1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
|
/*
* CDDL HEADER START
*
* The contents of this file are subject to the terms of the
* Common Development and Distribution License, Version 1.0 only
* (the "License"). You may not use this file except in compliance
* with the License.
*
* You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
* or http://www.opensolaris.org/os/licensing.
* See the License for the specific language governing permissions
* and limitations under the License.
*
* When distributing Covered Code, include this CDDL HEADER in each
* file and include the License file at usr/src/OPENSOLARIS.LICENSE.
* If applicable, add the following below this CDDL HEADER, with the
* fields enclosed by brackets "[]" replaced with your own identifying
* information: Portions Copyright [yyyy] [name of copyright owner]
*
* CDDL HEADER END
*/
/* Copyright (c) 1984, 1986, 1987, 1988, 1989 AT&T */
/* All Rights Reserved */
/*
* Copyright 2005 Sun Microsystems, Inc. All rights reserved.
* Use is subject to license terms.
*/
#pragma ident "%Z%%M% %I% %E% SMI"
#include <sys/param.h>
#include <sys/t_lock.h>
#include <sys/types.h>
#include <sys/tuneable.h>
#include <sys/sysmacros.h>
#include <sys/systm.h>
#include <sys/cpuvar.h>
#include <sys/lgrp.h>
#include <sys/user.h>
#include <sys/proc.h>
#include <sys/callo.h>
#include <sys/kmem.h>
#include <sys/var.h>
#include <sys/cmn_err.h>
#include <sys/swap.h>
#include <sys/vmsystm.h>
#include <sys/class.h>
#include <sys/time.h>
#include <sys/debug.h>
#include <sys/vtrace.h>
#include <sys/spl.h>
#include <sys/atomic.h>
#include <sys/dumphdr.h>
#include <sys/archsystm.h>
#include <sys/fs/swapnode.h>
#include <sys/panic.h>
#include <sys/disp.h>
#include <sys/msacct.h>
#include <sys/mem_cage.h>
#include <vm/page.h>
#include <vm/anon.h>
#include <vm/rm.h>
#include <sys/cyclic.h>
#include <sys/cpupart.h>
#include <sys/rctl.h>
#include <sys/task.h>
#include <sys/chip.h>
#include <sys/sdt.h>
/*
* for NTP support
*/
#include <sys/timex.h>
#include <sys/inttypes.h>
/*
* clock is called straight from
* the real time clock interrupt.
*
* Functions:
* reprime clock
* schedule callouts
* maintain date
* jab the scheduler
*/
extern kcondvar_t fsflush_cv;
extern sysinfo_t sysinfo;
extern vminfo_t vminfo;
extern int idleswtch; /* flag set while idle in pswtch() */
/*
* high-precision avenrun values. These are needed to make the
* regular avenrun values accurate.
*/
static uint64_t hp_avenrun[3];
int avenrun[3]; /* FSCALED average run queue lengths */
time_t time; /* time in seconds since 1970 - for compatibility only */
static struct loadavg_s loadavg;
/*
* Phase/frequency-lock loop (PLL/FLL) definitions
*
* The following variables are read and set by the ntp_adjtime() system
* call.
*
* time_state shows the state of the system clock, with values defined
* in the timex.h header file.
*
* time_status shows the status of the system clock, with bits defined
* in the timex.h header file.
*
* time_offset is used by the PLL/FLL to adjust the system time in small
* increments.
*
* time_constant determines the bandwidth or "stiffness" of the PLL.
*
* time_tolerance determines maximum frequency error or tolerance of the
* CPU clock oscillator and is a property of the architecture; however,
* in principle it could change as result of the presence of external
* discipline signals, for instance.
*
* time_precision is usually equal to the kernel tick variable; however,
* in cases where a precision clock counter or external clock is
* available, the resolution can be much less than this and depend on
* whether the external clock is working or not.
*
* time_maxerror is initialized by a ntp_adjtime() call and increased by
* the kernel once each second to reflect the maximum error bound
* growth.
*
* time_esterror is set and read by the ntp_adjtime() call, but
* otherwise not used by the kernel.
*/
int32_t time_state = TIME_OK; /* clock state */
int32_t time_status = STA_UNSYNC; /* clock status bits */
int32_t time_offset = 0; /* time offset (us) */
int32_t time_constant = 0; /* pll time constant */
int32_t time_tolerance = MAXFREQ; /* frequency tolerance (scaled ppm) */
int32_t time_precision = 1; /* clock precision (us) */
int32_t time_maxerror = MAXPHASE; /* maximum error (us) */
int32_t time_esterror = MAXPHASE; /* estimated error (us) */
/*
* The following variables establish the state of the PLL/FLL and the
* residual time and frequency offset of the local clock. The scale
* factors are defined in the timex.h header file.
*
* time_phase and time_freq are the phase increment and the frequency
* increment, respectively, of the kernel time variable.
*
* time_freq is set via ntp_adjtime() from a value stored in a file when
* the synchronization daemon is first started. Its value is retrieved
* via ntp_adjtime() and written to the file about once per hour by the
* daemon.
*
* time_adj is the adjustment added to the value of tick at each timer
* interrupt and is recomputed from time_phase and time_freq at each
* seconds rollover.
*
* time_reftime is the second's portion of the system time at the last
* call to ntp_adjtime(). It is used to adjust the time_freq variable
* and to increase the time_maxerror as the time since last update
* increases.
*/
int32_t time_phase = 0; /* phase offset (scaled us) */
int32_t time_freq = 0; /* frequency offset (scaled ppm) */
int32_t time_adj = 0; /* tick adjust (scaled 1 / hz) */
int32_t time_reftime = 0; /* time at last adjustment (s) */
/*
* The scale factors of the following variables are defined in the
* timex.h header file.
*
* pps_time contains the time at each calibration interval, as read by
* microtime(). pps_count counts the seconds of the calibration
* interval, the duration of which is nominally pps_shift in powers of
* two.
*
* pps_offset is the time offset produced by the time median filter
* pps_tf[], while pps_jitter is the dispersion (jitter) measured by
* this filter.
*
* pps_freq is the frequency offset produced by the frequency median
* filter pps_ff[], while pps_stabil is the dispersion (wander) measured
* by this filter.
*
* pps_usec is latched from a high resolution counter or external clock
* at pps_time. Here we want the hardware counter contents only, not the
* contents plus the time_tv.usec as usual.
*
* pps_valid counts the number of seconds since the last PPS update. It
* is used as a watchdog timer to disable the PPS discipline should the
* PPS signal be lost.
*
* pps_glitch counts the number of seconds since the beginning of an
* offset burst more than tick/2 from current nominal offset. It is used
* mainly to suppress error bursts due to priority conflicts between the
* PPS interrupt and timer interrupt.
*
* pps_intcnt counts the calibration intervals for use in the interval-
* adaptation algorithm. It's just too complicated for words.
*/
struct timeval pps_time; /* kernel time at last interval */
int32_t pps_tf[] = {0, 0, 0}; /* pps time offset median filter (us) */
int32_t pps_offset = 0; /* pps time offset (us) */
int32_t pps_jitter = MAXTIME; /* time dispersion (jitter) (us) */
int32_t pps_ff[] = {0, 0, 0}; /* pps frequency offset median filter */
int32_t pps_freq = 0; /* frequency offset (scaled ppm) */
int32_t pps_stabil = MAXFREQ; /* frequency dispersion (scaled ppm) */
int32_t pps_usec = 0; /* microsec counter at last interval */
int32_t pps_valid = PPS_VALID; /* pps signal watchdog counter */
int32_t pps_glitch = 0; /* pps signal glitch counter */
int32_t pps_count = 0; /* calibration interval counter (s) */
int32_t pps_shift = PPS_SHIFT; /* interval duration (s) (shift) */
int32_t pps_intcnt = 0; /* intervals at current duration */
/*
* PPS signal quality monitors
*
* pps_jitcnt counts the seconds that have been discarded because the
* jitter measured by the time median filter exceeds the limit MAXTIME
* (100 us).
*
* pps_calcnt counts the frequency calibration intervals, which are
* variable from 4 s to 256 s.
*
* pps_errcnt counts the calibration intervals which have been discarded
* because the wander exceeds the limit MAXFREQ (100 ppm) or where the
* calibration interval jitter exceeds two ticks.
*
* pps_stbcnt counts the calibration intervals that have been discarded
* because the frequency wander exceeds the limit MAXFREQ / 4 (25 us).
*/
int32_t pps_jitcnt = 0; /* jitter limit exceeded */
int32_t pps_calcnt = 0; /* calibration intervals */
int32_t pps_errcnt = 0; /* calibration errors */
int32_t pps_stbcnt = 0; /* stability limit exceeded */
/* The following variables require no explicit locking */
volatile clock_t lbolt; /* time in Hz since last boot */
volatile int64_t lbolt64; /* lbolt64 won't wrap for 2.9 billion yrs */
kcondvar_t lbolt_cv;
int one_sec = 1; /* turned on once every second */
static int fsflushcnt; /* counter for t_fsflushr */
int dosynctodr = 1; /* patchable; enable/disable sync to TOD chip */
int tod_needsync = 0; /* need to sync tod chip with software time */
static int tod_broken = 0; /* clock chip doesn't work */
time_t boot_time = 0; /* Boot time in seconds since 1970 */
cyclic_id_t clock_cyclic; /* clock()'s cyclic_id */
cyclic_id_t deadman_cyclic; /* deadman()'s cyclic_id */
static int lgrp_ticks; /* counter to schedule lgrp load calcs */
/*
* rechoose_interval_history is used to detect when rechoose_interval's
* value has changed (via hotpatching for example), so that the
* cached values in the cpu structures may be updated.
*/
static int rechoose_interval_history = RECHOOSE_INTERVAL;
/*
* for tod fault detection
*/
#define TOD_REF_FREQ ((longlong_t)(NANOSEC))
#define TOD_STALL_THRESHOLD (TOD_REF_FREQ * 3 / 2)
#define TOD_JUMP_THRESHOLD (TOD_REF_FREQ / 2)
#define TOD_FILTER_N 4
#define TOD_FILTER_SETTLE (4 * TOD_FILTER_N)
static int tod_faulted = TOD_NOFAULT;
static int tod_fault_reset_flag = 0;
/* patchable via /etc/system */
int tod_validate_enable = 1;
/*
* tod_fault_table[] must be aligned with
* enum tod_fault_type in systm.h
*/
static char *tod_fault_table[] = {
"Reversed", /* TOD_REVERSED */
"Stalled", /* TOD_STALLED */
"Jumped", /* TOD_JUMPED */
"Changed in Clock Rate" /* TOD_RATECHANGED */
/*
* no strings needed for TOD_NOFAULT
*/
};
/*
* test hook for tod broken detection in tod_validate
*/
int tod_unit_test = 0;
time_t tod_test_injector;
#define CLOCK_ADJ_HIST_SIZE 4
static int adj_hist_entry;
int64_t clock_adj_hist[CLOCK_ADJ_HIST_SIZE];
static void clock_tick(kthread_t *);
static void calcloadavg(int, uint64_t *);
static int genloadavg(struct loadavg_s *);
static void loadavg_update();
void (*cmm_clock_callout)() = NULL;
#ifdef KSLICE
int kslice = KSLICE;
#endif
static void
clock(void)
{
kthread_t *t;
kmutex_t *plockp; /* pointer to thread's process lock */
int pinned_intr = 0;
uint_t nrunnable, nrunning;
uint_t w_io;
cpu_t *cp;
cpupart_t *cpupart;
int exiting;
extern void set_anoninfo();
extern void set_freemem();
void (*funcp)();
int32_t ltemp;
int64_t lltemp;
int s;
int do_lgrp_load;
int rechoose_update = 0;
int rechoose;
int i;
if (panicstr)
return;
set_anoninfo();
/*
* Make sure that 'freemem' do not drift too far from the truth
*/
set_freemem();
/*
* Before the section which is repeated is executed, we do
* the time delta processing which occurs every clock tick
*
* There is additional processing which happens every time
* the nanosecond counter rolls over which is described
* below - see the section which begins with : if (one_sec)
*
* This section marks the beginning of the precision-kernel
* code fragment.
*
* First, compute the phase adjustment. If the low-order bits
* (time_phase) of the update overflow, bump the higher order
* bits (time_update).
*/
time_phase += time_adj;
if (time_phase <= -FINEUSEC) {
ltemp = -time_phase / SCALE_PHASE;
time_phase += ltemp * SCALE_PHASE;
s = hr_clock_lock();
timedelta -= ltemp * (NANOSEC/MICROSEC);
hr_clock_unlock(s);
} else if (time_phase >= FINEUSEC) {
ltemp = time_phase / SCALE_PHASE;
time_phase -= ltemp * SCALE_PHASE;
s = hr_clock_lock();
timedelta += ltemp * (NANOSEC/MICROSEC);
hr_clock_unlock(s);
}
/*
* End of precision-kernel code fragment which is processed
* every timer interrupt.
*
* Continue with the interrupt processing as scheduled.
*
* Did we pin another interrupt thread? Need to check this before
* grabbing any adaptive locks, since if we block on a lock the
* pinned thread could escape. Note that this is just a heuristic;
* if we take multiple laps though clock() without returning from
* the interrupt because we have another clock tick pending, then
* the pinned interrupt could be released by one of the previous
* laps. The only consequence is that the CPU will be counted as
* in idle (or wait) state once the pinned interrupt is released.
* Since this accounting is inaccurate by nature, this isn't a big
* deal --- but we should try to get it right in the common case
* where we only call clock() once per interrupt.
*/
if (curthread->t_intr != NULL)
pinned_intr = (curthread->t_intr->t_flag & T_INTR_THREAD);
/*
* Count the number of runnable threads and the number waiting
* for some form of I/O to complete -- gets added to
* sysinfo.waiting. To know the state of the system, must add
* wait counts from all CPUs. Also add up the per-partition
* statistics.
*/
w_io = 0;
nrunnable = 0;
/*
* keep track of when to update lgrp/part loads
*/
do_lgrp_load = 0;
if (lgrp_ticks++ >= hz / 10) {
lgrp_ticks = 0;
do_lgrp_load = 1;
}
/*
* The dispatcher tunable rechoose_interval may be hot-patched.
* Note if it has a new value. If so, the effective rechoose_interval
* cached in the cpu structures needs to be updated.
* If needed we'll do this during the walk of the cpu_list below.
*/
if (rechoose_interval != rechoose_interval_history) {
rechoose_interval_history = rechoose_interval;
rechoose_update = 1;
}
if (one_sec)
loadavg_update();
/*
* First count the threads waiting on kpreempt queues in each
* CPU partition.
*/
cpupart = cp_list_head;
do {
uint_t cpupart_nrunnable = cpupart->cp_kp_queue.disp_nrunnable;
cpupart->cp_updates++;
nrunnable += cpupart_nrunnable;
cpupart->cp_nrunnable_cum += cpupart_nrunnable;
if (one_sec) {
cpupart->cp_nrunning = 0;
cpupart->cp_nrunnable = cpupart_nrunnable;
}
} while ((cpupart = cpupart->cp_next) != cp_list_head);
/* Now count the per-CPU statistics. */
cp = cpu_list;
do {
uint_t cpu_nrunnable = cp->cpu_disp->disp_nrunnable;
nrunnable += cpu_nrunnable;
cpupart = cp->cpu_part;
cpupart->cp_nrunnable_cum += cpu_nrunnable;
if (one_sec)
cpupart->cp_nrunnable += cpu_nrunnable;
if (do_lgrp_load &&
(cp->cpu_flags & CPU_EXISTS)) {
/*
* When updating the lgroup's load average,
* account for the thread running on the CPU.
* If the CPU is the current one, then we need
* to account for the underlying thread which
* got the clock interrupt not the thread that is
* handling the interrupt and caculating the load
* average
*/
t = cp->cpu_thread;
if (CPU == cp)
t = t->t_intr;
/*
* Account for the load average for this thread if
* it isn't the idle thread or it is on the interrupt
* stack and not the current CPU handling the clock
* interrupt
*/
if ((t && t != cp->cpu_idle_thread) || (CPU != cp &&
CPU_ON_INTR(cp))) {
if (t->t_lpl == cp->cpu_lpl) {
/* local thread */
cpu_nrunnable++;
} else {
/*
* This is a remote thread, charge it
* against its home lgroup. Note that
* we notice that a thread is remote
* only if it's currently executing.
* This is a reasonable approximation,
* since queued remote threads are rare.
* Note also that if we didn't charge
* it to its home lgroup, remote
* execution would often make a system
* appear balanced even though it was
* not, and thread placement/migration
* would often not be done correctly.
*/
lgrp_loadavg(t->t_lpl,
LGRP_LOADAVG_IN_THREAD_MAX, 0);
}
}
lgrp_loadavg(cp->cpu_lpl,
cpu_nrunnable * LGRP_LOADAVG_IN_THREAD_MAX, 1);
}
/*
* The platform may define a per physical processor
* adjustment of rechoose_interval. The effective
* (base + adjustment) rechoose_interval is cached
* in the cpu structures for efficiency. Above we detect
* if the cached values need updating, and here is where
* the update happens.
*/
if (rechoose_update) {
rechoose = rechoose_interval +
cp->cpu_chip->chip_rechoose_adj;
cp->cpu_rechoose = (rechoose < 0) ? 0 : rechoose;
}
} while ((cp = cp->cpu_next) != cpu_list);
/*
* Do tick processing for all the active threads running in
* the system.
*/
cp = cpu_list;
nrunning = 0;
do {
klwp_id_t lwp;
int intr;
int thread_away;
/*
* Don't do any tick processing on CPUs that
* aren't even in the system or aren't up yet.
*/
if ((cp->cpu_flags & CPU_EXISTS) == 0) {
continue;
}
/*
* The locking here is rather tricky. We use
* thread_free_lock to keep the currently running
* thread from being freed or recycled while we're
* looking at it. We can then check if the thread
* is exiting and get the appropriate p_lock if it
* is not. We have to be careful, though, because
* the _process_ can still be freed while we're
* holding thread_free_lock. To avoid touching the
* proc structure we put a pointer to the p_lock in the
* thread structure. The p_lock is persistent so we
* can acquire it even if the process is gone. At that
* point we can check (again) if the thread is exiting
* and either drop the lock or do the tick processing.
*/
mutex_enter(&thread_free_lock);
/*
* We cannot hold the cpu_lock to prevent the
* cpu_list from changing in the clock interrupt.
* As long as we don't block (or don't get pre-empted)
* the cpu_list will not change (all threads are paused
* before list modification). If the list does change
* any deleted cpu structures will remain with cpu_next
* set to NULL, hence the following test.
*/
if (cp->cpu_next == NULL) {
mutex_exit(&thread_free_lock);
break;
}
t = cp->cpu_thread; /* Current running thread */
if (CPU == cp) {
/*
* 't' will be the clock interrupt thread on this
* CPU. Use the pinned thread (if any) on this CPU
* as the target of the clock tick. If we pinned
* an interrupt, though, just keep using the clock
* interrupt thread since the formerly pinned one
* may have gone away. One interrupt thread is as
* good as another, and this means we don't have
* to continue to check pinned_intr in subsequent
* code.
*/
ASSERT(t == curthread);
if (t->t_intr != NULL && !pinned_intr)
t = t->t_intr;
}
intr = t->t_flag & T_INTR_THREAD;
lwp = ttolwp(t);
if (lwp == NULL || (t->t_proc_flag & TP_LWPEXIT) || intr) {
/*
* Thread is exiting (or uninteresting) so don't
* do tick processing or grab p_lock. Once we
* drop thread_free_lock we can't look inside the
* thread or lwp structure, since the thread may
* have gone away.
*/
exiting = 1;
} else {
/*
* OK, try to grab the process lock. See
* comments above for why we're not using
* ttoproc(t)->p_lockp here.
*/
plockp = t->t_plockp;
mutex_enter(plockp);
/* See above comment. */
if (cp->cpu_next == NULL) {
mutex_exit(plockp);
mutex_exit(&thread_free_lock);
break;
}
/*
* The thread may have exited between when we
* checked above, and when we got the p_lock.
*/
if (t->t_proc_flag & TP_LWPEXIT) {
mutex_exit(plockp);
exiting = 1;
} else {
exiting = 0;
}
}
/*
* Either we have the p_lock for the thread's process,
* or we don't care about the thread structure any more.
* Either way we can drop thread_free_lock.
*/
mutex_exit(&thread_free_lock);
/*
* Update user, system, and idle cpu times.
*/
if (one_sec) {
nrunning++;
cp->cpu_part->cp_nrunning++;
}
/*
* If we haven't done tick processing for this
* lwp, then do it now. Since we don't hold the
* lwp down on a CPU it can migrate and show up
* more than once, hence the lbolt check.
*
* Also, make sure that it's okay to perform the
* tick processing before calling clock_tick.
* Setting thread_away to a TRUE value (ie. not 0)
* results in tick processing not being performed for
* that thread. Or, in other words, keeps the thread
* away from clock_tick processing.
*/
thread_away = ((cp->cpu_flags & CPU_QUIESCED) ||
CPU_ON_INTR(cp) || intr ||
(cp->cpu_dispthread == cp->cpu_idle_thread) || exiting);
if ((!thread_away) && (lbolt - t->t_lbolt != 0)) {
t->t_lbolt = lbolt;
clock_tick(t);
}
#ifdef KSLICE
/*
* Ah what the heck, give this kid a taste of the real
* world and yank the rug out from under it.
* But, only if we are running UniProcessor.
*/
if ((kslice) && (ncpus == 1)) {
aston(t);
cp->cpu_runrun = 1;
cp->cpu_kprunrun = 1;
}
#endif
if (!exiting)
mutex_exit(plockp);
} while ((cp = cp->cpu_next) != cpu_list);
/*
* bump time in ticks
*
* We rely on there being only one clock thread and hence
* don't need a lock to protect lbolt.
*/
lbolt++;
atomic_add_64((uint64_t *)&lbolt64, (int64_t)1);
/*
* Check for a callout that needs be called from the clock
* thread to support the membership protocol in a clustered
* system. Copy the function pointer so that we can reset
* this to NULL if needed.
*/
if ((funcp = cmm_clock_callout) != NULL)
(*funcp)();
/*
* Wakeup the cageout thread waiters once per second.
*/
if (one_sec)
kcage_tick();
/*
* Schedule timeout() requests if any are due at this time.
*/
callout_schedule();
if (one_sec) {
int drift, absdrift;
timestruc_t tod;
int s;
/*
* Beginning of precision-kernel code fragment executed
* every second.
*
* On rollover of the second the phase adjustment to be
* used for the next second is calculated. Also, the
* maximum error is increased by the tolerance. If the
* PPS frequency discipline code is present, the phase is
* increased to compensate for the CPU clock oscillator
* frequency error.
*
* On a 32-bit machine and given parameters in the timex.h
* header file, the maximum phase adjustment is +-512 ms
* and maximum frequency offset is (a tad less than)
* +-512 ppm. On a 64-bit machine, you shouldn't need to ask.
*/
time_maxerror += time_tolerance / SCALE_USEC;
/*
* Leap second processing. If in leap-insert state at
* the end of the day, the system clock is set back one
* second; if in leap-delete state, the system clock is
* set ahead one second. The microtime() routine or
* external clock driver will insure that reported time
* is always monotonic. The ugly divides should be
* replaced.
*/
switch (time_state) {
case TIME_OK:
if (time_status & STA_INS)
time_state = TIME_INS;
else if (time_status & STA_DEL)
time_state = TIME_DEL;
break;
case TIME_INS:
if (hrestime.tv_sec % 86400 == 0) {
s = hr_clock_lock();
hrestime.tv_sec--;
hr_clock_unlock(s);
time_state = TIME_OOP;
}
break;
case TIME_DEL:
if ((hrestime.tv_sec + 1) % 86400 == 0) {
s = hr_clock_lock();
hrestime.tv_sec++;
hr_clock_unlock(s);
time_state = TIME_WAIT;
}
break;
case TIME_OOP:
time_state = TIME_WAIT;
break;
case TIME_WAIT:
if (!(time_status & (STA_INS | STA_DEL)))
time_state = TIME_OK;
default:
break;
}
/*
* Compute the phase adjustment for the next second. In
* PLL mode, the offset is reduced by a fixed factor
* times the time constant. In FLL mode the offset is
* used directly. In either mode, the maximum phase
* adjustment for each second is clamped so as to spread
* the adjustment over not more than the number of
* seconds between updates.
*/
if (time_offset == 0)
time_adj = 0;
else if (time_offset < 0) {
lltemp = -time_offset;
if (!(time_status & STA_FLL)) {
if ((1 << time_constant) >= SCALE_KG)
lltemp *= (1 << time_constant) /
SCALE_KG;
else
lltemp = (lltemp / SCALE_KG) >>
time_constant;
}
if (lltemp > (MAXPHASE / MINSEC) * SCALE_UPDATE)
lltemp = (MAXPHASE / MINSEC) * SCALE_UPDATE;
time_offset += lltemp;
time_adj = -(lltemp * SCALE_PHASE) / hz / SCALE_UPDATE;
} else {
lltemp = time_offset;
if (!(time_status & STA_FLL)) {
if ((1 << time_constant) >= SCALE_KG)
lltemp *= (1 << time_constant) /
SCALE_KG;
else
lltemp = (lltemp / SCALE_KG) >>
time_constant;
}
if (lltemp > (MAXPHASE / MINSEC) * SCALE_UPDATE)
lltemp = (MAXPHASE / MINSEC) * SCALE_UPDATE;
time_offset -= lltemp;
time_adj = (lltemp * SCALE_PHASE) / hz / SCALE_UPDATE;
}
/*
* Compute the frequency estimate and additional phase
* adjustment due to frequency error for the next
* second. When the PPS signal is engaged, gnaw on the
* watchdog counter and update the frequency computed by
* the pll and the PPS signal.
*/
pps_valid++;
if (pps_valid == PPS_VALID) {
pps_jitter = MAXTIME;
pps_stabil = MAXFREQ;
time_status &= ~(STA_PPSSIGNAL | STA_PPSJITTER |
STA_PPSWANDER | STA_PPSERROR);
}
lltemp = time_freq + pps_freq;
if (lltemp)
time_adj += (lltemp * SCALE_PHASE) / (SCALE_USEC * hz);
/*
* End of precision kernel-code fragment
*
* The section below should be modified if we are planning
* to use NTP for synchronization.
*
* Note: the clock synchronization code now assumes
* the following:
* - if dosynctodr is 1, then compute the drift between
* the tod chip and software time and adjust one or
* the other depending on the circumstances
*
* - if dosynctodr is 0, then the tod chip is independent
* of the software clock and should not be adjusted,
* but allowed to free run. this allows NTP to sync.
* hrestime without any interference from the tod chip.
*/
mutex_enter(&tod_lock);
tod = tod_get();
drift = tod.tv_sec - hrestime.tv_sec;
absdrift = (drift >= 0) ? drift : -drift;
if (tod_needsync || absdrift > 1) {
int s;
if (absdrift > 2) {
if (!tod_broken && tod_faulted == TOD_NOFAULT) {
s = hr_clock_lock();
hrestime = tod;
membar_enter(); /* hrestime visible */
timedelta = 0;
timechanged++;
tod_needsync = 0;
hr_clock_unlock(s);
}
} else {
if (tod_needsync || !dosynctodr) {
gethrestime(&tod);
tod_set(tod);
s = hr_clock_lock();
if (timedelta == 0)
tod_needsync = 0;
hr_clock_unlock(s);
} else {
/*
* If the drift is 2 seconds on the
* money, then the TOD is adjusting
* the clock; record that.
*/
clock_adj_hist[adj_hist_entry++ %
CLOCK_ADJ_HIST_SIZE] = lbolt64;
s = hr_clock_lock();
timedelta = (int64_t)drift*NANOSEC;
hr_clock_unlock(s);
}
}
}
one_sec = 0;
time = gethrestime_sec(); /* for crusty old kmem readers */
mutex_exit(&tod_lock);
/*
* Some drivers still depend on this... XXX
*/
cv_broadcast(&lbolt_cv);
sysinfo.updates++;
vminfo.freemem += freemem;
{
pgcnt_t maxswap, resv, free;
pgcnt_t avail =
MAX((spgcnt_t)(availrmem - swapfs_minfree), 0);
maxswap = k_anoninfo.ani_mem_resv
+ k_anoninfo.ani_max +avail;
free = k_anoninfo.ani_free + avail;
resv = k_anoninfo.ani_phys_resv +
k_anoninfo.ani_mem_resv;
vminfo.swap_resv += resv;
/* number of reserved and allocated pages */
#ifdef DEBUG
if (maxswap < free)
cmn_err(CE_WARN, "clock: maxswap < free");
if (maxswap < resv)
cmn_err(CE_WARN, "clock: maxswap < resv");
#endif
vminfo.swap_alloc += maxswap - free;
vminfo.swap_avail += maxswap - resv;
vminfo.swap_free += free;
}
if (nrunnable) {
sysinfo.runque += nrunnable;
sysinfo.runocc++;
}
if (nswapped) {
sysinfo.swpque += nswapped;
sysinfo.swpocc++;
}
sysinfo.waiting += w_io;
/*
* Wake up fsflush to write out DELWRI
* buffers, dirty pages and other cached
* administrative data, e.g. inodes.
*/
if (--fsflushcnt <= 0) {
fsflushcnt = tune.t_fsflushr;
cv_signal(&fsflush_cv);
}
vmmeter();
calcloadavg(genloadavg(&loadavg), hp_avenrun);
for (i = 0; i < 3; i++)
/*
* At the moment avenrun[] can only hold 31
* bits of load average as it is a signed
* int in the API. We need to ensure that
* hp_avenrun[i] >> (16 - FSHIFT) will not be
* too large. If it is, we put the largest value
* that we can use into avenrun[i]. This is
* kludgey, but about all we can do until we
* avenrun[] is declared as an array of uint64[]
*/
if (hp_avenrun[i] < ((uint64_t)1<<(31+16-FSHIFT)))
avenrun[i] = (int32_t)(hp_avenrun[i] >>
(16 - FSHIFT));
else
avenrun[i] = 0x7fffffff;
cpupart = cp_list_head;
do {
calcloadavg(genloadavg(&cpupart->cp_loadavg),
cpupart->cp_hp_avenrun);
} while ((cpupart = cpupart->cp_next) != cp_list_head);
/*
* Wake up the swapper thread if necessary.
*/
if (runin ||
(runout && (avefree < desfree || wake_sched_sec))) {
t = &t0;
thread_lock(t);
if (t->t_state == TS_STOPPED) {
runin = runout = 0;
wake_sched_sec = 0;
t->t_whystop = 0;
t->t_whatstop = 0;
t->t_schedflag &= ~TS_ALLSTART;
THREAD_TRANSITION(t);
setfrontdq(t);
}
thread_unlock(t);
}
}
/*
* Wake up the swapper if any high priority swapped-out threads
* became runable during the last tick.
*/
if (wake_sched) {
t = &t0;
thread_lock(t);
if (t->t_state == TS_STOPPED) {
runin = runout = 0;
wake_sched = 0;
t->t_whystop = 0;
t->t_whatstop = 0;
t->t_schedflag &= ~TS_ALLSTART;
THREAD_TRANSITION(t);
setfrontdq(t);
}
thread_unlock(t);
}
}
void
clock_init(void)
{
cyc_handler_t hdlr;
cyc_time_t when;
hdlr.cyh_func = (cyc_func_t)clock;
hdlr.cyh_level = CY_LOCK_LEVEL;
hdlr.cyh_arg = NULL;
when.cyt_when = 0;
when.cyt_interval = nsec_per_tick;
mutex_enter(&cpu_lock);
clock_cyclic = cyclic_add(&hdlr, &when);
mutex_exit(&cpu_lock);
}
/*
* Called before calcloadavg to get 10-sec moving loadavg together
*/
static int
genloadavg(struct loadavg_s *avgs)
{
int avg;
int spos; /* starting position */
int cpos; /* moving current position */
int i;
int slen;
hrtime_t hr_avg;
/* 10-second snapshot, calculate first positon */
if (avgs->lg_len == 0) {
return (0);
}
slen = avgs->lg_len < S_MOVAVG_SZ ? avgs->lg_len : S_MOVAVG_SZ;
spos = (avgs->lg_cur - 1) >= 0 ? avgs->lg_cur - 1 :
S_LOADAVG_SZ + (avgs->lg_cur - 1);
for (i = hr_avg = 0; i < slen; i++) {
cpos = (spos - i) >= 0 ? spos - i : S_LOADAVG_SZ + (spos - i);
hr_avg += avgs->lg_loads[cpos];
}
hr_avg = hr_avg / slen;
avg = hr_avg / (NANOSEC / LGRP_LOADAVG_IN_THREAD_MAX);
return (avg);
}
/*
* Run every second from clock () to update the loadavg count available to the
* system and cpu-partitions.
*
* This works by sampling the previous usr, sys, wait time elapsed,
* computing a delta, and adding that delta to the elapsed usr, sys,
* wait increase.
*/
static void
loadavg_update()
{
cpu_t *cp;
cpupart_t *cpupart;
hrtime_t cpu_total;
int prev;
cp = cpu_list;
loadavg.lg_total = 0;
/*
* first pass totals up per-cpu statistics for system and cpu
* partitions
*/
do {
struct loadavg_s *lavg;
lavg = &cp->cpu_loadavg;
cpu_total = cp->cpu_acct[CMS_USER] +
cp->cpu_acct[CMS_SYSTEM] + cp->cpu_waitrq;
/* compute delta against last total */
scalehrtime(&cpu_total);
prev = (lavg->lg_cur - 1) >= 0 ? lavg->lg_cur - 1 :
S_LOADAVG_SZ + (lavg->lg_cur - 1);
if (lavg->lg_loads[prev] <= 0) {
lavg->lg_loads[lavg->lg_cur] = cpu_total;
cpu_total = 0;
} else {
lavg->lg_loads[lavg->lg_cur] = cpu_total;
cpu_total = cpu_total - lavg->lg_loads[prev];
if (cpu_total < 0)
cpu_total = 0;
}
lavg->lg_cur = (lavg->lg_cur + 1) % S_LOADAVG_SZ;
lavg->lg_len = (lavg->lg_len + 1) < S_LOADAVG_SZ ?
lavg->lg_len + 1 : S_LOADAVG_SZ;
loadavg.lg_total += cpu_total;
cp->cpu_part->cp_loadavg.lg_total += cpu_total;
} while ((cp = cp->cpu_next) != cpu_list);
loadavg.lg_loads[loadavg.lg_cur] = loadavg.lg_total;
loadavg.lg_cur = (loadavg.lg_cur + 1) % S_LOADAVG_SZ;
loadavg.lg_len = (loadavg.lg_len + 1) < S_LOADAVG_SZ ?
loadavg.lg_len + 1 : S_LOADAVG_SZ;
/*
* Second pass updates counts
*/
cpupart = cp_list_head;
do {
struct loadavg_s *lavg;
lavg = &cpupart->cp_loadavg;
lavg->lg_loads[lavg->lg_cur] = lavg->lg_total;
lavg->lg_total = 0;
lavg->lg_cur = (lavg->lg_cur + 1) % S_LOADAVG_SZ;
lavg->lg_len = (lavg->lg_len + 1) < S_LOADAVG_SZ ?
lavg->lg_len + 1 : S_LOADAVG_SZ;
} while ((cpupart = cpupart->cp_next) != cp_list_head);
}
/*
* clock_update() - local clock update
*
* This routine is called by ntp_adjtime() to update the local clock
* phase and frequency. The implementation is of an
* adaptive-parameter, hybrid phase/frequency-lock loop (PLL/FLL). The
* routine computes new time and frequency offset estimates for each
* call. The PPS signal itself determines the new time offset,
* instead of the calling argument. Presumably, calls to
* ntp_adjtime() occur only when the caller believes the local clock
* is valid within some bound (+-128 ms with NTP). If the caller's
* time is far different than the PPS time, an argument will ensue,
* and it's not clear who will lose.
*
* For uncompensated quartz crystal oscillatores and nominal update
* intervals less than 1024 s, operation should be in phase-lock mode
* (STA_FLL = 0), where the loop is disciplined to phase. For update
* intervals greater than this, operation should be in frequency-lock
* mode (STA_FLL = 1), where the loop is disciplined to frequency.
*
* Note: mutex(&tod_lock) is in effect.
*/
void
clock_update(int offset)
{
int ltemp, mtemp, s;
ASSERT(MUTEX_HELD(&tod_lock));
if (!(time_status & STA_PLL) && !(time_status & STA_PPSTIME))
return;
ltemp = offset;
if ((time_status & STA_PPSTIME) && (time_status & STA_PPSSIGNAL))
ltemp = pps_offset;
/*
* Scale the phase adjustment and clamp to the operating range.
*/
if (ltemp > MAXPHASE)
time_offset = MAXPHASE * SCALE_UPDATE;
else if (ltemp < -MAXPHASE)
time_offset = -(MAXPHASE * SCALE_UPDATE);
else
time_offset = ltemp * SCALE_UPDATE;
/*
* Select whether the frequency is to be controlled and in which
* mode (PLL or FLL). Clamp to the operating range. Ugly
* multiply/divide should be replaced someday.
*/
if (time_status & STA_FREQHOLD || time_reftime == 0)
time_reftime = hrestime.tv_sec;
mtemp = hrestime.tv_sec - time_reftime;
time_reftime = hrestime.tv_sec;
if (time_status & STA_FLL) {
if (mtemp >= MINSEC) {
ltemp = ((time_offset / mtemp) * (SCALE_USEC /
SCALE_UPDATE));
if (ltemp)
time_freq += ltemp / SCALE_KH;
}
} else {
if (mtemp < MAXSEC) {
ltemp *= mtemp;
if (ltemp)
time_freq += (int)(((int64_t)ltemp *
SCALE_USEC) / SCALE_KF)
/ (1 << (time_constant * 2));
}
}
if (time_freq > time_tolerance)
time_freq = time_tolerance;
else if (time_freq < -time_tolerance)
time_freq = -time_tolerance;
s = hr_clock_lock();
tod_needsync = 1;
hr_clock_unlock(s);
}
/*
* ddi_hardpps() - discipline CPU clock oscillator to external PPS signal
*
* This routine is called at each PPS interrupt in order to discipline
* the CPU clock oscillator to the PPS signal. It measures the PPS phase
* and leaves it in a handy spot for the clock() routine. It
* integrates successive PPS phase differences and calculates the
* frequency offset. This is used in clock() to discipline the CPU
* clock oscillator so that intrinsic frequency error is cancelled out.
* The code requires the caller to capture the time and hardware counter
* value at the on-time PPS signal transition.
*
* Note that, on some Unix systems, this routine runs at an interrupt
* priority level higher than the timer interrupt routine clock().
* Therefore, the variables used are distinct from the clock()
* variables, except for certain exceptions: The PPS frequency pps_freq
* and phase pps_offset variables are determined by this routine and
* updated atomically. The time_tolerance variable can be considered a
* constant, since it is infrequently changed, and then only when the
* PPS signal is disabled. The watchdog counter pps_valid is updated
* once per second by clock() and is atomically cleared in this
* routine.
*
* tvp is the time of the last tick; usec is a microsecond count since the
* last tick.
*
* Note: In Solaris systems, the tick value is actually given by
* usec_per_tick. This is called from the serial driver cdintr(),
* or equivalent, at a high PIL. Because the kernel keeps a
* highresolution time, the following code can accept either
* the traditional argument pair, or the current highres timestamp
* in tvp and zero in usec.
*/
void
ddi_hardpps(struct timeval *tvp, int usec)
{
int u_usec, v_usec, bigtick;
time_t cal_sec;
int cal_usec;
/*
* An occasional glitch can be produced when the PPS interrupt
* occurs in the clock() routine before the time variable is
* updated. Here the offset is discarded when the difference
* between it and the last one is greater than tick/2, but not
* if the interval since the first discard exceeds 30 s.
*/
time_status |= STA_PPSSIGNAL;
time_status &= ~(STA_PPSJITTER | STA_PPSWANDER | STA_PPSERROR);
pps_valid = 0;
u_usec = -tvp->tv_usec;
if (u_usec < -(MICROSEC/2))
u_usec += MICROSEC;
v_usec = pps_offset - u_usec;
if (v_usec < 0)
v_usec = -v_usec;
if (v_usec > (usec_per_tick >> 1)) {
if (pps_glitch > MAXGLITCH) {
pps_glitch = 0;
pps_tf[2] = u_usec;
pps_tf[1] = u_usec;
} else {
pps_glitch++;
u_usec = pps_offset;
}
} else
pps_glitch = 0;
/*
* A three-stage median filter is used to help deglitch the pps
* time. The median sample becomes the time offset estimate; the
* difference between the other two samples becomes the time
* dispersion (jitter) estimate.
*/
pps_tf[2] = pps_tf[1];
pps_tf[1] = pps_tf[0];
pps_tf[0] = u_usec;
if (pps_tf[0] > pps_tf[1]) {
if (pps_tf[1] > pps_tf[2]) {
pps_offset = pps_tf[1]; /* 0 1 2 */
v_usec = pps_tf[0] - pps_tf[2];
} else if (pps_tf[2] > pps_tf[0]) {
pps_offset = pps_tf[0]; /* 2 0 1 */
v_usec = pps_tf[2] - pps_tf[1];
} else {
pps_offset = pps_tf[2]; /* 0 2 1 */
v_usec = pps_tf[0] - pps_tf[1];
}
} else {
if (pps_tf[1] < pps_tf[2]) {
pps_offset = pps_tf[1]; /* 2 1 0 */
v_usec = pps_tf[2] - pps_tf[0];
} else if (pps_tf[2] < pps_tf[0]) {
pps_offset = pps_tf[0]; /* 1 0 2 */
v_usec = pps_tf[1] - pps_tf[2];
} else {
pps_offset = pps_tf[2]; /* 1 2 0 */
v_usec = pps_tf[1] - pps_tf[0];
}
}
if (v_usec > MAXTIME)
pps_jitcnt++;
v_usec = (v_usec << PPS_AVG) - pps_jitter;
pps_jitter += v_usec / (1 << PPS_AVG);
if (pps_jitter > (MAXTIME >> 1))
time_status |= STA_PPSJITTER;
/*
* During the calibration interval adjust the starting time when
* the tick overflows. At the end of the interval compute the
* duration of the interval and the difference of the hardware
* counters at the beginning and end of the interval. This code
* is deliciously complicated by the fact valid differences may
* exceed the value of tick when using long calibration
* intervals and small ticks. Note that the counter can be
* greater than tick if caught at just the wrong instant, but
* the values returned and used here are correct.
*/
bigtick = (int)usec_per_tick * SCALE_USEC;
pps_usec -= pps_freq;
if (pps_usec >= bigtick)
pps_usec -= bigtick;
if (pps_usec < 0)
pps_usec += bigtick;
pps_time.tv_sec++;
pps_count++;
if (pps_count < (1 << pps_shift))
return;
pps_count = 0;
pps_calcnt++;
u_usec = usec * SCALE_USEC;
v_usec = pps_usec - u_usec;
if (v_usec >= bigtick >> 1)
v_usec -= bigtick;
if (v_usec < -(bigtick >> 1))
v_usec += bigtick;
if (v_usec < 0)
v_usec = -(-v_usec >> pps_shift);
else
v_usec = v_usec >> pps_shift;
pps_usec = u_usec;
cal_sec = tvp->tv_sec;
cal_usec = tvp->tv_usec;
cal_sec -= pps_time.tv_sec;
cal_usec -= pps_time.tv_usec;
if (cal_usec < 0) {
cal_usec += MICROSEC;
cal_sec--;
}
pps_time = *tvp;
/*
* Check for lost interrupts, noise, excessive jitter and
* excessive frequency error. The number of timer ticks during
* the interval may vary +-1 tick. Add to this a margin of one
* tick for the PPS signal jitter and maximum frequency
* deviation. If the limits are exceeded, the calibration
* interval is reset to the minimum and we start over.
*/
u_usec = (int)usec_per_tick << 1;
if (!((cal_sec == -1 && cal_usec > (MICROSEC - u_usec)) ||
(cal_sec == 0 && cal_usec < u_usec)) ||
v_usec > time_tolerance || v_usec < -time_tolerance) {
pps_errcnt++;
pps_shift = PPS_SHIFT;
pps_intcnt = 0;
time_status |= STA_PPSERROR;
return;
}
/*
* A three-stage median filter is used to help deglitch the pps
* frequency. The median sample becomes the frequency offset
* estimate; the difference between the other two samples
* becomes the frequency dispersion (stability) estimate.
*/
pps_ff[2] = pps_ff[1];
pps_ff[1] = pps_ff[0];
pps_ff[0] = v_usec;
if (pps_ff[0] > pps_ff[1]) {
if (pps_ff[1] > pps_ff[2]) {
u_usec = pps_ff[1]; /* 0 1 2 */
v_usec = pps_ff[0] - pps_ff[2];
} else if (pps_ff[2] > pps_ff[0]) {
u_usec = pps_ff[0]; /* 2 0 1 */
v_usec = pps_ff[2] - pps_ff[1];
} else {
u_usec = pps_ff[2]; /* 0 2 1 */
v_usec = pps_ff[0] - pps_ff[1];
}
} else {
if (pps_ff[1] < pps_ff[2]) {
u_usec = pps_ff[1]; /* 2 1 0 */
v_usec = pps_ff[2] - pps_ff[0];
} else if (pps_ff[2] < pps_ff[0]) {
u_usec = pps_ff[0]; /* 1 0 2 */
v_usec = pps_ff[1] - pps_ff[2];
} else {
u_usec = pps_ff[2]; /* 1 2 0 */
v_usec = pps_ff[1] - pps_ff[0];
}
}
/*
* Here the frequency dispersion (stability) is updated. If it
* is less than one-fourth the maximum (MAXFREQ), the frequency
* offset is updated as well, but clamped to the tolerance. It
* will be processed later by the clock() routine.
*/
v_usec = (v_usec >> 1) - pps_stabil;
if (v_usec < 0)
pps_stabil -= -v_usec >> PPS_AVG;
else
pps_stabil += v_usec >> PPS_AVG;
if (pps_stabil > MAXFREQ >> 2) {
pps_stbcnt++;
time_status |= STA_PPSWANDER;
return;
}
if (time_status & STA_PPSFREQ) {
if (u_usec < 0) {
pps_freq -= -u_usec >> PPS_AVG;
if (pps_freq < -time_tolerance)
pps_freq = -time_tolerance;
u_usec = -u_usec;
} else {
pps_freq += u_usec >> PPS_AVG;
if (pps_freq > time_tolerance)
pps_freq = time_tolerance;
}
}
/*
* Here the calibration interval is adjusted. If the maximum
* time difference is greater than tick / 4, reduce the interval
* by half. If this is not the case for four consecutive
* intervals, double the interval.
*/
if (u_usec << pps_shift > bigtick >> 2) {
pps_intcnt = 0;
if (pps_shift > PPS_SHIFT)
pps_shift--;
} else if (pps_intcnt >= 4) {
pps_intcnt = 0;
if (pps_shift < PPS_SHIFTMAX)
pps_shift++;
} else
pps_intcnt++;
/*
* If recovering from kmdb, then make sure the tod chip gets resynced.
* If we took an early exit above, then we don't yet have a stable
* calibration signal to lock onto, so don't mark the tod for sync
* until we get all the way here.
*/
{
int s = hr_clock_lock();
tod_needsync = 1;
hr_clock_unlock(s);
}
}
/*
* Handle clock tick processing for a thread.
* Check for timer action, enforce CPU rlimit, do profiling etc.
*/
void
clock_tick(kthread_t *t)
{
struct proc *pp;
klwp_id_t lwp;
struct as *as;
clock_t utime;
clock_t stime;
int poke = 0; /* notify another CPU */
int user_mode;
size_t rss;
/* Must be operating on a lwp/thread */
if ((lwp = ttolwp(t)) == NULL) {
panic("clock_tick: no lwp");
/*NOTREACHED*/
}
CL_TICK(t); /* Class specific tick processing */
DTRACE_SCHED1(tick, kthread_t *, t);
pp = ttoproc(t);
/* pp->p_lock makes sure that the thread does not exit */
ASSERT(MUTEX_HELD(&pp->p_lock));
user_mode = (lwp->lwp_state == LWP_USER);
/*
* Update process times. Should use high res clock and state
* changes instead of statistical sampling method. XXX
*/
if (user_mode) {
pp->p_utime++;
pp->p_task->tk_cpu_time++;
} else {
pp->p_stime++;
pp->p_task->tk_cpu_time++;
}
as = pp->p_as;
/*
* Update user profiling statistics. Get the pc from the
* lwp when the AST happens.
*/
if (pp->p_prof.pr_scale) {
atomic_add_32(&lwp->lwp_oweupc, 1);
if (user_mode) {
poke = 1;
aston(t);
}
}
utime = pp->p_utime;
stime = pp->p_stime;
/*
* If CPU was in user state, process lwp-virtual time
* interval timer.
*/
if (user_mode &&
timerisset(&lwp->lwp_timer[ITIMER_VIRTUAL].it_value) &&
itimerdecr(&lwp->lwp_timer[ITIMER_VIRTUAL], usec_per_tick) == 0) {
poke = 1;
sigtoproc(pp, t, SIGVTALRM);
}
if (timerisset(&lwp->lwp_timer[ITIMER_PROF].it_value) &&
itimerdecr(&lwp->lwp_timer[ITIMER_PROF], usec_per_tick) == 0) {
poke = 1;
sigtoproc(pp, t, SIGPROF);
}
/*
* Enforce CPU resource controls:
* (a) process.max-cpu-time resource control
*/
(void) rctl_test(rctlproc_legacy[RLIMIT_CPU], pp->p_rctls, pp,
(utime + stime)/hz, RCA_UNSAFE_SIGINFO);
/*
* (b) task.max-cpu-time resource control
*/
(void) rctl_test(rc_task_cpu_time, pp->p_task->tk_rctls, pp, 1,
RCA_UNSAFE_SIGINFO);
/*
* Update memory usage for the currently running process.
*/
rss = rm_asrss(as);
PTOU(pp)->u_mem += rss;
if (rss > PTOU(pp)->u_mem_max)
PTOU(pp)->u_mem_max = rss;
/*
* Notify the CPU the thread is running on.
*/
if (poke && t->t_cpu != CPU)
poke_cpu(t->t_cpu->cpu_id);
}
void
profil_tick(uintptr_t upc)
{
int ticks;
proc_t *p = ttoproc(curthread);
klwp_t *lwp = ttolwp(curthread);
struct prof *pr = &p->p_prof;
do {
ticks = lwp->lwp_oweupc;
} while (cas32(&lwp->lwp_oweupc, ticks, 0) != ticks);
mutex_enter(&p->p_pflock);
if (pr->pr_scale >= 2 && upc >= pr->pr_off) {
/*
* Old-style profiling
*/
uint16_t *slot = pr->pr_base;
uint16_t old, new;
if (pr->pr_scale != 2) {
uintptr_t delta = upc - pr->pr_off;
uintptr_t byteoff = ((delta >> 16) * pr->pr_scale) +
(((delta & 0xffff) * pr->pr_scale) >> 16);
if (byteoff >= (uintptr_t)pr->pr_size) {
mutex_exit(&p->p_pflock);
return;
}
slot += byteoff / sizeof (uint16_t);
}
if (fuword16(slot, &old) < 0 ||
(new = old + ticks) > SHRT_MAX ||
suword16(slot, new) < 0) {
pr->pr_scale = 0;
}
} else if (pr->pr_scale == 1) {
/*
* PC Sampling
*/
model_t model = lwp_getdatamodel(lwp);
int result;
#ifdef __lint
model = model;
#endif
while (ticks-- > 0) {
if (pr->pr_samples == pr->pr_size) {
/* buffer full, turn off sampling */
pr->pr_scale = 0;
break;
}
switch (SIZEOF_PTR(model)) {
case sizeof (uint32_t):
result = suword32(pr->pr_base, (uint32_t)upc);
break;
#ifdef _LP64
case sizeof (uint64_t):
result = suword64(pr->pr_base, (uint64_t)upc);
break;
#endif
default:
cmn_err(CE_WARN, "profil_tick: unexpected "
"data model");
result = -1;
break;
}
if (result != 0) {
pr->pr_scale = 0;
break;
}
pr->pr_base = (caddr_t)pr->pr_base + SIZEOF_PTR(model);
pr->pr_samples++;
}
}
mutex_exit(&p->p_pflock);
}
static void
delay_wakeup(void *arg)
{
kthread_t *t = arg;
mutex_enter(&t->t_delay_lock);
cv_signal(&t->t_delay_cv);
mutex_exit(&t->t_delay_lock);
}
void
delay(clock_t ticks)
{
kthread_t *t = curthread;
clock_t deadline = lbolt + ticks;
clock_t timeleft;
timeout_id_t id;
if (panicstr && ticks > 0) {
/*
* Timeouts aren't running, so all we can do is spin.
*/
drv_usecwait(TICK_TO_USEC(ticks));
return;
}
while ((timeleft = deadline - lbolt) > 0) {
mutex_enter(&t->t_delay_lock);
id = timeout(delay_wakeup, t, timeleft);
cv_wait(&t->t_delay_cv, &t->t_delay_lock);
mutex_exit(&t->t_delay_lock);
(void) untimeout(id);
}
}
/*
* Like delay, but interruptible by a signal.
*/
int
delay_sig(clock_t ticks)
{
clock_t deadline = lbolt + ticks;
clock_t rc;
mutex_enter(&curthread->t_delay_lock);
do {
rc = cv_timedwait_sig(&curthread->t_delay_cv,
&curthread->t_delay_lock, deadline);
} while (rc > 0);
mutex_exit(&curthread->t_delay_lock);
if (rc == 0)
return (EINTR);
return (0);
}
#define SECONDS_PER_DAY 86400
/*
* Initialize the system time based on the TOD chip. approx is used as
* an approximation of time (e.g. from the filesystem) in the event that
* the TOD chip has been cleared or is unresponsive. An approx of -1
* means the filesystem doesn't keep time.
*/
void
clkset(time_t approx)
{
timestruc_t ts;
int spl;
int set_clock = 0;
mutex_enter(&tod_lock);
ts = tod_get();
if (ts.tv_sec > 365 * SECONDS_PER_DAY) {
/*
* If the TOD chip is reporting some time after 1971,
* then it probably didn't lose power or become otherwise
* cleared in the recent past; check to assure that
* the time coming from the filesystem isn't in the future
* according to the TOD chip.
*/
if (approx != -1 && approx > ts.tv_sec) {
cmn_err(CE_WARN, "Last shutdown is later "
"than time on time-of-day chip; check date.");
}
} else {
/*
* If the TOD chip isn't giving correct time, then set it to
* the time that was passed in as a rough estimate. If we
* don't have an estimate, then set the clock back to a time
* when Oliver North, ALF and Dire Straits were all on the
* collective brain: 1987.
*/
timestruc_t tmp;
if (approx == -1)
ts.tv_sec = (1987 - 1970) * 365 * SECONDS_PER_DAY;
else
ts.tv_sec = approx;
ts.tv_nsec = 0;
/*
* Attempt to write the new time to the TOD chip. Set spl high
* to avoid getting preempted between the tod_set and tod_get.
*/
spl = splhi();
tod_set(ts);
tmp = tod_get();
splx(spl);
if (tmp.tv_sec != ts.tv_sec && tmp.tv_sec != ts.tv_sec + 1) {
tod_broken = 1;
dosynctodr = 0;
cmn_err(CE_WARN, "Time-of-day chip unresponsive;"
" dead batteries?");
} else {
cmn_err(CE_WARN, "Time-of-day chip had "
"incorrect date; check and reset.");
}
set_clock = 1;
}
if (!boot_time) {
boot_time = ts.tv_sec;
set_clock = 1;
}
if (set_clock)
set_hrestime(&ts);
mutex_exit(&tod_lock);
}
int timechanged; /* for testing if the system time has been reset */
void
set_hrestime(timestruc_t *ts)
{
int spl = hr_clock_lock();
hrestime = *ts;
membar_enter(); /* hrestime must be visible before timechanged++ */
timedelta = 0;
timechanged++;
hr_clock_unlock(spl);
}
static uint_t deadman_seconds;
static uint32_t deadman_panics;
static int deadman_enabled = 0;
static int deadman_panic_timers = 1;
static void
deadman(void)
{
if (panicstr) {
/*
* During panic, other CPUs besides the panic
* master continue to handle cyclics and some other
* interrupts. The code below is intended to be
* single threaded, so any CPU other than the master
* must keep out.
*/
if (CPU->cpu_id != panic_cpu.cpu_id)
return;
/*
* If we're panicking, the deadman cyclic continues to increase
* lbolt in case the dump device driver relies on this for
* timeouts. Note that we rely on deadman() being invoked once
* per second, and credit lbolt and lbolt64 with hz ticks each.
*/
lbolt += hz;
lbolt64 += hz;
if (!deadman_panic_timers)
return; /* allow all timers to be manually disabled */
/*
* If we are generating a crash dump or syncing filesystems and
* the corresponding timer is set, decrement it and re-enter
* the panic code to abort it and advance to the next state.
* The panic states and triggers are explained in panic.c.
*/
if (panic_dump) {
if (dump_timeleft && (--dump_timeleft == 0)) {
panic("panic dump timeout");
/*NOTREACHED*/
}
} else if (panic_sync) {
if (sync_timeleft && (--sync_timeleft == 0)) {
panic("panic sync timeout");
/*NOTREACHED*/
}
}
return;
}
if (lbolt != CPU->cpu_deadman_lbolt) {
CPU->cpu_deadman_lbolt = lbolt;
CPU->cpu_deadman_countdown = deadman_seconds;
return;
}
if (CPU->cpu_deadman_countdown-- > 0)
return;
/*
* Regardless of whether or not we actually bring the system down,
* bump the deadman_panics variable.
*
* N.B. deadman_panics is incremented once for each CPU that
* passes through here. It's expected that all the CPUs will
* detect this condition within one second of each other, so
* when deadman_enabled is off, deadman_panics will
* typically be a multiple of the total number of CPUs in
* the system.
*/
atomic_add_32(&deadman_panics, 1);
if (!deadman_enabled) {
CPU->cpu_deadman_countdown = deadman_seconds;
return;
}
/*
* If we're here, we want to bring the system down.
*/
panic("deadman: timed out after %d seconds of clock "
"inactivity", deadman_seconds);
/*NOTREACHED*/
}
/*ARGSUSED*/
static void
deadman_online(void *arg, cpu_t *cpu, cyc_handler_t *hdlr, cyc_time_t *when)
{
cpu->cpu_deadman_lbolt = 0;
cpu->cpu_deadman_countdown = deadman_seconds;
hdlr->cyh_func = (cyc_func_t)deadman;
hdlr->cyh_level = CY_HIGH_LEVEL;
hdlr->cyh_arg = NULL;
/*
* Stagger the CPUs so that they don't all run deadman() at
* the same time. Simplest reason to do this is to make it
* more likely that only one CPU will panic in case of a
* timeout. This is (strictly speaking) an aesthetic, not a
* technical consideration.
*
* The interval must be one second in accordance with the
* code in deadman() above to increase lbolt during panic.
*/
when->cyt_when = cpu->cpu_id * (NANOSEC / NCPU);
when->cyt_interval = NANOSEC;
}
void
deadman_init(void)
{
cyc_omni_handler_t hdlr;
if (deadman_seconds == 0)
deadman_seconds = snoop_interval / MICROSEC;
if (snooping)
deadman_enabled = 1;
hdlr.cyo_online = deadman_online;
hdlr.cyo_offline = NULL;
hdlr.cyo_arg = NULL;
mutex_enter(&cpu_lock);
deadman_cyclic = cyclic_add_omni(&hdlr);
mutex_exit(&cpu_lock);
}
/*
* tod_fault() is for updating tod validate mechanism state:
* (1) TOD_NOFAULT: for resetting the state to 'normal'.
* currently used for debugging only
* (2) The following four cases detected by tod validate mechanism:
* TOD_REVERSED: current tod value is less than previous value.
* TOD_STALLED: current tod value hasn't advanced.
* TOD_JUMPED: current tod value advanced too far from previous value.
* TOD_RATECHANGED: the ratio between average tod delta and
* average tick delta has changed.
*/
enum tod_fault_type
tod_fault(enum tod_fault_type ftype, int off)
{
ASSERT(MUTEX_HELD(&tod_lock));
if (tod_faulted != ftype) {
switch (ftype) {
case TOD_NOFAULT:
plat_tod_fault(TOD_NOFAULT);
cmn_err(CE_NOTE, "Restarted tracking "
"Time of Day clock.");
tod_faulted = ftype;
break;
case TOD_REVERSED:
case TOD_JUMPED:
if (tod_faulted == TOD_NOFAULT) {
plat_tod_fault(ftype);
cmn_err(CE_WARN, "Time of Day clock error: "
"reason [%s by 0x%x]. -- "
" Stopped tracking Time Of Day clock.",
tod_fault_table[ftype], off);
tod_faulted = ftype;
}
break;
case TOD_STALLED:
case TOD_RATECHANGED:
if (tod_faulted == TOD_NOFAULT) {
plat_tod_fault(ftype);
cmn_err(CE_WARN, "Time of Day clock error: "
"reason [%s]. -- "
" Stopped tracking Time Of Day clock.",
tod_fault_table[ftype]);
tod_faulted = ftype;
}
break;
default:
break;
}
}
return (tod_faulted);
}
void
tod_fault_reset()
{
tod_fault_reset_flag = 1;
}
/*
* tod_validate() is used for checking values returned by tod_get().
* Four error cases can be detected by this routine:
* TOD_REVERSED: current tod value is less than previous.
* TOD_STALLED: current tod value hasn't advanced.
* TOD_JUMPED: current tod value advanced too far from previous value.
* TOD_RATECHANGED: the ratio between average tod delta and
* average tick delta has changed.
*/
time_t
tod_validate(time_t tod)
{
time_t diff_tod;
hrtime_t diff_tick;
long dtick;
int dtick_delta;
int off = 0;
enum tod_fault_type tod_bad = TOD_NOFAULT;
static int firsttime = 1;
static time_t prev_tod = 0;
static hrtime_t prev_tick = 0;
static long dtick_avg = TOD_REF_FREQ;
hrtime_t tick = gethrtime();
ASSERT(MUTEX_HELD(&tod_lock));
/*
* tod_validate_enable is patchable via /etc/system.
* If TOD is already faulted, there is nothing to do
*/
if ((tod_validate_enable == 0) || (tod_faulted != TOD_NOFAULT)) {
return (tod);
}
/*
* Update prev_tod and prev_tick values for first run
*/
if (firsttime) {
firsttime = 0;
prev_tod = tod;
prev_tick = tick;
return (tod);
}
/*
* For either of these conditions, we need to reset ourself
* and start validation from zero since each condition
* indicates that the TOD will be updated with new value
* Also, note that tod_needsync will be reset in clock()
*/
if (tod_needsync || tod_fault_reset_flag) {
firsttime = 1;
prev_tod = 0;
prev_tick = 0;
dtick_avg = TOD_REF_FREQ;
if (tod_fault_reset_flag)
tod_fault_reset_flag = 0;
return (tod);
}
/* test hook */
switch (tod_unit_test) {
case 1: /* for testing jumping tod */
tod += tod_test_injector;
tod_unit_test = 0;
break;
case 2: /* for testing stuck tod bit */
tod |= 1 << tod_test_injector;
tod_unit_test = 0;
break;
case 3: /* for testing stalled tod */
tod = prev_tod;
tod_unit_test = 0;
break;
case 4: /* reset tod fault status */
(void) tod_fault(TOD_NOFAULT, 0);
tod_unit_test = 0;
break;
default:
break;
}
diff_tod = tod - prev_tod;
diff_tick = tick - prev_tick;
ASSERT(diff_tick >= 0);
if (diff_tod < 0) {
/* ERROR - tod reversed */
tod_bad = TOD_REVERSED;
off = (int)(prev_tod - tod);
} else if (diff_tod == 0) {
/* tod did not advance */
if (diff_tick > TOD_STALL_THRESHOLD) {
/* ERROR - tod stalled */
tod_bad = TOD_STALLED;
} else {
/*
* Make sure we don't update prev_tick
* so that diff_tick is calculated since
* the first diff_tod == 0
*/
return (tod);
}
} else {
/* calculate dtick */
dtick = diff_tick / diff_tod;
/* update dtick averages */
dtick_avg += ((dtick - dtick_avg) / TOD_FILTER_N);
/*
* Calculate dtick_delta as
* variation from reference freq in quartiles
*/
dtick_delta = (dtick_avg - TOD_REF_FREQ) /
(TOD_REF_FREQ >> 2);
/*
* Even with a perfectly functioning TOD device,
* when the number of elapsed seconds is low the
* algorithm can calculate a rate that is beyond
* tolerance, causing an error. The algorithm is
* inaccurate when elapsed time is low (less than
* 5 seconds).
*/
if (diff_tod > 4) {
if (dtick < TOD_JUMP_THRESHOLD) {
/* ERROR - tod jumped */
tod_bad = TOD_JUMPED;
off = (int)diff_tod;
} else if (dtick_delta) {
/* ERROR - change in clock rate */
tod_bad = TOD_RATECHANGED;
}
}
}
if (tod_bad != TOD_NOFAULT) {
(void) tod_fault(tod_bad, off);
/*
* Disable dosynctodr since we are going to fault
* the TOD chip anyway here
*/
dosynctodr = 0;
/*
* Set tod to the correct value from hrestime
*/
tod = hrestime.tv_sec;
}
prev_tod = tod;
prev_tick = tick;
return (tod);
}
static void
calcloadavg(int nrun, uint64_t *hp_ave)
{
static int64_t f[3] = { 135, 27, 9 };
uint_t i;
int64_t q, r;
/*
* Compute load average over the last 1, 5, and 15 minutes
* (60, 300, and 900 seconds). The constants in f[3] are for
* exponential decay:
* (1 - exp(-1/60)) << 13 = 135,
* (1 - exp(-1/300)) << 13 = 27,
* (1 - exp(-1/900)) << 13 = 9.
*/
/*
* a little hoop-jumping to avoid integer overflow
*/
for (i = 0; i < 3; i++) {
q = (hp_ave[i] >> 16) << 7;
r = (hp_ave[i] & 0xffff) << 7;
hp_ave[i] += ((nrun - q) * f[i] - ((r * f[i]) >> 16)) >> 4;
}
}
|