1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
|
/*
* CDDL HEADER START
*
* The contents of this file are subject to the terms of the
* Common Development and Distribution License, Version 1.0 only
* (the "License"). You may not use this file except in compliance
* with the License.
*
* You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
* or http://www.opensolaris.org/os/licensing.
* See the License for the specific language governing permissions
* and limitations under the License.
*
* When distributing Covered Code, include this CDDL HEADER in each
* file and include the License file at usr/src/OPENSOLARIS.LICENSE.
* If applicable, add the following below this CDDL HEADER, with the
* fields enclosed by brackets "[]" replaced with your own identifying
* information: Portions Copyright [yyyy] [name of copyright owner]
*
* CDDL HEADER END
*/
/*
* Copyright 2005 Sun Microsystems, Inc. All rights reserved.
* Use is subject to license terms.
*/
#pragma ident "%Z%%M% %I% %E% SMI"
#include <sys/archsystm.h> /* for {in,out}{b,w,l}() */
#include <sys/cmn_err.h>
#include <sys/cpupart.h>
#include <sys/cpuvar.h>
#include <sys/lgrp.h>
#include <sys/machsystm.h>
#include <sys/memlist.h>
#include <sys/memnode.h>
#include <sys/mman.h>
#include <sys/pci_impl.h> /* for PCI configuration space macros */
#include <sys/param.h>
#include <sys/promif.h> /* for prom_printf() */
#include <sys/systm.h>
#include <sys/thread.h>
#include <sys/types.h>
#include <sys/var.h>
#include <sys/x86_archext.h> /* for x86_feature and X86_AMD */
#include <vm/hat_i86.h>
#include <vm/seg_kmem.h>
/*
* lgroup platform support for x86 platforms.
*/
#define MAX_NODES 8
#define NLGRP (MAX_NODES * (MAX_NODES - 1) + 1)
#define LGRP_PLAT_CPU_TO_NODE(cpu) (chip_plat_get_chipid(cpu))
#define LGRP_PLAT_PROBE_NROUNDS 64 /* default laps for probing */
#define LGRP_PLAT_PROBE_NSAMPLES 1 /* default samples to take */
/*
* Multiprocessor Opteron machines have Non Uniform Memory Access (NUMA).
*
* Until System Affinity Resource Table (SRAT) becomes part of ACPI standard,
* we need to examine registers in PCI configuration space to determine how
* many nodes are in the system and which CPUs and memory are in each node.
* This could be determined by probing all memory from each CPU, but that is
* too expensive to do while booting the kernel.
*
* NOTE: Using these PCI configuration space registers to determine this
* locality info is Opteron K8 specific and not guaranteed to work on
* the next generation Opteron processor. Furthermore, we assume that
* there is one CPU per node and CPU 0 is in node 0, CPU 1 is in node 1,
* etc. which should be true for Opteron K8....
*/
/*
* Opteron DRAM Address Map in PCI configuration space gives base and limit
* of physical memory in each node for Opteron K8. The following constants
* and macros define their contents, structure, and access.
*/
/*
* How many bits to shift Opteron DRAM Address Map base and limit registers
* to get actual value
*/
#define OPT_DRAMADDR_LSHIFT_ADDR 8 /* shift left for address */
#define OPT_DRAMADDR_MASK_OFF 0xFFFFFF /* offset for address */
/*
* Bit masks defining what's in Opteron DRAM Address Map base register
*/
#define OPT_DRAMBASE_MASK_RE 0x1 /* read enable */
#define OPT_DRAMBASE_MASK_WE 0x2 /* write enable */
#define OPT_DRAMBASE_MASK_INTRLVEN 0x700 /* interleave */
#define OPT_DRAMBASE_MASK_ADDR 0xFFFF0000 /* address bits 39-24 */
/*
* Macros to get values from Opteron DRAM Address Map base register
*/
#define OPT_DRAMBASE(reg) \
(((u_longlong_t)reg & OPT_DRAMBASE_MASK_ADDR) << \
OPT_DRAMADDR_LSHIFT_ADDR)
/*
* Bit masks defining what's in Opteron DRAM Address Map limit register
*/
#define OPT_DRAMLIMIT_MASK_DSTNODE 0x7 /* destination node */
#define OPT_DRAMLIMIT_MASK_INTRLVSEL 0x70 /* interleave select */
#define OPT_DRAMLIMIT_MASK_ADDR 0xFFFF0000 /* addr bits 39-24 */
/*
* Macros to get values from Opteron DRAM Address Map limit register
*/
#define OPT_DRAMLIMIT(reg) \
(((u_longlong_t)reg & OPT_DRAMLIMIT_MASK_ADDR) << \
OPT_DRAMADDR_LSHIFT_ADDR)
/*
* Opteron Node ID register in PCI configuration space contains
* number of nodes in system, etc. for Opteron K8. The following
* constants and macros define its contents, structure, and access.
*/
/*
* Bit masks defining what's in Opteron Node ID register
*/
#define OPT_NODE_MASK_ID 0x7 /* node ID */
#define OPT_NODE_MASK_CNT 0x70 /* node count */
#define OPT_NODE_MASK_IONODE 0x700 /* Hypertransport I/O hub node ID */
#define OPT_NODE_MASK_LCKNODE 0x7000 /* lock controller node ID */
#define OPT_NODE_MASK_CPUCNT 0xF0000 /* CPUs in system (0 means 1 CPU) */
/*
* How many bits in Opteron Node ID register to shift right to get actual value
*/
#define OPT_NODE_RSHIFT_CNT 0x4 /* shift right for node count value */
/*
* Macros to get values from Opteron Node ID register
*/
#define OPT_NODE_CNT(reg) \
((reg & OPT_NODE_MASK_CNT) >> OPT_NODE_RSHIFT_CNT)
/*
* PCI configuration space registers accessed by specifying
* a bus, device, function, and offset. The following constants
* define the values needed to access Opteron K8 configuration
* info to determine its node topology
*/
#define OPT_PCS_BUS_CONFIG 0 /* Hypertransport config space bus */
/*
* Opteron PCI configuration space register function values
*/
#define OPT_PCS_FUNC_HT 0 /* Hypertransport configuration */
#define OPT_PCS_FUNC_ADDRMAP 1 /* Address map configuration */
#define OPT_PCS_FUNC_DRAM 2 /* DRAM configuration */
#define OPT_PCS_FUNC_MISC 3 /* Miscellaneous configuration */
/*
* PCI Configuration Space register offsets
*/
#define OPT_PCS_OFF_VENDOR 0x0 /* device/vendor ID register */
#define OPT_PCS_OFF_DRAMBASE 0x40 /* DRAM Base register (node 0) */
#define OPT_PCS_OFF_NODEID 0x60 /* Node ID register */
/*
* Opteron PCI Configuration Space device IDs for nodes
*/
#define OPT_PCS_DEV_NODE0 24 /* device number for node 0 */
/*
* Bookkeeping for latencies seen during probing (used for verification)
*/
typedef struct lgrp_plat_latency_acct {
hrtime_t la_value; /* latency value */
int la_count; /* occurrences */
} lgrp_plat_latency_acct_t;
/*
* Choices for probing to determine lgroup topology
*/
typedef enum lgrp_plat_probe_op {
LGRP_PLAT_PROBE_PGCPY, /* Use page copy */
LGRP_PLAT_PROBE_VENDOR /* Read vendor ID on Northbridge */
} lgrp_plat_probe_op_t;
/*
* Opteron DRAM address map gives base and limit for physical memory in a node
*/
typedef struct opt_dram_addr_map {
uint32_t base;
uint32_t limit;
} opt_dram_addr_map_t;
/*
* Starting and ending page for physical memory in node
*/
typedef struct phys_addr_map {
pfn_t start;
pfn_t end;
} phys_addr_map_t;
/*
* Opteron DRAM address map for each node
*/
struct opt_dram_addr_map opt_dram_map[MAX_NODES];
/*
* Node ID register contents for each node
*/
uint_t opt_node_info[MAX_NODES];
/*
* Whether memory is interleaved across nodes causing MPO to be disabled
*/
int lgrp_plat_mem_intrlv = 0;
/*
* Number of nodes in system
*/
uint_t lgrp_plat_node_cnt = 1;
/*
* Physical address range for memory in each node
*/
phys_addr_map_t lgrp_plat_node_memory[MAX_NODES];
/*
* Probe costs (individual and total) and flush cost
*/
hrtime_t lgrp_plat_flush_cost = 0;
hrtime_t lgrp_plat_probe_cost = 0;
hrtime_t lgrp_plat_probe_cost_total = 0;
/*
* Error code for latency adjustment and verification
*/
int lgrp_plat_probe_error_code = 0;
/*
* How much latencies were off from minimum values gotten
*/
hrtime_t lgrp_plat_probe_errors[MAX_NODES][MAX_NODES];
/*
* Unique probe latencies and number of occurrences of each
*/
lgrp_plat_latency_acct_t lgrp_plat_probe_lat_acct[MAX_NODES];
/*
* Size of memory buffer in each node for probing
*/
size_t lgrp_plat_probe_memsize = 0;
/*
* Virtual address of page in each node for probing
*/
caddr_t lgrp_plat_probe_memory[MAX_NODES];
/*
* Number of unique latencies in probe times
*/
int lgrp_plat_probe_nlatencies = 0;
/*
* How many rounds of probing to do
*/
int lgrp_plat_probe_nrounds = LGRP_PLAT_PROBE_NROUNDS;
/*
* Number of samples to take when probing each node
*/
int lgrp_plat_probe_nsamples = LGRP_PLAT_PROBE_NSAMPLES;
/*
* How to probe to determine lgroup topology
*/
lgrp_plat_probe_op_t lgrp_plat_probe_op = LGRP_PLAT_PROBE_VENDOR;
/*
* PFN of page in each node for probing
*/
pfn_t lgrp_plat_probe_pfn[MAX_NODES];
/*
* Whether probe time was suspect (ie. not within tolerance of value that it
* should match)
*/
int lgrp_plat_probe_suspect[MAX_NODES][MAX_NODES];
/*
* How long it takes to access memory from each node
*/
hrtime_t lgrp_plat_probe_times[MAX_NODES][MAX_NODES];
/*
* Min and max node memory probe times seen
*/
hrtime_t lgrp_plat_probe_time_max = 0;
hrtime_t lgrp_plat_probe_time_min = -1;
hrtime_t lgrp_plat_probe_max[MAX_NODES][MAX_NODES];
hrtime_t lgrp_plat_probe_min[MAX_NODES][MAX_NODES];
/*
* Allocate lgrp and lgrp stat arrays statically.
*/
static lgrp_t lgrp_space[NLGRP];
static int nlgrps_alloc;
struct lgrp_stats lgrp_stats[NLGRP];
#define CPUID_FAMILY_OPTERON 15
uint_t opt_family = 0;
uint_t opt_model = 0;
uint_t opt_probe_func = OPT_PCS_FUNC_DRAM;
/*
* Determine whether we're running on an AMD Opteron K8 machine
*/
int
is_opteron(void)
{
if (x86_vendor != X86_VENDOR_AMD)
return (0);
if (cpuid_getfamily(CPU) == CPUID_FAMILY_OPTERON)
return (1);
else
return (0);
}
int
plat_lgrphand_to_mem_node(lgrp_handle_t hand)
{
if (max_mem_nodes == 1)
return (0);
return ((int)hand);
}
lgrp_handle_t
plat_mem_node_to_lgrphand(int mnode)
{
if (max_mem_nodes == 1)
return (LGRP_DEFAULT_HANDLE);
return ((lgrp_handle_t)mnode);
}
int
plat_pfn_to_mem_node(pfn_t pfn)
{
int node;
if (max_mem_nodes == 1)
return (0);
for (node = 0; node < lgrp_plat_node_cnt; node++) {
if (pfn >= lgrp_plat_node_memory[node].start &&
pfn <= lgrp_plat_node_memory[node].end)
return (node);
}
ASSERT(node < lgrp_plat_node_cnt);
return (-1);
}
/*
* Configure memory nodes for machines with more than one node (ie NUMA)
*/
void
plat_build_mem_nodes(struct memlist *list)
{
pfn_t cur_start, cur_end; /* start & end addr of subrange */
pfn_t start, end; /* start & end addr of whole range */
/*
* Boot install lists are arranged <addr, len>, ...
*/
while (list) {
int node;
start = list->address >> PAGESHIFT;
end = (list->address + list->size - 1) >> PAGESHIFT;
if (start > physmax) {
list = list->next;
continue;
}
if (end > physmax)
end = physmax;
/*
* When there is only one memnode, just add memory to memnode
*/
if (max_mem_nodes == 1) {
mem_node_add_slice(start, end);
list = list->next;
continue;
}
/*
* mem_node_add_slice() expects to get a memory range that
* is within one memnode, so need to split any memory range
* that spans multiple memnodes into subranges that are each
* contained within one memnode when feeding them to
* mem_node_add_slice()
*/
cur_start = start;
do {
node = plat_pfn_to_mem_node(cur_start);
ASSERT(cur_start >=
lgrp_plat_node_memory[node].start &&
cur_start <= lgrp_plat_node_memory[node].end);
cur_end = end;
/*
* End of current subrange should not span memnodes
*/
if (cur_end > lgrp_plat_node_memory[node].end)
cur_end = lgrp_plat_node_memory[node].end;
mem_node_add_slice(cur_start, cur_end);
/*
* Next subrange starts after end of current one
*/
cur_start = cur_end + 1;
} while (cur_end < end);
list = list->next;
}
mem_node_physalign = 0;
mem_node_pfn_shift = 0;
}
/*
* Platform-specific initialization of lgroups
*/
void
lgrp_plat_init(void)
{
uint_t bus;
uint_t dev;
uint_t node;
uint_t off;
extern lgrp_load_t lgrp_expand_proc_thresh;
extern lgrp_load_t lgrp_expand_proc_diff;
/*
* Initialize as a UMA machine if this isn't an Opteron
*/
if (!is_opteron() || lgrp_topo_ht_limit() == 1) {
lgrp_plat_node_cnt = max_mem_nodes = 1;
return;
}
/*
* Read configuration registers from PCI configuration space to
* determine node information, which memory is in each node, etc.
*
* Write to PCI configuration space address register to specify
* which configuration register to read and read/write PCI
* configuration space data register to get/set contents
*/
bus = OPT_PCS_BUS_CONFIG;
dev = OPT_PCS_DEV_NODE0;
off = OPT_PCS_OFF_DRAMBASE;
/*
* Read node ID register for node 0 to get node count
*/
outl(PCI_CONFADD, PCI_CADDR1(bus, dev, OPT_PCS_FUNC_HT,
OPT_PCS_OFF_NODEID));
opt_node_info[0] = inl(PCI_CONFDATA);
lgrp_plat_node_cnt = OPT_NODE_CNT(opt_node_info[0]) + 1;
for (node = 0; node < lgrp_plat_node_cnt; node++) {
/*
* Read node ID register (except for node 0 which we just read)
*/
if (node > 0) {
outl(PCI_CONFADD, PCI_CADDR1(bus, dev,
OPT_PCS_FUNC_HT, OPT_PCS_OFF_NODEID));
opt_node_info[node] = inl(PCI_CONFDATA);
}
/*
* Read DRAM base and limit registers which specify
* physical memory range of each node
*/
outl(PCI_CONFADD, PCI_CADDR1(bus, dev, OPT_PCS_FUNC_ADDRMAP,
off));
opt_dram_map[node].base = inl(PCI_CONFDATA);
if (opt_dram_map[node].base & OPT_DRAMBASE_MASK_INTRLVEN)
lgrp_plat_mem_intrlv++;
off += 4; /* limit register offset */
outl(PCI_CONFADD, PCI_CADDR1(bus, dev, OPT_PCS_FUNC_ADDRMAP,
off));
opt_dram_map[node].limit = inl(PCI_CONFDATA);
/*
* Increment device number to next node and register offset for
* DRAM base register of next node
*/
off += 4;
dev++;
/*
* Get PFN for first page in each node,
* so we can probe memory to determine latency topology
*/
lgrp_plat_probe_pfn[node] =
btop(OPT_DRAMBASE(opt_dram_map[node].base));
/*
* Remember physical address range of each node for use later
*/
lgrp_plat_node_memory[node].start =
btop(OPT_DRAMBASE(opt_dram_map[node].base));
lgrp_plat_node_memory[node].end =
btop(OPT_DRAMLIMIT(opt_dram_map[node].limit) |
OPT_DRAMADDR_MASK_OFF);
}
/*
* Only use one memory node if memory is interleaved between any nodes
*/
if (lgrp_plat_mem_intrlv) {
lgrp_plat_node_cnt = max_mem_nodes = 1;
(void) lgrp_topo_ht_limit_set(1);
} else {
max_mem_nodes = lgrp_plat_node_cnt;
/*
* Probing errors can mess up the lgroup topology and force us
* fall back to a 2 level lgroup topology. Here we bound how
* tall the lgroup topology can grow in hopes of avoiding any
* anamolies in probing from messing up the lgroup topology
* by limiting the accuracy of the latency topology.
*
* Assume that nodes will at least be configured in a ring,
* so limit height of lgroup topology to be less than number
* of nodes on a system with 4 or more nodes
*/
if (lgrp_plat_node_cnt >= 4 &&
lgrp_topo_ht_limit() == lgrp_topo_ht_limit_default())
(void) lgrp_topo_ht_limit_set(lgrp_plat_node_cnt - 1);
}
/*
* Lgroups on Opteron architectures have but a single physical
* processor. Tune lgrp_expand_proc_thresh and lgrp_expand_proc_diff
* so that lgrp_choose() will spread things out aggressively.
*/
lgrp_expand_proc_thresh = LGRP_LOADAVG_THREAD_MAX / 2;
lgrp_expand_proc_diff = 0;
}
/*
* Latencies must be within 1/(2**LGRP_LAT_TOLERANCE_SHIFT) of each other to
* be considered same
*/
#define LGRP_LAT_TOLERANCE_SHIFT 4
int lgrp_plat_probe_lt_shift = LGRP_LAT_TOLERANCE_SHIFT;
/*
* Adjust latencies between nodes to be symmetric, normalize latencies between
* any nodes that are within some tolerance to be same, and make local
* latencies be same
*/
static void
lgrp_plat_latency_adjust(void)
{
int i;
int j;
int k;
int l;
u_longlong_t max;
u_longlong_t min;
u_longlong_t t;
u_longlong_t t1;
u_longlong_t t2;
const lgrp_config_flag_t cflag = LGRP_CONFIG_LATENCY_CHANGE;
int lat_corrected[MAX_NODES][MAX_NODES];
/*
* Nothing to do when this is an UMA machine
*/
if (max_mem_nodes == 1)
return;
/*
* Make sure that latencies are symmetric between any two nodes
* (ie. latency(node0, node1) == latency(node1, node0))
*/
for (i = 0; i < lgrp_plat_node_cnt; i++)
for (j = 0; j < lgrp_plat_node_cnt; j++) {
t1 = lgrp_plat_probe_times[i][j];
t2 = lgrp_plat_probe_times[j][i];
if (t1 == 0 || t2 == 0 || t1 == t2)
continue;
/*
* Latencies should be same
* - Use minimum of two latencies which should be same
* - Track suspect probe times not within tolerance of
* min value
* - Remember how much values are corrected by
*/
if (t1 > t2) {
t = t2;
lgrp_plat_probe_errors[i][j] += t1 - t2;
if (t1 - t2 > t2 >> lgrp_plat_probe_lt_shift) {
lgrp_plat_probe_suspect[i][j]++;
lgrp_plat_probe_suspect[j][i]++;
}
} else if (t2 > t1) {
t = t1;
lgrp_plat_probe_errors[j][i] += t2 - t1;
if (t2 - t1 > t1 >> lgrp_plat_probe_lt_shift) {
lgrp_plat_probe_suspect[i][j]++;
lgrp_plat_probe_suspect[j][i]++;
}
}
lgrp_plat_probe_times[i][j] =
lgrp_plat_probe_times[j][i] = t;
lgrp_config(cflag, t1, t);
lgrp_config(cflag, t2, t);
}
/*
* Keep track of which latencies get corrected
*/
for (i = 0; i < MAX_NODES; i++)
for (j = 0; j < MAX_NODES; j++)
lat_corrected[i][j] = 0;
/*
* For every two nodes, see whether there is another pair of nodes which
* are about the same distance apart and make the latencies be the same
* if they are close enough together
*/
for (i = 0; i < lgrp_plat_node_cnt; i++)
for (j = 0; j < lgrp_plat_node_cnt; j++) {
/*
* Pick one pair of nodes (i, j)
* and get latency between them
*/
t1 = lgrp_plat_probe_times[i][j];
/*
* Skip this pair of nodes if there isn't a latency
* for it yet
*/
if (t1 == 0)
continue;
for (k = 0; k < lgrp_plat_node_cnt; k++)
for (l = 0; l < lgrp_plat_node_cnt; l++) {
/*
* Pick another pair of nodes (k, l)
* not same as (i, j) and get latency
* between them
*/
if (k == i && l == j)
continue;
t2 = lgrp_plat_probe_times[k][l];
/*
* Skip this pair of nodes if there
* isn't a latency for it yet
*/
if (t2 == 0)
continue;
/*
* Skip nodes (k, l) if they already
* have same latency as (i, j) or
* their latency isn't close enough to
* be considered/made the same
*/
if (t1 == t2 || (t1 > t2 && t1 - t2 >
t1 >> lgrp_plat_probe_lt_shift) ||
(t2 > t1 && t2 - t1 >
t2 >> lgrp_plat_probe_lt_shift))
continue;
/*
* Make latency(i, j) same as
* latency(k, l), try to use latency
* that has been adjusted already to get
* more consistency (if possible), and
* remember which latencies were
* adjusted for next time
*/
if (lat_corrected[i][j]) {
t = t1;
lgrp_config(cflag, t2, t);
t2 = t;
} else if (lat_corrected[k][l]) {
t = t2;
lgrp_config(cflag, t1, t);
t1 = t;
} else {
if (t1 > t2)
t = t2;
else
t = t1;
lgrp_config(cflag, t1, t);
lgrp_config(cflag, t2, t);
t1 = t2 = t;
}
lgrp_plat_probe_times[i][j] =
lgrp_plat_probe_times[k][l] = t;
lat_corrected[i][j] =
lat_corrected[k][l] = 1;
}
}
/*
* Local latencies should be same
* - Find min and max local latencies
* - Make all local latencies be minimum
*/
min = -1;
max = 0;
for (i = 0; i < lgrp_plat_node_cnt; i++) {
t = lgrp_plat_probe_times[i][i];
if (t == 0)
continue;
if (min == -1 || t < min)
min = t;
if (t > max)
max = t;
}
if (min != max) {
for (i = 0; i < lgrp_plat_node_cnt; i++) {
int local;
local = lgrp_plat_probe_times[i][i];
if (local == 0)
continue;
/*
* Track suspect probe times that aren't within
* tolerance of minimum local latency and how much
* probe times are corrected by
*/
if (local - min > min >> lgrp_plat_probe_lt_shift)
lgrp_plat_probe_suspect[i][i]++;
lgrp_plat_probe_errors[i][i] += local - min;
/*
* Make local latencies be minimum
*/
lgrp_config(cflag, local, min);
lgrp_plat_probe_times[i][i] = min;
}
}
/*
* Determine max probe time again since just adjusted latencies
*/
lgrp_plat_probe_time_max = 0;
for (i = 0; i < lgrp_plat_node_cnt; i++)
for (j = 0; j < lgrp_plat_node_cnt; j++) {
t = lgrp_plat_probe_times[i][j];
if (t > lgrp_plat_probe_time_max)
lgrp_plat_probe_time_max = t;
}
}
/*
* Verify following about latencies between nodes:
*
* - Latencies should be symmetric (ie. latency(a, b) == latency(b, a))
* - Local latencies same
* - Local < remote
* - Number of latencies seen is reasonable
* - Number of occurrences of a given latency should be more than 1
*
* Returns:
* 0 Success
* -1 Not symmetric
* -2 Local latencies not same
* -3 Local >= remote
* -4 Wrong number of latencies
* -5 Not enough occurrences of given latency
*/
static int
lgrp_plat_latency_verify(void)
{
int i;
int j;
lgrp_plat_latency_acct_t *l;
int probed;
u_longlong_t t1;
u_longlong_t t2;
/*
* Nothing to do when this is an UMA machine, lgroup topology is
* limited to 2 levels, or there aren't any probe times yet
*/
if (max_mem_nodes == 1 || lgrp_topo_levels < 2 ||
(lgrp_plat_probe_time_max == 0 && lgrp_plat_probe_time_min == -1))
return (0);
/*
* Make sure that latencies are symmetric between any two nodes
* (ie. latency(node0, node1) == latency(node1, node0))
*/
for (i = 0; i < lgrp_plat_node_cnt; i++)
for (j = 0; j < lgrp_plat_node_cnt; j++) {
t1 = lgrp_plat_probe_times[i][j];
t2 = lgrp_plat_probe_times[j][i];
if (t1 == 0 || t2 == 0 || t1 == t2)
continue;
return (-1);
}
/*
* Local latencies should be same
*/
t1 = lgrp_plat_probe_times[0][0];
for (i = 1; i < lgrp_plat_node_cnt; i++) {
t2 = lgrp_plat_probe_times[i][i];
if (t2 == 0)
continue;
if (t1 == 0) {
t1 = t2;
continue;
}
if (t1 != t2)
return (-2);
}
/*
* Local latencies should be less than remote
*/
if (t1) {
for (i = 0; i < lgrp_plat_node_cnt; i++)
for (j = 0; j < lgrp_plat_node_cnt; j++) {
t2 = lgrp_plat_probe_times[i][j];
if (i == j || t2 == 0)
continue;
if (t1 >= t2)
return (-3);
}
}
/*
* Rest of checks are not very useful for machines with less than
* 4 nodes (which means less than 3 latencies on Opteron)
*/
if (lgrp_plat_node_cnt < 4)
return (0);
/*
* Need to see whether done probing in order to verify number of
* latencies are correct
*/
probed = 0;
for (i = 0; i < lgrp_plat_node_cnt; i++)
if (lgrp_plat_probe_times[i][i])
probed++;
if (probed != lgrp_plat_node_cnt)
return (0);
/*
* Determine number of unique latencies seen in probe times,
* their values, and number of occurrences of each
*/
lgrp_plat_probe_nlatencies = 0;
bzero(lgrp_plat_probe_lat_acct,
MAX_NODES * sizeof (lgrp_plat_latency_acct_t));
for (i = 0; i < lgrp_plat_node_cnt; i++) {
for (j = 0; j < lgrp_plat_node_cnt; j++) {
int k;
/*
* Look at each probe time
*/
t1 = lgrp_plat_probe_times[i][j];
if (t1 == 0)
continue;
/*
* Account for unique latencies
*/
for (k = 0; k < lgrp_plat_node_cnt; k++) {
l = &lgrp_plat_probe_lat_acct[k];
if (t1 == l->la_value) {
/*
* Increment number of occurrences
* if seen before
*/
l->la_count++;
break;
} else if (l->la_value == 0) {
/*
* Record latency if haven't seen before
*/
l->la_value = t1;
l->la_count++;
lgrp_plat_probe_nlatencies++;
break;
}
}
}
}
/*
* Number of latencies should be relative to number of
* nodes in system:
* - Same as nodes when nodes <= 2
* - Less than nodes when nodes > 2
* - Greater than 2 when nodes >= 4
*/
if ((lgrp_plat_node_cnt <= 2 &&
lgrp_plat_probe_nlatencies != lgrp_plat_node_cnt) ||
(lgrp_plat_node_cnt > 2 &&
lgrp_plat_probe_nlatencies >= lgrp_plat_node_cnt) ||
(lgrp_plat_node_cnt >= 4 && lgrp_topo_levels >= 3 &&
lgrp_plat_probe_nlatencies <= 2))
return (-4);
/*
* There should be more than one occurrence of every latency
* as long as probing is complete
*/
for (i = 0; i < lgrp_plat_probe_nlatencies; i++) {
l = &lgrp_plat_probe_lat_acct[i];
if (l->la_count <= 1)
return (-5);
}
return (0);
}
/*
* Set lgroup latencies for 2 level lgroup topology
*/
static void
lgrp_plat_2level_setup(void)
{
int i;
if (lgrp_plat_node_cnt >= 4)
cmn_err(CE_NOTE,
"MPO only optimizing for local and remote\n");
for (i = 0; i < lgrp_plat_node_cnt; i++) {
int j;
for (j = 0; j < lgrp_plat_node_cnt; j++) {
if (i == j)
lgrp_plat_probe_times[i][j] = 2;
else
lgrp_plat_probe_times[i][j] = 3;
}
}
lgrp_plat_probe_time_min = 2;
lgrp_plat_probe_time_max = 3;
lgrp_config(LGRP_CONFIG_FLATTEN, 2, 0);
}
/*
* Return time needed to probe from current CPU to memory in given node
*/
static hrtime_t
lgrp_plat_probe_time(int to)
{
caddr_t buf;
uint_t dev;
/* LINTED: set but not used in function */
volatile uint_t dev_vendor;
hrtime_t elapsed;
hrtime_t end;
int from;
int i;
int ipl;
hrtime_t max;
hrtime_t min;
hrtime_t start;
extern int use_sse_pagecopy;
/*
* Determine ID of node containing current CPU
*/
from = LGRP_PLAT_CPU_TO_NODE(CPU);
/*
* Do common work for probing main memory
*/
if (lgrp_plat_probe_op == LGRP_PLAT_PROBE_PGCPY) {
/*
* Skip probing any nodes without memory and
* set probe time to 0
*/
if (lgrp_plat_probe_memory[to] == NULL) {
lgrp_plat_probe_times[from][to] = 0;
return (0);
}
/*
* Invalidate caches once instead of once every sample
* which should cut cost of probing by a lot
*/
lgrp_plat_flush_cost = gethrtime();
invalidate_cache();
lgrp_plat_flush_cost = gethrtime() - lgrp_plat_flush_cost;
lgrp_plat_probe_cost_total += lgrp_plat_flush_cost;
}
/*
* Probe from current CPU to given memory using specified operation
* and take specified number of samples
*/
max = 0;
min = -1;
for (i = 0; i < lgrp_plat_probe_nsamples; i++) {
lgrp_plat_probe_cost = gethrtime();
/*
* Can't measure probe time if gethrtime() isn't working yet
*/
if (lgrp_plat_probe_cost == 0 && gethrtime() == 0)
return (0);
switch (lgrp_plat_probe_op) {
case LGRP_PLAT_PROBE_PGCPY:
default:
/*
* Measure how long it takes to copy page
* on top of itself
*/
buf = lgrp_plat_probe_memory[to] + (i * PAGESIZE);
kpreempt_disable();
ipl = splhigh();
start = gethrtime();
if (use_sse_pagecopy)
hwblkpagecopy(buf, buf);
else
bcopy(buf, buf, PAGESIZE);
end = gethrtime();
elapsed = end - start;
splx(ipl);
kpreempt_enable();
break;
case LGRP_PLAT_PROBE_VENDOR:
/*
* Measure how long it takes to read vendor ID from
* Northbridge
*/
dev = OPT_PCS_DEV_NODE0 + to;
kpreempt_disable();
ipl = spl8();
outl(PCI_CONFADD, PCI_CADDR1(0, dev, opt_probe_func,
OPT_PCS_OFF_VENDOR));
start = gethrtime();
dev_vendor = inl(PCI_CONFDATA);
end = gethrtime();
elapsed = end - start;
splx(ipl);
kpreempt_enable();
break;
}
lgrp_plat_probe_cost = gethrtime() - lgrp_plat_probe_cost;
lgrp_plat_probe_cost_total += lgrp_plat_probe_cost;
if (min == -1 || elapsed < min)
min = elapsed;
if (elapsed > max)
max = elapsed;
}
/*
* Update minimum and maximum probe times between
* these two nodes
*/
if (min < lgrp_plat_probe_min[from][to] ||
lgrp_plat_probe_min[from][to] == 0)
lgrp_plat_probe_min[from][to] = min;
if (max > lgrp_plat_probe_max[from][to])
lgrp_plat_probe_max[from][to] = max;
return (min);
}
/*
* Probe memory in each node from current CPU to determine latency topology
*/
void
lgrp_plat_probe(void)
{
int from;
int i;
hrtime_t probe_time;
int to;
if (max_mem_nodes == 1 || lgrp_topo_ht_limit() <= 2)
return;
/*
* Determine ID of node containing current CPU
*/
from = LGRP_PLAT_CPU_TO_NODE(CPU);
/*
* Don't need to probe if got times already
*/
if (lgrp_plat_probe_times[from][from] != 0)
return;
/*
* Read vendor ID in Northbridge or read and write page(s)
* in each node from current CPU and remember how long it takes,
* so we can build latency topology of machine later.
* This should approximate the memory latency between each node.
*/
for (i = 0; i < lgrp_plat_probe_nrounds; i++)
for (to = 0; to < lgrp_plat_node_cnt; to++) {
/*
* Get probe time and bail out if can't get it yet
*/
probe_time = lgrp_plat_probe_time(to);
if (probe_time == 0)
return;
/*
* Keep lowest probe time as latency between nodes
*/
if (lgrp_plat_probe_times[from][to] == 0 ||
probe_time < lgrp_plat_probe_times[from][to])
lgrp_plat_probe_times[from][to] = probe_time;
/*
* Update overall minimum and maximum probe times
* across all nodes
*/
if (probe_time < lgrp_plat_probe_time_min ||
lgrp_plat_probe_time_min == -1)
lgrp_plat_probe_time_min = probe_time;
if (probe_time > lgrp_plat_probe_time_max)
lgrp_plat_probe_time_max = probe_time;
}
/*
* - Fix up latencies such that local latencies are same,
* latency(i, j) == latency(j, i), etc. (if possible)
*
* - Verify that latencies look ok
*
* - Fallback to just optimizing for local and remote if
* latencies didn't look right
*/
lgrp_plat_latency_adjust();
lgrp_plat_probe_error_code = lgrp_plat_latency_verify();
if (lgrp_plat_probe_error_code)
lgrp_plat_2level_setup();
}
/*
* Platform-specific initialization
*/
void
lgrp_plat_main_init(void)
{
int curnode;
int ht_limit;
int i;
/*
* Print a notice that MPO is disabled when memory is interleaved
* across nodes....Would do this when it is discovered, but can't
* because it happens way too early during boot....
*/
if (lgrp_plat_mem_intrlv)
cmn_err(CE_NOTE,
"MPO disabled because memory is interleaved\n");
/*
* Don't bother to do any probing if there is only one node or the
* height of the lgroup topology less than or equal to 2
*/
ht_limit = lgrp_topo_ht_limit();
if (max_mem_nodes == 1 || ht_limit <= 2) {
/*
* Setup lgroup latencies for 2 level lgroup topology
* (ie. local and remote only) if they haven't been set yet
*/
if (ht_limit == 2 && lgrp_plat_probe_time_min == -1 &&
lgrp_plat_probe_time_max == 0)
lgrp_plat_2level_setup();
return;
}
if (lgrp_plat_probe_op == LGRP_PLAT_PROBE_VENDOR) {
/*
* Should have been able to probe from CPU 0 when it was added
* to lgroup hierarchy, but may not have been able to then
* because it happens so early in boot that gethrtime() hasn't
* been initialized. (:-(
*/
curnode = LGRP_PLAT_CPU_TO_NODE(CPU);
if (lgrp_plat_probe_times[curnode][curnode] == 0)
lgrp_plat_probe();
return;
}
/*
* When probing memory, use one page for every sample to determine
* lgroup topology and taking multiple samples
*/
if (lgrp_plat_probe_memsize == 0)
lgrp_plat_probe_memsize = PAGESIZE *
lgrp_plat_probe_nsamples;
/*
* Map memory in each node needed for probing to determine latency
* topology
*/
for (i = 0; i < lgrp_plat_node_cnt; i++) {
int mnode;
/*
* Skip this node and leave its probe page NULL
* if it doesn't have any memory
*/
mnode = plat_lgrphand_to_mem_node((lgrp_handle_t)i);
if (!mem_node_config[mnode].exists) {
lgrp_plat_probe_memory[i] = NULL;
continue;
}
/*
* Allocate one kernel virtual page
*/
lgrp_plat_probe_memory[i] = vmem_alloc(heap_arena,
lgrp_plat_probe_memsize, VM_NOSLEEP);
if (lgrp_plat_probe_memory[i] == NULL) {
cmn_err(CE_WARN,
"lgrp_plat_main_init: couldn't allocate memory");
return;
}
/*
* Map virtual page to first page in node
*/
hat_devload(kas.a_hat, lgrp_plat_probe_memory[i],
lgrp_plat_probe_memsize,
lgrp_plat_probe_pfn[i],
PROT_READ | PROT_WRITE | HAT_PLAT_NOCACHE,
HAT_LOAD_NOCONSIST);
}
/*
* Probe from current CPU
*/
lgrp_plat_probe();
}
/*
* Allocate additional space for an lgroup.
*/
/* ARGSUSED */
lgrp_t *
lgrp_plat_alloc(lgrp_id_t lgrpid)
{
lgrp_t *lgrp;
lgrp = &lgrp_space[nlgrps_alloc++];
if (lgrpid >= NLGRP || nlgrps_alloc > NLGRP)
return (NULL);
return (lgrp);
}
/*
* Platform handling for (re)configuration changes
*/
/* ARGSUSED */
void
lgrp_plat_config(lgrp_config_flag_t flag, uintptr_t arg)
{
}
/*
* Return the platform handle for the lgroup containing the given CPU
*/
/* ARGSUSED */
lgrp_handle_t
lgrp_plat_cpu_to_hand(processorid_t id)
{
if (lgrp_plat_node_cnt == 1)
return (LGRP_DEFAULT_HANDLE);
return ((lgrp_handle_t)LGRP_PLAT_CPU_TO_NODE(cpu[id]));
}
/*
* Return the platform handle of the lgroup that contains the physical memory
* corresponding to the given page frame number
*/
/* ARGSUSED */
lgrp_handle_t
lgrp_plat_pfn_to_hand(pfn_t pfn)
{
int mnode;
if (max_mem_nodes == 1)
return (LGRP_DEFAULT_HANDLE);
mnode = plat_pfn_to_mem_node(pfn);
return (MEM_NODE_2_LGRPHAND(mnode));
}
/*
* Return the maximum number of lgrps supported by the platform.
* Before lgrp topology is known it returns an estimate based on the number of
* nodes. Once topology is known it returns the actual maximim number of lgrps
* created. Since x86 doesn't support dynamic addition of new nodes, this number
* may not grow during system lifetime.
*/
int
lgrp_plat_max_lgrps()
{
return (lgrp_topo_initialized ?
lgrp_alloc_max + 1 :
lgrp_plat_node_cnt * (lgrp_plat_node_cnt - 1) + 1);
}
/*
* Return the number of free, allocatable, or installed
* pages in an lgroup
* This is a copy of the MAX_MEM_NODES == 1 version of the routine
* used when MPO is disabled (i.e. single lgroup) or this is the root lgroup
*/
/* ARGSUSED */
static pgcnt_t
lgrp_plat_mem_size_default(lgrp_handle_t lgrphand, lgrp_mem_query_t query)
{
struct memlist *mlist;
pgcnt_t npgs = 0;
extern struct memlist *phys_avail;
extern struct memlist *phys_install;
switch (query) {
case LGRP_MEM_SIZE_FREE:
return ((pgcnt_t)freemem);
case LGRP_MEM_SIZE_AVAIL:
memlist_read_lock();
for (mlist = phys_avail; mlist; mlist = mlist->next)
npgs += btop(mlist->size);
memlist_read_unlock();
return (npgs);
case LGRP_MEM_SIZE_INSTALL:
memlist_read_lock();
for (mlist = phys_install; mlist; mlist = mlist->next)
npgs += btop(mlist->size);
memlist_read_unlock();
return (npgs);
default:
return ((pgcnt_t)0);
}
}
/*
* Return the number of free pages in an lgroup.
*
* For query of LGRP_MEM_SIZE_FREE, return the number of base pagesize
* pages on freelists. For query of LGRP_MEM_SIZE_AVAIL, return the
* number of allocatable base pagesize pages corresponding to the
* lgroup (e.g. do not include page_t's, BOP_ALLOC()'ed memory, ..)
* For query of LGRP_MEM_SIZE_INSTALL, return the amount of physical
* memory installed, regardless of whether or not it's usable.
*/
pgcnt_t
lgrp_plat_mem_size(lgrp_handle_t plathand, lgrp_mem_query_t query)
{
int mnode;
pgcnt_t npgs = (pgcnt_t)0;
extern struct memlist *phys_avail;
extern struct memlist *phys_install;
if (plathand == LGRP_DEFAULT_HANDLE)
return (lgrp_plat_mem_size_default(plathand, query));
if (plathand != LGRP_NULL_HANDLE) {
mnode = plat_lgrphand_to_mem_node(plathand);
if (mnode >= 0 && mem_node_config[mnode].exists) {
switch (query) {
case LGRP_MEM_SIZE_FREE:
npgs = mem_node_config[mnode].cursize;
break;
case LGRP_MEM_SIZE_AVAIL:
npgs = mem_node_memlist_pages(mnode,
phys_avail);
break;
case LGRP_MEM_SIZE_INSTALL:
npgs = mem_node_memlist_pages(mnode,
phys_install);
break;
default:
break;
}
}
}
return (npgs);
}
/*
* Return latency between "from" and "to" lgroups
*
* This latency number can only be used for relative comparison
* between lgroups on the running system, cannot be used across platforms,
* and may not reflect the actual latency. It is platform and implementation
* specific, so platform gets to decide its value. It would be nice if the
* number was at least proportional to make comparisons more meaningful though.
*/
/* ARGSUSED */
int
lgrp_plat_latency(lgrp_handle_t from, lgrp_handle_t to)
{
lgrp_handle_t src, dest;
if (max_mem_nodes == 1)
return (0);
/*
* Return max latency for root lgroup
*/
if (from == LGRP_DEFAULT_HANDLE || to == LGRP_DEFAULT_HANDLE)
return (lgrp_plat_probe_time_max);
src = from;
dest = to;
/*
* Return 0 for nodes (lgroup platform handles) out of range
*/
if (src < 0 || src >= MAX_NODES || dest < 0 || dest >= MAX_NODES)
return (0);
/*
* Probe from current CPU if its lgroup latencies haven't been set yet
* and we are trying to get latency from current CPU to some node
*/
if (lgrp_plat_probe_times[src][src] == 0 &&
LGRP_PLAT_CPU_TO_NODE(CPU) == src)
lgrp_plat_probe();
return (lgrp_plat_probe_times[src][dest]);
}
/*
* Return platform handle for root lgroup
*/
lgrp_handle_t
lgrp_plat_root_hand(void)
{
return (LGRP_DEFAULT_HANDLE);
}
|