd_t cmd);
static int cpudrv_detach(dev_info_t *dip, ddi_detach_cmd_t cmd);
static int cpudrv_power(dev_info_t *dip, int comp, int level);

struct dev_ops cpudrv_ops = {
	DEVO_REV,		/* rev */
	0,			/* refcnt */
	nodev,			/* getinfo */
	nulldev,		/* identify */
	nulldev,		/* probe */
	cpudrv_attach,		/* attach */
	cpudrv_detach,		/* detach */
	nodev,			/* reset */
	(struct cb_ops *)NULL,	/* cb_ops */
	(struct bus_ops *)NULL,	/* bus_ops */
	cpudrv_power,		/* power */
	ddi_quiesce_not_needed,		/* quiesce */
};

static struct modldrv modldrv = {
	&mod_driverops,			/* modops */
	"CPU Driver",			/* linkinfo */
	&cpudrv_ops,			/* dev_ops */
};

static struct modlinkage modlinkage = {
	MODREV_1,		/* rev */
	&modldrv,		/* linkage */
	NULL
};

/*
 * Function prototypes
 */
static int cpudrv_init(cpudrv_devstate_t *cpudsp);
static void cpudrv_free(cpudrv_devstate_t *cpudsp);
static int cpudrv_comp_create(cpudrv_devstate_t *cpudsp);
static void cpudrv_monitor_disp(void *arg);
static void cpudrv_monitor(void *arg);

/*
 * Driver global variables
 */
uint_t cpudrv_debug = 0;
void *cpudrv_state;
static uint_t cpudrv_idle_hwm = CPUDRV_IDLE_HWM;
static uint_t cpudrv_idle_lwm = CPUDRV_IDLE_LWM;
static uint_t cpudrv_idle_buf_zone = CPUDRV_IDLE_BUF_ZONE;
static uint_t cpudrv_idle_bhwm_cnt_max = CPUDRV_IDLE_BHWM_CNT_MAX;
static uint_t cpudrv_idle_blwm_cnt_max = CPUDRV_IDLE_BLWM_CNT_MAX;
static uint_t cpudrv_user_hwm = CPUDRV_USER_HWM;

boolean_t cpudrv_enabled = B_TRUE;

/*
 * cpudrv_direct_pm allows user applications to directly control the
 * power state transitions (direct pm) without following the normal
 * direct pm protocol. This is needed because the normal protocol
 * requires that a device only be lowered when it is idle, and be
 * brought up when it request to do so by calling pm_raise_power().
 * Ignoring this protocol is harmless for CPU (other than speed).
 * Moreover it might be the case that CPU is never idle or wants
 * to be at higher speed because of the addition CPU cycles required
 * to run the user application.
 *
 * The driver will still report idle/busy status to the framework. Although
 * framework will ignore this information for direct pm devices and not
 * try to bring them down when idle, user applications can still use this
 * information if they wants.
 *
 * In the future, provide an ioctl to control setting of this mode. In
 * that case, this variable should move to the state structure and
 * be protected by the lock in the state structure.
 */
int cpudrv_direct_pm = 0;

/*
 * Arranges for the handler function to be called at the interval suitable
 * for current speed.
 */
#define	CPUDRV_MONITOR_INIT(cpudsp) { \
    if (cpudrv_is_enabled(cpudsp)) {	      \
		ASSERT(mutex_owned(&(cpudsp)->lock)); \
		(cpudsp)->cpudrv_pm.timeout_id = \
		    timeout(cpudrv_monitor_disp, \
		    (cpudsp), (((cpudsp)->cpudrv_pm.cur_spd == NULL) ? \
		    CPUDRV_QUANT_CNT_OTHR : \
		    (cpudsp)->cpudrv_pm.cur_spd->quant_cnt)); \
	} \
}

/*
 * Arranges for the handler function not to be called back.
 */
#define	CPUDRV_MONITOR_FINI(cpudsp) { \
	timeout_id_t tmp_tid; \
	ASSERT(mutex_owned(&(cpudsp)->lock)); \
	tmp_tid = (cpudsp)->cpudrv_pm.timeout_id; \
	(cpudsp)->cpudrv_pm.timeout_id = 0; \
	mutex_exit(&(cpudsp)->lock); \
	if (tmp_tid != 0) { \
		(void) untimeout(tmp_tid); \
		mutex_enter(&(cpudsp)->cpudrv_pm.timeout_lock); \
		while ((cpudsp)->cpudrv_pm.timeout_count != 0) \
			cv_wait(&(cpudsp)->cpudrv_pm.timeout_cv, \
			    &(cpudsp)->cpudrv_pm.timeout_lock); \
		mutex_exit(&(cpudsp)->cpudrv_pm.timeout_lock); \
	} \
	mutex_enter(&(cpudsp)->lock); \
}

int
_init(void)
{
	int	error;

	DPRINTF(D_INIT, (" _init: function called\n"));
	if ((error = ddi_soft_state_init(&cpudrv_state,
	    sizeof (cpudrv_devstate_t), 0)) != 0) {
		return (error);
	}

	if ((error = mod_install(&modlinkage)) != 0)  {
		ddi_soft_state_fini(&cpudrv_state);
	}

	/*
	 * Callbacks used by the PPM driver.
	 */
	CPUDRV_SET_PPM_CALLBACKS();
	return (error);
}

int
_fini(void)
{
	int	error;

	DPRINTF(D_FINI, (" _fini: function called\n"));
	if ((error = mod_remove(&modlinkage)) == 0) {
		ddi_soft_state_fini(&cpudrv_state);
	}

	return (error);
}

int
_info(struct modinfo *modinfop)
{
	return (mod_info(&modlinkage, modinfop));
}

/*
 * Driver attach(9e) entry point.
 */
static int
cpudrv_attach(dev_info_t *dip, ddi_attach_cmd_t cmd)
{
	int			instance;
	cpudrv_devstate_t	*cpudsp;

	instance = ddi_get_instance(dip);

	switch (cmd) {
	case DDI_ATTACH:
		DPRINTF(D_ATTACH, ("cpudrv_attach: instance %d: "
		    "DDI_ATTACH called\n", instance));
		if (!cpudrv_is_enabled(NULL))
			return (DDI_FAILURE);
		if (ddi_soft_state_zalloc(cpudrv_state, instance) !=
		    DDI_SUCCESS) {
			cmn_err(CE_WARN, "cpudrv_attach: instance %d: "
			    "can't allocate state", instance);
			cpudrv_enabled = B_FALSE;
			return (DDI_FAILURE);
		}
		if ((cpudsp = ddi_get_soft_state(cpudrv_state, instance)) ==
		    NULL) {
			cmn_err(CE_WARN, "cpudrv_attach: instance %d: "
			    "can't get state", instance);
			ddi_soft_state_free(cpudrv_state, instance);
			cpudrv_enabled = B_FALSE;
			return (DDI_FAILURE);
		}
		cpudsp->dip = dip;

		/*
		 * Find CPU number for this dev_info node.
		 */
		if (!cpudrv_get_cpu_id(dip, &(cpudsp->cpu_id))) {
			cmn_err(CE_WARN, "cpudrv_attach: instance %d: "
			    "can't convert dip to cpu_id", instance);
			ddi_soft_state_free(cpudrv_state, instance);
			cpudrv_enabled = B_FALSE;
			return (DDI_FAILURE);
		}

		mutex_init(&cpudsp->lock, NULL, MUTEX_DRIVER, NULL);
		if (cpudrv_is_enabled(cpudsp)) {
			if (cpudrv_init(cpudsp) != DDI_SUCCESS) {
				cpudrv_enabled = B_FALSE;
				cpudrv_free(cpudsp);
				ddi_soft_state_free(cpudrv_state, instance);
				return (DDI_FAILURE);
			}
			if (cpudrv_comp_create(cpudsp) != DDI_SUCCESS) {
				cpudrv_enabled = B_FALSE;
				cpudrv_free(cpudsp);
				ddi_soft_state_free(cpudrv_state, instance);
				return (DDI_FAILURE);
			}
			if (ddi_prop_update_string(DDI_DEV_T_NONE,
			    dip, "pm-class", "CPU") != DDI_PROP_SUCCESS) {
				cpudrv_enabled = B_FALSE;
				cpudrv_free(cpudsp);
				ddi_soft_state_free(cpudrv_state, instance);
				return (DDI_FAILURE);
			}

			/*
			 * Taskq is used to dispatch routine to monitor CPU
			 * activities.
			 */
			cpudsp->cpudrv_pm.tq = ddi_taskq_create(dip,
			    "cpudrv_monitor", CPUDRV_TASKQ_THREADS,
			    TASKQ_DEFAULTPRI, 0);

			mutex_init(&cpudsp->cpudrv_pm.timeout_lock, NULL,
			    MUTEX_DRIVER, NULL);
			cv_init(&cpudsp->cpudrv_pm.timeout_cv, NULL,
			    CV_DEFAULT, NULL);

			/*
			 * Driver needs to assume that CPU is running at
			 * unknown speed at DDI_ATTACH and switch it to the
			 * needed speed. We assume that initial needed speed
			 * is full speed for us.
			 */
			/*
			 * We need to take the lock because cpudrv_monitor()
			 * will start running in parallel with attach().
			 */
			mutex_enter(&cpudsp->lock);
			cpudsp->cpudrv_pm.cur_spd = NULL;
			cpudsp->cpudrv_pm.pm_started = B_FALSE;
			/*
			 * We don't call pm_raise_power() directly from attach
			 * because driver attach for a slave CPU node can
			 * happen before the CPU is even initialized. We just
			 * start the monitoring system which understands
			 * unknown speed and moves CPU to top speed when it
			 * has been initialized.
			 */
			CPUDRV_MONITOR_INIT(cpudsp);
			mutex_exit(&cpudsp->lock);

		}

		if (!cpudrv_mach_init(cpudsp)) {
			cmn_err(CE_WARN, "cpudrv_attach: instance %d: "
			    "cpudrv_mach_init failed", instance);
			cpudrv_enabled = B_FALSE;
			cpudrv_free(cpudsp);
			ddi_soft_state_free(cpudrv_state, instance);
			return (DDI_FAILURE);
		}

		CPUDRV_INSTALL_MAX_CHANGE_HANDLER(cpudsp);

		(void) ddi_prop_update_int(DDI_DEV_T_NONE, dip,
		    DDI_NO_AUTODETACH, 1);
		ddi_report_dev(dip);
		return (DDI_SUCCESS);

	case DDI_RESUME:
		DPRINTF(D_ATTACH, ("cpudrv_attach: instance %d: "
		    "DDI_RESUME called\n", instance));

		cpudsp = ddi_get_soft_state(cpudrv_state, instance);
		ASSERT(cpudsp != NULL);

		/*
		 * Nothing to do for resume, if not doing active PM.
		 */
		if (!cpudrv_is_enabled(cpudsp))
			return (DDI_SUCCESS);

		mutex_enter(&cpudsp->lock);
		/*
		 * Driver needs to assume that CPU is running at unknown speed
		 * at DDI_RESUME and switch it to the needed speed. We assume
		 * that the needed speed is full speed for us.
		 */
		cpudsp->cpudrv_pm.cur_spd = NULL;
		CPUDRV_MONITOR_INIT(cpudsp);
		mutex_exit(&cpudsp->lock);
		CPUDRV_REDEFINE_TOPSPEED(dip);
		return (DDI_SUCCESS);

	default:
		return (DDI_FAILURE);
	}
}

/*
 * Driver detach(9e) entry point.
 */
static int
cpudrv_detach(dev_info_t *dip, ddi_detach_cmd_t cmd)
{
	int			instance;
	cpudrv_devstate_t	*cpudsp;
	cpudrv_pm_t		*cpupm;

	instance = ddi_get_instance(dip);

	switch (cmd) {
	case DDI_DETACH:
		DPRINTF(D_DETACH, ("cpudrv_detach: instance %d: "
		    "DDI_DETACH called\n", instance));

#if defined(__x86)
		cpudsp = ddi_get_soft_state(cpudrv_state, instance);
		ASSERT(cpudsp != NULL);

		/*
		 * Nothing to do for detach, if no doing active PM.
		 */
		if (!cpudrv_is_enabled(cpudsp))
			return (DDI_SUCCESS);

		/*
		 * uninstall PPC/_TPC change notification handler
		 */
		CPUDRV_UNINSTALL_MAX_CHANGE_HANDLER(cpudsp);

		/*
		 * destruct platform specific resource
		 */
		if (!cpudrv_mach_fini(cpudsp))
			return (DDI_FAILURE);

		mutex_enter(&cpudsp->lock);
		CPUDRV_MONITOR_FINI(cpudsp);
		cv_destroy(&cpudsp->cpudrv_pm.timeout_cv);
		mutex_destroy(&cpudsp->cpudrv_pm.timeout_lock);
		ddi_taskq_destroy(cpudsp->cpudrv_pm.tq);
		cpudrv_free(cpudsp);
		mutex_exit(&cpudsp->lock);
		mutex_destroy(&cpudsp->lock);
		ddi_soft_state_free(cpudrv_state, instance);
		(void) ddi_prop_update_int(DDI_DEV_T_NONE, dip,
		    DDI_NO_AUTODETACH, 0);
		return (DDI_SUCCESS);

#else
		/*
		 * If the only thing supported by the driver is power
		 * management, we can in future enhance the driver and
		 * framework that loads it to unload the driver when
		 * user has disabled CPU power management.
		 */
		return (DDI_FAILURE);
#endif

	case DDI_SUSPEND:
		DPRINTF(D_DETACH, ("cpudrv_detach: instance %d: "
		    "DDI_SUSPEND called\n", instance));

		cpudsp = ddi_get_soft_state(cpudrv_state, instance);
		ASSERT(cpudsp != NULL);

		/*
		 * Nothing to do for suspend, if not doing active PM.
		 */
		if (!cpudrv_is_enabled(cpudsp))
			return (DDI_SUCCESS);

		/*
		 * During a checkpoint-resume sequence, framework will
		 * stop interrupts to quiesce kernel activity. This will
		 * leave our monitoring system ineffective. Handle this
		 * by stopping our monitoring system and bringing CPU
		 * to full speed. In case we are in special direct pm
		 * mode, we leave the CPU at whatever speed it is. This
		 * is harmless other than speed.
		 */
		mutex_enter(&cpudsp->lock);
		cpupm = &(cpudsp->cpudrv_pm);

		DPRINTF(D_DETACH, ("cpudrv_detach: instance %d: DDI_SUSPEND - "
		    "cur_spd %d, topspeed %d\n", instance,
		    cpupm->cur_spd->pm_level,
		    CPUDRV_TOPSPEED(cpupm)->pm_level));

		CPUDRV_MONITOR_FINI(cpudsp);

		if (!cpudrv_direct_pm && (cpupm->cur_spd !=
		    CPUDRV_TOPSPEED(cpupm))) {
			if (cpupm->pm_busycnt < 1) {
				if ((pm_busy_component(dip, CPUDRV_COMP_NUM)
				    == DDI_SUCCESS)) {
					cpupm->pm_busycnt++;
				} else {
					CPUDRV_MONITOR_INIT(cpudsp);
					mutex_exit(&cpudsp->lock);
					cmn_err(CE_WARN, "cpudrv_detach: "
					    "instance %d: can't busy CPU "
					    "component", instance);
					return (DDI_FAILURE);
				}
			}
			mutex_exit(&cpudsp->lock);
			if (pm_raise_power(dip, CPUDRV_COMP_NUM,
			    CPUDRV_TOPSPEED(cpupm)->pm_level) !=
			    DDI_SUCCESS) {
				mutex_enter(&cpudsp->lock);
				CPUDRV_MONITOR_INIT(cpudsp);
				mutex_exit(&cpudsp->lock);
				cmn_err(CE_WARN, "cpudrv_detach: instance %d: "
				    "can't raise CPU power level to %d",
				    instance,
				    CPUDRV_TOPSPEED(cpupm)->pm_level);
				return (DDI_FAILURE);
			} else {
				return (DDI_SUCCESS);
			}
		} else {
			mutex_exit(&cpudsp->lock);
			return (DDI_SUCCESS);
		}

	default:
		return (DDI_FAILURE);
	}
}

/*
 * Driver power(9e) entry point.
 *
 * Driver's notion of current power is set *only* in power(9e) entry point
 * after actual power change operation has been successfully completed.
 */
/* ARGSUSED */
static int
cpudrv_power(dev_info_t *dip, int comp, int level)
{
	int			instance;
	cpudrv_devstate_t	*cpudsp;
	cpudrv_pm_t 		*cpudrvpm;
	cpudrv_pm_spd_t		*new_spd;
	boolean_t		is_ready;
	int			ret;

	instance = ddi_get_instance(dip);

	DPRINTF(D_POWER, ("cpudrv_power: instance %d: level %d\n",
	    instance, level));

	if ((cpudsp = ddi_get_soft_state(cpudrv_state, instance)) == NULL) {
		cmn_err(CE_WARN, "cpudrv_power: instance %d: can't "
		    "get state", instance);
		return (DDI_FAILURE);
	}

	/*
	 * We're not ready until we can  get a cpu_t
	 */
	is_ready = (cpudrv_get_cpu(cpudsp) == DDI_SUCCESS);

	mutex_enter(&cpudsp->lock);
	cpudrvpm = &(cpudsp->cpudrv_pm);

	/*
	 * In normal operation, we fail if we are busy and request is
	 * to lower the power level. We let this go through if the driver
	 * is in special direct pm mode. On x86, we also let this through
	 * if the change is due to a request to govern the max speed.
	 */
	if (!cpudrv_direct_pm && (cpudrvpm->pm_busycnt >= 1) &&
	    !cpudrv_is_governor_thread(cpudrvpm)) {
		if ((cpudrvpm->cur_spd != NULL) &&
		    (level < cpudrvpm->cur_spd->pm_level)) {
			mutex_exit(&cpudsp->lock);
			return (DDI_FAILURE);
		}
	}

	for (new_spd = cpudrvpm->head_spd; new_spd; new_spd =
	    new_spd->down_spd) {
		if (new_spd->pm_level == level)
			break;
	}
	if (!new_spd) {
		CPUDRV_RESET_GOVERNOR_THREAD(cpudrvpm);
		mutex_exit(&cpudsp->lock);
		cmn_err(CE_WARN, "cpudrv_power: instance %d: "
		    "can't locate new CPU speed", instance);
		return (DDI_FAILURE);
	}

	/*
	 * We currently refuse to power manage if the CPU is not ready to
	 * take cross calls (cross calls fail silently if CPU is not ready
	 * for it).
	 *
	 * Additionally, for x86 platforms we cannot power manage an instance,
	 * until it has been initialized.
	 */
	if (is_ready) {
		is_ready = CPUDRV_XCALL_IS_READY(cpudsp->cpu_id);
		if (!is_ready) {
			DPRINTF(D_POWER, ("cpudrv_power: instance %d: "
			    "CPU not ready for x-calls\n", instance));
		} else if (!(is_ready = cpudrv_power_ready(cpudsp->cp))) {
			DPRINTF(D_POWER, ("cpudrv_power: instance %d: "
			    "waiting for all CPUs to be power manageable\n",
			    instance));
		}
	}
	if (!is_ready) {
		CPUDRV_RESET_GOVERNOR_THREAD(cpudrvpm);
		mutex_exit(&cpudsp->lock);
		return (DDI_FAILURE);
	}

	/*
	 * Execute CPU specific routine on the requested CPU to
	 * change its speed to normal-speed/divisor.
	 */
	if ((ret = cpudrv_change_speed(cpudsp, new_spd)) != DDI_SUCCESS) {
		cmn_err(CE_WARN, "cpudrv_power: "
		    "cpudrv_change_speed() return = %d", ret);
		mutex_exit(&cpudsp->lock);
		return (DDI_FAILURE);
	}

	/*
	 * Reset idle threshold time for the new power level.
	 */
	if ((cpudrvpm->cur_spd != NULL) && (level <
	    cpudrvpm->cur_spd->pm_level)) {
		if (pm_idle_component(dip, CPUDRV_COMP_NUM) ==
		    DDI_SUCCESS) {
			if (cpudrvpm->pm_busycnt >= 1)
				cpudrvpm->pm_busycnt--;
		} else {
			cmn_err(CE_WARN, "cpudrv_power: instance %d: "
			    "can't idle CPU component",
			    ddi_get_instance(dip));
		}
	}
	/*
	 * Reset various parameters because we are now running at new speed.
	 */
	cpudrvpm->lastquan_mstate[CMS_IDLE] = 0;
	cpudrvpm->lastquan_mstate[CMS_SYSTEM] = 0;
	cpudrvpm->lastquan_mstate[CMS_USER] = 0;
	cpudrvpm->lastquan_ticks = 0;
	cpudrvpm->cur_spd = new_spd;
	CPUDRV_RESET_GOVERNOR_THREAD(cpudrvpm);
	mutex_exit(&cpudsp->lock);

	return (DDI_SUCCESS);
}

/*
 * Initialize power management data.
 */
static int
cpudrv_init(cpudrv_devstate_t *cpudsp)
{
	cpudrv_pm_t 	*cpupm = &(cpudsp->cpudrv_pm);
	cpudrv_pm_spd_t	*cur_spd;
	cpudrv_pm_spd_t	*prev_spd = NULL;
	int		*speeds;
	uint_t		nspeeds;
	int		idle_cnt_percent;
	int		user_cnt_percent;
	int		i;

	CPUDRV_GET_SPEEDS(cpudsp, speeds, nspeeds);
	if (nspeeds < 2) {
		/* Need at least two speeds to power manage */
		CPUDRV_FREE_SPEEDS(speeds, nspeeds);
		return (DDI_FAILURE);
	}
	cpupm->num_spd = nspeeds;

	/*
	 * Calculate the watermarks and other parameters based on the
	 * supplied speeds.
	 *
	 * One of the basic assumption is that for X amount of CPU work,
	 * if CPU is slowed down by a factor of N, the time it takes to
	 * do the same work will be N * X.
	 *
	 * The driver declares that a CPU is idle and ready for slowed down,
	 * if amount of idle thread is more than the current speed idle_hwm
	 * without dropping below idle_hwm a number of consecutive sampling
	 * intervals and number of running threads in user mode are below
	 * user_lwm.  We want to set the current user_lwm such that if we
	 * just switched to the next slower speed with no change in real work
	 * load, the amount of user threads at the slower speed will be such
	 * that it falls below the slower speed's user_hwm.  If we didn't do
	 * that then we will just come back to the higher speed as soon as we
	 * go down even with no change in work load.
	 * The user_hwm is a fixed precentage and not calculated dynamically.
	 *
	 * We bring the CPU up if idle thread at current speed is less than
	 * the current speed idle_lwm for a number of consecutive sampling
	 * intervals or user threads are above the user_hwm for the current
	 * speed.
	 */
	for (i = 0; i < nspeeds; i++) {
		cur_spd = kmem_zalloc(sizeof (cpudrv_pm_spd_t), KM_SLEEP);
		cur_spd->speed = speeds[i];
		if (i == 0) {	/* normal speed */
			cpupm->head_spd = cur_spd;
			CPUDRV_TOPSPEED(cpupm) = cur_spd;
			cur_spd->quant_cnt = CPUDRV_QUANT_CNT_NORMAL;
			cur_spd->idle_hwm =
			    (cpudrv_idle_hwm * cur_spd->quant_cnt) / 100;
			/* can't speed anymore */
			cur_spd->idle_lwm = 0;
			cur_spd->user_hwm = UINT_MAX;
		} else {
			cur_spd->quant_cnt = CPUDRV_QUANT_CNT_OTHR;
			ASSERT(prev_spd != NULL);
			prev_spd->down_spd = cur_spd;
			cur_spd->up_spd = cpupm->head_spd;

			/*
			 * Let's assume CPU is considered idle at full speed
			 * when it is spending I% of time in running the idle
			 * thread.  At full speed, CPU will be busy (100 - I) %
			 * of times.  This % of busyness increases by factor of
			 * N as CPU slows down.  CPU that is idle I% of times
			 * in full speed, it is idle (100 - ((100 - I) * N)) %
			 * of times in N speed.  The idle_lwm is a fixed
			 * percentage.  A large value of N may result in
			 * idle_hwm to go below idle_lwm.  We need to make sure
			 * that there is at least a buffer zone seperation
			 * between the idle_lwm and idle_hwm values.
			 */
			idle_cnt_percent = CPUDRV_IDLE_CNT_PERCENT(
			    cpudrv_idle_hwm, speeds, i);
			idle_cnt_percent = max(idle_cnt_percent,
			    (cpudrv_idle_lwm + cpudrv_idle_buf_zone));
			cur_spd->idle_hwm =
			    (idle_cnt_percent * cur_spd->quant_cnt) / 100;
			cur_spd->idle_lwm =
			    (cpudrv_idle_lwm * cur_spd->quant_cnt) / 100;

			/*
			 * The lwm for user threads are determined such that
			 * if CPU slows down, the load of work in the
			 * new speed would still keep the CPU at or below the
			 * user_hwm in the new speed.  This is to prevent
			 * the quick jump back up to higher speed.
			 */
			cur_spd->user_hwm = (cpudrv_user_hwm *
			    cur_spd->quant_cnt) / 100;
			user_cnt_percent = CPUDRV_USER_CNT_PERCENT(
			    cpudrv_user_hwm, speeds, i);
			prev_spd->user_lwm =
			    (user_cnt_percent * prev_spd->quant_cnt) / 100;
		}
		prev_spd = cur_spd;
	}
	/* Slowest speed. Can't slow down anymore */
	cur_spd->idle_hwm = UINT_MAX;
	cur_spd->user_lwm = -1;
#ifdef	DEBUG
	DPRINTF(D_PM_INIT, ("cpudrv_init: instance %d: head_spd spd %d, "
	    "num_spd %d\n", ddi_get_instance(cpudsp->dip),
	    cpupm->head_spd->speed, cpupm->num_spd));
	for (cur_spd = cpupm->head_spd; cur_spd; cur_spd = cur_spd->down_spd) {
		DPRINTF(D_PM_INIT, ("cpudrv_init: instance %d: speed %d, "
		    "down_spd spd %d, idle_hwm %d, user_lwm %d, "
		    "up_spd spd %d, idle_lwm %d, user_hwm %d, "
		    "quant_cnt %d\n", ddi_get_instance(cpudsp->dip),
		    cur_spd->speed,
		    (cur_spd->down_spd ? cur_spd->down_spd->speed : 0),
		    cur_spd->idle_hwm, cur_spd->user_lwm,
		    (cur_spd->up_spd ? cur_spd->up_spd->speed : 0),
		    cur_spd->idle_lwm, cur_spd->user_hwm,
		    cur_spd->quant_cnt));
	}
#endif	/* DEBUG */
	CPUDRV_FREE_SPEEDS(speeds, nspeeds);
	return (DDI_SUCCESS);
}

/*
 * Free CPU power management data.
 */
static void
cpudrv_free(cpudrv_devstate_t *cpudsp)
{
	cpudrv_pm_t 	*cpupm = &(cpudsp->cpudrv_pm);
	cpudrv_pm_spd_t	*cur_spd, *next_spd;

	cur_spd = cpupm->head_spd;
	while (cur_spd) {
		next_spd = cur_spd->down_spd;
		kmem_free(cur_spd, sizeof (cpudrv_pm_spd_t));
		cur_spd = next_spd;
	}
	bzero(cpupm, sizeof (cpudrv_pm_t));
}

/*
 * Create pm-components property.
 */
static int
cpudrv_comp_create(cpudrv_devstate_t *cpudsp)
{
	cpudrv_pm_t 	*cpupm = &(cpudsp->cpudrv_pm);
	cpudrv_pm_spd_t	*cur_spd;
	char		**pmc;
	int		size;
	char		name[] = "NAME=CPU Speed";
	int		i, j;
	uint_t		comp_spd;
	int		result = DDI_FAILURE;

	pmc = kmem_zalloc((cpupm->num_spd + 1) * sizeof (char *), KM_SLEEP);
	size = CPUDRV_COMP_SIZE();
	if (cpupm->num_spd > CPUDRV_COMP_MAX_VAL) {
		cmn_err(CE_WARN, "cpudrv_comp_create: instance %d: "
		    "number of speeds exceeded limits",
		    ddi_get_instance(cpudsp->dip));
		kmem_free(pmc, (cpupm->num_spd + 1) * sizeof (char *));
		return (result);
	}

	for (i = cpupm->num_spd, cur_spd = cpupm->head_spd; i > 0;
	    i--, cur_spd = cur_spd->down_spd) {
		cur_spd->pm_level = i;
		pmc[i] = kmem_zalloc((size * sizeof (char)), KM_SLEEP);
		comp_spd = CPUDRV_COMP_SPEED(cpupm, cur_spd);
		if (comp_spd > CPUDRV_COMP_MAX_VAL) {
			cmn_err(CE_WARN, "cpudrv_comp_create: "
			    "instance %d: speed exceeded limits",
			    ddi_get_instance(cpudsp->dip));
			for (j = cpupm->num_spd; j >= i; j--) {
				kmem_free(pmc[j], size * sizeof (char));
			}
			kmem_free(pmc, (cpupm->num_spd + 1) *
			    sizeof (char *));
			return (result);
		}
		CPUDRV_COMP_SPRINT(pmc[i], cpupm, cur_spd, comp_spd)
		DPRINTF(D_PM_COMP_CREATE, ("cpudrv_comp_create: "
		    "instance %d: pm-components power level %d string '%s'\n",
		    ddi_get_instance(cpudsp->dip), i, pmc[i]));
	}
	pmc[0] = kmem_zalloc(sizeof (name), KM_SLEEP);
	(void) strcat(pmc[0], name);
	DPRINTF(D_PM_COMP_CREATE, ("cpudrv_comp_create: instance %d: "
	    "pm-components component name '%s'\n",
	    ddi_get_instance(cpudsp->dip), pmc[0]));

	if (ddi_prop_update_string_array(DDI_DEV_T_NONE, cpudsp->dip,
	    "pm-components", pmc, cpupm->num_spd + 1) == DDI_PROP_SUCCESS) {
		result = DDI_SUCCESS;
	} else {
		cmn_err(CE_WARN, "cpudrv_comp_create: instance %d: "
		    "can't create pm-components property",
		    ddi_get_instance(cpudsp->dip));
	}

	for (i = cpupm->num_spd; i > 0; i--) {
		kmem_free(pmc[i], size * sizeof (char));
	}
	kmem_free(pmc[0], sizeof (name));
	kmem_free(pmc, (cpupm->num_spd + 1) * sizeof (char *));
	return (result);
}

/*
 * Mark a component idle.
 */
#define	CPUDRV_MONITOR_PM_IDLE_COMP(dip, cpupm) { \
	if ((cpupm)->pm_busycnt >= 1) { \
		if (pm_idle_component((dip), CPUDRV_COMP_NUM) == \
		    DDI_SUCCESS) { \
			DPRINTF(D_PM_MONITOR, ("cpudrv_monitor: " \
			    "instance %d: pm_idle_component called\n", \
			    ddi_get_instance((dip)))); \
			(cpupm)->pm_busycnt--; \
		} else { \
			cmn_err(CE_WARN, "cpudrv_monitor: instance %d: " \
			    "can't idle CPU component", \
			    ddi_get_instance((dip))); \
		} \
	} \
}

/*
 * Marks a component busy in both PM framework and driver state structure.
 */
#define	CPUDRV_MONITOR_PM_BUSY_COMP(dip, cpupm) { \
	if ((cpupm)->pm_busycnt < 1) { \
		if (pm_busy_component((dip), CPUDRV_COMP_NUM) == \
		    DDI_SUCCESS) { \
			DPRINTF(D_PM_MONITOR, ("cpudrv_monitor: " \
			    "instance %d: pm_busy_component called\n", \
			    ddi_get_instance((dip)))); \
			(cpupm)->pm_busycnt++; \
		} else { \
			cmn_err(CE_WARN, "cpudrv_monitor: instance %d: " \
			    "can't busy CPU component", \
			    ddi_get_instance((dip))); \
		} \
	} \
}

/*
 * Marks a component busy and calls pm_raise_power().
 */
#define	CPUDRV_MONITOR_PM_BUSY_AND_RAISE(dip, cpudsp, cpupm, new_spd) { \
	int ret; \
	/* \
	 * Mark driver and PM framework busy first so framework doesn't try \
	 * to bring CPU to lower speed when we need to be at higher speed. \
	 */ \
	CPUDRV_MONITOR_PM_BUSY_COMP((dip), (cpupm)); \
	mutex_exit(&(cpudsp)->lock); \
	DPRINTF(D_PM_MONITOR, ("cpudrv_monitor: instance %d: " \
	    "pm_raise_power called to %d\n", ddi_get_instance((dip)), \
		(new_spd->pm_level))); \
	ret = pm_raise_power((dip), CPUDRV_COMP_NUM, (new_spd->pm_level)); \
	if (ret != DDI_SUCCESS) { \
		cmn_err(CE_WARN, "cpudrv_monitor: instance %d: can't " \
		    "raise CPU power level", ddi_get_instance((dip))); \
	} \
	mutex_enter(&(cpudsp)->lock); \
	if (ret == DDI_SUCCESS && cpudsp->cpudrv_pm.cur_spd == NULL) { \
		cpudsp->cpudrv_pm.cur_spd = new_spd; \
	} \
}

/*
 * In order to monitor a CPU, we need to hold cpu_lock to access CPU
 * statistics. Holding cpu_lock is not allowed from a callout routine.
 * We dispatch a taskq to do that job.
 */
static void
cpudrv_monitor_disp(void *arg)
{
	cpudrv_devstate_t	*cpudsp = (cpudrv_devstate_t *)arg;

	/*
	 * We are here because the last task has scheduled a timeout.
	 * The queue should be empty at this time.
	 */
	mutex_enter(&cpudsp->cpudrv_pm.timeout_lock);
	if ((ddi_taskq_dispatch(cpudsp->cpudrv_pm.tq, cpudrv_monitor, arg,
	    DDI_NOSLEEP)) != DDI_SUCCESS) {
		mutex_exit(&cpudsp->cpudrv_pm.timeout_lock);
		DPRINTF(D_PM_MONITOR, ("cpudrv_monitor_disp: failed to "
		    "dispatch the cpudrv_monitor taskq\n"));
		mutex_enter(&cpudsp->lock);
		CPUDRV_MONITOR_INIT(cpudsp);
		mutex_exit(&cpudsp->lock);
		return;
	}
	cpudsp->cpudrv_pm.timeout_count++;
	mutex_exit(&cpudsp->cpudrv_pm.timeout_lock);
}

/*
 * Monitors each CPU for the amount of time idle thread was running in the
 * last quantum and arranges for the CPU to go to the lower or higher speed.
 * Called at the time interval appropriate for the current speed. The
 * time interval for normal speed is CPUDRV_QUANT_CNT_NORMAL. The time
 * interval for other speeds (including unknown speed) is
 * CPUDRV_QUANT_CNT_OTHR.
 */
static void
cpudrv_monitor(void *arg)
{
	cpudrv_devstate_t	*cpudsp = (cpudrv_devstate_t *)arg;
	cpudrv_pm_t		*cpupm;
	cpudrv_pm_spd_t		*cur_spd, *new_spd;
	dev_info_t		*dip;
	uint_t			idle_cnt, user_cnt, system_cnt;
	clock_t			ticks;
	uint_t			tick_cnt;
	hrtime_t		msnsecs[NCMSTATES];
	boolean_t		is_ready;

#define	GET_CPU_MSTATE_CNT(state, cnt) \
	msnsecs[state] = NSEC_TO_TICK(msnsecs[state]); \
	if (cpupm->lastquan_mstate[state] > msnsecs[state]) \
		msnsecs[state] = cpupm->lastquan_mstate[state]; \
	cnt = msnsecs[state] - cpupm->lastquan_mstate[state]; \
	cpupm->lastquan_mstate[state] = msnsecs[state]

	/*
	 * We're not ready until we can  get a cpu_t
	 */
	is_ready = (cpudrv_get_cpu(cpudsp) == DDI_SUCCESS);

	mutex_enter(&cpudsp->lock);
	cpupm = &(cpudsp->cpudrv_pm);
	if (cpupm->timeout_id == 0) {
		mutex_exit(&cpudsp->lock);
		goto do_return;
	}
	cur_spd = cpupm->cur_spd;
	dip = cpudsp->dip;

	/*
	 * We assume that a CPU is initialized and has a valid cpu_t
	 * structure, if it is ready for cross calls. If this changes,
	 * additional checks might be needed.
	 *
	 * Additionally, for x86 platforms we cannot power manage an
	 * instance, until it has been initialized.
	 */
	if (is_ready) {
		is_ready = CPUDRV_XCALL_IS_READY(cpudsp->cpu_id);
		if (!is_ready) {
			DPRINTF(D_PM_MONITOR, ("cpudrv_monitor: instance %d: "
			    "CPU not ready for x-calls\n",
			    ddi_get_instance(dip)));
		} else if (!(is_ready = cpudrv_power_ready(cpudsp->cp))) {
			DPRINTF(D_PM_MONITOR, ("cpudrv_monitor: instance %d: "
			    "waiting for all CPUs to be power manageable\n",
			    ddi_get_instance(dip)));
		}
	}
	if (!is_ready) {
		/*
		 * Make sure that we are busy so that framework doesn't
		 * try to bring us down in this situation.
		 */
		CPUDRV_MONITOR_PM_BUSY_COMP(dip, cpupm);
		CPUDRV_MONITOR_INIT(cpudsp);
		mutex_exit(&cpudsp->lock);
		goto do_return;
	}

	/*
	 * Make sure that we are still not at unknown power level.
	 */
	if (cur_spd == NULL) {
		DPRINTF(D_PM_MONITOR, ("cpudrv_monitor: instance %d: "
		    "cur_spd is unknown\n", ddi_get_instance(dip)));
		CPUDRV_MONITOR_PM_BUSY_AND_RAISE(dip, cpudsp, cpupm,
		    CPUDRV_TOPSPEED(cpupm));
		/*
		 * We just changed the speed. Wait till at least next
		 * call to this routine before proceeding ahead.
		 */
		CPUDRV_MONITOR_INIT(cpudsp);
		mutex_exit(&cpudsp->lock);
		goto do_return;
	}

	if (!cpupm->pm_started) {
		cpupm->pm_started = B_TRUE;
		cpudrv_set_supp_freqs(cpudsp);
	}

	get_cpu_mstate(cpudsp->cp, msnsecs);
	GET_CPU_MSTATE_CNT(CMS_IDLE, idle_cnt);
	GET_CPU_MSTATE_CNT(CMS_USER, user_cnt);
	GET_CPU_MSTATE_CNT(CMS_SYSTEM, system_cnt);

	/*
	 * We can't do anything when we have just switched to a state
	 * because there is no valid timestamp.
	 */
	if (cpupm->lastquan_ticks == 0) {
		cpupm->lastquan_ticks = NSEC_TO_TICK(gethrtime());
		CPUDRV_MONITOR_INIT(cpudsp);
		mutex_exit(&cpudsp->lock);
		goto do_return;
	}

	/*
	 * Various watermarks are based on this routine being called back
	 * exactly at the requested period. This is not guaranteed
	 * because this routine is called from a taskq that is dispatched
	 * from a timeout routine.  Handle this by finding out how many
	 * ticks have elapsed since the last call and adjusting
	 * the idle_cnt based on the delay added to the requested period
	 * by timeout and taskq.
	 */
	ticks = NSEC_TO_TICK(gethrtime());
	tick_cnt = ticks - cpupm->lastquan_ticks;
	ASSERT(tick_cnt != 0);
	cpupm->lastquan_ticks = ticks;

	/*
	 * Time taken between recording the current counts and
	 * arranging the next call of this routine is an error in our
	 * calculation. We minimize the error by calling
	 * CPUDRV_MONITOR_INIT() here instead of end of this routine.
	 */
	CPUDRV_MONITOR_INIT(cpudsp);
	DPRINTF(D_PM_MONITOR_VERBOSE, ("cpudrv_monitor: instance %d: "
	    "idle count %d, user count %d, system count %d, pm_level %d, "
	    "pm_busycnt %d\n", ddi_get_instance(dip), idle_cnt, user_cnt,
	    system_cnt, cur_spd->pm_level, cpupm->pm_busycnt));

#ifdef	DEBUG
	/*
	 * Notify that timeout and taskq has caused delays and we need to
	 * scale our parameters accordingly.
	 *
	 * To get accurate result, don't turn on other DPRINTFs with
	 * the following DPRINTF. PROM calls generated by other
	 * DPRINTFs changes the timing.
	 */
	if (tick_cnt > cur_spd->quant_cnt) {
		DPRINTF(D_PM_MONITOR_DELAY, ("cpudrv_monitor: instance %d: "
		    "tick count %d > quantum_count %u\n",
		    ddi_get_instance(dip), tick_cnt, cur_spd->quant_cnt));
	}
#endif	/* DEBUG */

	/*
	 * Adjust counts based on the delay added by timeout and taskq.
	 */
	idle_cnt = (idle_cnt * cur_spd->quant_cnt) / tick_cnt;
	user_cnt = (user_cnt * cur_spd->quant_cnt) / tick_cnt;

	if ((user_cnt > cur_spd->user_hwm) || (idle_cnt < cur_spd->idle_lwm &&
	    cur_spd->idle_blwm_cnt >= cpudrv_idle_blwm_cnt_max)) {
		cur_spd->idle_blwm_cnt = 0;
		cur_spd->idle_bhwm_cnt = 0;
		/*
		 * In normal situation, arrange to go to next higher speed.
		 * If we are running in special direct pm mode, we just stay
		 * at the current speed.
		 */
		if (cur_spd == cur_spd->up_spd || cpudrv_direct_pm) {
			CPUDRV_MONITOR_PM_BUSY_COMP(dip, cpupm);
		} else {
			new_spd = cur_spd->up_spd;
			CPUDRV_MONITOR_PM_BUSY_AND_RAISE(dip, cpudsp, cpupm,
			    new_spd);
		}
	} else if ((user_cnt <= cur_spd->user_lwm) &&
	    (idle_cnt >= cur_spd->idle_hwm) || !CPU_ACTIVE(cpudsp->cp)) {
		cur_spd->idle_blwm_cnt = 0;
		cur_spd->idle_bhwm_cnt = 0;
		/*
		 * Arrange to go to next lower speed by informing our idle
		 * status to the power management framework.
		 */
		CPUDRV_MONITOR_PM_IDLE_COMP(dip, cpupm);
	} else {
		/*
		 * If we are between the idle water marks and have not
		 * been here enough consecutive times to be considered
		 * busy, just increment the count and return.
		 */
		if ((idle_cnt < cur_spd->idle_hwm) &&
		    (idle_cnt >= cur_spd->idle_lwm) &&
		    (cur_spd->idle_bhwm_cnt < cpudrv_idle_bhwm_cnt_max)) {
			cur_spd->idle_blwm_cnt = 0;
			cur_spd->idle_bhwm_cnt++;
			mutex_exit(&cpudsp->lock);
			goto do_return;
		}
		if (idle_cnt < cur_spd->idle_lwm) {
			cur_spd->idle_blwm_cnt++;
			cur_spd->idle_bhwm_cnt = 0;
		}
		/*
		 * Arranges to stay at the current speed.
		 */
		CPUDRV_MONITOR_PM_BUSY_COMP(dip, cpupm);
	}
	mutex_exit(&cpudsp->lock);
do_return:
	mutex_enter(&cpupm->timeout_lock);
	ASSERT(cpupm->timeout_count > 0);
	cpupm->timeout_count--;
	cv_signal(&cpupm->timeout_cv);
	mutex_exit(&cpupm->timeout_lock);
}

/*
 * get cpu_t structure for cpudrv_devstate_t
 */
int
cpudrv_get_cpu(cpudrv_devstate_t *cpudsp)
{
	ASSERT(cpudsp != NULL);

	/*
	 * return DDI_SUCCESS if cpudrv_devstate_t
	 * already contains cpu_t structure
	 */
	if (cpudsp->cp != NULL)
		return (DDI_SUCCESS);

	if (MUTEX_HELD(&cpu_lock)) {
		cpudsp->cp = cpu_get(cpudsp->cpu_id);
	} else {
		mutex_enter(&cpu_lock);
		cpudsp->cp = cpu_get(cpudsp->cpu_id);
		mutex_exit(&cpu_lock);
	}

	if (cpudsp->cp == NULL)
		return (DDI_FAILURE);

	return (DDI_SUCCESS);
}