1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
|
/*
* CDDL HEADER START
*
* The contents of this file are subject to the terms of the
* Common Development and Distribution License (the "License").
* You may not use this file except in compliance with the License.
*
* You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
* or http://www.opensolaris.org/os/licensing.
* See the License for the specific language governing permissions
* and limitations under the License.
*
* When distributing Covered Code, include this CDDL HEADER in each
* file and include the License file at usr/src/OPENSOLARIS.LICENSE.
* If applicable, add the following below this CDDL HEADER, with the
* fields enclosed by brackets "[]" replaced with your own identifying
* information: Portions Copyright [yyyy] [name of copyright owner]
*
* CDDL HEADER END
*/
/*
* Portions Copyright (c) 2010, Oracle and/or its affiliates.
* All rights reserved.
*/
/*
* immu_regs.c - File that operates on a IMMU unit's regsiters
*/
#include <sys/dditypes.h>
#include <sys/ddi.h>
#include <sys/archsystm.h>
#include <sys/x86_archext.h>
#include <sys/spl.h>
#include <sys/sysmacros.h>
#include <sys/immu.h>
#define get_reg32(immu, offset) ddi_get32((immu)->immu_regs_handle, \
(uint32_t *)(immu->immu_regs_addr + (offset)))
#define get_reg64(immu, offset) ddi_get64((immu)->immu_regs_handle, \
(uint64_t *)(immu->immu_regs_addr + (offset)))
#define put_reg32(immu, offset, val) ddi_put32\
((immu)->immu_regs_handle, \
(uint32_t *)(immu->immu_regs_addr + (offset)), val)
#define put_reg64(immu, offset, val) ddi_put64\
((immu)->immu_regs_handle, \
(uint64_t *)(immu->immu_regs_addr + (offset)), val)
struct immu_flushops immu_regs_flushops = {
immu_regs_context_fsi,
immu_regs_context_dsi,
immu_regs_context_gbl,
immu_regs_iotlb_psi,
immu_regs_iotlb_dsi,
immu_regs_iotlb_gbl
};
/*
* wait max 60s for the hardware completion
*/
#define IMMU_MAX_WAIT_TIME 60000000
#define wait_completion(immu, offset, getf, completion, status) \
{ \
clock_t stick = ddi_get_lbolt(); \
clock_t ntick; \
_NOTE(CONSTCOND) \
while (1) { \
status = getf(immu, offset); \
ntick = ddi_get_lbolt(); \
if (completion) { \
break; \
} \
if (ntick - stick >= drv_usectohz(IMMU_MAX_WAIT_TIME)) { \
ddi_err(DER_PANIC, NULL, \
"immu wait completion time out"); \
/*NOTREACHED*/ \
} else { \
iommu_cpu_nop();\
}\
}\
}
static ddi_device_acc_attr_t immu_regs_attr = {
DDI_DEVICE_ATTR_V0,
DDI_NEVERSWAP_ACC,
DDI_STRICTORDER_ACC,
};
/*
* iotlb_flush()
* flush the iotlb cache
*/
static void
iotlb_flush(immu_t *immu, uint_t domain_id,
uint64_t addr, uint_t am, uint_t hint, immu_iotlb_inv_t type)
{
uint64_t command = 0, iva = 0;
uint_t iva_offset, iotlb_offset;
uint64_t status = 0;
/* no lock needed since cap and excap fields are RDONLY */
iva_offset = IMMU_ECAP_GET_IRO(immu->immu_regs_excap);
iotlb_offset = iva_offset + 8;
/*
* prepare drain read/write command
*/
if (IMMU_CAP_GET_DWD(immu->immu_regs_cap)) {
command |= TLB_INV_DRAIN_WRITE;
}
if (IMMU_CAP_GET_DRD(immu->immu_regs_cap)) {
command |= TLB_INV_DRAIN_READ;
}
/*
* if the hardward doesn't support page selective invalidation, we
* will use domain type. Otherwise, use global type
*/
switch (type) {
case IOTLB_PSI:
ASSERT(IMMU_CAP_GET_PSI(immu->immu_regs_cap));
ASSERT(am <= IMMU_CAP_GET_MAMV(immu->immu_regs_cap));
ASSERT(!(addr & IMMU_PAGEOFFSET));
command |= TLB_INV_PAGE | TLB_INV_IVT |
TLB_INV_DID(domain_id);
iva = addr | am | TLB_IVA_HINT(hint);
break;
case IOTLB_DSI:
command |= TLB_INV_DOMAIN | TLB_INV_IVT |
TLB_INV_DID(domain_id);
break;
case IOTLB_GLOBAL:
command |= TLB_INV_GLOBAL | TLB_INV_IVT;
break;
default:
ddi_err(DER_MODE, NULL, "%s: incorrect iotlb flush type",
immu->immu_name);
return;
}
if (iva)
put_reg64(immu, iva_offset, iva);
put_reg64(immu, iotlb_offset, command);
wait_completion(immu, iotlb_offset, get_reg64,
(!(status & TLB_INV_IVT)), status);
}
/*
* immu_regs_iotlb_psi()
* iotlb page specific invalidation
*/
void
immu_regs_iotlb_psi(immu_t *immu, uint_t did, uint64_t dvma, uint_t snpages,
uint_t hint)
{
int dvma_am;
int npg_am;
int max_am;
int am;
uint64_t align;
int npages_left;
int npages;
int i;
if (!IMMU_CAP_GET_PSI(immu->immu_regs_cap)) {
immu_regs_iotlb_dsi(immu, did);
return;
}
ASSERT(dvma % IMMU_PAGESIZE == 0);
max_am = IMMU_CAP_GET_MAMV(immu->immu_regs_cap);
mutex_enter(&(immu->immu_regs_lock));
npages_left = snpages;
for (i = 0; i < immu_flush_gran && npages_left > 0; i++) {
/* First calculate alignment of DVMA */
if (dvma == 0) {
dvma_am = max_am;
} else {
for (align = (1 << 12), dvma_am = 1;
(dvma & align) == 0; align <<= 1, dvma_am++)
;
dvma_am--;
}
/* Calculate the npg_am */
npages = npages_left;
for (npg_am = 0, npages >>= 1; npages; npages >>= 1, npg_am++)
;
am = MIN(max_am, MIN(dvma_am, npg_am));
iotlb_flush(immu, did, dvma, am, hint, IOTLB_PSI);
npages = (1 << am);
npages_left -= npages;
dvma += (npages * IMMU_PAGESIZE);
}
if (npages_left) {
iotlb_flush(immu, did, 0, 0, 0, IOTLB_DSI);
}
mutex_exit(&(immu->immu_regs_lock));
}
/*
* immu_regs_iotlb_dsi()
* domain specific invalidation
*/
void
immu_regs_iotlb_dsi(immu_t *immu, uint_t domain_id)
{
mutex_enter(&(immu->immu_regs_lock));
iotlb_flush(immu, domain_id, 0, 0, 0, IOTLB_DSI);
mutex_exit(&(immu->immu_regs_lock));
}
/*
* immu_regs_iotlb_gbl()
* global iotlb invalidation
*/
void
immu_regs_iotlb_gbl(immu_t *immu)
{
mutex_enter(&(immu->immu_regs_lock));
iotlb_flush(immu, 0, 0, 0, 0, IOTLB_GLOBAL);
mutex_exit(&(immu->immu_regs_lock));
}
static int
gaw2agaw(int gaw)
{
int r, agaw;
r = (gaw - 12) % 9;
if (r == 0)
agaw = gaw;
else
agaw = gaw + 9 - r;
if (agaw > 64)
agaw = 64;
return (agaw);
}
/*
* set_immu_agaw()
* calculate agaw for a IOMMU unit
*/
static int
set_agaw(immu_t *immu)
{
int mgaw, magaw, agaw;
uint_t bitpos;
int max_sagaw_mask, sagaw_mask, mask;
int nlevels;
/*
* mgaw is the maximum guest address width.
* Addresses above this value will be
* blocked by the IOMMU unit.
* sagaw is a bitmask that lists all the
* AGAWs supported by this IOMMU unit.
*/
mgaw = IMMU_CAP_MGAW(immu->immu_regs_cap);
sagaw_mask = IMMU_CAP_SAGAW(immu->immu_regs_cap);
magaw = gaw2agaw(mgaw);
/*
* Get bitpos corresponding to
* magaw
*/
/*
* Maximum SAGAW is specified by
* Vt-d spec.
*/
max_sagaw_mask = ((1 << 5) - 1);
if (sagaw_mask > max_sagaw_mask) {
ddi_err(DER_WARN, NULL, "%s: SAGAW bitmask (%x) "
"is larger than maximu SAGAW bitmask "
"(%x) specified by Intel Vt-d spec",
immu->immu_name, sagaw_mask, max_sagaw_mask);
return (DDI_FAILURE);
}
/*
* Find a supported AGAW <= magaw
*
* sagaw_mask bitpos AGAW (bits) nlevels
* ==============================================
* 0 0 0 0 1 0 30 2
* 0 0 0 1 0 1 39 3
* 0 0 1 0 0 2 48 4
* 0 1 0 0 0 3 57 5
* 1 0 0 0 0 4 64(66) 6
*/
mask = 1;
nlevels = 0;
agaw = 0;
for (mask = 1, bitpos = 0; bitpos < 5;
bitpos++, mask <<= 1) {
if (mask & sagaw_mask) {
nlevels = bitpos + 2;
agaw = 30 + (bitpos * 9);
}
}
/* calculated agaw can be > 64 */
agaw = (agaw > 64) ? 64 : agaw;
if (agaw < 30 || agaw > magaw) {
ddi_err(DER_WARN, NULL, "%s: Calculated AGAW (%d) "
"is outside valid limits [30,%d] specified by Vt-d spec "
"and magaw", immu->immu_name, agaw, magaw);
return (DDI_FAILURE);
}
if (nlevels < 2 || nlevels > 6) {
ddi_err(DER_WARN, NULL, "%s: Calculated pagetable "
"level (%d) is outside valid limits [2,6]",
immu->immu_name, nlevels);
return (DDI_FAILURE);
}
ddi_err(DER_LOG, NULL, "Calculated pagetable "
"level (%d), agaw = %d", nlevels, agaw);
immu->immu_dvma_nlevels = nlevels;
immu->immu_dvma_agaw = agaw;
return (DDI_SUCCESS);
}
static int
setup_regs(immu_t *immu)
{
int error;
ASSERT(immu);
ASSERT(immu->immu_name);
/*
* This lock may be acquired by the IOMMU interrupt handler
*/
mutex_init(&(immu->immu_regs_lock), NULL, MUTEX_DRIVER,
(void *)ipltospl(IMMU_INTR_IPL));
/*
* map the register address space
*/
error = ddi_regs_map_setup(immu->immu_dip, 0,
(caddr_t *)&(immu->immu_regs_addr), (offset_t)0,
(offset_t)IMMU_REGSZ, &immu_regs_attr,
&(immu->immu_regs_handle));
if (error == DDI_FAILURE) {
ddi_err(DER_WARN, NULL, "%s: Intel IOMMU register map failed",
immu->immu_name);
mutex_destroy(&(immu->immu_regs_lock));
return (DDI_FAILURE);
}
/*
* get the register value
*/
immu->immu_regs_cap = get_reg64(immu, IMMU_REG_CAP);
immu->immu_regs_excap = get_reg64(immu, IMMU_REG_EXCAP);
/*
* if the hardware access is non-coherent, we need clflush
*/
if (IMMU_ECAP_GET_C(immu->immu_regs_excap)) {
immu->immu_dvma_coherent = B_TRUE;
} else {
immu->immu_dvma_coherent = B_FALSE;
if (!is_x86_feature(x86_featureset, X86FSET_CLFSH)) {
ddi_err(DER_WARN, NULL,
"immu unit %s can't be enabled due to "
"missing clflush functionality", immu->immu_name);
ddi_regs_map_free(&(immu->immu_regs_handle));
mutex_destroy(&(immu->immu_regs_lock));
return (DDI_FAILURE);
}
}
/* Setup SNP and TM reserved fields */
immu->immu_SNP_reserved = immu_regs_is_SNP_reserved(immu);
immu->immu_TM_reserved = immu_regs_is_TM_reserved(immu);
/*
* Check for Mobile 4 series chipset
*/
if (immu_quirk_mobile4 == B_TRUE &&
!IMMU_CAP_GET_RWBF(immu->immu_regs_cap)) {
ddi_err(DER_LOG, NULL,
"IMMU: Mobile 4 chipset quirk detected. "
"Force-setting RWBF");
IMMU_CAP_SET_RWBF(immu->immu_regs_cap);
ASSERT(IMMU_CAP_GET_RWBF(immu->immu_regs_cap));
}
/*
* retrieve the maximum number of domains
*/
immu->immu_max_domains = IMMU_CAP_ND(immu->immu_regs_cap);
/*
* calculate the agaw
*/
if (set_agaw(immu) != DDI_SUCCESS) {
ddi_regs_map_free(&(immu->immu_regs_handle));
mutex_destroy(&(immu->immu_regs_lock));
return (DDI_FAILURE);
}
immu->immu_regs_cmdval = 0;
immu->immu_flushops = &immu_regs_flushops;
return (DDI_SUCCESS);
}
/* ############### Functions exported ################## */
/*
* immu_regs_setup()
* Setup mappings to a IMMU unit's registers
* so that they can be read/written
*/
void
immu_regs_setup(list_t *listp)
{
int i;
immu_t *immu;
for (i = 0; i < IMMU_MAXSEG; i++) {
immu = list_head(listp);
for (; immu; immu = list_next(listp, immu)) {
/* do your best, continue on error */
if (setup_regs(immu) != DDI_SUCCESS) {
immu->immu_regs_setup = B_FALSE;
} else {
immu->immu_regs_setup = B_TRUE;
}
}
}
}
/*
* immu_regs_map()
*/
int
immu_regs_resume(immu_t *immu)
{
int error;
/*
* remap the register address space
*/
error = ddi_regs_map_setup(immu->immu_dip, 0,
(caddr_t *)&(immu->immu_regs_addr), (offset_t)0,
(offset_t)IMMU_REGSZ, &immu_regs_attr,
&(immu->immu_regs_handle));
if (error != DDI_SUCCESS) {
return (DDI_FAILURE);
}
immu_regs_set_root_table(immu);
immu_regs_intr_enable(immu, immu->immu_regs_intr_msi_addr,
immu->immu_regs_intr_msi_data, immu->immu_regs_intr_uaddr);
(void) immu_intr_handler(immu);
immu_regs_intrmap_enable(immu, immu->immu_intrmap_irta_reg);
immu_regs_qinv_enable(immu, immu->immu_qinv_reg_value);
return (error);
}
/*
* immu_regs_suspend()
*/
void
immu_regs_suspend(immu_t *immu)
{
immu->immu_intrmap_running = B_FALSE;
/* Finally, unmap the regs */
ddi_regs_map_free(&(immu->immu_regs_handle));
}
/*
* immu_regs_startup()
* set a IMMU unit's registers to startup the unit
*/
void
immu_regs_startup(immu_t *immu)
{
uint32_t status;
if (immu->immu_regs_setup == B_FALSE) {
return;
}
ASSERT(immu->immu_regs_running == B_FALSE);
ASSERT(MUTEX_HELD(&(immu->immu_lock)));
mutex_enter(&(immu->immu_regs_lock));
put_reg32(immu, IMMU_REG_GLOBAL_CMD,
immu->immu_regs_cmdval | IMMU_GCMD_TE);
wait_completion(immu, IMMU_REG_GLOBAL_STS,
get_reg32, (status & IMMU_GSTS_TES), status);
immu->immu_regs_cmdval |= IMMU_GCMD_TE;
immu->immu_regs_running = B_TRUE;
mutex_exit(&(immu->immu_regs_lock));
ddi_err(DER_NOTE, NULL, "IMMU %s running", immu->immu_name);
}
/*
* immu_regs_shutdown()
* shutdown a unit
*/
void
immu_regs_shutdown(immu_t *immu)
{
uint32_t status;
if (immu->immu_regs_running == B_FALSE) {
return;
}
ASSERT(immu->immu_regs_setup == B_TRUE);
ASSERT(MUTEX_HELD(&(immu->immu_lock)));
mutex_enter(&(immu->immu_regs_lock));
immu->immu_regs_cmdval &= ~IMMU_GCMD_TE;
put_reg32(immu, IMMU_REG_GLOBAL_CMD,
immu->immu_regs_cmdval);
wait_completion(immu, IMMU_REG_GLOBAL_STS,
get_reg32, !(status & IMMU_GSTS_TES), status);
immu->immu_regs_running = B_FALSE;
mutex_exit(&(immu->immu_regs_lock));
ddi_err(DER_NOTE, NULL, "IOMMU %s stopped", immu->immu_name);
}
/*
* immu_regs_intr()
* Set a IMMU unit regs to setup a IMMU unit's
* interrupt handler
*/
void
immu_regs_intr_enable(immu_t *immu, uint32_t msi_addr, uint32_t msi_data,
uint32_t uaddr)
{
mutex_enter(&(immu->immu_regs_lock));
immu->immu_regs_intr_msi_addr = msi_addr;
immu->immu_regs_intr_uaddr = uaddr;
immu->immu_regs_intr_msi_data = msi_data;
put_reg32(immu, IMMU_REG_FEVNT_ADDR, msi_addr);
put_reg32(immu, IMMU_REG_FEVNT_UADDR, uaddr);
put_reg32(immu, IMMU_REG_FEVNT_DATA, msi_data);
put_reg32(immu, IMMU_REG_FEVNT_CON, 0);
mutex_exit(&(immu->immu_regs_lock));
}
/*
* immu_regs_passthru_supported()
* Returns B_TRUE ifi passthru is supported
*/
boolean_t
immu_regs_passthru_supported(immu_t *immu)
{
if (IMMU_ECAP_GET_PT(immu->immu_regs_excap)) {
return (B_TRUE);
}
ddi_err(DER_WARN, NULL, "Passthru not supported");
return (B_FALSE);
}
/*
* immu_regs_is_TM_reserved()
* Returns B_TRUE if TM field is reserved
*/
boolean_t
immu_regs_is_TM_reserved(immu_t *immu)
{
if (IMMU_ECAP_GET_DI(immu->immu_regs_excap) ||
IMMU_ECAP_GET_CH(immu->immu_regs_excap)) {
return (B_FALSE);
}
return (B_TRUE);
}
/*
* immu_regs_is_SNP_reserved()
* Returns B_TRUE if SNP field is reserved
*/
boolean_t
immu_regs_is_SNP_reserved(immu_t *immu)
{
return (IMMU_ECAP_GET_SC(immu->immu_regs_excap) ? B_FALSE : B_TRUE);
}
/*
* immu_regs_wbf_flush()
* If required and supported, write to IMMU
* unit's regs to flush DMA write buffer(s)
*/
void
immu_regs_wbf_flush(immu_t *immu)
{
uint32_t status;
if (!IMMU_CAP_GET_RWBF(immu->immu_regs_cap)) {
return;
}
mutex_enter(&(immu->immu_regs_lock));
put_reg32(immu, IMMU_REG_GLOBAL_CMD,
immu->immu_regs_cmdval | IMMU_GCMD_WBF);
wait_completion(immu, IMMU_REG_GLOBAL_STS,
get_reg32, (!(status & IMMU_GSTS_WBFS)), status);
mutex_exit(&(immu->immu_regs_lock));
}
/*
* immu_regs_cpu_flush()
* flush the cpu cache line after CPU memory writes, so
* IOMMU can see the writes
*/
void
immu_regs_cpu_flush(immu_t *immu, caddr_t addr, uint_t size)
{
uint64_t i;
ASSERT(immu);
if (immu->immu_dvma_coherent == B_TRUE)
return;
for (i = 0; i < size; i += x86_clflush_size, addr += x86_clflush_size) {
clflush_insn(addr);
}
mfence_insn();
}
/*
* immu_regs_context_flush()
* flush the context cache
*/
static void
context_flush(immu_t *immu, uint8_t function_mask,
uint16_t sid, uint_t did, immu_context_inv_t type)
{
uint64_t command = 0;
uint64_t status;
ASSERT(immu);
ASSERT(rw_write_held(&(immu->immu_ctx_rwlock)));
/*
* define the command
*/
switch (type) {
case CONTEXT_FSI:
command |= CCMD_INV_ICC | CCMD_INV_DEVICE
| CCMD_INV_DID(did)
| CCMD_INV_SID(sid) | CCMD_INV_FM(function_mask);
break;
case CONTEXT_DSI:
ASSERT(function_mask == 0);
ASSERT(sid == 0);
command |= CCMD_INV_ICC | CCMD_INV_DOMAIN
| CCMD_INV_DID(did);
break;
case CONTEXT_GLOBAL:
ASSERT(function_mask == 0);
ASSERT(sid == 0);
ASSERT(did == 0);
command |= CCMD_INV_ICC | CCMD_INV_GLOBAL;
break;
default:
ddi_err(DER_PANIC, NULL,
"%s: incorrect context cache flush type",
immu->immu_name);
/*NOTREACHED*/
}
mutex_enter(&(immu->immu_regs_lock));
ASSERT(!(get_reg64(immu, IMMU_REG_CONTEXT_CMD) & CCMD_INV_ICC));
put_reg64(immu, IMMU_REG_CONTEXT_CMD, command);
wait_completion(immu, IMMU_REG_CONTEXT_CMD, get_reg64,
(!(status & CCMD_INV_ICC)), status);
mutex_exit(&(immu->immu_regs_lock));
}
void
immu_regs_context_fsi(immu_t *immu, uint8_t function_mask,
uint16_t source_id, uint_t domain_id)
{
context_flush(immu, function_mask, source_id, domain_id, CONTEXT_FSI);
}
void
immu_regs_context_dsi(immu_t *immu, uint_t domain_id)
{
context_flush(immu, 0, 0, domain_id, CONTEXT_DSI);
}
void
immu_regs_context_gbl(immu_t *immu)
{
context_flush(immu, 0, 0, 0, CONTEXT_GLOBAL);
}
void
immu_regs_set_root_table(immu_t *immu)
{
uint32_t status;
mutex_enter(&(immu->immu_regs_lock));
put_reg64(immu, IMMU_REG_ROOTENTRY,
immu->immu_ctx_root->hwpg_paddr);
put_reg32(immu, IMMU_REG_GLOBAL_CMD,
immu->immu_regs_cmdval | IMMU_GCMD_SRTP);
wait_completion(immu, IMMU_REG_GLOBAL_STS,
get_reg32, (status & IMMU_GSTS_RTPS), status);
mutex_exit(&(immu->immu_regs_lock));
}
/* enable queued invalidation interface */
void
immu_regs_qinv_enable(immu_t *immu, uint64_t qinv_reg_value)
{
uint32_t status;
if (immu_qinv_enable == B_FALSE)
return;
mutex_enter(&immu->immu_regs_lock);
immu->immu_qinv_reg_value = qinv_reg_value;
/* Initialize the Invalidation Queue Tail register to zero */
put_reg64(immu, IMMU_REG_INVAL_QT, 0);
/* set invalidation queue base address register */
put_reg64(immu, IMMU_REG_INVAL_QAR, qinv_reg_value);
/* enable queued invalidation interface */
put_reg32(immu, IMMU_REG_GLOBAL_CMD,
immu->immu_regs_cmdval | IMMU_GCMD_QIE);
wait_completion(immu, IMMU_REG_GLOBAL_STS,
get_reg32, (status & IMMU_GSTS_QIES), status);
mutex_exit(&immu->immu_regs_lock);
immu->immu_regs_cmdval |= IMMU_GCMD_QIE;
immu->immu_qinv_running = B_TRUE;
}
/* enable interrupt remapping hardware unit */
void
immu_regs_intrmap_enable(immu_t *immu, uint64_t irta_reg)
{
uint32_t status;
if (immu_intrmap_enable == B_FALSE)
return;
/* set interrupt remap table pointer */
mutex_enter(&(immu->immu_regs_lock));
immu->immu_intrmap_irta_reg = irta_reg;
put_reg64(immu, IMMU_REG_IRTAR, irta_reg);
put_reg32(immu, IMMU_REG_GLOBAL_CMD,
immu->immu_regs_cmdval | IMMU_GCMD_SIRTP);
wait_completion(immu, IMMU_REG_GLOBAL_STS,
get_reg32, (status & IMMU_GSTS_IRTPS), status);
mutex_exit(&(immu->immu_regs_lock));
/* global flush intr entry cache */
if (immu_qinv_enable == B_TRUE)
immu_qinv_intr_global(immu);
/* enable interrupt remapping */
mutex_enter(&(immu->immu_regs_lock));
put_reg32(immu, IMMU_REG_GLOBAL_CMD,
immu->immu_regs_cmdval | IMMU_GCMD_IRE);
wait_completion(immu, IMMU_REG_GLOBAL_STS,
get_reg32, (status & IMMU_GSTS_IRES),
status);
immu->immu_regs_cmdval |= IMMU_GCMD_IRE;
/* set compatible mode */
put_reg32(immu, IMMU_REG_GLOBAL_CMD,
immu->immu_regs_cmdval | IMMU_GCMD_CFI);
wait_completion(immu, IMMU_REG_GLOBAL_STS,
get_reg32, (status & IMMU_GSTS_CFIS),
status);
immu->immu_regs_cmdval |= IMMU_GCMD_CFI;
mutex_exit(&(immu->immu_regs_lock));
immu->immu_intrmap_running = B_TRUE;
}
uint64_t
immu_regs_get64(immu_t *immu, uint_t reg)
{
return (get_reg64(immu, reg));
}
uint32_t
immu_regs_get32(immu_t *immu, uint_t reg)
{
return (get_reg32(immu, reg));
}
void
immu_regs_put64(immu_t *immu, uint_t reg, uint64_t val)
{
put_reg64(immu, reg, val);
}
void
immu_regs_put32(immu_t *immu, uint_t reg, uint32_t val)
{
put_reg32(immu, reg, val);
}
|