summaryrefslogtreecommitdiff
path: root/usr/src/uts/common/io/ib/adapters/hermon/hermon_srq.c
blob: 637b7836ca8afa20c86409cb06cc38d4605d2821 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
/*
 * CDDL HEADER START
 *
 * The contents of this file are subject to the terms of the
 * Common Development and Distribution License (the "License").
 * You may not use this file except in compliance with the License.
 *
 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
 * or http://www.opensolaris.org/os/licensing.
 * See the License for the specific language governing permissions
 * and limitations under the License.
 *
 * When distributing Covered Code, include this CDDL HEADER in each
 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
 * If applicable, add the following below this CDDL HEADER, with the
 * fields enclosed by brackets "[]" replaced with your own identifying
 * information: Portions Copyright [yyyy] [name of copyright owner]
 *
 * CDDL HEADER END
 */

/*
 * Copyright (c) 2008, 2010, Oracle and/or its affiliates. All rights reserved.
 */

/*
 * hermon_srq.c
 *    Hermon Shared Receive Queue Processing Routines
 *
 *    Implements all the routines necessary for allocating, freeing, querying,
 *    modifying and posting shared receive queues.
 */

#include <sys/sysmacros.h>
#include <sys/types.h>
#include <sys/conf.h>
#include <sys/ddi.h>
#include <sys/sunddi.h>
#include <sys/modctl.h>
#include <sys/bitmap.h>

#include <sys/ib/adapters/hermon/hermon.h>

static void hermon_srq_sgl_to_logwqesz(hermon_state_t *state, uint_t num_sgl,
    hermon_qp_wq_type_t wq_type, uint_t *logwqesz, uint_t *max_sgl);

/*
 * hermon_srq_alloc()
 *    Context: Can be called only from user or kernel context.
 */
int
hermon_srq_alloc(hermon_state_t *state, hermon_srq_info_t *srqinfo,
    uint_t sleepflag)
{
	ibt_srq_hdl_t		ibt_srqhdl;
	hermon_pdhdl_t		pd;
	ibt_srq_sizes_t		*sizes;
	ibt_srq_sizes_t		*real_sizes;
	hermon_srqhdl_t		*srqhdl;
	ibt_srq_flags_t		flags;
	hermon_rsrc_t		*srqc, *rsrc;
	hermon_hw_srqc_t	srqc_entry;
	uint32_t		*buf;
	hermon_srqhdl_t		srq;
	hermon_umap_db_entry_t	*umapdb;
	ibt_mr_attr_t		mr_attr;
	hermon_mr_options_t	mr_op;
	hermon_mrhdl_t		mr;
	uint64_t		value, srq_desc_off;
	uint32_t		log_srq_size;
	uint32_t		uarpg;
	uint_t			srq_is_umap;
	int			flag, status;
	uint_t			max_sgl;
	uint_t			wqesz;
	uint_t			srq_wr_sz;
	_NOTE(NOW_INVISIBLE_TO_OTHER_THREADS(*sizes))

	/*
	 * options-->wq_location used to be for location, now explicitly
	 * LOCATION_NORMAL
	 */

	/*
	 * Extract the necessary info from the hermon_srq_info_t structure
	 */
	real_sizes = srqinfo->srqi_real_sizes;
	sizes	   = srqinfo->srqi_sizes;
	pd	   = srqinfo->srqi_pd;
	ibt_srqhdl = srqinfo->srqi_ibt_srqhdl;
	flags	   = srqinfo->srqi_flags;
	srqhdl	   = srqinfo->srqi_srqhdl;

	/*
	 * Determine whether SRQ is being allocated for userland access or
	 * whether it is being allocated for kernel access.  If the SRQ is
	 * being allocated for userland access, then lookup the UAR doorbell
	 * page number for the current process.  Note:  If this is not found
	 * (e.g. if the process has not previously open()'d the Hermon driver),
	 * then an error is returned.
	 */
	srq_is_umap = (flags & IBT_SRQ_USER_MAP) ? 1 : 0;
	if (srq_is_umap) {
		status = hermon_umap_db_find(state->hs_instance, ddi_get_pid(),
		    MLNX_UMAP_UARPG_RSRC, &value, 0, NULL);
		if (status != DDI_SUCCESS) {
			status = IBT_INVALID_PARAM;
			goto srqalloc_fail3;
		}
		uarpg = ((hermon_rsrc_t *)(uintptr_t)value)->hr_indx;
	} else {
		uarpg = state->hs_kernel_uar_index;
	}

	/* Increase PD refcnt */
	hermon_pd_refcnt_inc(pd);

	/* Allocate an SRQ context entry */
	status = hermon_rsrc_alloc(state, HERMON_SRQC, 1, sleepflag, &srqc);
	if (status != DDI_SUCCESS) {
		status = IBT_INSUFF_RESOURCE;
		goto srqalloc_fail1;
	}

	/* Allocate the SRQ Handle entry */
	status = hermon_rsrc_alloc(state, HERMON_SRQHDL, 1, sleepflag, &rsrc);
	if (status != DDI_SUCCESS) {
		status = IBT_INSUFF_RESOURCE;
		goto srqalloc_fail2;
	}

	srq = (hermon_srqhdl_t)rsrc->hr_addr;
	_NOTE(NOW_INVISIBLE_TO_OTHER_THREADS(*srq))

	bzero(srq, sizeof (struct hermon_sw_srq_s));
	/* Calculate the SRQ number */

	/* just use the index, implicit in Hermon */
	srq->srq_srqnum = srqc->hr_indx;

	/*
	 * If this will be a user-mappable SRQ, then allocate an entry for
	 * the "userland resources database".  This will later be added to
	 * the database (after all further SRQ operations are successful).
	 * If we fail here, we must undo the reference counts and the
	 * previous resource allocation.
	 */
	if (srq_is_umap) {
		umapdb = hermon_umap_db_alloc(state->hs_instance,
		    srq->srq_srqnum, MLNX_UMAP_SRQMEM_RSRC,
		    (uint64_t)(uintptr_t)rsrc);
		if (umapdb == NULL) {
			status = IBT_INSUFF_RESOURCE;
			goto srqalloc_fail3;
		}
	}

	/*
	 * Allocate the doorbell record.  Hermon just needs one for the
	 * SRQ, and use uarpg (above) as the uar index
	 */

	status = hermon_dbr_alloc(state, uarpg, &srq->srq_wq_dbr_acchdl,
	    &srq->srq_wq_vdbr, &srq->srq_wq_pdbr, &srq->srq_rdbr_mapoffset);
	if (status != DDI_SUCCESS) {
		status = IBT_INSUFF_RESOURCE;
		goto srqalloc_fail4;
	}

	/*
	 * Calculate the appropriate size for the SRQ.
	 * Note:  All Hermon SRQs must be a power-of-2 in size.  Also
	 * they may not be any smaller than HERMON_SRQ_MIN_SIZE.  This step
	 * is to round the requested size up to the next highest power-of-2
	 */
	srq_wr_sz = max(sizes->srq_wr_sz + 1, HERMON_SRQ_MIN_SIZE);
	log_srq_size = highbit(srq_wr_sz);
	if (ISP2(srq_wr_sz)) {
		log_srq_size = log_srq_size - 1;
	}

	/*
	 * Next we verify that the rounded-up size is valid (i.e. consistent
	 * with the device limits and/or software-configured limits).  If not,
	 * then obviously we have a lot of cleanup to do before returning.
	 */
	if (log_srq_size > state->hs_cfg_profile->cp_log_max_srq_sz) {
		status = IBT_HCA_WR_EXCEEDED;
		goto srqalloc_fail4a;
	}

	/*
	 * Next we verify that the requested number of SGL is valid (i.e.
	 * consistent with the device limits and/or software-configured
	 * limits).  If not, then obviously the same cleanup needs to be done.
	 */
	max_sgl = state->hs_ibtfinfo.hca_attr->hca_max_srq_sgl;
	if (sizes->srq_sgl_sz > max_sgl) {
		status = IBT_HCA_SGL_EXCEEDED;
		goto srqalloc_fail4a;
	}

	/*
	 * Determine the SRQ's WQE sizes.  This depends on the requested
	 * number of SGLs.  Note: This also has the side-effect of
	 * calculating the real number of SGLs (for the calculated WQE size)
	 */
	hermon_srq_sgl_to_logwqesz(state, sizes->srq_sgl_sz,
	    HERMON_QP_WQ_TYPE_RECVQ, &srq->srq_wq_log_wqesz,
	    &srq->srq_wq_sgl);

	/*
	 * Allocate the memory for SRQ work queues.  Note:  The location from
	 * which we will allocate these work queues is always
	 * QUEUE_LOCATION_NORMAL.  Since Hermon work queues are not
	 * allowed to cross a 32-bit (4GB) boundary, the alignment of the work
	 * queue memory is very important.  We used to allocate work queues
	 * (the combined receive and send queues) so that they would be aligned
	 * on their combined size.  That alignment guaranteed that they would
	 * never cross the 4GB boundary (Hermon work queues are on the order of
	 * MBs at maximum).  Now we are able to relax this alignment constraint
	 * by ensuring that the IB address assigned to the queue memory (as a
	 * result of the hermon_mr_register() call) is offset from zero.
	 * Previously, we had wanted to use the ddi_dma_mem_alloc() routine to
	 * guarantee the alignment, but when attempting to use IOMMU bypass
	 * mode we found that we were not allowed to specify any alignment that
	 * was more restrictive than the system page size.  So we avoided this
	 * constraint by passing two alignment values, one for the memory
	 * allocation itself and the other for the DMA handle (for later bind).
	 * This used to cause more memory than necessary to be allocated (in
	 * order to guarantee the more restrictive alignment contraint).  But
	 * be guaranteeing the zero-based IB virtual address for the queue, we
	 * are able to conserve this memory.
	 *
	 * Note: If SRQ is not user-mappable, then it may come from either
	 * kernel system memory or from HCA-attached local DDR memory.
	 *
	 * Note2: We align this queue on a pagesize boundary.  This is required
	 * to make sure that all the resulting IB addresses will start at 0, for
	 * a zero-based queue.  By making sure we are aligned on at least a
	 * page, any offset we use into our queue will be the same as when we
	 * perform hermon_srq_modify() operations later.
	 */
	wqesz = (1 << srq->srq_wq_log_wqesz);
	srq->srq_wqinfo.qa_size = (1 << log_srq_size) * wqesz;
	srq->srq_wqinfo.qa_alloc_align = PAGESIZE;
	srq->srq_wqinfo.qa_bind_align = PAGESIZE;
	if (srq_is_umap) {
		srq->srq_wqinfo.qa_location = HERMON_QUEUE_LOCATION_USERLAND;
	} else {
		srq->srq_wqinfo.qa_location = HERMON_QUEUE_LOCATION_NORMAL;
	}
	status = hermon_queue_alloc(state, &srq->srq_wqinfo, sleepflag);
	if (status != DDI_SUCCESS) {
		status = IBT_INSUFF_RESOURCE;
		goto srqalloc_fail4a;
	}
	buf = (uint32_t *)srq->srq_wqinfo.qa_buf_aligned;
	_NOTE(NOW_INVISIBLE_TO_OTHER_THREADS(*buf))

	/*
	 * Register the memory for the SRQ work queues.  The memory for the SRQ
	 * must be registered in the Hermon cMPT tables.  This gives us the LKey
	 * to specify in the SRQ context later.  Note: If the work queue is to
	 * be allocated from DDR memory, then only a "bypass" mapping is
	 * appropriate.  And if the SRQ memory is user-mappable, then we force
	 * DDI_DMA_CONSISTENT mapping.  Also, in order to meet the alignment
	 * restriction, we pass the "mro_bind_override_addr" flag in the call
	 * to hermon_mr_register().  This guarantees that the resulting IB vaddr
	 * will be zero-based (modulo the offset into the first page).  If we
	 * fail here, we still have the bunch of resource and reference count
	 * cleanup to do.
	 */
	flag = (sleepflag == HERMON_SLEEP) ? IBT_MR_SLEEP :
	    IBT_MR_NOSLEEP;
	mr_attr.mr_vaddr = (uint64_t)(uintptr_t)buf;
	mr_attr.mr_len   = srq->srq_wqinfo.qa_size;
	mr_attr.mr_as    = NULL;
	mr_attr.mr_flags = flag | IBT_MR_ENABLE_LOCAL_WRITE;
	mr_op.mro_bind_type   = state->hs_cfg_profile->cp_iommu_bypass;
	mr_op.mro_bind_dmahdl = srq->srq_wqinfo.qa_dmahdl;
	mr_op.mro_bind_override_addr = 1;
	status = hermon_mr_register(state, pd, &mr_attr, &mr,
	    &mr_op, HERMON_SRQ_CMPT);
	if (status != DDI_SUCCESS) {
		status = IBT_INSUFF_RESOURCE;
		goto srqalloc_fail5;
	}
	_NOTE(NOW_INVISIBLE_TO_OTHER_THREADS(*mr))

	/*
	 * Calculate the offset between the kernel virtual address space
	 * and the IB virtual address space.  This will be used when
	 * posting work requests to properly initialize each WQE.
	 */
	srq_desc_off = (uint64_t)(uintptr_t)srq->srq_wqinfo.qa_buf_aligned -
	    (uint64_t)mr->mr_bindinfo.bi_addr;

	srq->srq_wq_wqhdr = hermon_wrid_wqhdr_create(1 << log_srq_size);

	/*
	 * Fill in all the return arguments (if necessary).  This includes
	 * real queue size and real SGLs.
	 */
	if (real_sizes != NULL) {
		real_sizes->srq_wr_sz = (1 << log_srq_size) - 1;
		real_sizes->srq_sgl_sz = srq->srq_wq_sgl;
	}

	/*
	 * Fill in the SRQC entry.  This is the final step before passing
	 * ownership of the SRQC entry to the Hermon hardware.  We use all of
	 * the information collected/calculated above to fill in the
	 * requisite portions of the SRQC.  Note: If this SRQ is going to be
	 * used for userland access, then we need to set the UAR page number
	 * appropriately (otherwise it's a "don't care")
	 */
	bzero(&srqc_entry, sizeof (hermon_hw_srqc_t));
	srqc_entry.state	   = HERMON_SRQ_STATE_HW_OWNER;
	srqc_entry.log_srq_size	   = log_srq_size;
	srqc_entry.srqn		   = srq->srq_srqnum;
	srqc_entry.log_rq_stride   = srq->srq_wq_log_wqesz - 4;
					/* 16-byte chunks */

	srqc_entry.page_offs	   = srq->srq_wqinfo.qa_pgoffs >> 6;
	srqc_entry.log2_pgsz	   = mr->mr_log2_pgsz;
	srqc_entry.mtt_base_addrh  = (uint32_t)((mr->mr_mttaddr >> 32) & 0xFF);
	srqc_entry.mtt_base_addrl  = mr->mr_mttaddr >> 3;
	srqc_entry.pd		   = pd->pd_pdnum;
	srqc_entry.dbr_addrh = (uint32_t)((uint64_t)srq->srq_wq_pdbr >> 32);
	srqc_entry.dbr_addrl = (uint32_t)((uint64_t)srq->srq_wq_pdbr >> 2);

	/*
	 * all others - specifically, xrcd, cqn_xrc, lwm, wqe_cnt, and wqe_cntr
	 * are zero thanks to the bzero of the structure
	 */

	/*
	 * Write the SRQC entry to hardware.  Lastly, we pass ownership of
	 * the entry to the hardware (using the Hermon SW2HW_SRQ firmware
	 * command).  Note: In general, this operation shouldn't fail.  But
	 * if it does, we have to undo everything we've done above before
	 * returning error.
	 */
	status = hermon_cmn_ownership_cmd_post(state, SW2HW_SRQ, &srqc_entry,
	    sizeof (hermon_hw_srqc_t), srq->srq_srqnum,
	    sleepflag);
	if (status != HERMON_CMD_SUCCESS) {
		cmn_err(CE_CONT, "Hermon: SW2HW_SRQ command failed: %08x\n",
		    status);
		if (status == HERMON_CMD_INVALID_STATUS) {
			hermon_fm_ereport(state, HCA_SYS_ERR, HCA_ERR_SRV_LOST);
		}
		status = ibc_get_ci_failure(0);
		goto srqalloc_fail8;
	}

	/*
	 * Fill in the rest of the Hermon SRQ handle.  We can update
	 * the following fields for use in further operations on the SRQ.
	 */
	srq->srq_srqcrsrcp = srqc;
	srq->srq_rsrcp	   = rsrc;
	srq->srq_mrhdl	   = mr;
	srq->srq_refcnt	   = 0;
	srq->srq_is_umap   = srq_is_umap;
	srq->srq_uarpg	   = uarpg;
	srq->srq_umap_dhp  = (devmap_cookie_t)NULL;
	srq->srq_pdhdl	   = pd;
	srq->srq_wq_bufsz  = (1 << log_srq_size);
	srq->srq_wq_buf	   = buf;
	srq->srq_desc_off  = srq_desc_off;
	srq->srq_hdlrarg   = (void *)ibt_srqhdl;
	srq->srq_state	   = 0;
	srq->srq_real_sizes.srq_wr_sz = (1 << log_srq_size);
	srq->srq_real_sizes.srq_sgl_sz = srq->srq_wq_sgl;

	/*
	 * Put SRQ handle in Hermon SRQNum-to-SRQhdl list.  Then fill in the
	 * "srqhdl" and return success
	 */
	hermon_icm_set_num_to_hdl(state, HERMON_SRQC, srqc->hr_indx, srq);

	/*
	 * If this is a user-mappable SRQ, then we need to insert the
	 * previously allocated entry into the "userland resources database".
	 * This will allow for later lookup during devmap() (i.e. mmap())
	 * calls.
	 */
	if (srq->srq_is_umap) {
		hermon_umap_db_add(umapdb);
	} else {	/* initialize work queue for kernel SRQs */
		int i, len, last;
		uint16_t *desc;

		desc = (uint16_t *)buf;
		len = wqesz / sizeof (*desc);
		last = srq->srq_wq_bufsz - 1;
		for (i = 0; i < last; i++) {
			desc[1] = htons(i + 1);
			desc += len;
		}
		srq->srq_wq_wqhdr->wq_tail = last;
		srq->srq_wq_wqhdr->wq_head = 0;
	}

	*srqhdl = srq;

	return (status);

/*
 * The following is cleanup for all possible failure cases in this routine
 */
srqalloc_fail8:
	hermon_wrid_wqhdr_destroy(srq->srq_wq_wqhdr);
srqalloc_fail7:
	if (hermon_mr_deregister(state, &mr, HERMON_MR_DEREG_ALL,
	    HERMON_SLEEPFLAG_FOR_CONTEXT()) != DDI_SUCCESS) {
		HERMON_WARNING(state, "failed to deregister SRQ memory");
	}
srqalloc_fail5:
	hermon_queue_free(&srq->srq_wqinfo);
srqalloc_fail4a:
	hermon_dbr_free(state, uarpg, srq->srq_wq_vdbr);
srqalloc_fail4:
	if (srq_is_umap) {
		hermon_umap_db_free(umapdb);
	}
srqalloc_fail3:
	hermon_rsrc_free(state, &rsrc);
srqalloc_fail2:
	hermon_rsrc_free(state, &srqc);
srqalloc_fail1:
	hermon_pd_refcnt_dec(pd);
srqalloc_fail:
	return (status);
}


/*
 * hermon_srq_free()
 *    Context: Can be called only from user or kernel context.
 */
/* ARGSUSED */
int
hermon_srq_free(hermon_state_t *state, hermon_srqhdl_t *srqhdl,
    uint_t sleepflag)
{
	hermon_rsrc_t		*srqc, *rsrc;
	hermon_umap_db_entry_t	*umapdb;
	uint64_t		value;
	hermon_srqhdl_t		srq;
	hermon_mrhdl_t		mr;
	hermon_pdhdl_t		pd;
	hermon_hw_srqc_t	srqc_entry;
	uint32_t		srqnum;
	uint_t			maxprot;
	int			status;

	/*
	 * Pull all the necessary information from the Hermon Shared Receive
	 * Queue handle.  This is necessary here because the resource for the
	 * SRQ handle is going to be freed up as part of this operation.
	 */
	srq	= *srqhdl;
	mutex_enter(&srq->srq_lock);
	srqc	= srq->srq_srqcrsrcp;
	rsrc	= srq->srq_rsrcp;
	pd	= srq->srq_pdhdl;
	mr	= srq->srq_mrhdl;
	srqnum	= srq->srq_srqnum;

	/*
	 * If there are work queues still associated with the SRQ, then return
	 * an error.  Otherwise, we will be holding the SRQ lock.
	 */
	if (srq->srq_refcnt != 0) {
		mutex_exit(&srq->srq_lock);
		return (IBT_SRQ_IN_USE);
	}

	/*
	 * If this was a user-mappable SRQ, then we need to remove its entry
	 * from the "userland resources database".  If it is also currently
	 * mmap()'d out to a user process, then we need to call
	 * devmap_devmem_remap() to remap the SRQ memory to an invalid mapping.
	 * We also need to invalidate the SRQ tracking information for the
	 * user mapping.
	 */
	if (srq->srq_is_umap) {
		status = hermon_umap_db_find(state->hs_instance,
		    srq->srq_srqnum, MLNX_UMAP_SRQMEM_RSRC, &value,
		    HERMON_UMAP_DB_REMOVE, &umapdb);
		if (status != DDI_SUCCESS) {
			mutex_exit(&srq->srq_lock);
			HERMON_WARNING(state, "failed to find in database");
			return (ibc_get_ci_failure(0));
		}
		hermon_umap_db_free(umapdb);
		if (srq->srq_umap_dhp != NULL) {
			maxprot = (PROT_READ | PROT_WRITE | PROT_USER);
			status = devmap_devmem_remap(srq->srq_umap_dhp,
			    state->hs_dip, 0, 0, srq->srq_wqinfo.qa_size,
			    maxprot, DEVMAP_MAPPING_INVALID, NULL);
			if (status != DDI_SUCCESS) {
				mutex_exit(&srq->srq_lock);
				HERMON_WARNING(state, "failed in SRQ memory "
				    "devmap_devmem_remap()");
				return (ibc_get_ci_failure(0));
			}
			srq->srq_umap_dhp = (devmap_cookie_t)NULL;
		}
	}

	/*
	 * Put NULL into the Hermon SRQNum-to-SRQHdl list.  This will allow any
	 * in-progress events to detect that the SRQ corresponding to this
	 * number has been freed.
	 */
	hermon_icm_set_num_to_hdl(state, HERMON_SRQC, srqc->hr_indx, NULL);

	mutex_exit(&srq->srq_lock);
	_NOTE(NOW_INVISIBLE_TO_OTHER_THREADS(*srq));

	/*
	 * Reclaim SRQC entry from hardware (using the Hermon HW2SW_SRQ
	 * firmware command).  If the ownership transfer fails for any reason,
	 * then it is an indication that something (either in HW or SW) has
	 * gone seriously wrong.
	 */
	status = hermon_cmn_ownership_cmd_post(state, HW2SW_SRQ, &srqc_entry,
	    sizeof (hermon_hw_srqc_t), srqnum, sleepflag);
	if (status != HERMON_CMD_SUCCESS) {
		HERMON_WARNING(state, "failed to reclaim SRQC ownership");
		cmn_err(CE_CONT, "Hermon: HW2SW_SRQ command failed: %08x\n",
		    status);
		if (status == HERMON_CMD_INVALID_STATUS) {
			hermon_fm_ereport(state, HCA_SYS_ERR, HCA_ERR_SRV_LOST);
		}
		return (ibc_get_ci_failure(0));
	}

	/*
	 * Deregister the memory for the Shared Receive Queue.  If this fails
	 * for any reason, then it is an indication that something (either
	 * in HW or SW) has gone seriously wrong.  So we print a warning
	 * message and return.
	 */
	status = hermon_mr_deregister(state, &mr, HERMON_MR_DEREG_ALL,
	    sleepflag);
	if (status != DDI_SUCCESS) {
		HERMON_WARNING(state, "failed to deregister SRQ memory");
		return (IBT_FAILURE);
	}

	hermon_wrid_wqhdr_destroy(srq->srq_wq_wqhdr);

	/* Free the memory for the SRQ */
	hermon_queue_free(&srq->srq_wqinfo);

	/* Free the dbr */
	hermon_dbr_free(state, srq->srq_uarpg, srq->srq_wq_vdbr);

	/* Free the Hermon SRQ Handle */
	hermon_rsrc_free(state, &rsrc);

	/* Free the SRQC entry resource */
	hermon_rsrc_free(state, &srqc);

	/* Decrement the reference count on the protection domain (PD) */
	hermon_pd_refcnt_dec(pd);

	/* Set the srqhdl pointer to NULL and return success */
	*srqhdl = NULL;

	return (DDI_SUCCESS);
}


/*
 * hermon_srq_modify()
 *    Context: Can be called only from user or kernel context.
 */
int
hermon_srq_modify(hermon_state_t *state, hermon_srqhdl_t srq, uint_t size,
    uint_t *real_size, uint_t sleepflag)
{
	hermon_qalloc_info_t	new_srqinfo, old_srqinfo;
	hermon_rsrc_t		*mtt, *old_mtt;
	hermon_bind_info_t	bind;
	hermon_bind_info_t	old_bind;
	hermon_mrhdl_t		mr;
	hermon_hw_srqc_t	srqc_entry;
	hermon_hw_dmpt_t	mpt_entry;
	uint64_t		*wre_new, *wre_old;
	uint64_t		mtt_addr;
	uint64_t		srq_pgoffs;
	uint64_t		srq_desc_off;
	uint32_t		*buf, srq_old_bufsz;
	uint32_t		wqesz;
	uint_t			max_srq_size;
	uint_t			mtt_pgsize_bits;
	uint_t			log_srq_size, maxprot;
	int			status;

	if ((state->hs_devlim.mod_wr_srq == 0) ||
	    (state->hs_cfg_profile->cp_srq_resize_enabled == 0))
		return (IBT_NOT_SUPPORTED);

	/*
	 * If size requested is larger than device capability, return
	 * Insufficient Resources
	 */
	max_srq_size = (1 << state->hs_cfg_profile->cp_log_max_srq_sz);
	if (size > max_srq_size) {
		return (IBT_HCA_WR_EXCEEDED);
	}

	/*
	 * Calculate the appropriate size for the SRQ.
	 * Note:  All Hermon SRQs must be a power-of-2 in size.  Also
	 * they may not be any smaller than HERMON_SRQ_MIN_SIZE.  This step
	 * is to round the requested size up to the next highest power-of-2
	 */
	size = max(size, HERMON_SRQ_MIN_SIZE);
	log_srq_size = highbit(size);
	if (ISP2(size)) {
		log_srq_size = log_srq_size - 1;
	}

	/*
	 * Next we verify that the rounded-up size is valid (i.e. consistent
	 * with the device limits and/or software-configured limits).
	 */
	if (log_srq_size > state->hs_cfg_profile->cp_log_max_srq_sz) {
		status = IBT_HCA_WR_EXCEEDED;
		goto srqmodify_fail;
	}

	/*
	 * Allocate the memory for newly resized Shared Receive Queue.
	 *
	 * Note: If SRQ is not user-mappable, then it may come from either
	 * kernel system memory or from HCA-attached local DDR memory.
	 *
	 * Note2: We align this queue on a pagesize boundary.  This is required
	 * to make sure that all the resulting IB addresses will start at 0,
	 * for a zero-based queue.  By making sure we are aligned on at least a
	 * page, any offset we use into our queue will be the same as it was
	 * when we allocated it at hermon_srq_alloc() time.
	 */
	wqesz = (1 << srq->srq_wq_log_wqesz);
	new_srqinfo.qa_size = (1 << log_srq_size) * wqesz;
	new_srqinfo.qa_alloc_align = PAGESIZE;
	new_srqinfo.qa_bind_align  = PAGESIZE;
	if (srq->srq_is_umap) {
		new_srqinfo.qa_location = HERMON_QUEUE_LOCATION_USERLAND;
	} else {
		new_srqinfo.qa_location = HERMON_QUEUE_LOCATION_NORMAL;
	}
	status = hermon_queue_alloc(state, &new_srqinfo, sleepflag);
	if (status != DDI_SUCCESS) {
		status = IBT_INSUFF_RESOURCE;
		goto srqmodify_fail;
	}
	buf = (uint32_t *)new_srqinfo.qa_buf_aligned;
	_NOTE(NOW_INVISIBLE_TO_OTHER_THREADS(*buf))

	/*
	 * Allocate the memory for the new WRE list.  This will be used later
	 * when we resize the wridlist based on the new SRQ size.
	 */
	wre_new = kmem_zalloc((1 << log_srq_size) * sizeof (uint64_t),
	    sleepflag);
	if (wre_new == NULL) {
		status = IBT_INSUFF_RESOURCE;
		goto srqmodify_fail;
	}

	/*
	 * Fill in the "bind" struct.  This struct provides the majority
	 * of the information that will be used to distinguish between an
	 * "addr" binding (as is the case here) and a "buf" binding (see
	 * below).  The "bind" struct is later passed to hermon_mr_mem_bind()
	 * which does most of the "heavy lifting" for the Hermon memory
	 * registration routines.
	 */
	_NOTE(NOW_INVISIBLE_TO_OTHER_THREADS(bind))
	bzero(&bind, sizeof (hermon_bind_info_t));
	bind.bi_type  = HERMON_BINDHDL_VADDR;
	bind.bi_addr  = (uint64_t)(uintptr_t)buf;
	bind.bi_len   = new_srqinfo.qa_size;
	bind.bi_as    = NULL;
	bind.bi_flags = sleepflag == HERMON_SLEEP ? IBT_MR_SLEEP :
	    IBT_MR_NOSLEEP | IBT_MR_ENABLE_LOCAL_WRITE;
	bind.bi_bypass = state->hs_cfg_profile->cp_iommu_bypass;

	status = hermon_mr_mtt_bind(state, &bind, new_srqinfo.qa_dmahdl, &mtt,
	    &mtt_pgsize_bits, 0); /* no relaxed ordering */
	if (status != DDI_SUCCESS) {
		status = status;
		kmem_free(wre_new, (1 << log_srq_size) *
		    sizeof (uint64_t));
		hermon_queue_free(&new_srqinfo);
		goto srqmodify_fail;
	}

	/*
	 * Calculate the offset between the kernel virtual address space
	 * and the IB virtual address space.  This will be used when
	 * posting work requests to properly initialize each WQE.
	 *
	 * Note: bind addr is zero-based (from alloc) so we calculate the
	 * correct new offset here.
	 */
	bind.bi_addr = bind.bi_addr & ((1 << mtt_pgsize_bits) - 1);
	srq_desc_off = (uint64_t)(uintptr_t)new_srqinfo.qa_buf_aligned -
	    (uint64_t)bind.bi_addr;
	srq_pgoffs   = (uint_t)
	    ((uintptr_t)new_srqinfo.qa_buf_aligned & HERMON_PAGEOFFSET);

	/*
	 * Fill in the MPT entry.  This is the final step before passing
	 * ownership of the MPT entry to the Hermon hardware.  We use all of
	 * the information collected/calculated above to fill in the
	 * requisite portions of the MPT.
	 */
	bzero(&mpt_entry, sizeof (hermon_hw_dmpt_t));
	mpt_entry.reg_win_len	= bind.bi_len;
	mtt_addr = (mtt->hr_indx << HERMON_MTT_SIZE_SHIFT);
	mpt_entry.mtt_addr_h = mtt_addr >> 32;
	mpt_entry.mtt_addr_l = mtt_addr >> 3;

	/*
	 * for hermon we build up a new srqc and pass that (partially filled
	 * to resize SRQ instead of modifying the (d)mpt directly
	 */



	/*
	 * Now we grab the SRQ lock.  Since we will be updating the actual
	 * SRQ location and the producer/consumer indexes, we should hold
	 * the lock.
	 *
	 * We do a HERMON_NOSLEEP here (and below), though, because we are
	 * holding the "srq_lock" and if we got raised to interrupt level
	 * by priority inversion, we would not want to block in this routine
	 * waiting for success.
	 */
	mutex_enter(&srq->srq_lock);

	/*
	 * Copy old entries to new buffer
	 */
	srq_old_bufsz = srq->srq_wq_bufsz;
	bcopy(srq->srq_wq_buf, buf, srq_old_bufsz * wqesz);

	/*
	 * Setup MPT information for use in the MODIFY_MPT command
	 */
	mr = srq->srq_mrhdl;
	mutex_enter(&mr->mr_lock);

	/*
	 * now, setup the srqc information needed for resize - limit the
	 * values, but use the same structure as the srqc
	 */

	srqc_entry.log_srq_size	  = log_srq_size;
	srqc_entry.page_offs	  = srq_pgoffs >> 6;
	srqc_entry.log2_pgsz	  = mr->mr_log2_pgsz;
	srqc_entry.mtt_base_addrl = (uint64_t)mtt_addr >> 32;
	srqc_entry.mtt_base_addrh = mtt_addr >> 3;

	/*
	 * RESIZE_SRQ
	 *
	 * If this fails for any reason, then it is an indication that
	 * something (either in HW or SW) has gone seriously wrong.  So we
	 * print a warning message and return.
	 */
	status = hermon_resize_srq_cmd_post(state, &srqc_entry,
	    srq->srq_srqnum, sleepflag);
	if (status != HERMON_CMD_SUCCESS) {
		cmn_err(CE_CONT, "Hermon: RESIZE_SRQ command failed: %08x\n",
		    status);
		if (status == HERMON_CMD_INVALID_STATUS) {
			hermon_fm_ereport(state, HCA_SYS_ERR, HCA_ERR_SRV_LOST);
		}
		(void) hermon_mr_mtt_unbind(state, &bind, mtt);
		kmem_free(wre_new, (1 << log_srq_size) *
		    sizeof (uint64_t));
		hermon_queue_free(&new_srqinfo);
		mutex_exit(&mr->mr_lock);
		mutex_exit(&srq->srq_lock);
		return (ibc_get_ci_failure(0));
	}
	/*
	 * Update the Hermon Shared Receive Queue handle with all the new
	 * information.  At the same time, save away all the necessary
	 * information for freeing up the old resources
	 */
	old_srqinfo	   = srq->srq_wqinfo;
	old_mtt		   = srq->srq_mrhdl->mr_mttrsrcp;
	bcopy(&srq->srq_mrhdl->mr_bindinfo, &old_bind,
	    sizeof (hermon_bind_info_t));

	/* Now set the new info */
	srq->srq_wqinfo	   = new_srqinfo;
	srq->srq_wq_buf	   = buf;
	srq->srq_wq_bufsz  = (1 << log_srq_size);
	bcopy(&bind, &srq->srq_mrhdl->mr_bindinfo, sizeof (hermon_bind_info_t));
	srq->srq_mrhdl->mr_mttrsrcp = mtt;
	srq->srq_desc_off  = srq_desc_off;
	srq->srq_real_sizes.srq_wr_sz = (1 << log_srq_size);

	/* Update MR mtt pagesize */
	mr->mr_logmttpgsz = mtt_pgsize_bits;
	mutex_exit(&mr->mr_lock);

	/*
	 * Initialize new wridlist, if needed.
	 *
	 * If a wridlist already is setup on an SRQ (the QP associated with an
	 * SRQ has moved "from_reset") then we must update this wridlist based
	 * on the new SRQ size.  We allocate the new size of Work Request ID
	 * Entries, copy over the old entries to the new list, and
	 * re-initialize the srq wridlist in non-umap case
	 */
	wre_old = srq->srq_wq_wqhdr->wq_wrid;

	bcopy(wre_old, wre_new, srq_old_bufsz * sizeof (uint64_t));

	/* Setup new sizes in wre */
	srq->srq_wq_wqhdr->wq_wrid = wre_new;

	/*
	 * If "old" SRQ was a user-mappable SRQ that is currently mmap()'d out
	 * to a user process, then we need to call devmap_devmem_remap() to
	 * invalidate the mapping to the SRQ memory.  We also need to
	 * invalidate the SRQ tracking information for the user mapping.
	 *
	 * Note: On failure, the remap really shouldn't ever happen.  So, if it
	 * does, it is an indication that something has gone seriously wrong.
	 * So we print a warning message and return error (knowing, of course,
	 * that the "old" SRQ memory will be leaked)
	 */
	if ((srq->srq_is_umap) && (srq->srq_umap_dhp != NULL)) {
		maxprot = (PROT_READ | PROT_WRITE | PROT_USER);
		status = devmap_devmem_remap(srq->srq_umap_dhp,
		    state->hs_dip, 0, 0, srq->srq_wqinfo.qa_size, maxprot,
		    DEVMAP_MAPPING_INVALID, NULL);
		if (status != DDI_SUCCESS) {
			mutex_exit(&srq->srq_lock);
			HERMON_WARNING(state, "failed in SRQ memory "
			    "devmap_devmem_remap()");
			/* We can, however, free the memory for old wre */
			kmem_free(wre_old, srq_old_bufsz * sizeof (uint64_t));
			return (ibc_get_ci_failure(0));
		}
		srq->srq_umap_dhp = (devmap_cookie_t)NULL;
	}

	/*
	 * Drop the SRQ lock now.  The only thing left to do is to free up
	 * the old resources.
	 */
	mutex_exit(&srq->srq_lock);

	/*
	 * Unbind the MTT entries.
	 */
	status = hermon_mr_mtt_unbind(state, &old_bind, old_mtt);
	if (status != DDI_SUCCESS) {
		HERMON_WARNING(state, "failed to unbind old SRQ memory");
		status = ibc_get_ci_failure(0);
		goto srqmodify_fail;
	}

	/* Free the memory for old wre */
	kmem_free(wre_old, srq_old_bufsz * sizeof (uint64_t));

	/* Free the memory for the old SRQ */
	hermon_queue_free(&old_srqinfo);

	/*
	 * Fill in the return arguments (if necessary).  This includes the
	 * real new completion queue size.
	 */
	if (real_size != NULL) {
		*real_size = (1 << log_srq_size);
	}

	return (DDI_SUCCESS);

srqmodify_fail:
	return (status);
}


/*
 * hermon_srq_refcnt_inc()
 *    Context: Can be called from interrupt or base context.
 */
void
hermon_srq_refcnt_inc(hermon_srqhdl_t srq)
{
	mutex_enter(&srq->srq_lock);
	srq->srq_refcnt++;
	mutex_exit(&srq->srq_lock);
}


/*
 * hermon_srq_refcnt_dec()
 *    Context: Can be called from interrupt or base context.
 */
void
hermon_srq_refcnt_dec(hermon_srqhdl_t srq)
{
	mutex_enter(&srq->srq_lock);
	srq->srq_refcnt--;
	mutex_exit(&srq->srq_lock);
}


/*
 * hermon_srqhdl_from_srqnum()
 *    Context: Can be called from interrupt or base context.
 *
 *    This routine is important because changing the unconstrained
 *    portion of the SRQ number is critical to the detection of a
 *    potential race condition in the SRQ handler code (i.e. the case
 *    where a SRQ is freed and alloc'd again before an event for the
 *    "old" SRQ can be handled).
 *
 *    While this is not a perfect solution (not sure that one exists)
 *    it does help to mitigate the chance that this race condition will
 *    cause us to deliver a "stale" event to the new SRQ owner.  Note:
 *    this solution does not scale well because the number of constrained
 *    bits increases (and, hence, the number of unconstrained bits
 *    decreases) as the number of supported SRQ grows.  For small and
 *    intermediate values, it should hopefully provide sufficient
 *    protection.
 */
hermon_srqhdl_t
hermon_srqhdl_from_srqnum(hermon_state_t *state, uint_t srqnum)
{
	uint_t	srqindx, srqmask;

	/* Calculate the SRQ table index from the srqnum */
	srqmask = (1 << state->hs_cfg_profile->cp_log_num_srq) - 1;
	srqindx = srqnum & srqmask;
	return (hermon_icm_num_to_hdl(state, HERMON_SRQC, srqindx));
}


/*
 * hermon_srq_sgl_to_logwqesz()
 *    Context: Can be called from interrupt or base context.
 */
static void
hermon_srq_sgl_to_logwqesz(hermon_state_t *state, uint_t num_sgl,
    hermon_qp_wq_type_t wq_type, uint_t *logwqesz, uint_t *max_sgl)
{
	uint_t	max_size, log2, actual_sgl;

	switch (wq_type) {
	case HERMON_QP_WQ_TYPE_RECVQ:
		/*
		 * Use requested maximum SGL to calculate max descriptor size
		 * (while guaranteeing that the descriptor size is a
		 * power-of-2 cachelines).
		 */
		max_size = (HERMON_QP_WQE_MLX_SRQ_HDRS + (num_sgl << 4));
		log2 = highbit(max_size);
		if (ISP2(max_size)) {
			log2 = log2 - 1;
		}

		/* Make sure descriptor is at least the minimum size */
		log2 = max(log2, HERMON_QP_WQE_LOG_MINIMUM);

		/* Calculate actual number of SGL (given WQE size) */
		actual_sgl = ((1 << log2) - HERMON_QP_WQE_MLX_SRQ_HDRS) >> 4;
		break;

	default:
		HERMON_WARNING(state, "unexpected work queue type");
		break;
	}

	/* Fill in the return values */
	*logwqesz = log2;
	*max_sgl  = min(state->hs_cfg_profile->cp_srq_max_sgl, actual_sgl);
}