summaryrefslogtreecommitdiff
path: root/usr/src/uts/common/os/errorq.c
blob: cd71b9be08dbcdc839c0326e9179ac4f887506bc (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
/*
 * CDDL HEADER START
 *
 * The contents of this file are subject to the terms of the
 * Common Development and Distribution License (the "License").
 * You may not use this file except in compliance with the License.
 *
 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
 * or http://www.opensolaris.org/os/licensing.
 * See the License for the specific language governing permissions
 * and limitations under the License.
 *
 * When distributing Covered Code, include this CDDL HEADER in each
 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
 * If applicable, add the following below this CDDL HEADER, with the
 * fields enclosed by brackets "[]" replaced with your own identifying
 * information: Portions Copyright [yyyy] [name of copyright owner]
 *
 * CDDL HEADER END
 */
/*
 * Copyright 2009 Sun Microsystems, Inc.  All rights reserved.
 * Use is subject to license terms.
 */

/*
 * Kernel Error Queues
 *
 * A common problem when handling hardware error traps and interrupts is that
 * these errors frequently must be handled at high interrupt level, where
 * reliably producing error messages and safely examining and manipulating
 * other kernel state may not be possible.  The kernel error queue primitive is
 * a common set of routines that allow a subsystem to maintain a queue of
 * errors that can be processed by an explicit call from a safe context or by a
 * soft interrupt that fires at a specific lower interrupt level.  The queue
 * management code also ensures that if the system panics, all in-transit
 * errors are logged prior to reset.  Each queue has an associated kstat for
 * observing the number of errors dispatched and logged, and mdb(1) debugging
 * support is provided for live and post-mortem observability.
 *
 * Memory Allocation
 *
 * 	All of the queue data structures are allocated in advance as part of
 * 	the errorq_create() call.  No additional memory allocations are
 * 	performed as part of errorq_dispatch(), errorq_reserve(),
 *	errorq_commit() or errorq_drain().  This design
 * 	facilitates reliable error queue processing even when the system is low
 * 	on memory, and ensures that errorq_dispatch() can be called from any
 * 	context.  When the queue is created, the maximum queue length is
 * 	specified as a parameter to errorq_create() and errorq_nvcreate().  This
 *	length should represent a reasonable upper bound on the number of
 *	simultaneous errors.  If errorq_dispatch() or errorq_reserve() is
 *	invoked and no free queue elements are available, the error is
 *	dropped and will not be logged.  Typically, the queue will only be
 *	exhausted by an error storm, and in this case
 * 	the earlier errors provide the most important data for analysis.
 * 	When a new error is dispatched, the error data is copied into the
 * 	preallocated queue element so that the caller's buffer can be reused.
 *
 *	When a new error is reserved, an element is moved from the free pool
 *	and returned to the caller.  The element buffer data, eqe_data, may be
 *	managed by the caller and dispatched to the errorq by calling
 *	errorq_commit().  This is useful for additions to errorq's
 *	created with errorq_nvcreate() to handle name-value pair (nvpair) data.
 *	See below for a discussion on nvlist errorq's.
 *
 * Queue Drain Callback
 *
 *      When the error queue is drained, the caller's queue drain callback is
 *      invoked with a pointer to the saved error data.  This function may be
 *      called from passive kernel context or soft interrupt context at or
 *      below LOCK_LEVEL, or as part of panic().  As such, the callback should
 *      basically only be calling cmn_err (but NOT with the CE_PANIC flag).
 *      The callback must not call panic(), attempt to allocate memory, or wait
 *      on a condition variable.  The callback may not call errorq_destroy()
 *      or errorq_drain() on the same error queue that called it.
 *
 *      The queue drain callback will always be called for each pending error
 *      in the order in which errors were enqueued (oldest to newest).  The
 *      queue drain callback is guaranteed to provide at *least* once semantics
 *      for all errors that are successfully dispatched (i.e. for which
 *      errorq_dispatch() has successfully completed).  If an unrelated panic
 *      occurs while the queue drain callback is running on a vital queue, the
 *      panic subsystem will continue the queue drain and the callback may be
 *      invoked again for the same error.  Therefore, the callback should
 *      restrict itself to logging messages and taking other actions that are
 *      not destructive if repeated.
 *
 * Name-Value Pair Error Queues
 *
 *	During error handling, it may be more convenient to store error
 *	queue element data as a fixed buffer of name-value pairs.  The
 *	nvpair library allows construction and destruction of nvlists
 *	in pre-allocated memory buffers.
 *
 *	Error queues created via errorq_nvcreate() store queue element
 *	data as fixed buffer nvlists (ereports).  errorq_reserve()
 *	allocates an errorq element from eqp->eq_bitmap and returns a valid
 *	pointer	to a errorq_elem_t (queue element) and a pre-allocated
 *	fixed buffer nvlist.  errorq_elem_nvl() is used to gain access
 *	to the nvlist to add name-value ereport members prior to
 *	dispatching the error queue element in errorq_commit().
 *
 *	Once dispatched, the drain function will return the element to
 *	eqp->eq_bitmap and reset the associated nv_alloc structure.
 *	error_cancel() may be called to cancel an element reservation
 *	element that was never dispatched (committed).  This is useful in
 *	cases where a programming error prevents a queue element from being
 *	dispatched.
 *
 * Queue Management
 *
 *      The queue element structures and error data buffers are allocated in
 *      two contiguous chunks as part of errorq_create() or errorq_nvcreate().
 *	Each queue element structure contains a next pointer,
 *	a previous pointer, and a pointer to the corresponding error data
 *	buffer.  The data buffer for a nvlist errorq is a shared buffer
 *	for the allocation of name-value pair lists. The elements are kept on
 *      one of four lists:
 *
 *	Unused elements are kept in the free pool, managed by eqp->eq_bitmap.
 *	The eqe_prev and eqe_next pointers are not used while in the free pool
 *	and will be set to NULL.
 *
 *      Pending errors are kept on the pending list, a singly-linked list
 *      pointed to by eqp->eq_pend, and linked together using eqe_prev.  This
 *      list is maintained in order from newest error to oldest.  The eqe_next
 *      pointer is not used by the pending list and will be set to NULL.
 *
 *      The processing list is a doubly-linked list pointed to by eqp->eq_phead
 *      (the oldest element) and eqp->eq_ptail (the newest element).  The
 *      eqe_next pointer is used to traverse from eq_phead to eq_ptail, and the
 *      eqe_prev pointer is used to traverse from eq_ptail to eq_phead.  Once a
 *      queue drain operation begins, the current pending list is moved to the
 *      processing list in a two-phase commit fashion (eq_ptail being cleared
 *	at the beginning but eq_phead only at the end), allowing the panic code
 *      to always locate and process all pending errors in the event that a
 *      panic occurs in the middle of queue processing.
 *
 *	A fourth list is maintained for nvlist errorqs.  The dump list,
 *	eq_dump is used to link all errorq elements that should be stored
 *	in a crash dump file in the event of a system panic.  During
 *	errorq_panic(), the list is created and subsequently traversed
 *	in errorq_dump() during the final phases of a crash dump.
 *
 * Platform Considerations
 *
 *      In order to simplify their implementation, error queues make use of the
 *      C wrappers for compare-and-swap.  If the platform itself does not
 *      support compare-and-swap in hardware and the kernel emulation routines
 *      are used instead, then the context in which errorq_dispatch() can be
 *      safely invoked is further constrained by the implementation of the
 *      compare-and-swap emulation.  Specifically, if errorq_dispatch() is
 *      called from a code path that can be executed above ATOMIC_LEVEL on such
 *      a platform, the dispatch code could potentially deadlock unless the
 *      corresponding error interrupt is blocked or disabled prior to calling
 *      errorq_dispatch().  Error queues should therefore be deployed with
 *      caution on these platforms.
 *
 * Interfaces
 *
 * errorq_t *errorq_create(name, func, private, qlen, eltsize, ipl, flags);
 * errorq_t *errorq_nvcreate(name, func, private, qlen, eltsize, ipl, flags);
 *
 *      Create a new error queue with the specified name, callback, and
 *      properties.  A pointer to the new error queue is returned upon success,
 *      or NULL is returned to indicate that the queue could not be created.
 *      This function must be called from passive kernel context with no locks
 *      held that can prevent a sleeping memory allocation from occurring.
 *      errorq_create() will return failure if the queue kstats cannot be
 *      created, or if a soft interrupt handler cannot be registered.
 *
 *      The queue 'name' is a string that is recorded for live and post-mortem
 *      examination by a debugger.  The queue callback 'func' will be invoked
 *      for each error drained from the queue, and will receive the 'private'
 *      pointer as its first argument.  The callback must obey the rules for
 *      callbacks described above.  The queue will have maximum length 'qlen'
 *      and each element will be able to record up to 'eltsize' bytes of data.
 *      The queue's soft interrupt (see errorq_dispatch(), below) will fire
 *      at 'ipl', which should not exceed LOCK_LEVEL.  The queue 'flags' may
 *      include the following flag:
 *
 *      ERRORQ_VITAL    - This queue contains information that is considered
 *         vital to problem diagnosis.  Error queues that are marked vital will
 *         be automatically drained by the panic subsystem prior to printing
 *         the panic messages to the console.
 *
 * void errorq_destroy(errorq);
 *
 *      Destroy the specified error queue.  The queue is drained of any
 *      pending elements and these are logged before errorq_destroy returns.
 *      Once errorq_destroy() begins draining the queue, any simultaneous
 *      calls to dispatch errors will result in the errors being dropped.
 *      The caller must invoke a higher-level abstraction (e.g. disabling
 *      an error interrupt) to ensure that error handling code does not
 *      attempt to dispatch errors to the queue while it is being freed.
 *
 * void errorq_dispatch(errorq, data, len, flag);
 *
 *      Attempt to enqueue the specified error data.  If a free queue element
 *      is available, the data is copied into a free element and placed on a
 *      pending list.  If no free queue element is available, the error is
 *      dropped.  The data length (len) is specified in bytes and should not
 *      exceed the queue's maximum element size.  If the data length is less
 *      than the maximum element size, the remainder of the queue element is
 *      filled with zeroes.  The flag parameter should be one of:
 *
 *      ERRORQ_ASYNC    - Schedule a soft interrupt at the previously specified
 *         IPL to asynchronously drain the queue on behalf of the caller.
 *
 *      ERRORQ_SYNC     - Do not schedule a soft interrupt to drain the queue.
 *         The caller is presumed to be calling errorq_drain() or panic() in
 *         the near future in order to drain the queue and log the error.
 *
 *      The errorq_dispatch() function may be called from any context, subject
 *      to the Platform Considerations described above.
 *
 * void errorq_drain(errorq);
 *
 *      Drain the error queue of all pending errors.  The queue's callback
 *      function is invoked for each error in order from oldest to newest.
 *      This function may be used at or below LOCK_LEVEL or from panic context.
 *
 * errorq_elem_t *errorq_reserve(errorq);
 *
 *	Reserve an error queue element for later processing and dispatching.
 *	The element is returned to the caller who may add error-specific data
 *	to element.  The element is retured to the free pool when either
 *	errorq_commit() is called and the element asynchronously processed
 *	or immediately when errorq_cancel() is called.
 *
 * void errorq_commit(errorq, errorq_elem, flag);
 *
 *	Commit an errorq element (eqep) for dispatching, see
 *	errorq_dispatch().
 *
 * void errorq_cancel(errorq, errorq_elem);
 *
 *	Cancel a pending errorq element reservation.  The errorq element is
 *	returned to the free pool upon cancelation.
 */

#include <sys/errorq_impl.h>
#include <sys/sysmacros.h>
#include <sys/machlock.h>
#include <sys/cmn_err.h>
#include <sys/atomic.h>
#include <sys/systm.h>
#include <sys/kmem.h>
#include <sys/conf.h>
#include <sys/ddi.h>
#include <sys/sunddi.h>
#include <sys/bootconf.h>
#include <sys/spl.h>
#include <sys/dumphdr.h>
#include <sys/compress.h>
#include <sys/time.h>
#include <sys/panic.h>
#include <sys/bitmap.h>
#include <sys/fm/protocol.h>
#include <sys/fm/util.h>

static struct errorq_kstat errorq_kstat_template = {
	{ "dispatched", KSTAT_DATA_UINT64 },
	{ "dropped", KSTAT_DATA_UINT64 },
	{ "logged", KSTAT_DATA_UINT64 },
	{ "reserved", KSTAT_DATA_UINT64 },
	{ "reserve_fail", KSTAT_DATA_UINT64 },
	{ "committed", KSTAT_DATA_UINT64 },
	{ "commit_fail", KSTAT_DATA_UINT64 },
	{ "cancelled", KSTAT_DATA_UINT64 }
};

static uint64_t errorq_lost = 0;
static errorq_t *errorq_list = NULL;
static kmutex_t errorq_lock;
static uint64_t errorq_vitalmin = 5;

static uint_t
errorq_intr(caddr_t eqp)
{
	errorq_drain((errorq_t *)eqp);
	return (DDI_INTR_CLAIMED);
}

/*
 * Create a new error queue with the specified properties and add a software
 * interrupt handler and kstat for it.  This function must be called from
 * passive kernel context with no locks held that can prevent a sleeping
 * memory allocation from occurring.  This function will return NULL if the
 * softint or kstat for this queue cannot be created.
 */
errorq_t *
errorq_create(const char *name, errorq_func_t func, void *private,
    ulong_t qlen, size_t size, uint_t ipl, uint_t flags)
{
	errorq_t *eqp = kmem_alloc(sizeof (errorq_t), KM_SLEEP);
	ddi_iblock_cookie_t ibc = (ddi_iblock_cookie_t)(uintptr_t)ipltospl(ipl);
	dev_info_t *dip = ddi_root_node();

	errorq_elem_t *eep;
	ddi_softintr_t id = NULL;
	caddr_t data;

	ASSERT(qlen != 0 && size != 0);
	ASSERT(ipl > 0 && ipl <= LOCK_LEVEL);

	/*
	 * If a queue is created very early in boot before device tree services
	 * are available, the queue softint handler cannot be created.  We
	 * manually drain these queues and create their softint handlers when
	 * it is safe to do so as part of errorq_init(), below.
	 */
	if (modrootloaded && ddi_add_softintr(dip, DDI_SOFTINT_FIXED, &id,
	    &ibc, NULL, errorq_intr, (caddr_t)eqp) != DDI_SUCCESS) {
		cmn_err(CE_WARN, "errorq_create: failed to register "
		    "IPL %u softint for queue %s", ipl, name);
		kmem_free(eqp, sizeof (errorq_t));
		return (NULL);
	}

	if ((eqp->eq_ksp = kstat_create("unix", 0, name, "errorq",
	    KSTAT_TYPE_NAMED, sizeof (struct errorq_kstat) /
	    sizeof (kstat_named_t), KSTAT_FLAG_VIRTUAL)) == NULL) {
		cmn_err(CE_WARN, "errorq_create: failed to create kstat "
		    "for queue %s", name);
		if (id != NULL)
			ddi_remove_softintr(id);
		kmem_free(eqp, sizeof (errorq_t));
		return (NULL);
	}

	bcopy(&errorq_kstat_template, &eqp->eq_kstat,
	    sizeof (struct errorq_kstat));
	eqp->eq_ksp->ks_data = &eqp->eq_kstat;
	eqp->eq_ksp->ks_private = eqp;
	kstat_install(eqp->eq_ksp);

	(void) strncpy(eqp->eq_name, name, ERRORQ_NAMELEN);
	eqp->eq_name[ERRORQ_NAMELEN] = '\0';
	eqp->eq_func = func;
	eqp->eq_private = private;
	eqp->eq_data = kmem_alloc(qlen * size, KM_SLEEP);
	eqp->eq_qlen = qlen;
	eqp->eq_size = size;
	eqp->eq_ipl = ipl;
	eqp->eq_flags = flags | ERRORQ_ACTIVE;
	eqp->eq_id = id;
	mutex_init(&eqp->eq_lock, NULL, MUTEX_DEFAULT, NULL);
	eqp->eq_elems = kmem_alloc(qlen * sizeof (errorq_elem_t), KM_SLEEP);
	eqp->eq_phead = NULL;
	eqp->eq_ptail = NULL;
	eqp->eq_pend = NULL;
	eqp->eq_dump = NULL;
	eqp->eq_bitmap = kmem_zalloc(BT_SIZEOFMAP(qlen), KM_SLEEP);
	eqp->eq_rotor = 0;

	/*
	 * Iterate over the array of errorq_elem_t structures and set its
	 * data pointer.
	 */
	for (eep = eqp->eq_elems, data = eqp->eq_data; qlen > 1; qlen--) {
		eep->eqe_next = NULL;
		eep->eqe_dump = NULL;
		eep->eqe_prev = NULL;
		eep->eqe_data = data;
		data += size;
		eep++;
	}
	eep->eqe_next = NULL;
	eep->eqe_prev = NULL;
	eep->eqe_data = data;
	eep->eqe_dump = NULL;

	/*
	 * Once the errorq is initialized, add it to the global list of queues,
	 * and then return a pointer to the new queue to the caller.
	 */
	mutex_enter(&errorq_lock);
	eqp->eq_next = errorq_list;
	errorq_list = eqp;
	mutex_exit(&errorq_lock);

	return (eqp);
}

/*
 * Create a new errorq as if by errorq_create(), but set the ERRORQ_NVLIST
 * flag and initialize each element to have the start of its data region used
 * as an errorq_nvelem_t with a nvlist allocator that consumes the data region.
 */
errorq_t *
errorq_nvcreate(const char *name, errorq_func_t func, void *private,
    ulong_t qlen, size_t size, uint_t ipl, uint_t flags)
{
	errorq_t *eqp;
	errorq_elem_t *eep;

	eqp = errorq_create(name, func, private, qlen,
	    size + sizeof (errorq_nvelem_t), ipl, flags | ERRORQ_NVLIST);

	if (eqp == NULL)
		return (NULL);

	mutex_enter(&eqp->eq_lock);

	for (eep = eqp->eq_elems; qlen != 0; eep++, qlen--) {
		errorq_nvelem_t *eqnp = eep->eqe_data;
		eqnp->eqn_buf = (char *)eqnp + sizeof (errorq_nvelem_t);
		eqnp->eqn_nva = fm_nva_xcreate(eqnp->eqn_buf, size);
	}

	mutex_exit(&eqp->eq_lock);
	return (eqp);
}

/*
 * To destroy an error queue, we mark it as disabled and then explicitly drain
 * all pending errors.  Once the drain is complete, we can remove the queue
 * from the global list of queues examined by errorq_panic(), and then free
 * the various queue data structures.  The caller must use some higher-level
 * abstraction (e.g. disabling an error interrupt) to ensure that no one will
 * attempt to enqueue new errors while we are freeing this queue.
 */
void
errorq_destroy(errorq_t *eqp)
{
	errorq_t *p, **pp;
	errorq_elem_t *eep;
	ulong_t i;

	ASSERT(eqp != NULL);
	eqp->eq_flags &= ~ERRORQ_ACTIVE;
	errorq_drain(eqp);

	mutex_enter(&errorq_lock);
	pp = &errorq_list;

	for (p = errorq_list; p != NULL; p = p->eq_next) {
		if (p == eqp) {
			*pp = p->eq_next;
			break;
		}
		pp = &p->eq_next;
	}

	mutex_exit(&errorq_lock);
	ASSERT(p != NULL);

	if (eqp->eq_flags & ERRORQ_NVLIST) {
		for (eep = eqp->eq_elems, i = 0; i < eqp->eq_qlen; i++, eep++) {
			errorq_nvelem_t *eqnp = eep->eqe_data;
			fm_nva_xdestroy(eqnp->eqn_nva);
		}
	}

	mutex_destroy(&eqp->eq_lock);
	kstat_delete(eqp->eq_ksp);

	if (eqp->eq_id != NULL)
		ddi_remove_softintr(eqp->eq_id);

	kmem_free(eqp->eq_elems, eqp->eq_qlen * sizeof (errorq_elem_t));
	kmem_free(eqp->eq_bitmap, BT_SIZEOFMAP(eqp->eq_qlen));
	kmem_free(eqp->eq_data, eqp->eq_qlen * eqp->eq_size);

	kmem_free(eqp, sizeof (errorq_t));
}

/*
 * private version of bt_availbit which makes a best-efforts attempt
 * at allocating in a round-robin fashion in order to facilitate post-mortem
 * diagnosis.
 */
static index_t
errorq_availbit(ulong_t *bitmap, size_t nbits, index_t curindex)
{
	ulong_t bit, maxbit, bx;
	index_t rval, nextindex = curindex + 1;
	index_t nextword = nextindex >> BT_ULSHIFT;
	ulong_t nextbitindex = nextindex & BT_ULMASK;
	index_t maxindex = nbits - 1;
	index_t maxword = maxindex >> BT_ULSHIFT;
	ulong_t maxbitindex = maxindex & BT_ULMASK;

	/*
	 * First check if there are still some bits remaining in the current
	 * word, and see if any of those are available. We need to do this by
	 * hand as the bt_availbit() function always starts at the beginning
	 * of a word.
	 */
	if (nextindex <= maxindex && nextbitindex != 0) {
		maxbit = (nextword == maxword) ? maxbitindex : BT_ULMASK;
		for (bx = 0, bit = 1; bx <= maxbit; bx++, bit <<= 1)
			if (bx >= nextbitindex && !(bitmap[nextword] & bit))
				return ((nextword << BT_ULSHIFT) + bx);
		nextword++;
	}
	/*
	 * Now check if there are any words remaining before the end of the
	 * bitmap. Use bt_availbit() to find any free bits.
	 */
	if (nextword <= maxword)
		if ((rval = bt_availbit(&bitmap[nextword],
		    nbits - (nextword << BT_ULSHIFT))) != -1)
			return ((nextword << BT_ULSHIFT) + rval);
	/*
	 * Finally loop back to the start and look for any free bits starting
	 * from the beginning of the bitmap to the current rotor position.
	 */
	return (bt_availbit(bitmap, nextindex));
}

/*
 * Dispatch a new error into the queue for later processing.  The specified
 * data buffer is copied into a preallocated queue element.  If 'len' is
 * smaller than the queue element size, the remainder of the queue element is
 * filled with zeroes.  This function may be called from any context subject
 * to the Platform Considerations described above.
 */
void
errorq_dispatch(errorq_t *eqp, const void *data, size_t len, uint_t flag)
{
	errorq_elem_t *eep, *old;

	if (eqp == NULL || !(eqp->eq_flags & ERRORQ_ACTIVE)) {
		atomic_inc_64(&errorq_lost);
		return; /* drop error if queue is uninitialized or disabled */
	}

	for (;;) {
		int i, rval;

		if ((i = errorq_availbit(eqp->eq_bitmap, eqp->eq_qlen,
		    eqp->eq_rotor)) == -1) {
			atomic_inc_64(&eqp->eq_kstat.eqk_dropped.value.ui64);
			return;
		}
		BT_ATOMIC_SET_EXCL(eqp->eq_bitmap, i, rval);
		if (rval == 0) {
			eqp->eq_rotor = i;
			eep = &eqp->eq_elems[i];
			break;
		}
	}

	ASSERT(len <= eqp->eq_size);
	bcopy(data, eep->eqe_data, MIN(eqp->eq_size, len));

	if (len < eqp->eq_size)
		bzero((caddr_t)eep->eqe_data + len, eqp->eq_size - len);

	for (;;) {
		old = eqp->eq_pend;
		eep->eqe_prev = old;
		membar_producer();

		if (atomic_cas_ptr(&eqp->eq_pend, old, eep) == old)
			break;
	}

	atomic_inc_64(&eqp->eq_kstat.eqk_dispatched.value.ui64);

	if (flag == ERRORQ_ASYNC && eqp->eq_id != NULL)
		ddi_trigger_softintr(eqp->eq_id);
}

/*
 * Drain the specified error queue by calling eq_func() for each pending error.
 * This function must be called at or below LOCK_LEVEL or from panic context.
 * In order to synchronize with other attempts to drain the queue, we acquire
 * the adaptive eq_lock, blocking other consumers.  Once this lock is held,
 * we must use compare-and-swap to move the pending list to the processing
 * list and to return elements to the free pool in order to synchronize
 * with producers, who do not acquire any locks and only use atomic set/clear.
 *
 * An additional constraint on this function is that if the system panics
 * while this function is running, the panic code must be able to detect and
 * handle all intermediate states and correctly dequeue all errors.  The
 * errorq_panic() function below will be used for detecting and handling
 * these intermediate states.  The comments in errorq_drain() below explain
 * how we make sure each intermediate state is distinct and consistent.
 */
void
errorq_drain(errorq_t *eqp)
{
	errorq_elem_t *eep, *dep;

	ASSERT(eqp != NULL);
	mutex_enter(&eqp->eq_lock);

	/*
	 * If there are one or more pending errors, set eq_ptail to point to
	 * the first element on the pending list and then attempt to compare-
	 * and-swap NULL to the pending list.  We use membar_producer() to
	 * make sure that eq_ptail will be visible to errorq_panic() below
	 * before the pending list is NULLed out.  This section is labeled
	 * case (1) for errorq_panic, below.  If eq_ptail is not yet set (1A)
	 * eq_pend has all the pending errors.  If atomic_cas_ptr fails or
	 * has not been called yet (1B), eq_pend still has all the pending
	 * errors.  If atomic_cas_ptr succeeds (1C), eq_ptail has all the
	 * pending errors.
	 */
	while ((eep = eqp->eq_pend) != NULL) {
		eqp->eq_ptail = eep;
		membar_producer();

		if (atomic_cas_ptr(&eqp->eq_pend, eep, NULL) == eep)
			break;
	}

	/*
	 * If no errors were pending, assert that eq_ptail is set to NULL,
	 * drop the consumer lock, and return without doing anything.
	 */
	if (eep == NULL) {
		ASSERT(eqp->eq_ptail == NULL);
		mutex_exit(&eqp->eq_lock);
		return;
	}

	/*
	 * Now iterate from eq_ptail (a.k.a. eep, the newest error) to the
	 * oldest error, setting the eqe_next pointer so that we can iterate
	 * over the errors from oldest to newest.  We use membar_producer()
	 * to make sure that these stores are visible before we set eq_phead.
	 * If we panic before, during, or just after this loop (case 2),
	 * errorq_panic() will simply redo this work, as described below.
	 */
	for (eep->eqe_next = NULL; eep->eqe_prev != NULL; eep = eep->eqe_prev)
		eep->eqe_prev->eqe_next = eep;
	membar_producer();

	/*
	 * Now set eq_phead to the head of the processing list (the oldest
	 * error) and issue another membar_producer() to make sure that
	 * eq_phead is seen as non-NULL before we clear eq_ptail.  If we panic
	 * after eq_phead is set (case 3), we will detect and log these errors
	 * in errorq_panic(), as described below.
	 */
	eqp->eq_phead = eep;
	membar_producer();

	eqp->eq_ptail = NULL;
	membar_producer();

	/*
	 * If we enter from errorq_panic_drain(), we may already have
	 * errorq elements on the dump list.  Find the tail of
	 * the list ready for append.
	 */
	dep = eqp->eq_dump;
	if (panicstr && dep != NULL) {
		while (dep->eqe_dump != NULL)
			dep = dep->eqe_dump;
	}

	/*
	 * Now iterate over the processing list from oldest (eq_phead) to
	 * newest and log each error.  Once an error is logged, we use
	 * atomic clear to return it to the free pool.  If we panic before,
	 * during, or after calling eq_func() (case 4), the error will still be
	 * found on eq_phead and will be logged in errorq_panic below.
	 */

	while ((eep = eqp->eq_phead) != NULL) {
		eqp->eq_func(eqp->eq_private, eep->eqe_data, eep);
		eqp->eq_kstat.eqk_logged.value.ui64++;

		eqp->eq_phead = eep->eqe_next;
		membar_producer();

		eep->eqe_next = NULL;

		/*
		 * On panic, we add the element to the dump list for each
		 * nvlist errorq.  Elements are stored oldest to newest.
		 * Then continue, so we don't free and subsequently overwrite
		 * any elements which we've put on the dump queue.
		 */
		if (panicstr && (eqp->eq_flags & ERRORQ_NVLIST)) {
			if (eqp->eq_dump == NULL)
				dep = eqp->eq_dump = eep;
			else
				dep = dep->eqe_dump = eep;
			membar_producer();
			continue;
		}

		eep->eqe_prev = NULL;
		BT_ATOMIC_CLEAR(eqp->eq_bitmap, eep - eqp->eq_elems);
	}

	mutex_exit(&eqp->eq_lock);
}

/*
 * Now that device tree services are available, set up the soft interrupt
 * handlers for any queues that were created early in boot.  We then
 * manually drain these queues to report any pending early errors.
 */
void
errorq_init(void)
{
	dev_info_t *dip = ddi_root_node();
	ddi_softintr_t id;
	errorq_t *eqp;

	ASSERT(modrootloaded != 0);
	ASSERT(dip != NULL);

	mutex_enter(&errorq_lock);

	for (eqp = errorq_list; eqp != NULL; eqp = eqp->eq_next) {
		ddi_iblock_cookie_t ibc =
		    (ddi_iblock_cookie_t)(uintptr_t)ipltospl(eqp->eq_ipl);

		if (eqp->eq_id != NULL)
			continue; /* softint already initialized */

		if (ddi_add_softintr(dip, DDI_SOFTINT_FIXED, &id, &ibc, NULL,
		    errorq_intr, (caddr_t)eqp) != DDI_SUCCESS) {
			panic("errorq_init: failed to register IPL %u softint "
			    "for queue %s", eqp->eq_ipl, eqp->eq_name);
		}

		eqp->eq_id = id;
		errorq_drain(eqp);
	}

	mutex_exit(&errorq_lock);
}

/*
 * This function is designed to be called from panic context only, and
 * therefore does not need to acquire errorq_lock when iterating over
 * errorq_list.  This function must be called no more than once for each
 * 'what' value (if you change this then review the manipulation of 'dep'.
 */
static uint64_t
errorq_panic_drain(uint_t what)
{
	errorq_elem_t *eep, *nep, *dep;
	errorq_t *eqp;
	uint64_t loggedtmp;
	uint64_t logged = 0;

	dep = NULL;
	for (eqp = errorq_list; eqp != NULL; eqp = eqp->eq_next) {
		if ((eqp->eq_flags & (ERRORQ_VITAL | ERRORQ_NVLIST)) != what)
			continue; /* do not drain this queue on this pass */

		loggedtmp = eqp->eq_kstat.eqk_logged.value.ui64;

		/*
		 * In case (1B) above, eq_ptail may be set but the
		 * atomic_cas_ptr may not have been executed yet or may have
		 * failed.  Either way, we must log errors in chronological
		 * order.  So we search the pending list for the error
		 * pointed to by eq_ptail.  If it is found, we know that all
		 * subsequent errors are also still on the pending list, so
		 * just NULL out eq_ptail and let errorq_drain(), below,
		 * take care of the logging.
		 */
		for (eep = eqp->eq_pend; eep != NULL; eep = eep->eqe_prev) {
			if (eep == eqp->eq_ptail) {
				ASSERT(eqp->eq_phead == NULL);
				eqp->eq_ptail = NULL;
				break;
			}
		}

		/*
		 * In cases (1C) and (2) above, eq_ptail will be set to the
		 * newest error on the processing list but eq_phead will still
		 * be NULL.  We set the eqe_next pointers so we can iterate
		 * over the processing list in order from oldest error to the
		 * newest error.  We then set eq_phead to point to the oldest
		 * error and fall into the for-loop below.
		 */
		if (eqp->eq_phead == NULL && (eep = eqp->eq_ptail) != NULL) {
			for (eep->eqe_next = NULL; eep->eqe_prev != NULL;
			    eep = eep->eqe_prev)
				eep->eqe_prev->eqe_next = eep;

			eqp->eq_phead = eep;
			eqp->eq_ptail = NULL;
		}

		/*
		 * In cases (3) and (4) above (or after case (1C/2) handling),
		 * eq_phead will be set to the oldest error on the processing
		 * list.  We log each error and return it to the free pool.
		 *
		 * Unlike errorq_drain(), we don't need to worry about updating
		 * eq_phead because errorq_panic() will be called at most once.
		 * However, we must use atomic_cas_ptr to update the
		 * freelist in case errors are still being enqueued during
		 * panic.
		 */
		for (eep = eqp->eq_phead; eep != NULL; eep = nep) {
			eqp->eq_func(eqp->eq_private, eep->eqe_data, eep);
			eqp->eq_kstat.eqk_logged.value.ui64++;

			nep = eep->eqe_next;
			eep->eqe_next = NULL;

			/*
			 * On panic, we add the element to the dump list for
			 * each nvlist errorq, stored oldest to newest. Then
			 * continue, so we don't free and subsequently overwrite
			 * any elements which we've put on the dump queue.
			 */
			if (eqp->eq_flags & ERRORQ_NVLIST) {
				if (eqp->eq_dump == NULL)
					dep = eqp->eq_dump = eep;
				else
					dep = dep->eqe_dump = eep;
				membar_producer();
				continue;
			}

			eep->eqe_prev = NULL;
			BT_ATOMIC_CLEAR(eqp->eq_bitmap, eep - eqp->eq_elems);
		}

		/*
		 * Now go ahead and drain any other errors on the pending list.
		 * This call transparently handles case (1A) above, as well as
		 * any other errors that were dispatched after errorq_drain()
		 * completed its first compare-and-swap.
		 */
		errorq_drain(eqp);

		logged += eqp->eq_kstat.eqk_logged.value.ui64 - loggedtmp;
	}
	return (logged);
}

/*
 * Drain all error queues - called only from panic context.  Some drain
 * functions may enqueue errors to ERRORQ_NVLIST error queues so that
 * they may be written out in the panic dump - so ERRORQ_NVLIST queues
 * must be drained last.  Drain ERRORQ_VITAL queues before nonvital queues
 * so that vital errors get to fill the ERRORQ_NVLIST queues first, and
 * do not drain the nonvital queues if there are many vital errors.
 */
void
errorq_panic(void)
{
	ASSERT(panicstr != NULL);

	if (errorq_panic_drain(ERRORQ_VITAL) <= errorq_vitalmin)
		(void) errorq_panic_drain(0);
	(void) errorq_panic_drain(ERRORQ_VITAL | ERRORQ_NVLIST);
	(void) errorq_panic_drain(ERRORQ_NVLIST);
}

/*
 * Reserve an error queue element for later processing and dispatching.  The
 * element is returned to the caller who may add error-specific data to
 * element.  The element is retured to the free pool when either
 * errorq_commit() is called and the element asynchronously processed
 * or immediately when errorq_cancel() is called.
 */
errorq_elem_t *
errorq_reserve(errorq_t *eqp)
{
	errorq_elem_t *eqep;

	if (eqp == NULL || !(eqp->eq_flags & ERRORQ_ACTIVE)) {
		atomic_inc_64(&errorq_lost);
		return (NULL);
	}

	for (;;) {
		int i, rval;

		if ((i = errorq_availbit(eqp->eq_bitmap, eqp->eq_qlen,
		    eqp->eq_rotor)) == -1) {
			atomic_inc_64(&eqp->eq_kstat.eqk_dropped.value.ui64);
			return (NULL);
		}
		BT_ATOMIC_SET_EXCL(eqp->eq_bitmap, i, rval);
		if (rval == 0) {
			eqp->eq_rotor = i;
			eqep = &eqp->eq_elems[i];
			break;
		}
	}

	if (eqp->eq_flags & ERRORQ_NVLIST) {
		errorq_nvelem_t *eqnp = eqep->eqe_data;
		nv_alloc_reset(eqnp->eqn_nva);
		eqnp->eqn_nvl = fm_nvlist_create(eqnp->eqn_nva);
	}

	atomic_inc_64(&eqp->eq_kstat.eqk_reserved.value.ui64);
	return (eqep);
}

/*
 * Commit an errorq element (eqep) for dispatching.
 * This function may be called from any context subject
 * to the Platform Considerations described above.
 */
void
errorq_commit(errorq_t *eqp, errorq_elem_t *eqep, uint_t flag)
{
	errorq_elem_t *old;

	if (eqep == NULL || !(eqp->eq_flags & ERRORQ_ACTIVE)) {
		atomic_inc_64(&eqp->eq_kstat.eqk_commit_fail.value.ui64);
		return;
	}

	for (;;) {
		old = eqp->eq_pend;
		eqep->eqe_prev = old;
		membar_producer();

		if (atomic_cas_ptr(&eqp->eq_pend, old, eqep) == old)
			break;
	}

	atomic_inc_64(&eqp->eq_kstat.eqk_committed.value.ui64);

	if (flag == ERRORQ_ASYNC && eqp->eq_id != NULL)
		ddi_trigger_softintr(eqp->eq_id);
}

/*
 * Cancel an errorq element reservation by returning the specified element
 * to the free pool.  Duplicate or invalid frees are not supported.
 */
void
errorq_cancel(errorq_t *eqp, errorq_elem_t *eqep)
{
	if (eqep == NULL || !(eqp->eq_flags & ERRORQ_ACTIVE))
		return;

	BT_ATOMIC_CLEAR(eqp->eq_bitmap, eqep - eqp->eq_elems);

	atomic_inc_64(&eqp->eq_kstat.eqk_cancelled.value.ui64);
}

/*
 * Write elements on the dump list of each nvlist errorq to the dump device.
 * Upon reboot, fmd(8) will extract and replay them for diagnosis.
 */
void
errorq_dump(void)
{
	errorq_elem_t *eep;
	errorq_t *eqp;

	if (ereport_dumpbuf == NULL)
		return; /* reboot or panic before errorq is even set up */

	for (eqp = errorq_list; eqp != NULL; eqp = eqp->eq_next) {
		if (!(eqp->eq_flags & ERRORQ_NVLIST) ||
		    !(eqp->eq_flags & ERRORQ_ACTIVE))
			continue; /* do not dump this queue on panic */

		for (eep = eqp->eq_dump; eep != NULL; eep = eep->eqe_dump) {
			errorq_nvelem_t *eqnp = eep->eqe_data;
			size_t len = 0;
			erpt_dump_t ed;
			int err;

			(void) nvlist_size(eqnp->eqn_nvl,
			    &len, NV_ENCODE_NATIVE);

			if (len > ereport_dumplen || len == 0) {
				cmn_err(CE_WARN, "%s: unable to save error "
				    "report %p due to size %lu\n",
				    eqp->eq_name, (void *)eep, len);
				continue;
			}

			if ((err = nvlist_pack(eqnp->eqn_nvl,
			    (char **)&ereport_dumpbuf, &ereport_dumplen,
			    NV_ENCODE_NATIVE, KM_NOSLEEP)) != 0) {
				cmn_err(CE_WARN, "%s: unable to save error "
				    "report %p due to pack error %d\n",
				    eqp->eq_name, (void *)eep, err);
				continue;
			}

			ed.ed_magic = ERPT_MAGIC;
			ed.ed_chksum = checksum32(ereport_dumpbuf, len);
			ed.ed_size = (uint32_t)len;
			ed.ed_pad = 0;
			ed.ed_hrt_nsec = 0;
			ed.ed_hrt_base = panic_hrtime;
			ed.ed_tod_base.sec = panic_hrestime.tv_sec;
			ed.ed_tod_base.nsec = panic_hrestime.tv_nsec;

			dumpvp_write(&ed, sizeof (ed));
			dumpvp_write(ereport_dumpbuf, len);
		}
	}
}

nvlist_t *
errorq_elem_nvl(errorq_t *eqp, const errorq_elem_t *eqep)
{
	errorq_nvelem_t *eqnp = eqep->eqe_data;

	ASSERT(eqp->eq_flags & ERRORQ_ACTIVE && eqp->eq_flags & ERRORQ_NVLIST);

	return (eqnp->eqn_nvl);
}

nv_alloc_t *
errorq_elem_nva(errorq_t *eqp, const errorq_elem_t *eqep)
{
	errorq_nvelem_t *eqnp = eqep->eqe_data;

	ASSERT(eqp->eq_flags & ERRORQ_ACTIVE && eqp->eq_flags & ERRORQ_NVLIST);

	return (eqnp->eqn_nva);
}

/*
 * Reserve a new element and duplicate the data of the original into it.
 */
void *
errorq_elem_dup(errorq_t *eqp, const errorq_elem_t *eqep, errorq_elem_t **neqep)
{
	ASSERT(eqp->eq_flags & ERRORQ_ACTIVE);
	ASSERT(!(eqp->eq_flags & ERRORQ_NVLIST));

	if ((*neqep = errorq_reserve(eqp)) == NULL)
		return (NULL);

	bcopy(eqep->eqe_data, (*neqep)->eqe_data, eqp->eq_size);
	return ((*neqep)->eqe_data);
}