1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
|
/*
* CDDL HEADER START
*
* The contents of this file are subject to the terms of the
* Common Development and Distribution License (the "License").
* You may not use this file except in compliance with the License.
*
* You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
* or http://www.opensolaris.org/os/licensing.
* See the License for the specific language governing permissions
* and limitations under the License.
*
* When distributing Covered Code, include this CDDL HEADER in each
* file and include the License file at usr/src/OPENSOLARIS.LICENSE.
* If applicable, add the following below this CDDL HEADER, with the
* fields enclosed by brackets "[]" replaced with your own identifying
* information: Portions Copyright [yyyy] [name of copyright owner]
*
* CDDL HEADER END
*/
/*
* Copyright 2009 Sun Microsystems, Inc. All rights reserved.
* Use is subject to license terms.
*/
/*
* Copyright (c) 2009-2010, Intel Corporation.
* All rights reserved.
*/
/*
* Copyright 2019 Joyent, Inc.
*/
#include <sys/x86_archext.h>
#include <sys/machsystm.h>
#include <sys/x_call.h>
#include <sys/stat.h>
#include <sys/acpi/acpi.h>
#include <sys/acpica.h>
#include <sys/cpu_acpi.h>
#include <sys/cpu_idle.h>
#include <sys/cpupm.h>
#include <sys/cpu_event.h>
#include <sys/hpet.h>
#include <sys/archsystm.h>
#include <vm/hat_i86.h>
#include <sys/dtrace.h>
#include <sys/sdt.h>
#include <sys/callb.h>
#define CSTATE_USING_HPET 1
#define CSTATE_USING_LAT 2
#define CPU_IDLE_STOP_TIMEOUT 1000
extern void cpu_idle_adaptive(void);
extern uint32_t cpupm_next_cstate(cma_c_state_t *cs_data,
cpu_acpi_cstate_t *cstates, uint32_t cs_count, hrtime_t start);
static int cpu_idle_init(cpu_t *);
static void cpu_idle_fini(cpu_t *);
static void cpu_idle_stop(cpu_t *);
static boolean_t cpu_deep_idle_callb(void *arg, int code);
static boolean_t cpu_idle_cpr_callb(void *arg, int code);
static void acpi_cpu_cstate(cpu_acpi_cstate_t *cstate);
static boolean_t cstate_use_timer(hrtime_t *lapic_expire, int timer);
/*
* the flag of always-running local APIC timer.
* the flag of HPET Timer use in deep cstate.
*/
static boolean_t cpu_cstate_arat = B_FALSE;
static boolean_t cpu_cstate_hpet = B_FALSE;
/*
* Interfaces for modules implementing Intel's deep c-state.
*/
cpupm_state_ops_t cpu_idle_ops = {
"Generic ACPI C-state Support",
cpu_idle_init,
cpu_idle_fini,
NULL,
cpu_idle_stop
};
static kmutex_t cpu_idle_callb_mutex;
static callb_id_t cpu_deep_idle_callb_id;
static callb_id_t cpu_idle_cpr_callb_id;
static uint_t cpu_idle_cfg_state;
static kmutex_t cpu_idle_mutex;
cpu_idle_kstat_t cpu_idle_kstat = {
{ "address_space_id", KSTAT_DATA_STRING },
{ "latency", KSTAT_DATA_UINT32 },
{ "power", KSTAT_DATA_UINT32 },
};
/*
* kstat update function of the c-state info
*/
static int
cpu_idle_kstat_update(kstat_t *ksp, int flag)
{
cpu_acpi_cstate_t *cstate = ksp->ks_private;
if (flag == KSTAT_WRITE) {
return (EACCES);
}
if (cstate->cs_addrspace_id == ACPI_ADR_SPACE_FIXED_HARDWARE) {
kstat_named_setstr(&cpu_idle_kstat.addr_space_id,
"FFixedHW");
} else if (cstate->cs_addrspace_id == ACPI_ADR_SPACE_SYSTEM_IO) {
kstat_named_setstr(&cpu_idle_kstat.addr_space_id,
"SystemIO");
} else {
kstat_named_setstr(&cpu_idle_kstat.addr_space_id,
"Unsupported");
}
cpu_idle_kstat.cs_latency.value.ui32 = cstate->cs_latency;
cpu_idle_kstat.cs_power.value.ui32 = cstate->cs_power;
return (0);
}
/*
* Used during configuration callbacks to manage implementation specific
* details of the hardware timer used during Deep C-state.
*/
boolean_t
cstate_timer_callback(int code)
{
if (cpu_cstate_arat) {
return (B_TRUE);
} else if (cpu_cstate_hpet) {
return (hpet.callback(code));
}
return (B_FALSE);
}
/*
* Some Local APIC Timers do not work during Deep C-states.
* The Deep C-state idle function uses this function to ensure it is using a
* hardware timer that works during Deep C-states. This function also
* switches the timer back to the LACPI Timer after Deep C-state.
*/
static boolean_t
cstate_use_timer(hrtime_t *lapic_expire, int timer)
{
if (cpu_cstate_arat)
return (B_TRUE);
/*
* We have to return B_FALSE if no arat or hpet support
*/
if (!cpu_cstate_hpet)
return (B_FALSE);
switch (timer) {
case CSTATE_USING_HPET:
return (hpet.use_hpet_timer(lapic_expire));
case CSTATE_USING_LAT:
hpet.use_lapic_timer(*lapic_expire);
return (B_TRUE);
default:
return (B_FALSE);
}
}
/*
* c-state wakeup function.
* Similar to cpu_wakeup and cpu_wakeup_mwait except this function deals
* with CPUs asleep in MWAIT, HLT, or ACPI Deep C-State.
*/
void
cstate_wakeup(cpu_t *cp, int bound)
{
struct machcpu *mcpu = &(cp->cpu_m);
volatile uint32_t *mcpu_mwait = mcpu->mcpu_mwait;
cpupart_t *cpu_part;
uint_t cpu_found;
processorid_t cpu_sid;
cpu_part = cp->cpu_part;
cpu_sid = cp->cpu_seqid;
/*
* Clear the halted bit for that CPU since it will be woken up
* in a moment.
*/
if (bitset_in_set(&cpu_part->cp_haltset, cpu_sid)) {
/*
* Clear the halted bit for that CPU since it will be
* poked in a moment.
*/
bitset_atomic_del(&cpu_part->cp_haltset, cpu_sid);
/*
* We may find the current CPU present in the halted cpuset
* if we're in the context of an interrupt that occurred
* before we had a chance to clear our bit in cpu_idle().
* Waking ourself is obviously unnecessary, since if
* we're here, we're not halted.
*/
if (cp != CPU) {
/*
* Use correct wakeup mechanism
*/
if ((mcpu_mwait != NULL) &&
(*mcpu_mwait == MWAIT_HALTED))
MWAIT_WAKEUP(cp);
else
poke_cpu(cp->cpu_id);
}
return;
} else {
/*
* This cpu isn't halted, but it's idle or undergoing a
* context switch. No need to awaken anyone else.
*/
if (cp->cpu_thread == cp->cpu_idle_thread ||
cp->cpu_disp_flags & CPU_DISP_DONTSTEAL)
return;
}
/*
* No need to wake up other CPUs if the thread we just enqueued
* is bound.
*/
if (bound)
return;
/*
* See if there's any other halted CPUs. If there are, then
* select one, and awaken it.
* It's possible that after we find a CPU, somebody else
* will awaken it before we get the chance.
* In that case, look again.
*/
do {
cpu_found = bitset_find(&cpu_part->cp_haltset);
if (cpu_found == (uint_t)-1)
return;
} while (bitset_atomic_test_and_del(&cpu_part->cp_haltset,
cpu_found) < 0);
/*
* Must use correct wakeup mechanism to avoid lost wakeup of
* alternate cpu.
*/
if (cpu_found != CPU->cpu_seqid) {
mcpu_mwait = cpu_seq[cpu_found]->cpu_m.mcpu_mwait;
if ((mcpu_mwait != NULL) && (*mcpu_mwait == MWAIT_HALTED))
MWAIT_WAKEUP(cpu_seq[cpu_found]);
else
poke_cpu(cpu_seq[cpu_found]->cpu_id);
}
}
/*
* Function called by CPU idle notification framework to check whether CPU
* has been awakened. It will be called with interrupt disabled.
* If CPU has been awakened, call cpu_idle_exit() to notify CPU idle
* notification framework.
*/
static void
acpi_cpu_mwait_check_wakeup(void *arg)
{
volatile uint32_t *mcpu_mwait = (volatile uint32_t *)arg;
ASSERT(arg != NULL);
if (*mcpu_mwait != MWAIT_HALTED) {
/*
* CPU has been awakened, notify CPU idle notification system.
*/
cpu_idle_exit(CPU_IDLE_CB_FLAG_IDLE);
} else {
/*
* Toggle interrupt flag to detect pending interrupts.
* If interrupt happened, do_interrupt() will notify CPU idle
* notification framework so no need to call cpu_idle_exit()
* here.
*/
sti();
SMT_PAUSE();
cli();
}
}
static void
acpi_cpu_mwait_ipi_check_wakeup(void *arg)
{
volatile uint32_t *mcpu_mwait = (volatile uint32_t *)arg;
ASSERT(arg != NULL);
if (*mcpu_mwait != MWAIT_WAKEUP_IPI) {
/*
* CPU has been awakened, notify CPU idle notification system.
*/
cpu_idle_exit(CPU_IDLE_CB_FLAG_IDLE);
} else {
/*
* Toggle interrupt flag to detect pending interrupts.
* If interrupt happened, do_interrupt() will notify CPU idle
* notification framework so no need to call cpu_idle_exit()
* here.
*/
sti();
SMT_PAUSE();
cli();
}
}
/*ARGSUSED*/
static void
acpi_cpu_check_wakeup(void *arg)
{
/*
* Toggle interrupt flag to detect pending interrupts.
* If interrupt happened, do_interrupt() will notify CPU idle
* notification framework so no need to call cpu_idle_exit() here.
*/
sti();
SMT_PAUSE();
cli();
}
/*
* enter deep c-state handler
*/
static void
acpi_cpu_cstate(cpu_acpi_cstate_t *cstate)
{
volatile uint32_t *mcpu_mwait = CPU->cpu_m.mcpu_mwait;
cpu_t *cpup = CPU;
processorid_t cpu_sid = cpup->cpu_seqid;
cpupart_t *cp = cpup->cpu_part;
hrtime_t lapic_expire;
uint8_t type = cstate->cs_addrspace_id;
uint32_t cs_type = cstate->cs_type;
int hset_update = 1;
boolean_t using_timer;
cpu_idle_check_wakeup_t check_func = &acpi_cpu_check_wakeup;
/*
* Set our mcpu_mwait here, so we can tell if anyone tries to
* wake us between now and when we call mwait. No other cpu will
* attempt to set our mcpu_mwait until we add ourself to the haltset.
*/
if (mcpu_mwait) {
if (type == ACPI_ADR_SPACE_SYSTEM_IO) {
*mcpu_mwait = MWAIT_WAKEUP_IPI;
check_func = &acpi_cpu_mwait_ipi_check_wakeup;
} else {
*mcpu_mwait = MWAIT_HALTED;
check_func = &acpi_cpu_mwait_check_wakeup;
}
}
/*
* If this CPU is online, and there are multiple CPUs
* in the system, then we should note our halting
* by adding ourselves to the partition's halted CPU
* bitmap. This allows other CPUs to find/awaken us when
* work becomes available.
*/
if (cpup->cpu_flags & CPU_OFFLINE || ncpus == 1)
hset_update = 0;
/*
* Add ourselves to the partition's halted CPUs bitmask
* and set our HALTED flag, if necessary.
*
* When a thread becomes runnable, it is placed on the queue
* and then the halted cpuset is checked to determine who
* (if anyone) should be awakened. We therefore need to first
* add ourselves to the halted cpuset, and and then check if there
* is any work available.
*
* Note that memory barriers after updating the HALTED flag
* are not necessary since an atomic operation (updating the bitmap)
* immediately follows. On x86 the atomic operation acts as a
* memory barrier for the update of cpu_disp_flags.
*/
if (hset_update) {
cpup->cpu_disp_flags |= CPU_DISP_HALTED;
bitset_atomic_add(&cp->cp_haltset, cpu_sid);
}
/*
* Check to make sure there's really nothing to do.
* Work destined for this CPU may become available after
* this check. We'll be notified through the clearing of our
* bit in the halted CPU bitmask, and a write to our mcpu_mwait.
*
* disp_anywork() checks disp_nrunnable, so we do not have to later.
*/
if (disp_anywork()) {
if (hset_update) {
cpup->cpu_disp_flags &= ~CPU_DISP_HALTED;
bitset_atomic_del(&cp->cp_haltset, cpu_sid);
}
return;
}
/*
* We're on our way to being halted.
*
* The local APIC timer can stop in ACPI C2 and deeper c-states.
* Try to program the HPET hardware to substitute for this CPU's
* LAPIC timer.
* cstate_use_timer() could disable the LAPIC Timer. Make sure
* to start the LAPIC Timer again before leaving this function.
*
* Disable interrupts here so we will awaken immediately after halting
* if someone tries to poke us between now and the time we actually
* halt.
*/
cli();
using_timer = cstate_use_timer(&lapic_expire, CSTATE_USING_HPET);
/*
* We check for the presence of our bit after disabling interrupts.
* If it's cleared, we'll return. If the bit is cleared after
* we check then the cstate_wakeup() will pop us out of the halted
* state.
*
* This means that the ordering of the cstate_wakeup() and the clearing
* of the bit by cpu_wakeup is important.
* cpu_wakeup() must clear our mc_haltset bit, and then call
* cstate_wakeup().
* acpi_cpu_cstate() must disable interrupts, then check for the bit.
*/
if (hset_update && bitset_in_set(&cp->cp_haltset, cpu_sid) == 0) {
(void) cstate_use_timer(&lapic_expire,
CSTATE_USING_LAT);
sti();
cpup->cpu_disp_flags &= ~CPU_DISP_HALTED;
return;
}
/*
* The check for anything locally runnable is here for performance
* and isn't needed for correctness. disp_nrunnable ought to be
* in our cache still, so it's inexpensive to check, and if there
* is anything runnable we won't have to wait for the poke.
*/
if (cpup->cpu_disp->disp_nrunnable != 0) {
(void) cstate_use_timer(&lapic_expire,
CSTATE_USING_LAT);
sti();
if (hset_update) {
cpup->cpu_disp_flags &= ~CPU_DISP_HALTED;
bitset_atomic_del(&cp->cp_haltset, cpu_sid);
}
return;
}
if (using_timer == B_FALSE) {
(void) cstate_use_timer(&lapic_expire,
CSTATE_USING_LAT);
sti();
/*
* We are currently unable to program the HPET to act as this
* CPU's proxy LAPIC timer. This CPU cannot enter C2 or deeper
* because no timer is set to wake it up while its LAPIC timer
* stalls in deep C-States.
* Enter C1 instead.
*
* cstate_wake_cpu() will wake this CPU with an IPI which
* works with MWAIT.
*/
i86_monitor(mcpu_mwait, 0, 0);
if ((*mcpu_mwait & ~MWAIT_WAKEUP_IPI) == MWAIT_HALTED) {
if (cpu_idle_enter(IDLE_STATE_C1, 0,
check_func, (void *)mcpu_mwait) == 0) {
if ((*mcpu_mwait & ~MWAIT_WAKEUP_IPI) ==
MWAIT_HALTED) {
i86_mwait(0, 0);
}
cpu_idle_exit(CPU_IDLE_CB_FLAG_IDLE);
}
}
/*
* We're no longer halted
*/
if (hset_update) {
cpup->cpu_disp_flags &= ~CPU_DISP_HALTED;
bitset_atomic_del(&cp->cp_haltset, cpu_sid);
}
return;
}
if (type == ACPI_ADR_SPACE_FIXED_HARDWARE) {
/*
* We're on our way to being halted.
* To avoid a lost wakeup, arm the monitor before checking
* if another cpu wrote to mcpu_mwait to wake us up.
*/
i86_monitor(mcpu_mwait, 0, 0);
if (*mcpu_mwait == MWAIT_HALTED) {
if (cpu_idle_enter((uint_t)cs_type, 0,
check_func, (void *)mcpu_mwait) == 0) {
if (*mcpu_mwait == MWAIT_HALTED) {
i86_mwait(cstate->cs_address, 1);
}
cpu_idle_exit(CPU_IDLE_CB_FLAG_IDLE);
}
}
} else if (type == ACPI_ADR_SPACE_SYSTEM_IO) {
uint32_t value;
ACPI_TABLE_FADT *gbl_FADT;
if (*mcpu_mwait == MWAIT_WAKEUP_IPI) {
if (cpu_idle_enter((uint_t)cs_type, 0,
check_func, (void *)mcpu_mwait) == 0) {
if (*mcpu_mwait == MWAIT_WAKEUP_IPI) {
/*
* The following calls will cause us to
* halt which will cause the store
* buffer to be repartitioned,
* potentially exposing us to the Intel
* CPU vulnerability MDS. As such, we
* need to explicitly call that here.
* The other idle methods in this
* function do this automatically as
* part of the implementation of
* i86_mwait().
*/
x86_md_clear();
(void) cpu_acpi_read_port(
cstate->cs_address, &value, 8);
acpica_get_global_FADT(&gbl_FADT);
(void) cpu_acpi_read_port(
gbl_FADT->XPmTimerBlock.Address,
&value, 32);
}
cpu_idle_exit(CPU_IDLE_CB_FLAG_IDLE);
}
}
}
/*
* The LAPIC timer may have stopped in deep c-state.
* Reprogram this CPU's LAPIC here before enabling interrupts.
*/
(void) cstate_use_timer(&lapic_expire, CSTATE_USING_LAT);
sti();
/*
* We're no longer halted
*/
if (hset_update) {
cpup->cpu_disp_flags &= ~CPU_DISP_HALTED;
bitset_atomic_del(&cp->cp_haltset, cpu_sid);
}
}
/*
* Idle the present CPU, deep c-state is supported
*/
void
cpu_acpi_idle(void)
{
cpu_t *cp = CPU;
cpu_acpi_handle_t handle;
cma_c_state_t *cs_data;
cpu_acpi_cstate_t *cstates;
hrtime_t start, end;
int cpu_max_cstates;
uint32_t cs_indx;
uint16_t cs_type;
cpupm_mach_state_t *mach_state =
(cpupm_mach_state_t *)cp->cpu_m.mcpu_pm_mach_state;
handle = mach_state->ms_acpi_handle;
ASSERT(CPU_ACPI_CSTATES(handle) != NULL);
cs_data = mach_state->ms_cstate.cma_state.cstate;
cstates = (cpu_acpi_cstate_t *)CPU_ACPI_CSTATES(handle);
ASSERT(cstates != NULL);
cpu_max_cstates = cpu_acpi_get_max_cstates(handle);
if (cpu_max_cstates > CPU_MAX_CSTATES)
cpu_max_cstates = CPU_MAX_CSTATES;
if (cpu_max_cstates == 1) { /* no ACPI c-state data */
(*non_deep_idle_cpu)();
return;
}
start = gethrtime_unscaled();
cs_indx = cpupm_next_cstate(cs_data, cstates, cpu_max_cstates, start);
cs_type = cstates[cs_indx].cs_type;
switch (cs_type) {
default:
/* FALLTHROUGH */
case CPU_ACPI_C1:
(*non_deep_idle_cpu)();
break;
case CPU_ACPI_C2:
acpi_cpu_cstate(&cstates[cs_indx]);
break;
case CPU_ACPI_C3:
/*
* All supported Intel processors maintain cache coherency
* during C3. Currently when entering C3 processors flush
* core caches to higher level shared cache. The shared cache
* maintains state and supports probes during C3.
* Consequently there is no need to handle cache coherency
* and Bus Master activity here with the cache flush, BM_RLD
* bit, BM_STS bit, nor PM2_CNT.ARB_DIS mechanisms described
* in section 8.1.4 of the ACPI Specification 4.0.
*/
acpi_cpu_cstate(&cstates[cs_indx]);
break;
}
end = gethrtime_unscaled();
/*
* Update statistics
*/
cpupm_wakeup_cstate_data(cs_data, end);
}
boolean_t
cpu_deep_cstates_supported(void)
{
extern int idle_cpu_no_deep_c;
if (idle_cpu_no_deep_c)
return (B_FALSE);
if (!cpuid_deep_cstates_supported())
return (B_FALSE);
if (cpuid_arat_supported()) {
cpu_cstate_arat = B_TRUE;
return (B_TRUE);
}
if ((hpet.supported == HPET_FULL_SUPPORT) &&
hpet.install_proxy()) {
cpu_cstate_hpet = B_TRUE;
return (B_TRUE);
}
return (B_FALSE);
}
/*
* Validate that this processor supports deep cstate and if so,
* get the c-state data from ACPI and cache it.
*/
static int
cpu_idle_init(cpu_t *cp)
{
cpupm_mach_state_t *mach_state =
(cpupm_mach_state_t *)cp->cpu_m.mcpu_pm_mach_state;
cpu_acpi_handle_t handle = mach_state->ms_acpi_handle;
cpu_acpi_cstate_t *cstate;
char name[KSTAT_STRLEN];
int cpu_max_cstates, i;
int ret;
/*
* Cache the C-state specific ACPI data.
*/
if ((ret = cpu_acpi_cache_cstate_data(handle)) != 0) {
if (ret < 0)
cmn_err(CE_NOTE,
"!Support for CPU deep idle states is being "
"disabled due to errors parsing ACPI C-state "
"objects exported by BIOS.");
cpu_idle_fini(cp);
return (-1);
}
cstate = (cpu_acpi_cstate_t *)CPU_ACPI_CSTATES(handle);
cpu_max_cstates = cpu_acpi_get_max_cstates(handle);
for (i = CPU_ACPI_C1; i <= cpu_max_cstates; i++) {
(void) snprintf(name, KSTAT_STRLEN - 1, "c%d", cstate->cs_type);
/*
* Allocate, initialize and install cstate kstat
*/
cstate->cs_ksp = kstat_create("cstate", cp->cpu_id,
name, "misc",
KSTAT_TYPE_NAMED,
sizeof (cpu_idle_kstat) / sizeof (kstat_named_t),
KSTAT_FLAG_VIRTUAL);
if (cstate->cs_ksp == NULL) {
cmn_err(CE_NOTE, "kstat_create(c_state) fail");
} else {
cstate->cs_ksp->ks_data = &cpu_idle_kstat;
cstate->cs_ksp->ks_lock = &cpu_idle_mutex;
cstate->cs_ksp->ks_update = cpu_idle_kstat_update;
cstate->cs_ksp->ks_data_size += MAXNAMELEN;
cstate->cs_ksp->ks_private = cstate;
kstat_install(cstate->cs_ksp);
}
cstate++;
}
cpupm_alloc_domains(cp, CPUPM_C_STATES);
cpupm_alloc_ms_cstate(cp);
if (cpu_deep_cstates_supported()) {
uint32_t value;
mutex_enter(&cpu_idle_callb_mutex);
if (cpu_deep_idle_callb_id == (callb_id_t)0)
cpu_deep_idle_callb_id = callb_add(&cpu_deep_idle_callb,
(void *)NULL, CB_CL_CPU_DEEP_IDLE, "cpu_deep_idle");
if (cpu_idle_cpr_callb_id == (callb_id_t)0)
cpu_idle_cpr_callb_id = callb_add(&cpu_idle_cpr_callb,
(void *)NULL, CB_CL_CPR_PM, "cpu_idle_cpr");
mutex_exit(&cpu_idle_callb_mutex);
/*
* All supported CPUs (Nehalem and later) will remain in C3
* during Bus Master activity.
* All CPUs set ACPI_BITREG_BUS_MASTER_RLD to 0 here if it
* is not already 0 before enabling Deeper C-states.
*/
cpu_acpi_get_register(ACPI_BITREG_BUS_MASTER_RLD, &value);
if (value & 1)
cpu_acpi_set_register(ACPI_BITREG_BUS_MASTER_RLD, 0);
}
return (0);
}
/*
* Free resources allocated by cpu_idle_init().
*/
static void
cpu_idle_fini(cpu_t *cp)
{
cpupm_mach_state_t *mach_state =
(cpupm_mach_state_t *)(cp->cpu_m.mcpu_pm_mach_state);
cpu_acpi_handle_t handle = mach_state->ms_acpi_handle;
cpu_acpi_cstate_t *cstate;
uint_t cpu_max_cstates, i;
/*
* idle cpu points back to the generic one
*/
idle_cpu = cp->cpu_m.mcpu_idle_cpu = non_deep_idle_cpu;
disp_enq_thread = non_deep_idle_disp_enq_thread;
cstate = (cpu_acpi_cstate_t *)CPU_ACPI_CSTATES(handle);
if (cstate) {
cpu_max_cstates = cpu_acpi_get_max_cstates(handle);
for (i = CPU_ACPI_C1; i <= cpu_max_cstates; i++) {
if (cstate->cs_ksp != NULL)
kstat_delete(cstate->cs_ksp);
cstate++;
}
}
cpupm_free_ms_cstate(cp);
cpupm_free_domains(&cpupm_cstate_domains);
cpu_acpi_free_cstate_data(handle);
mutex_enter(&cpu_idle_callb_mutex);
if (cpu_deep_idle_callb_id != (callb_id_t)0) {
(void) callb_delete(cpu_deep_idle_callb_id);
cpu_deep_idle_callb_id = (callb_id_t)0;
}
if (cpu_idle_cpr_callb_id != (callb_id_t)0) {
(void) callb_delete(cpu_idle_cpr_callb_id);
cpu_idle_cpr_callb_id = (callb_id_t)0;
}
mutex_exit(&cpu_idle_callb_mutex);
}
/*
* This function is introduced here to solve a race condition
* between the master and the slave to touch c-state data structure.
* After the slave calls this idle function to switch to the non
* deep idle function, the master can go on to reclaim the resource.
*/
static void
cpu_idle_stop_sync(void)
{
/* switch to the non deep idle function */
CPU->cpu_m.mcpu_idle_cpu = non_deep_idle_cpu;
}
static void
cpu_idle_stop(cpu_t *cp)
{
cpupm_mach_state_t *mach_state =
(cpupm_mach_state_t *)(cp->cpu_m.mcpu_pm_mach_state);
cpu_acpi_handle_t handle = mach_state->ms_acpi_handle;
cpu_acpi_cstate_t *cstate;
uint_t cpu_max_cstates, i = 0;
mutex_enter(&cpu_idle_callb_mutex);
if (idle_cpu == cpu_idle_adaptive) {
/*
* invoke the slave to call synchronous idle function.
*/
cp->cpu_m.mcpu_idle_cpu = cpu_idle_stop_sync;
poke_cpu(cp->cpu_id);
/*
* wait until the slave switchs to non deep idle function,
* so that the master is safe to go on to reclaim the resource.
*/
while (cp->cpu_m.mcpu_idle_cpu != non_deep_idle_cpu) {
drv_usecwait(10);
if ((++i % CPU_IDLE_STOP_TIMEOUT) == 0)
cmn_err(CE_NOTE, "!cpu_idle_stop: the slave"
" idle stop timeout");
}
}
mutex_exit(&cpu_idle_callb_mutex);
cstate = (cpu_acpi_cstate_t *)CPU_ACPI_CSTATES(handle);
if (cstate) {
cpu_max_cstates = cpu_acpi_get_max_cstates(handle);
for (i = CPU_ACPI_C1; i <= cpu_max_cstates; i++) {
if (cstate->cs_ksp != NULL)
kstat_delete(cstate->cs_ksp);
cstate++;
}
}
cpupm_free_ms_cstate(cp);
cpupm_remove_domains(cp, CPUPM_C_STATES, &cpupm_cstate_domains);
cpu_acpi_free_cstate_data(handle);
}
/*ARGSUSED*/
static boolean_t
cpu_deep_idle_callb(void *arg, int code)
{
boolean_t rslt = B_TRUE;
mutex_enter(&cpu_idle_callb_mutex);
switch (code) {
case PM_DEFAULT_CPU_DEEP_IDLE:
/*
* Default policy is same as enable
*/
/*FALLTHROUGH*/
case PM_ENABLE_CPU_DEEP_IDLE:
if ((cpu_idle_cfg_state & CPU_IDLE_DEEP_CFG) == 0)
break;
if (cstate_timer_callback(PM_ENABLE_CPU_DEEP_IDLE)) {
disp_enq_thread = cstate_wakeup;
idle_cpu = cpu_idle_adaptive;
cpu_idle_cfg_state &= ~CPU_IDLE_DEEP_CFG;
} else {
rslt = B_FALSE;
}
break;
case PM_DISABLE_CPU_DEEP_IDLE:
if (cpu_idle_cfg_state & CPU_IDLE_DEEP_CFG)
break;
idle_cpu = non_deep_idle_cpu;
if (cstate_timer_callback(PM_DISABLE_CPU_DEEP_IDLE)) {
disp_enq_thread = non_deep_idle_disp_enq_thread;
cpu_idle_cfg_state |= CPU_IDLE_DEEP_CFG;
}
break;
default:
cmn_err(CE_NOTE, "!cpu deep_idle_callb: invalid code %d\n",
code);
break;
}
mutex_exit(&cpu_idle_callb_mutex);
return (rslt);
}
/*ARGSUSED*/
static boolean_t
cpu_idle_cpr_callb(void *arg, int code)
{
boolean_t rslt = B_TRUE;
mutex_enter(&cpu_idle_callb_mutex);
switch (code) {
case CB_CODE_CPR_RESUME:
if (cstate_timer_callback(CB_CODE_CPR_RESUME)) {
/*
* Do not enable dispatcher hooks if disabled by user.
*/
if (cpu_idle_cfg_state & CPU_IDLE_DEEP_CFG)
break;
disp_enq_thread = cstate_wakeup;
idle_cpu = cpu_idle_adaptive;
} else {
rslt = B_FALSE;
}
break;
case CB_CODE_CPR_CHKPT:
idle_cpu = non_deep_idle_cpu;
disp_enq_thread = non_deep_idle_disp_enq_thread;
(void) cstate_timer_callback(CB_CODE_CPR_CHKPT);
break;
default:
cmn_err(CE_NOTE, "!cpudvr cpr_callb: invalid code %d\n", code);
break;
}
mutex_exit(&cpu_idle_callb_mutex);
return (rslt);
}
/*
* handle _CST notification
*/
void
cpuidle_cstate_instance(cpu_t *cp)
{
#ifndef __xpv
cpupm_mach_state_t *mach_state =
(cpupm_mach_state_t *)cp->cpu_m.mcpu_pm_mach_state;
cpu_acpi_handle_t handle;
struct machcpu *mcpu;
cpuset_t dom_cpu_set;
kmutex_t *pm_lock;
int result = 0;
processorid_t cpu_id;
if (mach_state == NULL) {
return;
}
ASSERT(mach_state->ms_cstate.cma_domain != NULL);
dom_cpu_set = mach_state->ms_cstate.cma_domain->pm_cpus;
pm_lock = &mach_state->ms_cstate.cma_domain->pm_lock;
/*
* Do for all the CPU's in the domain
*/
mutex_enter(pm_lock);
do {
CPUSET_FIND(dom_cpu_set, cpu_id);
if (cpu_id == CPUSET_NOTINSET)
break;
ASSERT(cpu_id >= 0 && cpu_id < NCPU);
cp = cpu[cpu_id];
mach_state = (cpupm_mach_state_t *)
cp->cpu_m.mcpu_pm_mach_state;
if (!(mach_state->ms_caps & CPUPM_C_STATES)) {
mutex_exit(pm_lock);
return;
}
handle = mach_state->ms_acpi_handle;
ASSERT(handle != NULL);
/*
* re-evaluate cstate object
*/
if (cpu_acpi_cache_cstate_data(handle) != 0) {
cmn_err(CE_WARN, "Cannot re-evaluate the cpu c-state"
" object Instance: %d", cpu_id);
}
mcpu = &(cp->cpu_m);
mcpu->max_cstates = cpu_acpi_get_max_cstates(handle);
if (mcpu->max_cstates > CPU_ACPI_C1) {
(void) cstate_timer_callback(
CST_EVENT_MULTIPLE_CSTATES);
disp_enq_thread = cstate_wakeup;
cp->cpu_m.mcpu_idle_cpu = cpu_acpi_idle;
} else if (mcpu->max_cstates == CPU_ACPI_C1) {
disp_enq_thread = non_deep_idle_disp_enq_thread;
cp->cpu_m.mcpu_idle_cpu = non_deep_idle_cpu;
(void) cstate_timer_callback(CST_EVENT_ONE_CSTATE);
}
CPUSET_ATOMIC_XDEL(dom_cpu_set, cpu_id, result);
} while (result < 0);
mutex_exit(pm_lock);
#endif
}
/*
* handle the number or the type of available processor power states change
*/
void
cpuidle_manage_cstates(void *ctx)
{
cpu_t *cp = ctx;
cpupm_mach_state_t *mach_state =
(cpupm_mach_state_t *)cp->cpu_m.mcpu_pm_mach_state;
boolean_t is_ready;
if (mach_state == NULL) {
return;
}
/*
* We currently refuse to power manage if the CPU is not ready to
* take cross calls (cross calls fail silently if CPU is not ready
* for it).
*
* Additionally, for x86 platforms we cannot power manage an instance,
* until it has been initialized.
*/
is_ready = (cp->cpu_flags & CPU_READY) && cpupm_cstate_ready(cp);
if (!is_ready)
return;
cpuidle_cstate_instance(cp);
}
|