summaryrefslogtreecommitdiff
path: root/usr/src/uts/common/io/ptms_conf.c
blob: fa7f6366ce4847d3e1652bb722b20a9f4deb6e97 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
/*
 * CDDL HEADER START
 *
 * The contents of this file are subject to the terms of the
 * Common Development and Distribution License, Version 1.0 only
 * (the "License").  You may not use this file except in compliance
 * with the License.
 *
 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
 * or http://www.opensolaris.org/os/licensing.
 * See the License for the specific language governing permissions
 * and limitations under the License.
 *
 * When distributing Covered Code, include this CDDL HEADER in each
 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
 * If applicable, add the following below this CDDL HEADER, with the
 * fields enclosed by brackets "[]" replaced with your own identifying
 * information: Portions Copyright [yyyy] [name of copyright owner]
 *
 * CDDL HEADER END
 */
/*
 * Copyright 2004 Sun Microsystems, Inc.  All rights reserved.
 * Use is subject to license terms.
 */

#pragma ident	"%Z%%M%	%I%	%E% SMI"

/*
 * This file contains global data and code shared between master and slave parts
 * of the pseudo-terminal driver.
 *
 * Pseudo terminals (or pt's for short) are allocated dynamically.
 * pt's are put in the global ptms_slots array indexed by minor numbers.
 *
 * The slots array is initially small (of the size NPTY_MIN). When more pt's are
 * needed than the slot array size, the larger slot array is allocated and all
 * opened pt's move to the new one.
 *
 * Resource allocation:
 *
 *	pt_ttys structures are allocated via pt_ttys_alloc, which uses
 *		kmem_cache_alloc().
 *	Minor number space is allocated via vmem_alloc() interface.
 *	ptms_slots arrays are allocated via kmem_alloc().
 *
 *   Minors are started from 1 instead of 0 because vmem_alloc returns 0 in case
 *   of failure. Also, in anticipation of removing clone device interface to
 *   pseudo-terminal subsystem, minor 0 should not be used. (Potential future
 *   development).
 *
 *   Device entries in /dev/pts directory are created dynamically via
 *   ddi_create_minor_node(). It enqueues requests to suer-mode event daemon
 *   which actually creates entries asynchronously, so they may not be available
 *   immediately. For this reason we create devices before they are actually
 *   needed, so for each slot table extension we already have node creation
 *   requests queued. To avoid overflowing of the event daemon event queue we
 *   limit the maximum extension of the slot table by the pt_maxdelta tuneable.
 *   After the table slot size reaches pt_maxdelta, we stop 2^N extension
 *   algorithm and start extending the slot table size by pt_maxdelta.
 *
 * Synchronization:
 *
 *   All global data synchronization between ptm/pts is done via global
 *   ptms_lock mutex which is implicitly initialized by declaring it global.
 *
 *   Individual fields of pt_ttys structure (except ptm_rdq, pts_rdq and
 *   pt_nullmsg) are protected by pt_ttys.pt_lock mutex.
 *
 *   PT_ENTER_READ/PT_ENTER_WRITE are reference counter based read-write locks
 *   which allow reader locks to be reacquired by the same thread (usual
 *   reader/writer locks can't be used for that purpose since it is illegal for
 *   a thread to acquire a lock it already holds, even as a reader). The sole
 *   purpose of these macros is to guarantee that the peer queue will not
 *   disappear (due to closing peer) while it is used. It is safe to use
 *   PT_ENTER_READ/PT_EXIT_READ brackets across calls like putq/putnext (since
 *   they are not real locks but reference counts).
 *
 *   PT_ENTER_WRITE/PT_EXIT_WRITE brackets are used ONLY in master/slave
 *   open/close paths to modify ptm_rdq and pts_rdq fields. These fields should
 *   be set to appropriate queues *after* qprocson() is called during open (to
 *   prevent peer from accessing the queue with incomplete plumbing) and set to
 *   NULL before qprocsoff() is called during close. Put and service procedures
 *   use PT_ENTER_READ/PT_EXIT_READ to prevent peer closes.
 *
 *   The pt_nullmsg field is only used in open/close routines and is also
 *   protected by PT_ENTER_WRITE/PT_EXIT_WRITE brackets to avoid extra mutex
 *   holds.
 *
 * Lock Ordering:
 *
 *   If both ptms_lock and per-pty lock should be held, ptms_lock should always
 *   be entered first, followed by per-pty lock.
 *
 * Global functions:
 *
 * void ptms_init(void);
 *
 *	Called by pts/ptm _init entry points. It performes one-time
 * 	initialization needed for both pts and ptm. This initialization is done
 * 	here and not in ptms_initspace because all these data structures are not
 *	needed if pseudo-terminals are not used in the system.
 *
 * struct pt_ttys *pt_ttys_alloc(void);
 *
 *	Allocate new minor number and pseudo-terminal entry. May sleep.
 *	New minor number is recorded in pt_minor field of the entry returned.
 *	This routine also initializes pt_minor and pt_state fields of the new
 *	pseudo-terminal and puts a pointer to it into ptms_slots array.
 *
 * struct pt_ttys *ptms_minor2ptty(minor_t minor)
 *
 *	Find pt_ttys structure by minor number.
 *	Returns NULL when minor is out of range.
 *
 * void ptms_close(struct pt_ttys *pt, uint_t flags_to_clear);
 *
 *	Clear flags_to_clear in pt and if no one owns it (PTMOPEN/PTSOPEN not
 * 	set) free pt entry and corresponding slot.
 *
 * Tuneables and configuration:
 *
 *	pt_cnt: minimum number of pseudo-terminals in the system. The system
 *		should provide at least this number of ptys (provided sufficient
 * 		memory is available). It is different from the older semantics
 *		of pt_cnt meaning maximum number of ptys.
 *		Set to 0 by default.
 *
 *	pt_max_pty: Maximum number of pseudo-terminals in the system. The system
 *		should not allocate more ptys than pt_max_pty (although, it may
 * 		impose stricter maximum). Zero value means no user-defined
 * 		maximum. This is intended to be used as "denial-of-service"
 *		protection.
 *		Set to 0 by default.
 *
 *         Both pt_cnt and pt_max_pty may be modified during system lifetime
 *         with their semantics preserved.
 *
 *	pt_init_cnt: Initial size of ptms_slots array. Set to NPTY_INITIAL.
 *
 *	pt_ptyofmem: Approximate percentage of system memory that may be
 *		occupied by pty data structures. Initially set to NPTY_PERCENT.
 *		This variable is used once during initialization to estimate
 * 		maximum number of ptys in the system. The actual maximum is
 *		determined as minimum of pt_max_pty and calculated value.
 *
 *	pt_maxdelta: Maximum extension chunk of the slot table.
 */



#include <sys/types.h>
#include <sys/param.h>
#include <sys/termios.h>
#include <sys/stream.h>
#include <sys/stropts.h>
#include <sys/kmem.h>
#include <sys/ptms.h>
#include <sys/stat.h>
#include <sys/sunddi.h>
#include <sys/ddi.h>
#include <sys/bitmap.h>
#include <sys/sysmacros.h>
#include <sys/ddi_impldefs.h>
#include <sys/zone.h>
#ifdef DEBUG
#include <sys/strlog.h>
#endif


/* Initial number of ptms slots */
#define	NPTY_INITIAL 16

#define	NPTY_PERCENT 5

/* Maximum increment of the slot table size */
#define	PTY_MAXDELTA 128

/*
 * Tuneable variables.
 */
uint_t	pt_cnt = 0;			/* Minimum number of ptys */
size_t 	pt_max_pty = 0;			/* Maximum number of ptys */
uint_t	pt_init_cnt = NPTY_INITIAL;	/* Initial number of ptms slots */
uint_t	pt_pctofmem = NPTY_PERCENT;	/* Percent of memory to use for ptys */
uint_t	pt_maxdelta = PTY_MAXDELTA;	/* Max increment for slot table size */

/* Other global variables */

kmutex_t ptms_lock;			/* Global data access lock */

/*
 * Slot array and its management variables
 */
static struct pt_ttys **ptms_slots = NULL; /* Slots for actual pt structures */
static size_t ptms_nslots = 0;		/* Size of slot array */
static size_t ptms_ptymax = 0;		/* Maximum number of ptys */
static size_t ptms_inuse = 0;		/* # of ptys currently allocated */
static size_t ptms_bt_words = 0;	/* Size of minor bitmap in words */
static size_t ptms_bt_len = 0;		/* Size of minor bitmap in bits */

dev_info_t 	*pts_dip = NULL;	/* private copy of slave devinfo ptr */

static struct kmem_cache *ptms_cache = NULL;	/* pty cache */

static vmem_t *ptms_minor_arena = NULL; /* Arena for device minors */

static ulong_t *ptms_bt = NULL;		/* pty created minor node bitmap */

static uint_t ptms_roundup(uint_t);
static int ptms_constructor(void *, void *, int);
static void ptms_destructor(void *, void *);
static minor_t ptms_grow(void);

/*
 * Total size occupied by one pty. Each pty master/slave pair consumes one
 * pointer for ptms_slots array, one pt_ttys structure and one empty message
 * preallocated for pts close.
 */

#define	PTY_SIZE (sizeof (struct pt_ttys) + \
    sizeof (struct pt_ttys *) + \
    sizeof (dblk_t))

#ifdef DEBUG
int ptms_debug = 0;
#define	PTMOD_ID 5
#endif

/*
 * Clear all bits of x except the highest bit
 */
#define	truncate(x) 	((x) <= 2 ? (x) : (1 << (highbit(x) - 1)))

/*
 * Roundup the number to the nearest power of 2
 */
static uint_t
ptms_roundup(uint_t x)
{
	uint_t p = truncate(x);	/* x with non-high bits stripped */

	/*
	 * If x is a power of 2, return x, otherwise roundup.
	 */
	return (p == x ? p : (p * 2));
}

/*
 * Allocate ptms_slots array and kmem cache for pt_ttys. This initialization is
 * only called once during system lifetime. Called from ptm or pts _init
 * routine.
 */
void
ptms_init(void)
{
	mutex_enter(&ptms_lock);

	if (ptms_slots == NULL) {
		ptms_slots = kmem_zalloc(pt_init_cnt *
		    sizeof (struct pt_ttys *), KM_SLEEP);

		ptms_cache = kmem_cache_create("pty_map",
		    sizeof (struct pt_ttys), 0, ptms_constructor,
		    ptms_destructor, NULL, NULL, NULL, 0);

		/* Allocate bit map for created minor nodes */
		ptms_bt_len = pt_init_cnt * 2 + 1;
		ptms_bt_words = howmany(ptms_bt_len, BT_NBIPUL);
		ptms_bt = kmem_zalloc(sizeof (ulong_t) * ptms_bt_words,
			KM_SLEEP);

		ptms_nslots = pt_init_cnt;

		/* Allocate integer space for minor numbers */
		ptms_minor_arena = vmem_create("ptms_minor", (void *)1,
		    ptms_nslots, 1, NULL, NULL, NULL, 0,
		    VM_SLEEP | VMC_IDENTIFIER);

		/*
		 * Calculate available number of ptys - how many ptys can we
		 * allocate in pt_pctofmem % of available memory. The value is
		 * rounded up to the nearest power of 2.
		 */
		ptms_ptymax = ptms_roundup((pt_pctofmem * kmem_maxavail()) /
		    (100 * PTY_SIZE));
	}
	mutex_exit(&ptms_lock);
}

static void
ptms_create_node(dev_info_t *devi, minor_t i)
{
	char name[22];		/* For representing 64-bit minor + NUL */

	(void) snprintf(name, sizeof (name), "%d", i);
	if (ddi_create_minor_node(devi, name, S_IFCHR,
	    i, DDI_PSEUDO, NULL) == DDI_SUCCESS) {
		BT_SET(ptms_bt, i);
	}
}

/*
 * Create nodes in /dev/pts directory.
 * Called from pts_attach.
 */
int
ptms_create_pts_nodes(dev_info_t *devi)
{
	uint_t i;

	mutex_enter(&ptms_lock);
	pts_dip = devi;

	/*
	 * /dev/pts/0 is not used, but some applications may check it, so create
	 * it also.
	 *
	 * Create all minor nodes that have been pre-allocated in ptms_init().
	 */
	for (i = 0; i <= pt_init_cnt * 2; i++)
		ptms_create_node(devi, i);

	mutex_exit(&ptms_lock);

	return (DDI_SUCCESS);
}

/*
 * Destroy nodes in /dev/pts directory.
 * Called from pts_detach.
 */
int
ptms_destroy_pts_nodes(dev_info_t *devi)
{
	mutex_enter(&ptms_lock);
	ddi_remove_minor_node(devi, NULL);
	if (ptms_bt != NULL && ptms_bt_words > 0) {
		/* Clear bitmap since all minor nodes have been removed */
		bzero(ptms_bt, sizeof (ulong_t) * ptms_bt_words);
	}
	pts_dip = NULL;
	mutex_exit(&ptms_lock);
	return (DDI_SUCCESS);
}

/*
 * Allocate new minor number and pseudo-terminal entry. Returns the new entry or
 * NULL if no memory or maximum number of entries reached.
 */
struct pt_ttys *
pt_ttys_alloc(void)
{
	minor_t dminor;
	struct pt_ttys *pt = NULL;

	mutex_enter(&ptms_lock);

	/*
	 * Always try to allocate new pty when pt_cnt minimum limit is not
	 * achieved. If it is achieved, the maximum is determined by either
	 * user-specified value (if it is non-zero) or our memory estimations -
	 * whatever is less.
	 */
	if (ptms_inuse >= pt_cnt) {
		/*
		 * When system achieved required minimum of ptys, check for the
		 *   denial of service limits.
		 *
		 * Since pt_max_pty may be zero, the formula below is used to
		 * avoid conditional expression. It will equal to pt_max_pty if
		 * it is not zero and ptms_ptymax otherwise.
		 */
		size_t user_max = (pt_max_pty == 0 ? ptms_ptymax : pt_max_pty);

		/* Do not try to allocate more than allowed */
		if (ptms_inuse >= min(ptms_ptymax, user_max)) {
			mutex_exit(&ptms_lock);
			return (NULL);
		}
	}
	ptms_inuse++;

	/*
	 * Allocate new minor number. If this fails, all slots are busy and
	 * we need to grow the hash.
	 */
	dminor = (minor_t)(uintptr_t)
	    vmem_alloc(ptms_minor_arena, 1, VM_NOSLEEP);

	if (dminor == 0) {
		/* Grow the cache and retry allocation */
		dminor = ptms_grow();
	}

	if (dminor == 0) {
		/* Not enough memory now */
		ptms_inuse--;
		mutex_exit(&ptms_lock);
		return (NULL);
	}

	if (BT_TEST(ptms_bt, dminor) == 0) {
		/*
		 * Retry failed node creation.
		 */
		if (pts_dip != NULL)
			ptms_create_node(pts_dip, dminor);
	}

	pt = kmem_cache_alloc(ptms_cache, KM_NOSLEEP);
	if (pt == NULL) {
		/* Not enough memory - this entry can't be used now. */
		vmem_free(ptms_minor_arena, (void *)(uintptr_t)dminor, 1);
		ptms_inuse--;
	} else {
		pt->pt_minor = dminor;
		pt->pt_pid = curproc->p_pid;	/* For debugging */
		pt->pt_state = (PTMOPEN | PTLOCK);
		pt->pt_zoneid = getzoneid();
		ASSERT(ptms_slots[dminor - 1] == NULL);
		ptms_slots[dminor - 1] = pt;
	}

	mutex_exit(&ptms_lock);
	return (pt);
}

/*
 * Get pt_ttys structure by minor number.
 * Returns NULL when minor is out of range.
 */
struct pt_ttys *
ptms_minor2ptty(minor_t dminor)
{
	struct pt_ttys *pt = NULL;

	ASSERT(mutex_owned(&ptms_lock));
	if ((dminor >= 1) && (dminor <= ptms_nslots) && ptms_slots != NULL)
		pt = ptms_slots[dminor - 1];

	return (pt);
}

/*
 * Close the pt and clear flags_to_clear.
 * If pt device is not opened by someone else, free it and clear its slot.
 */
void
ptms_close(struct pt_ttys *pt, uint_t flags_to_clear)
{
	uint_t flags;

	ASSERT(MUTEX_NOT_HELD(&ptms_lock));
	ASSERT(pt != NULL);

	mutex_enter(&ptms_lock);

	mutex_enter(&pt->pt_lock);
	pt->pt_state &= ~flags_to_clear;
	flags = pt->pt_state;
	mutex_exit(&pt->pt_lock);

	if (! (flags & (PTMOPEN | PTSOPEN))) {
		/* No one owns the entry - free it */

		ASSERT(pt->ptm_rdq == NULL);
		ASSERT(pt->pts_rdq == NULL);
		ASSERT(pt->pt_nullmsg == NULL);
		ASSERT(pt->pt_refcnt == 0);
		ASSERT(pt->pt_minor <= ptms_nslots);
		ASSERT(ptms_slots[pt->pt_minor - 1] == pt);
		ASSERT(ptms_inuse > 0);

		ptms_inuse--;

		pt->pt_pid = 0;

		ptms_slots[pt->pt_minor - 1] = NULL;
		/* Return minor number to the pool of minors */
		vmem_free(ptms_minor_arena, (void *)(uintptr_t)pt->pt_minor, 1);
		/* Return pt to the cache */
		kmem_cache_free(ptms_cache, pt);
	}
	mutex_exit(&ptms_lock);
}

/*
 * Allocate another slot table twice as large as the original one (limited to
 * global maximum). Migrate all pt to the new slot table and free the original
 * one. Create more /devices entries for new devices.
 */
static minor_t
ptms_grow()
{
	minor_t old_size = ptms_nslots;
	minor_t delta = MIN(pt_maxdelta, old_size);
	minor_t new_size = old_size + delta;
	minor_t	new_delta = MIN(pt_maxdelta, new_size);
	struct pt_ttys **ptms_old = ptms_slots;
	struct pt_ttys **ptms_new;
	ulong_t	*new_bt;
	size_t	new_bt_words;
	size_t	new_bt_len;
	void  *vaddr;			/* vmem_add return value */
	minor_t i;

	ASSERT(MUTEX_HELD(&ptms_lock));

	DDBG("ptmopen(%d): need to grow\n", (int)ptms_inuse);

	/* Allocate new ptms array */
	ptms_new = kmem_zalloc(new_size * sizeof (struct pt_ttys *),
	    KM_NOSLEEP);
	if (ptms_new == NULL)
		return ((minor_t)0);

	/* Allocate new ptms bitmap */
	new_bt_len = ptms_bt_len + new_delta;
	new_bt_words = howmany(new_bt_len, BT_NBIPUL);
	new_bt = kmem_zalloc(sizeof (ulong_t) * new_bt_words, KM_NOSLEEP);
	if (new_bt == NULL) {
		kmem_free(ptms_new, new_size * sizeof (struct pt_ttys *));
		return ((minor_t)0);
	}

	/* Increase clone index space */
	vaddr = vmem_add(ptms_minor_arena, (void *)(uintptr_t)(old_size + 1),
	    new_size - old_size, VM_NOSLEEP);

	if (vaddr == NULL) {
		kmem_free(ptms_new, new_size * sizeof (struct pt_ttys *));
		kmem_free(new_bt, sizeof (ulong_t) * new_bt_words);
		return ((minor_t)0);
	}

	/* Migrate pt entries to a new location */
	ptms_nslots = new_size;
	bcopy(ptms_old, ptms_new, old_size * sizeof (struct pt_ttys *));
	ptms_slots = ptms_new;
	kmem_free(ptms_old, old_size * sizeof (struct pt_ttys *));

	/* Migrate bitmap entries to a new location */
	bt_copy(ptms_bt, new_bt, ptms_bt_words);
	kmem_free(ptms_bt, sizeof (ulong_t) * ptms_bt_words);
	ptms_bt = new_bt;
	ptms_bt_words = new_bt_words;
	ptms_bt_len = new_bt_len;

	/*
	 * Add new or previously failed /devices entries.
	 * Devices are created asynchronously via event daemon requests, so we
	 * pre-create devices before they are actually needed.
	 * Faster performance could be obtained by keeping track of
	 * the last uncreated node, rather than searching.
	 */
	if (pts_dip != NULL) {
		for (i = bt_availbit(ptms_bt, ptms_bt_len); i < ptms_bt_len;
			i++) {
			if (BT_TEST(ptms_bt, i) == 0)
				ptms_create_node(pts_dip, i);
		}
	}

	/* Allocate minor number and return it */
	return ((minor_t)(uintptr_t)
	    vmem_alloc(ptms_minor_arena, 1, VM_NOSLEEP));
}

/*ARGSUSED*/
static int
ptms_constructor(void *maddr, void *arg, int kmflags)
{
	struct pt_ttys *pt = maddr;

	pt->pts_rdq = NULL;
	pt->ptm_rdq = NULL;
	pt->pt_nullmsg = NULL;
	pt->pt_pid = NULL;
	pt->pt_minor = NULL;
	pt->pt_refcnt = 0;
	pt->pt_state = 0;
	pt->pt_zoneid = GLOBAL_ZONEID;

	cv_init(&pt->pt_cv, NULL, CV_DEFAULT, NULL);
	mutex_init(&pt->pt_lock, NULL, MUTEX_DEFAULT, NULL);
	return (0);
}

/*ARGSUSED*/
static void
ptms_destructor(void *maddr, void *arg)
{
	struct pt_ttys *pt = maddr;

	ASSERT(pt->pt_refcnt == 0);
	ASSERT(pt->pt_state == 0);
	ASSERT(pt->ptm_rdq == NULL);
	ASSERT(pt->pts_rdq == NULL);

	mutex_destroy(&pt->pt_lock);
	cv_destroy(&pt->pt_cv);
}

#ifdef DEBUG
void
ptms_log(char *str, uint_t arg)
{
	if (ptms_debug) {
		if (ptms_debug & 2)
			cmn_err(CE_CONT, str, arg);
		if (ptms_debug & 4)
			(void) strlog(PTMOD_ID, -1, 0, SL_TRACE | SL_ERROR,
			    str, arg);
		else
			(void) strlog(PTMOD_ID, -1, 0, SL_TRACE, str, arg);
	}
}

void
ptms_logp(char *str, uintptr_t arg)
{
	if (ptms_debug) {
		if (ptms_debug & 2)
			cmn_err(CE_CONT, str, arg);
		if (ptms_debug & 4)
			(void) strlog(PTMOD_ID, -1, 0, SL_TRACE | SL_ERROR,
			    str, arg);
		else
			(void) strlog(PTMOD_ID, -1, 0, SL_TRACE, str, arg);
	}
}
#endif