1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
|
/*
* This file and its contents are supplied under the terms of the
* Common Development and Distribution License ("CDDL"), version 1.0.
* You may only use this file in accordance with the terms of version
* 1.0 of the CDDL.
*
* A full copy of the text of the CDDL should have accompanied this
* source. A copy of the CDDL is also available via the Internet at
* http://www.illumos.org/license/CDDL.
*/
/*
* Copyright 2019 Joyent, Inc.
* Copyright 2022 Oxide Computer Company
*/
#include <sys/types.h>
#include <sys/malloc.h>
#include <sys/atomic.h>
#include <sys/kmem.h>
#include <sys/sysmacros.h>
#include <sys/sunddi.h>
#include <sys/panic.h>
#include <vm/hat.h>
#include <vm/as.h>
#include <vm/hat_i86.h>
#include <sys/vmm_gpt.h>
/*
* VMM Generic Page Tables
*
* Bhyve runs on AMD and Intel hosts and both support nested page tables
* describing the guest's physical address space. But the two use different and
* mutually incompatible page table formats: Intel uses the EPT, which is based
* on the Itanium page table format, while AMD uses the nPT, which is based on
* the x86_64 page table format.
*
* The GPT abstracts these format differences, and provides a single interface
* for interacting with either kind of table structure.
*
* At a high-level, the GPT is a tree that mirrors the paging table radix tree.
* It is parameterized with operations on PTEs that are specific to the table
* type (EPT or nPT) and also keeps track of how many pages the table maps, as
* well as a pointer to the root node in the tree.
*
* A node in the GPT keep pointers to its parent (NULL for the root), its
* left-most child, and its rightward siblings. The node understands its
* position in the tree in terms of its level it appears at and the index it
* occupies at its parent's level, as well as how many children it has. It also
* owns the physical memory page for the hardware page table entries that map
* its children. Thus, for a node at any given level in the tree, the nested
* PTE for that node's child at index $i$ is the i'th uint64_t in that node's
* entry page and the entry page is part of the paging structure consumed by
* hardware.
*
* The GPT interface provides functions for populating and vacating the tree for
* regions in the guest physical address space, and for mapping and unmapping
* pages in populated regions. Users must populate a region before mapping
* pages into it, and must unmap pages before vacating the region.
*
* The interface also exposes a function for walking the table from the root to
* a leaf entry, populating an array of pointers to PTEs. This walk uses the
* hardware page structure itself, and is thus fast, though as a result it
* potentially aliases entries; caveat emptor. The walk primitive is used for
* mapping, unmapping, and lookups.
*
* Format-specific differences are abstracted by parameterizing the GPT with a
* set of PTE operations specific to the platform. The GPT code makes use of
* these when mapping or populating entries, resetting accessed and dirty bits
* on entries, and similar operations.
*/
/*
* A GPT node.
*
* Each node contains pointers to its parent, its left-most child, and its
* rightward siblings. Interior nodes also maintain a reference count, and
* each node contains its level and index in its parent's table. Finally,
* each node contains the host PFN of the page that it links into the page
* table, as well as a kernel pointer to table.
*
* On leaf nodes, the reference count tracks how many entries in the table are
* covered by mapping from the containing vmspace. This is maintained during
* calls to vmm_populate_region() and vmm_gpt_vacate_region() as part of vmspace
* map/unmap operations, rather than in the data path of faults populating the
* PTEs themselves.
*
* Note, this is carefully sized to fit exactly into a 64-byte cache line.
*/
typedef struct vmm_gpt_node vmm_gpt_node_t;
struct vmm_gpt_node {
uint64_t vgn_host_pfn;
uint16_t vgn_level;
uint16_t vgn_index;
uint32_t vgn_ref_cnt;
vmm_gpt_node_t *vgn_parent;
vmm_gpt_node_t *vgn_children;
vmm_gpt_node_t *vgn_siblings;
uint64_t *vgn_entries;
uint64_t vgn_gpa;
uint64_t _vgn_pad;
};
/*
* A VMM Generic Page Table.
*
* The generic page table is a format-agnostic, 4-level paging structure
* modeling a second-level page table (EPT on Intel, nPT on AMD). It
* contains a counter of pages the table maps, a pointer to the root node
* in the table, and is parameterized with a set of PTE operations specific
* to the table type.
*/
struct vmm_gpt {
vmm_gpt_node_t *vgpt_root;
vmm_pte_ops_t *vgpt_pte_ops;
};
/*
* VMM Guest Page Tables
*/
/*
* Allocates a vmm_gpt_node_t structure with corresponding page of memory to
* hold the PTEs it contains.
*/
static vmm_gpt_node_t *
vmm_gpt_node_alloc(void)
{
vmm_gpt_node_t *node;
caddr_t page;
node = kmem_zalloc(sizeof (*node), KM_SLEEP);
/*
* Note: despite the man page, allocating PAGESIZE bytes is
* guaranteed to be page-aligned.
*/
page = kmem_zalloc(PAGESIZE, KM_SLEEP);
node->vgn_entries = (uint64_t *)page;
node->vgn_host_pfn = hat_getpfnum(kas.a_hat, page);
return (node);
}
/*
* Allocates and initializes a vmm_gpt_t.
*/
vmm_gpt_t *
vmm_gpt_alloc(vmm_pte_ops_t *pte_ops)
{
vmm_gpt_t *gpt;
VERIFY(pte_ops != NULL);
gpt = kmem_zalloc(sizeof (*gpt), KM_SLEEP);
gpt->vgpt_pte_ops = pte_ops;
gpt->vgpt_root = vmm_gpt_node_alloc();
return (gpt);
}
/*
* Frees the given node, first nulling out all of its links to other nodes in
* the tree, adjusting its parents reference count, and unlinking itself from
* its parents page table.
*/
static void
vmm_gpt_node_free(vmm_gpt_node_t *node)
{
ASSERT(node != NULL);
ASSERT3U(node->vgn_ref_cnt, ==, 0);
ASSERT(node->vgn_host_pfn != PFN_INVALID);
ASSERT(node->vgn_entries != NULL);
if (node->vgn_parent != NULL) {
uint64_t *parent_entries = node->vgn_parent->vgn_entries;
parent_entries[node->vgn_index] = 0;
node->vgn_parent->vgn_ref_cnt--;
}
kmem_free(node->vgn_entries, PAGESIZE);
kmem_free(node, sizeof (*node));
}
/*
* Frees the portion of the radix tree rooted at the given node.
*/
static void
vmm_gpt_node_tree_free(vmm_gpt_node_t *node)
{
ASSERT(node != NULL);
for (vmm_gpt_node_t *child = node->vgn_children, *next = NULL;
child != NULL;
child = next) {
next = child->vgn_siblings;
vmm_gpt_node_tree_free(child);
}
vmm_gpt_node_free(node);
}
/*
* Cleans up a vmm_gpt_t by removing any lingering vmm_gpt_node_t entries
* it refers to.
*/
void
vmm_gpt_free(vmm_gpt_t *gpt)
{
vmm_gpt_node_tree_free(gpt->vgpt_root);
kmem_free(gpt, sizeof (*gpt));
}
/*
* Return the index in the paging structure for the given level.
*/
static inline uint16_t
vmm_gpt_node_index(uint64_t gpa, enum vmm_gpt_node_level level)
{
const int SHIFTS[MAX_GPT_LEVEL] = { 39, 30, 21, 12 };
const uint_t MASK = (1U << 9) - 1;
ASSERT(level < MAX_GPT_LEVEL);
return ((gpa >> SHIFTS[level]) & MASK);
}
/*
* Finds the child for the given GPA in the given parent node.
* Returns a pointer to node, or NULL if it is not found.
*/
static vmm_gpt_node_t *
vmm_gpt_node_find_child(vmm_gpt_node_t *parent, uint64_t gpa)
{
if (parent == NULL)
return (NULL);
const uint16_t index = vmm_gpt_node_index(gpa, parent->vgn_level);
for (vmm_gpt_node_t *child = parent->vgn_children;
child != NULL && child->vgn_index <= index;
child = child->vgn_siblings) {
if (child->vgn_index == index)
return (child);
}
return (NULL);
}
/*
* Walks the GPT for the given GPA, accumulating entries to the given depth. If
* the walk terminates before the depth is reached, the remaining entries are
* written with NULLs.
*/
void
vmm_gpt_walk(vmm_gpt_t *gpt, uint64_t gpa, uint64_t **entries,
enum vmm_gpt_node_level depth)
{
uint64_t *current_entries, entry;
pfn_t pfn;
ASSERT(gpt != NULL);
current_entries = gpt->vgpt_root->vgn_entries;
for (uint_t i = 0; i < depth; i++) {
if (current_entries == NULL) {
entries[i] = NULL;
continue;
}
entries[i] = ¤t_entries[vmm_gpt_node_index(gpa, i)];
entry = *entries[i];
if (!gpt->vgpt_pte_ops->vpeo_pte_is_present(entry)) {
current_entries = NULL;
continue;
}
pfn = gpt->vgpt_pte_ops->vpeo_pte_pfn(entry);
current_entries = (uint64_t *)hat_kpm_pfn2va(pfn);
}
}
/*
* Looks up an entry given GPA.
*/
uint64_t *
vmm_gpt_lookup(vmm_gpt_t *gpt, uint64_t gpa)
{
uint64_t *entries[MAX_GPT_LEVEL];
vmm_gpt_walk(gpt, gpa, entries, MAX_GPT_LEVEL);
return (entries[LEVEL1]);
}
/*
* Adds a node for the given GPA to the GPT as a child of the given parent.
*/
static void
vmm_gpt_add_child(vmm_gpt_t *gpt, vmm_gpt_node_t *parent, vmm_gpt_node_t *child,
uint64_t gpa)
{
vmm_gpt_node_t **prevp;
vmm_gpt_node_t *node;
uint64_t *parent_entries, entry;
ASSERT(gpt != NULL);
ASSERT(gpt->vgpt_pte_ops != NULL);
ASSERT(parent != NULL);
ASSERT(child != NULL);
ASSERT3U(parent->vgn_level, <, LEVEL1);
const uint64_t gpa_mask[3] = {
[LEVEL4] = 0xffffff8000000000ul, /* entries cover 512G */
[LEVEL3] = 0xffffffffc0000000ul, /* entries cover 1G */
[LEVEL2] = 0xffffffffffe00000ul, /* entries cover 2M */
};
const int index = vmm_gpt_node_index(gpa, parent->vgn_level);
child->vgn_index = index;
child->vgn_level = parent->vgn_level + 1;
child->vgn_parent = parent;
child->vgn_gpa = gpa & gpa_mask[parent->vgn_level];
parent_entries = parent->vgn_entries;
entry = gpt->vgpt_pte_ops->vpeo_map_table(child->vgn_host_pfn);
parent_entries[index] = entry;
for (prevp = &parent->vgn_children, node = parent->vgn_children;
node != NULL;
prevp = &node->vgn_siblings, node = node->vgn_siblings) {
if (node->vgn_index > child->vgn_index) {
break;
}
}
if (node != NULL)
ASSERT3U(node->vgn_index, !=, child->vgn_index);
child->vgn_siblings = node;
*prevp = child;
parent->vgn_ref_cnt++;
}
/*
* Populate the GPT with nodes so that a entries for the given GPA exist. Note
* that this does not actually map the entry, but simply ensures that the
* entries exist.
*/
static void
vmm_gpt_populate_entry(vmm_gpt_t *gpt, uint64_t gpa)
{
vmm_gpt_node_t *node, *child;
ASSERT(gpt != NULL);
ASSERT0(gpa & PAGEOFFSET);
node = gpt->vgpt_root;
for (uint_t i = 0; i < LEVEL1; i++) {
ASSERT(node != NULL);
child = vmm_gpt_node_find_child(node, gpa);
if (child == NULL) {
child = vmm_gpt_node_alloc();
ASSERT(child != NULL);
vmm_gpt_add_child(gpt, node, child, gpa);
}
node = child;
}
/*
* Bump the reference count for this leaf for the PTE that is now usable
* by the mapping covering its GPA.
*/
ASSERT3U(node->vgn_level, ==, LEVEL1);
ASSERT3U(node->vgn_ref_cnt, <, 512);
node->vgn_ref_cnt++;
}
/*
* Ensures that PTEs for the region of address space bounded by
* [start, end) exist in the tree.
*/
void
vmm_gpt_populate_region(vmm_gpt_t *gpt, uint64_t start, uint64_t end)
{
ASSERT0(start & PAGEOFFSET);
ASSERT0(end & PAGEOFFSET);
for (uint64_t page = start; page < end; page += PAGESIZE) {
vmm_gpt_populate_entry(gpt, page);
}
}
/*
* Format a PTE and install it in the provided PTE-pointer.
*/
bool
vmm_gpt_map_at(vmm_gpt_t *gpt, uint64_t *ptep, pfn_t pfn, uint_t prot,
uint8_t attr)
{
uint64_t entry, old_entry;
entry = gpt->vgpt_pte_ops->vpeo_map_page(pfn, prot, attr);
old_entry = atomic_cas_64(ptep, 0, entry);
if (old_entry != 0) {
ASSERT3U(gpt->vgpt_pte_ops->vpeo_pte_pfn(entry), ==,
gpt->vgpt_pte_ops->vpeo_pte_pfn(old_entry));
return (false);
}
return (true);
}
/*
* Inserts an entry for a given GPA into the table. The caller must
* ensure that a conflicting PFN is not mapped at the requested location.
* Racing operations to map the same PFN at one location is acceptable and
* properly handled.
*/
bool
vmm_gpt_map(vmm_gpt_t *gpt, uint64_t gpa, pfn_t pfn, uint_t prot, uint8_t attr)
{
uint64_t *entries[MAX_GPT_LEVEL];
ASSERT(gpt != NULL);
vmm_gpt_walk(gpt, gpa, entries, MAX_GPT_LEVEL);
ASSERT(entries[LEVEL1] != NULL);
return (vmm_gpt_map_at(gpt, entries[LEVEL1], pfn, prot, attr));
}
/*
* Removes a child node from its parent's list of children, and then frees
* the now-orphaned child.
*/
static void
vmm_gpt_node_remove_child(vmm_gpt_node_t *parent, vmm_gpt_node_t *child)
{
ASSERT(parent != NULL);
ASSERT3P(child->vgn_children, ==, NULL);
vmm_gpt_node_t **prevp = &parent->vgn_children;
for (vmm_gpt_node_t *node = parent->vgn_children;
node != NULL;
prevp = &node->vgn_siblings, node = node->vgn_siblings) {
if (node == child) {
*prevp = node->vgn_siblings;
vmm_gpt_node_free(node);
break;
}
}
}
/*
* Cleans up unused inner nodes in the GPT. Asserts that the leaf corresponding
* to the entry does not map any additional pages.
*/
static void
vmm_gpt_vacate_entry(vmm_gpt_t *gpt, uint64_t gpa)
{
vmm_gpt_node_t *nodes[MAX_GPT_LEVEL], *node;
node = gpt->vgpt_root;
for (uint_t i = 0; i < MAX_GPT_LEVEL; i++) {
nodes[i] = node;
node = vmm_gpt_node_find_child(node, gpa);
}
for (uint_t i = LEVEL1; i > 0; i--) {
node = nodes[i];
if (node == NULL)
continue;
if (i == LEVEL1) {
ASSERT0(node->vgn_entries[vmm_gpt_node_index(gpa, i)]);
ASSERT3U(node->vgn_ref_cnt, !=, 0);
/*
* Just as vmm_gpt_populate_entry() increments the
* reference count for leaf PTEs which become usable,
* here we decrement it as they become unusable as the
* mapping covering its GPA is removed.
*/
node->vgn_ref_cnt--;
}
if (node->vgn_ref_cnt != 0)
break;
vmm_gpt_node_remove_child(nodes[i - 1], nodes[i]);
}
}
/*
* Cleans up the unused inner nodes in the GPT for a region of guest physical
* address space of [start, end). The region must map no pages.
*/
void
vmm_gpt_vacate_region(vmm_gpt_t *gpt, uint64_t start, uint64_t end)
{
ASSERT0(start & PAGEOFFSET);
ASSERT0(end & PAGEOFFSET);
for (uint64_t page = start; page < end; page += PAGESIZE) {
vmm_gpt_vacate_entry(gpt, page);
}
}
/*
* Remove a mapping from the table. Returns false if the page was not mapped,
* otherwise returns true.
*/
bool
vmm_gpt_unmap(vmm_gpt_t *gpt, uint64_t gpa)
{
uint64_t *entries[MAX_GPT_LEVEL], entry;
ASSERT(gpt != NULL);
vmm_gpt_walk(gpt, gpa, entries, MAX_GPT_LEVEL);
if (entries[LEVEL1] == NULL)
return (false);
entry = *entries[LEVEL1];
*entries[LEVEL1] = 0;
return (gpt->vgpt_pte_ops->vpeo_pte_is_present(entry));
}
/*
* Un-maps the region of guest physical address space bounded by [start..end).
* Returns the number of pages that are unmapped.
*/
size_t
vmm_gpt_unmap_region(vmm_gpt_t *gpt, uint64_t start, uint64_t end)
{
ASSERT0(start & PAGEOFFSET);
ASSERT0(end & PAGEOFFSET);
size_t num_unmapped = 0;
for (uint64_t page = start; page < end; page += PAGESIZE) {
if (vmm_gpt_unmap(gpt, page) != 0) {
num_unmapped++;
}
}
return (num_unmapped);
}
/*
* Returns a value indicating whether or not this GPT maps the given
* GPA. If the GPA is mapped, *protp will be filled with the protection
* bits of the entry. Otherwise, it will be ignored.
*/
bool
vmm_gpt_is_mapped(vmm_gpt_t *gpt, uint64_t *ptep, pfn_t *pfnp, uint_t *protp)
{
uint64_t entry;
if (ptep == NULL) {
return (false);
}
entry = *ptep;
if (!gpt->vgpt_pte_ops->vpeo_pte_is_present(entry)) {
return (false);
}
*pfnp = gpt->vgpt_pte_ops->vpeo_pte_pfn(entry);
*protp = gpt->vgpt_pte_ops->vpeo_pte_prot(entry);
return (true);
}
/*
* Resets the accessed bit on the page table entry pointed to be `entry`.
* If `on` is true, the bit will be set, otherwise it will be cleared.
* The old value of the bit is returned.
*/
uint_t
vmm_gpt_reset_accessed(vmm_gpt_t *gpt, uint64_t *entry, bool on)
{
ASSERT(entry != NULL);
return (gpt->vgpt_pte_ops->vpeo_reset_accessed(entry, on));
}
/*
* Resets the dirty bit on the page table entry pointed to be `entry`.
* If `on` is true, the bit will be set, otherwise it will be cleared.
* The old value of the bit is returned.
*/
uint_t
vmm_gpt_reset_dirty(vmm_gpt_t *gpt, uint64_t *entry, bool on)
{
ASSERT(entry != NULL);
return (gpt->vgpt_pte_ops->vpeo_reset_dirty(entry, on));
}
/*
* Get properly formatted PML4 (EPTP/nCR3) for GPT.
*/
uint64_t
vmm_gpt_get_pmtp(vmm_gpt_t *gpt)
{
return (gpt->vgpt_pte_ops->vpeo_get_pmtp(gpt->vgpt_root->vgn_host_pfn));
}
|