1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
|
/*
* This file and its contents are supplied under the terms of the
* Common Development and Distribution License ("CDDL"), version 1.0.
* You may only use this file in accordance with the terms of version
* 1.0 of the CDDL.
*
* A full copy of the text of the CDDL should have accompanied this
* source. A copy of the CDDL is also available via the Internet at
* http://www.illumos.org/license/CDDL.
*/
/*
* Copyright 2019 Joyent, Inc.
* Copyright 2022 Oxide Computer Company
*/
/*
* Generic Intel Integrated Memory Controller (IMC) Driver
*
* This driver talks to the CPU's IMC to understand the detailed topology of the
* processor and to determine how to map between physical addresses to the
* corresponding DIMM. This driver supports the following generations of Intel
* chips:
*
* - Sandy Bridge
* - Ivy Bridge
* - Haswell
* - Broadwell
* - Skylake / Cascade Lake
*
* Memory Decoding
* ---------------
*
* For more detailed summaries of the memory decoding process, please refer to
* the Intel External Design Specifications for the corresponding processor.
* What follows is a rough overview of how the memory decoding system works.
*
* First, we'd like to define the following concepts:
*
* SYSTEM ADDRESS
*
* This is a physical address that the operating system normally uses. This
* address may refer to DRAM, it may refer to memory mapped PCI
* configuration space or device registers, or it may refer to other parts
* of the system's memory map, such as the extended advanced programmable
* interrupt controller (xAPIC), etc.
*
* DIMM
*
* Dual-inline memory module. This refers to a physical stick of volatile
* memory that is inserted into a slot on the motherboard.
*
* RANK
*
* A potential sub-division of a DIMM. A DIMM's memory capacity is divided
* into a number of equal sized ranks. For example, an 8 GiB DIMM, may have
* 1 8 GiB rank, 2 4 GiB ranks, or 4 2 GiB ranks.
*
* RANK ADDRESS
*
* An address that exists in the context of a given rank on a DIMM. All
* ranks have overlapping addresses, so the address 0x400 exists on all
* ranks on a given DIMM.
*
* CHANNEL
*
* Multiple DIMMs may be combined into a single channel. The channel
* represents the combined memory of all the DIMMs. A given channel only
* ever exists on a socket and is bound to a single memory controller.
*
* CHANNEL ADDRESS
*
* This is an address that exists logically on a channel. Each address on a
* channel maps to a corresponding DIMM that exists on that channel. The
* address space on one channel is independent from that on another. This
* means that address 0x1000 can exist on each memory channel in the
* system.
*
* INTERLEAVE
*
* There are several different cases where interleaving occurs on the
* system. For example, addresses may be interleaved across sockets,
* memory channels, or DIMM ranks. When addresses are interleaved, then
* some number of bits in an address are used to select which target to go
* to (usually through a look up table). The effect of interleaving is that
* addresses that are next to one another may not all go to the same
* device. The following image shows a non-interleaving case.
*
* 0x0fff +-----+ +-----+ 0x7ff
* | |\___________/| |
* | | __________ | (b) |
* | | / \| |
* 0x0800 |=====|= +-----+ 0x000 +-----+ 0x7ff
* | | \______________________________/| |
* | | _______________________________ | (a) |
* | |/ \| |
* 0x0000 +-----+ +-----+ 0x000
*
* In this example of non-interleaving, addresses 0x0000 to 0x07ff go to
* device (a). While, addresses 0x08000 to 0xfff, go to device (b).
* However, each range is divided into the same number of components.
*
* If instead, we were to look at that with interleaving, what we might say
* is that rather than splitting the range in half, we might say that if
* the address has bit 8 set (0x100), then it goes to (b), otherwise it
* goes to (a). This means that addresses 0x000 to 0x0ff, would go to (a).
* 0x100 to 0x1ff would go to (b). 0x200 to 0x2ff would go back to (a)
* again, and then 0x300 to 0x2ff would go back to (b). This would continue
* for a while. This would instead look something more like:
*
*
* 0x0fff +-----+ A: 0x7ff +---------+ B: 0x7ff +---------+
* | (b) | | e00-eff | | f00-fff |
* 0x0f00 |-----| 0x700 +---------+ 0x700 +---------+
* | (a) | | c00-cff | | d00-dff |
* 0x0e00 ~~~~~~~ 0x600 +---------+ 0x600 +---------+
* *** | a00-aff | | b00-bff |
* 0x0400 ~~~~~~~ 0x500 +---------+ 0x500 +---------+
* | (b) | | 800-8ff | | 900-9ff |
* 0x0300 |-----| 0x400 +---------+ 0x400 +---------+
* | (a) | | 600-6ff | | 700-7ff |
* 0x0200 |-----| 0x300 +---------+ 0x300 +---------+
* | (b) | | 400-4ff | | 500-5ff |
* 0x0100 |-----| 0x200 +---------+ 0x200 +---------+
* | (a) | | 200-2ff | | 300-3ff |
* 0x0000 +-----+ 0x100 +---------+ 0x100 +---------+
* | 000-0ff | | 100-1ff |
* 0x000 +---------+ 0x000 +---------+
*
* In this example we've performed two-way interleaving. The number of ways
* that something can interleave varies based on what we're interleaving
* between.
*
* MEMORY CONTROLLER
*
* A given processor die (see uts/i86pc/os/cpuid.c) contains a number of
* memory controllers. Usually 1 or two. Each memory controller supports a
* given number of DIMMs, which are divided across multiple channels.
*
* TARGET ADDRESS DECODER
*
* The target address decoder (TAD) is responsible for taking a system
* address and transforming it into a channel address based on the rules
* that are present. Each memory controller has a corresponding TAD. The
* TAD is often contained in a device called a 'Home Agent'.
*
* SYSTEM ADDRESS DECODER
*
* The system address decoder (SAD) is responsible for taking a system
* address and directing it to the right place, whether this be memory or
* otherwise. There is a single memory controller per socket (see
* uts/i86pc/os/cpuid.c) that is shared between all the cores currently.
*
* NODE IDENTIFIER
*
* The node identifier is used to uniquely identify an element in the
* various routing topologies on the die (see uts/i86pc/os/cpuid.c for the
* definition of 'die'). One can roughly think about this as a unique
* identifier for the socket itself. In general, the primary node ID for a
* socket should map to the socket APIC ID.
*
* Finding Devices
* ---------------
*
* There is a bit of a chicken and egg problem on Intel systems and in the
* device driver interface. The information that we need in the system is spread
* out amongst a large number of different PCI devices that the processor
* exposes. The number of such devices can vary based on the processor
* generation and the specific SKU in the processor. To deal with this, we break
* the driver into two different components: a stub driver and the full driver.
*
* The stub driver has aliases for all known PCI devices that we might attach to
* in a given generation on the system. This driver is called 'imcstub'. When a
* stub attaches, it just registers itself with the main driver, upon which it
* has a module dependency.
*
* The main driver, 'imc', is a pseudo-device driver. When it first attaches, it
* kicks off a scan of the device tree which takes place in a task queue. Once
* there, it determines the number of devices that it expects to exist by
* walking the tree and comparing it against the generation-specific table.
*
* If all devices are found, we'll go ahead and read through all the devices and
* build a map of all the information we need to understand the topology of the
* system and to be able to decode addresses. We do this here, because we can be
* asked to perform decoding in dangerous contexts (after taking an MCE, panic,
* etc) where we don't want to have to rely on the broader kernel functioning at
* this point in time.
*
* Once our topology is built, we'll create minor nodes which are used by the
* fault management architecture to query for information and register our
* decoding functionality with the kernel.
*
* PCI Numbering
* -------------
*
* For each device that we care about, Intel defines the device and function
* that we can expect to find the information and PCI configuration space
* registers that we care about at. However, the PCI bus is not well defined.
* Devices that are on the same socket use the same set of bus numbers; however,
* some sockets have multiple device numbers that they'll use to represent
* different classes. These bus numbers are programmed by systems firmware as
* part of powering on the system. This means, that we need the ability to
* map together these disparate ranges ourselves.
*
* There is a device called a utility box (UBOX), which exists per-socket and
* maps the different sockets together. We use this to determine which devices
* correspond to which sockets.
*
* Mapping Sockets
* ---------------
*
* Another wrinkle is that the way that the OS sees the numbering of the CPUs is
* generally based on the APIC ID (see uts/i86pc/os/cpuid.c for more
* information). However, to map to the corresponding socket, we need to look at
* the socket's node ID. The order of PCI buses in the system is not required to
* have any relation to the socket ID. Therefore, we have to have yet another
* indirection table in the imc_t.
*
* Exposing Data
* -------------
*
* We expose topology data to FMA using the OS-private memory controller
* interfaces. By creating minor nodes of the type, 'ddi_mem_ctrl', there are a
* number of specific interfaces that we can then implement. The ioctl API asks
* us for a snapshot of data, which basically has us go through and send an
* nvlist_t to userland. This nvlist_t is constructed as part of the scan
* process. This nvlist uses the version 1 format, which more explicitly encodes
* the topology in a series of nested nvlists.
*
* In addition, the tool /usr/lib/fm/fmd/mcdecode can be used to query the
* decoder and ask it to perform decoding.
*
* Decoding Addresses
* ------------------
*
* The decoding logic can be found in common/imc/imc_decode.c. This file is
* shared between the kernel and userland to allow for easier testing and
* additional flexibility in operation. The decoding process happens in a few
* different phases.
*
* The first phase, is to determine which memory controller on which socket is
* responsible for this data. To determine this, we use the system address
* decoder and walk the rules, looking for the correct target. There are various
* manipulations to the address that exist which are used to determine which
* index we use. The way that we interpret the output of the rule varies
* somewhat based on the generation. Sandy Bridge just has a node ID which
* points us to the socket with its single IMC. On Ivy Bridge through Broadwell,
* the memory controller to use is also encoded in part of the node ID. Finally,
* on Skylake, the SAD tells us which socket to look at. The socket in question
* then has a routing table which tells us which channel on which memory
* controller that is local to that socket.
*
* Once we have the target memory controller, we walk the list of target address
* decoder rules. These rules can help tell us which channel we care about
* (which is required on Sandy Bridge through Broadwell) and then describe some
* amount of the interleaving rules which are used to turn the system address
* into a channel address.
*
* Once we know the channel and the channel address, we walk the rank interleave
* rules which help us determine which DIMM and the corresponding rank on it
* that the corresponding channel address is on. It also has logic that we need
* to use to determine how to transform a channel address into an address on
* that specific rank. Once we have that, then the initial decoding is done.
*
* The logic in imc_decode.c is abstracted away from the broader kernel CMI
* logic. This is on purpose and allows us not only an easier time unit testing
* the logic, but also allows us to express more high fidelity errors that are
* translated into a much smaller subset. This logic is exercised in the
* 'imc_test' program which is built in 'test/os-tests/tests/imc'.
*
* Limitations
* -----------
*
* Currently, this driver has the following limitations:
*
* o It doesn't decode the row and column addresses.
* o It doesn't encode from a DIMM address to a system address.
* o It doesn't properly support lockstep and mirroring modes on Sandy Bridge -
* Broadwell platforms.
* o It doesn't support virtual lockstep and adaptive mirroring on Purley
* platforms.
* o It doesn't properly handle Intel Optane (3D-X Point) NVDIMMs.
* o It doesn't know how to decode three way channel interleaving.
*
* None of these are intrinsic problems to the driver, it's mostly a matter of
* having proper documentation and testing.
*/
#include <sys/modctl.h>
#include <sys/conf.h>
#include <sys/devops.h>
#include <sys/ddi.h>
#include <sys/sunddi.h>
#include <sys/types.h>
#include <sys/file.h>
#include <sys/errno.h>
#include <sys/open.h>
#include <sys/cred.h>
#include <sys/pci.h>
#include <sys/sysmacros.h>
#include <sys/avl.h>
#include <sys/stat.h>
#include <sys/policy.h>
#include <sys/cpu_module.h>
#include <sys/mc.h>
#include <sys/mc_intel.h>
#include "imc.h"
/*
* These tables contain generational data that varies between processor
* generation such as the maximum number of sockets, memory controllers, and the
* offsets of the various registers.
*/
static const imc_gen_data_t imc_gen_data_snb = {
.igd_max_sockets = 4,
.igd_max_imcs = 2,
.igd_max_channels = 4,
.igd_max_dimms = 3,
.igd_max_ranks = IMC_MTR_DDR_RANKS_MAX,
.igd_mtr_offsets = { IMC_REG_MC_MTR0, IMC_REG_MC_MTR1,
IMC_REG_MC_MTR2 },
.igd_mcmtr_offset = 0x7c,
.igd_tolm_offset = 0x80,
.igd_tohm_low_offset = 0x84,
.igd_sad_dram_offset = 0x80,
.igd_sad_ndram_rules = 10,
.igd_sad_nodeid_offset = 0x40,
.igd_tad_nrules = 12,
.igd_tad_rule_offset = 0x40,
.igd_tad_chan_offset = 0x90,
.igd_tad_sysdef = 0x80,
.igd_tad_sysdef2 = 0x84,
.igd_mc_mirror = 0xac,
.igd_rir_nways = 5,
.igd_rir_way_offset = 0x108,
.igd_rir_nileaves = 8,
.igd_rir_ileave_offset = 0x120,
.igd_ubox_cpubusno_offset = 0xd0,
};
static const imc_gen_data_t imc_gen_data_ivb = {
.igd_max_sockets = 4,
.igd_max_imcs = 2,
.igd_max_channels = 4,
.igd_max_dimms = 3,
.igd_max_ranks = IMC_MTR_DDR_RANKS_MAX,
.igd_mtr_offsets = { IMC_REG_MC_MTR0, IMC_REG_MC_MTR1,
IMC_REG_MC_MTR2 },
.igd_mcmtr_offset = 0x7c,
.igd_tolm_offset = 0x80,
.igd_tohm_low_offset = 0x84,
.igd_sad_dram_offset = 0x60,
.igd_sad_ndram_rules = 20,
.igd_sad_nodeid_offset = 0x40,
.igd_tad_nrules = 12,
.igd_tad_rule_offset = 0x40,
.igd_tad_chan_offset = 0x90,
.igd_tad_sysdef = 0x80,
.igd_tad_sysdef2 = 0x84,
.igd_mc_mirror = 0xac,
.igd_rir_nways = 5,
.igd_rir_way_offset = 0x108,
.igd_rir_nileaves = 8,
.igd_rir_ileave_offset = 0x120,
.igd_ubox_cpubusno_offset = 0xd0,
};
static const imc_gen_data_t imc_gen_data_has_brd = {
.igd_max_sockets = 4,
.igd_max_imcs = 2,
.igd_max_channels = 4,
.igd_max_dimms = 3,
.igd_max_ranks = IMC_MTR_DDR_RANKS_MAX_HAS_SKX,
.igd_mtr_offsets = { IMC_REG_MC_MTR0, IMC_REG_MC_MTR1,
IMC_REG_MC_MTR2 },
.igd_mcmtr_offset = 0x7c,
.igd_tolm_offset = 0xd0,
.igd_tohm_low_offset = 0xd4,
.igd_tohm_hi_offset = 0xd8,
.igd_sad_dram_offset = 0x60,
.igd_sad_ndram_rules = 20,
.igd_sad_nodeid_offset = 0x40,
.igd_tad_nrules = 12,
.igd_tad_rule_offset = 0x40,
.igd_tad_chan_offset = 0x90,
.igd_tad_sysdef = 0x80,
.igd_tad_sysdef2 = 0x84,
.igd_mc_mirror = 0xac,
.igd_rir_nways = 5,
.igd_rir_way_offset = 0x108,
.igd_rir_nileaves = 8,
.igd_rir_ileave_offset = 0x120,
.igd_ubox_cpubusno_offset = 0xd0,
};
static const imc_gen_data_t imc_gen_data_skx = {
.igd_max_sockets = 8,
.igd_max_imcs = 2,
.igd_max_channels = 3,
.igd_max_dimms = 2,
.igd_max_ranks = IMC_MTR_DDR_RANKS_MAX,
.igd_mtr_offsets = { IMC_REG_MC_MTR0, IMC_REG_MC_MTR1 },
.igd_mcmtr_offset = 0x87c,
.igd_topo_offset = 0x88,
.igd_tolm_offset = 0xd0,
.igd_tohm_low_offset = 0xd4,
.igd_tohm_hi_offset = 0xd8,
.igd_sad_dram_offset = 0x60,
.igd_sad_ndram_rules = 24,
.igd_sad_nodeid_offset = 0xc0,
.igd_tad_nrules = 8,
.igd_tad_rule_offset = 0x850,
.igd_tad_chan_offset = 0x90,
.igd_rir_nways = 4,
.igd_rir_way_offset = 0x108,
.igd_rir_nileaves = 4,
.igd_rir_ileave_offset = 0x120,
.igd_ubox_cpubusno_offset = 0xcc,
};
/*
* This table contains all of the devices that we're looking for from a stub
* perspective. These are organized by generation. Different generations behave
* in slightly different ways. For example, Sandy Bridge through Broadwell use
* unique PCI IDs for each PCI device/function combination that appears. Whereas
* Skylake based systems use the same PCI ID; however, different device/function
* values indicate that the IDs are used for different purposes.
*/
/* BEGIN CSTYLED */
static const imc_stub_table_t imc_stub_table[] = {
/* Sandy Bridge */
{ IMC_GEN_SANDY, IMC_TYPE_MC0_MAIN0, 0x3ca8, 15, 0, "IMC 0 Main 0" },
{ IMC_GEN_SANDY, IMC_TYPE_MC0_MAIN1, 0x3c71, 15, 1, "IMC 0 Main 0" },
{ IMC_GEN_SANDY, IMC_TYPE_MC0_CHANNEL0, 0x3caa, 15, 2, "IMC 0 Channel 0 Info" },
{ IMC_GEN_SANDY, IMC_TYPE_MC0_CHANNEL1, 0x3cab, 15, 3, "IMC 0 Channel 1 Info" },
{ IMC_GEN_SANDY, IMC_TYPE_MC0_CHANNEL2, 0x3cac, 15, 4, "IMC 0 Channel 2 Info" },
{ IMC_GEN_SANDY, IMC_TYPE_MC0_CHANNEL3, 0x3cad, 15, 5, "IMC 0 Channel 3 Info" },
{ IMC_GEN_SANDY, IMC_TYPE_SAD_DRAM, 0x3cf4, 12, 6, "SAD DRAM Rules" },
{ IMC_GEN_SANDY, IMC_TYPE_SAD_MMIO, 0x3cf5, 13, 6, "SAD MMIO Rules" },
{ IMC_GEN_SANDY, IMC_TYPE_SAD_MISC, 0x3cf6, 12, 7, "SAD Memory Map" },
{ IMC_GEN_SANDY, IMC_TYPE_UBOX, 0x3ce0, 11, 0, "UBox" },
{ IMC_GEN_SANDY, IMC_TYPE_UBOX_CPUBUSNO, 0x3ce3, 11, 3, "UBox Scratch" },
{ IMC_GEN_SANDY, IMC_TYPE_HA0, 0x3ca0, 14, 0, "Home Agent" },
/* Ivy Bridge */
{ IMC_GEN_IVY, IMC_TYPE_MC0_MAIN0, 0x0ea8, 15, 0, "IMC 0 Main 0" },
{ IMC_GEN_IVY, IMC_TYPE_MC0_MAIN1, 0x0e71, 15, 1, "IMC 0 Main 1" },
{ IMC_GEN_IVY, IMC_TYPE_MC0_CHANNEL0, 0x0eaa, 15, 2, "IMC 0 Channel 0 Info" },
{ IMC_GEN_IVY, IMC_TYPE_MC0_CHANNEL1, 0x0eab, 15, 3, "IMC 0 Channel 1 Info" },
{ IMC_GEN_IVY, IMC_TYPE_MC0_CHANNEL2, 0x0eac, 15, 4, "IMC 0 Channel 2 Info" },
{ IMC_GEN_IVY, IMC_TYPE_MC0_CHANNEL3, 0x0ead, 15, 5, "IMC 0 Channel 3 Info" },
{ IMC_GEN_IVY, IMC_TYPE_MC1_MAIN0, 0x0e68, 29, 0, "IMC 1 Main 0" },
{ IMC_GEN_IVY, IMC_TYPE_MC1_MAIN1, 0x0e79, 29, 1, "IMC 1 Main 1" },
{ IMC_GEN_IVY, IMC_TYPE_MC1_CHANNEL0, 0x0e6a, 15, 2, "IMC 1 Channel 0 Info" },
{ IMC_GEN_IVY, IMC_TYPE_MC1_CHANNEL1, 0x0e6b, 15, 3, "IMC 1 Channel 1 Info" },
{ IMC_GEN_IVY, IMC_TYPE_MC1_CHANNEL2, 0x0e6c, 15, 4, "IMC 1 Channel 2 Info" },
{ IMC_GEN_IVY, IMC_TYPE_MC1_CHANNEL3, 0x0e6d, 15, 5, "IMC 1 Channel 3 Info" },
{ IMC_GEN_IVY, IMC_TYPE_SAD_DRAM, 0x0ec8, 22, 0, "SAD DRAM Rules" },
{ IMC_GEN_IVY, IMC_TYPE_SAD_MMIO, 0x0ec9, 22, 1, "SAD MMIO Rules" },
{ IMC_GEN_IVY, IMC_TYPE_SAD_MISC, 0x0eca, 22, 2, "SAD Memory Map" },
{ IMC_GEN_IVY, IMC_TYPE_UBOX, 0x0e1e, 11, 0, "UBox" },
{ IMC_GEN_IVY, IMC_TYPE_UBOX_CPUBUSNO, 0x0e1f, 11, 3, "UBox Scratch" },
{ IMC_GEN_IVY, IMC_TYPE_HA0, 0x0ea0, 14, 0, "Home Agent 0" },
{ IMC_GEN_IVY, IMC_TYPE_HA1, 0x0e60, 28, 0, "Home Agent 1" },
/* Haswell */
{ IMC_GEN_HASWELL, IMC_TYPE_MC0_MAIN0, 0x2fa8, 19, 0, "IMC 0 Main 0" },
{ IMC_GEN_HASWELL, IMC_TYPE_MC0_MAIN1, 0x2f71, 19, 1, "IMC 0 Main 1" },
{ IMC_GEN_HASWELL, IMC_TYPE_MC0_CHANNEL0, 0x2faa, 19, 2, "IMC 0 Channel 0 Info" },
{ IMC_GEN_HASWELL, IMC_TYPE_MC0_CHANNEL1, 0x2fab, 19, 3, "IMC 0 Channel 1 Info" },
{ IMC_GEN_HASWELL, IMC_TYPE_MC0_CHANNEL2, 0x2fac, 19, 4, "IMC 0 Channel 2 Info" },
{ IMC_GEN_HASWELL, IMC_TYPE_MC0_CHANNEL3, 0x2fad, 19, 5, "IMC 0 Channel 3 Info" },
{ IMC_GEN_HASWELL, IMC_TYPE_MC1_MAIN0, 0x2f68, 22, 0, "IMC 1 Main 0" },
{ IMC_GEN_HASWELL, IMC_TYPE_MC1_MAIN1, 0x2f79, 22, 1, "IMC 1 Main 1" },
{ IMC_GEN_HASWELL, IMC_TYPE_MC1_CHANNEL0, 0x2f6a, 22, 2, "IMC 1 Channel 0 Info" },
{ IMC_GEN_HASWELL, IMC_TYPE_MC1_CHANNEL1, 0x2f6b, 22, 3, "IMC 1 Channel 1 Info" },
{ IMC_GEN_HASWELL, IMC_TYPE_MC1_CHANNEL2, 0x2f6c, 22, 4, "IMC 1 Channel 2 Info" },
{ IMC_GEN_HASWELL, IMC_TYPE_MC1_CHANNEL3, 0x2f6d, 22, 5, "IMC 1 Channel 3 Info" },
{ IMC_GEN_HASWELL, IMC_TYPE_SAD_DRAM, 0x2ffc, 15, 4, "SAD DRAM Rules" },
{ IMC_GEN_HASWELL, IMC_TYPE_SAD_MMIO, 0x2ffd, 15, 5, "SAD MMIO Rules" },
{ IMC_GEN_HASWELL, IMC_TYPE_VTD_MISC, 0x2f28, 5, 0, "Misc. Vritualization" },
{ IMC_GEN_HASWELL, IMC_TYPE_UBOX, 0x2f1e, 16, 5, "UBox" },
{ IMC_GEN_HASWELL, IMC_TYPE_UBOX_CPUBUSNO, 0x2f1f, 16, 7, "UBox Scratch" },
{ IMC_GEN_HASWELL, IMC_TYPE_HA0, 0x2fa0, 18, 0, "Home Agent 0" },
{ IMC_GEN_HASWELL, IMC_TYPE_HA1, 0x2f60, 18, 4, "Home Agent 1" },
/* Broadwell Devices */
{ IMC_GEN_BROADWELL, IMC_TYPE_MC0_MAIN0, 0x6fa8, 19, 0, "IMC 0 Main 0" },
{ IMC_GEN_BROADWELL, IMC_TYPE_MC0_MAIN1, 0x6f71, 19, 1, "IMC 0 Main 1" },
{ IMC_GEN_BROADWELL, IMC_TYPE_MC0_CHANNEL0, 0x6faa, 19, 2, "IMC 0 Channel 0 Info" },
{ IMC_GEN_BROADWELL, IMC_TYPE_MC0_CHANNEL1, 0x6fab, 19, 3, "IMC 0 Channel 1 Info" },
{ IMC_GEN_BROADWELL, IMC_TYPE_MC0_CHANNEL2, 0x6fac, 19, 4, "IMC 0 Channel 2 Info" },
{ IMC_GEN_BROADWELL, IMC_TYPE_MC0_CHANNEL3, 0x6fad, 19, 5, "IMC 0 Channel 3 Info" },
{ IMC_GEN_BROADWELL, IMC_TYPE_MC1_MAIN0, 0x6f68, 22, 0, "IMC 1 Main 0" },
{ IMC_GEN_BROADWELL, IMC_TYPE_MC1_MAIN1, 0x6f79, 22, 1, "IMC 1 Main 1" },
{ IMC_GEN_BROADWELL, IMC_TYPE_MC1_CHANNEL0, 0x6f6a, 22, 2, "IMC 1 Channel 0 Info" },
{ IMC_GEN_BROADWELL, IMC_TYPE_MC1_CHANNEL1, 0x6f6b, 22, 3, "IMC 1 Channel 1 Info" },
{ IMC_GEN_BROADWELL, IMC_TYPE_MC1_CHANNEL2, 0x6f6c, 22, 4, "IMC 1 Channel 2 Info" },
{ IMC_GEN_BROADWELL, IMC_TYPE_MC1_CHANNEL3, 0x6f6d, 22, 5, "IMC 1 Channel 3 Info" },
{ IMC_GEN_BROADWELL, IMC_TYPE_SAD_DRAM, 0x6ffc, 15, 4, "SAD DRAM Rules" },
{ IMC_GEN_BROADWELL, IMC_TYPE_SAD_MMIO, 0x6ffd, 15, 5, "SAD MMIO Rules" },
{ IMC_GEN_BROADWELL, IMC_TYPE_VTD_MISC, 0x6f28, 5, 0, "Misc. Vritualization" },
{ IMC_GEN_BROADWELL, IMC_TYPE_UBOX, 0x6f1e, 16, 5, "UBox" },
{ IMC_GEN_BROADWELL, IMC_TYPE_UBOX_CPUBUSNO, 0x6f1f, 16, 7, "UBox Scratch" },
{ IMC_GEN_BROADWELL, IMC_TYPE_HA0, 0x6fa0, 18, 0, "Home Agent 0" },
{ IMC_GEN_BROADWELL, IMC_TYPE_HA1, 0x6f60, 18, 4, "Home Agent 1" },
/* Skylake and Cascade Lake Devices */
{ IMC_GEN_SKYLAKE, IMC_TYPE_MC0_M2M, 0x2066, 8, 0, "IMC 0 M2M" },
{ IMC_GEN_SKYLAKE, IMC_TYPE_MC1_M2M, 0x2066, 9, 0, "IMC 0 M2M" },
{ IMC_GEN_SKYLAKE, IMC_TYPE_MC0_MAIN0, 0x2040, 10, 0, "IMC 0 Main / Channel 0" },
{ IMC_GEN_SKYLAKE, IMC_TYPE_MC1_MAIN0, 0x2040, 12, 0, "IMC 0 Main / Channel 0" },
{ IMC_GEN_SKYLAKE, IMC_TYPE_MC0_CHANNEL1, 0x2044, 10, 4, "IMC 0 Channel 1" },
{ IMC_GEN_SKYLAKE, IMC_TYPE_MC0_CHANNEL2, 0x2048, 11, 0, "IMC 0 Channel 2" },
{ IMC_GEN_SKYLAKE, IMC_TYPE_MC1_CHANNEL1, 0x2044, 12, 4, "IMC 1 Channel 1" },
{ IMC_GEN_SKYLAKE, IMC_TYPE_MC1_CHANNEL2, 0x2048, 13, 0, "IMC 1 Channel 2" },
{ IMC_GEN_SKYLAKE, IMC_TYPE_SAD_DRAM, 0x2054, 29, 0, "SAD DRAM Rules" },
{ IMC_GEN_SKYLAKE, IMC_TYPE_SAD_MMIO, 0x2055, 29, 1, "SAD MMIO Rules" },
{ IMC_GEN_SKYLAKE, IMC_TYPE_VTD_MISC, 0x2024, 5, 0, "Misc. Virtualization" },
/*
* There is one SAD MC Route type device per core! Because of this a
* wide array of device and functions are allocated. For now, we list
* all 28 of them out.
*/
{ IMC_GEN_SKYLAKE, IMC_TYPE_SAD_MCROUTE, 0x208e, 14, 0, "Per-Core SAD" },
{ IMC_GEN_SKYLAKE, IMC_TYPE_SAD_MCROUTE, 0x208e, 14, 1, "Per-Core SAD" },
{ IMC_GEN_SKYLAKE, IMC_TYPE_SAD_MCROUTE, 0x208e, 14, 2, "Per-Core SAD" },
{ IMC_GEN_SKYLAKE, IMC_TYPE_SAD_MCROUTE, 0x208e, 14, 3, "Per-Core SAD" },
{ IMC_GEN_SKYLAKE, IMC_TYPE_SAD_MCROUTE, 0x208e, 14, 4, "Per-Core SAD" },
{ IMC_GEN_SKYLAKE, IMC_TYPE_SAD_MCROUTE, 0x208e, 14, 5, "Per-Core SAD" },
{ IMC_GEN_SKYLAKE, IMC_TYPE_SAD_MCROUTE, 0x208e, 14, 6, "Per-Core SAD" },
{ IMC_GEN_SKYLAKE, IMC_TYPE_SAD_MCROUTE, 0x208e, 14, 7, "Per-Core SAD" },
{ IMC_GEN_SKYLAKE, IMC_TYPE_SAD_MCROUTE, 0x208e, 15, 0, "Per-Core SAD" },
{ IMC_GEN_SKYLAKE, IMC_TYPE_SAD_MCROUTE, 0x208e, 15, 1, "Per-Core SAD" },
{ IMC_GEN_SKYLAKE, IMC_TYPE_SAD_MCROUTE, 0x208e, 15, 2, "Per-Core SAD" },
{ IMC_GEN_SKYLAKE, IMC_TYPE_SAD_MCROUTE, 0x208e, 15, 3, "Per-Core SAD" },
{ IMC_GEN_SKYLAKE, IMC_TYPE_SAD_MCROUTE, 0x208e, 15, 4, "Per-Core SAD" },
{ IMC_GEN_SKYLAKE, IMC_TYPE_SAD_MCROUTE, 0x208e, 15, 5, "Per-Core SAD" },
{ IMC_GEN_SKYLAKE, IMC_TYPE_SAD_MCROUTE, 0x208e, 15, 6, "Per-Core SAD" },
{ IMC_GEN_SKYLAKE, IMC_TYPE_SAD_MCROUTE, 0x208e, 15, 7, "Per-Core SAD" },
{ IMC_GEN_SKYLAKE, IMC_TYPE_SAD_MCROUTE, 0x208e, 16, 0, "Per-Core SAD" },
{ IMC_GEN_SKYLAKE, IMC_TYPE_SAD_MCROUTE, 0x208e, 16, 1, "Per-Core SAD" },
{ IMC_GEN_SKYLAKE, IMC_TYPE_SAD_MCROUTE, 0x208e, 16, 2, "Per-Core SAD" },
{ IMC_GEN_SKYLAKE, IMC_TYPE_SAD_MCROUTE, 0x208e, 16, 3, "Per-Core SAD" },
{ IMC_GEN_SKYLAKE, IMC_TYPE_SAD_MCROUTE, 0x208e, 16, 4, "Per-Core SAD" },
{ IMC_GEN_SKYLAKE, IMC_TYPE_SAD_MCROUTE, 0x208e, 16, 5, "Per-Core SAD" },
{ IMC_GEN_SKYLAKE, IMC_TYPE_SAD_MCROUTE, 0x208e, 16, 6, "Per-Core SAD" },
{ IMC_GEN_SKYLAKE, IMC_TYPE_SAD_MCROUTE, 0x208e, 16, 7, "Per-Core SAD" },
{ IMC_GEN_SKYLAKE, IMC_TYPE_SAD_MCROUTE, 0x208e, 17, 0, "Per-Core SAD" },
{ IMC_GEN_SKYLAKE, IMC_TYPE_SAD_MCROUTE, 0x208e, 17, 1, "Per-Core SAD" },
{ IMC_GEN_SKYLAKE, IMC_TYPE_SAD_MCROUTE, 0x208e, 17, 2, "Per-Core SAD" },
{ IMC_GEN_SKYLAKE, IMC_TYPE_SAD_MCROUTE, 0x208e, 17, 3, "Per-Core SAD" },
{ IMC_GEN_SKYLAKE, IMC_TYPE_SAD_MCROUTE, 0x208e, 17, 4, "Per-Core SAD" },
{ IMC_GEN_SKYLAKE, IMC_TYPE_SAD_MCROUTE, 0x208e, 17, 5, "Per-Core SAD" },
{ IMC_GEN_SKYLAKE, IMC_TYPE_SAD_MCROUTE, 0x208e, 17, 6, "Per-Core SAD" },
{ IMC_GEN_SKYLAKE, IMC_TYPE_SAD_MCROUTE, 0x208e, 17, 7, "Per-Core SAD" },
{ IMC_GEN_SKYLAKE, IMC_TYPE_UBOX, 0x2014, 8, 0, "UBox" },
{ IMC_GEN_SKYLAKE, IMC_TYPE_UBOX_CPUBUSNO, 0x2016, 8, 2, "DECS" },
};
/* END CSTYLED */
#define IMC_PCI_VENDOR_INTC 0x8086
/*
* Our IMC data is global and statically set up during a combination of
* _init(9E) and attach(9E). While we have a module dependency between the PCI
* stub driver, imcstub, and this pseudo-driver, imc, the dependencies don't
* guarantee that the imc driver has finished attaching. As such we make sure
* that it can operate without it being attached in any way.
*/
static imc_t *imc_data = NULL;
/*
* By default we should not allow the stubs to detach as we don't have a good
* way of forcing them to attach again. This is provided in case someone does
* want to allow the driver to unload.
*/
int imc_allow_detach = 0;
static void
imc_set_gen_data(imc_t *imc)
{
switch (imc->imc_gen) {
case IMC_GEN_SANDY:
imc->imc_gen_data = &imc_gen_data_snb;
break;
case IMC_GEN_IVY:
imc->imc_gen_data = &imc_gen_data_ivb;
break;
case IMC_GEN_HASWELL:
case IMC_GEN_BROADWELL:
imc->imc_gen_data = &imc_gen_data_has_brd;
break;
case IMC_GEN_SKYLAKE:
imc->imc_gen_data = &imc_gen_data_skx;
break;
default:
dev_err(imc->imc_dip, CE_PANIC, "imc driver programmer error: "
"set to unknown generation: %u", imc->imc_gen);
}
}
/*
* If our device (dev_info_t) does not have a non-zero unit address, then
* devfsadmd will not pay attention to us at all. Therefore we need to set the
* unit address below, before we create minor nodes.
*
* The rest of the system expects us to have one minor node per socket. The
* minor node ID should be the ID of the socket.
*/
static boolean_t
imc_create_minors(imc_t *imc)
{
uint_t i;
ddi_set_name_addr(imc->imc_dip, "1");
for (i = 0; i < imc->imc_nsockets; i++) {
char buf[MAXNAMELEN];
if (snprintf(buf, sizeof (buf), "mc-imc-%u", i) >=
sizeof (buf)) {
goto fail;
}
if (ddi_create_minor_node(imc->imc_dip, buf, S_IFCHR, i,
"ddi_mem_ctrl", 0) != DDI_SUCCESS) {
dev_err(imc->imc_dip, CE_WARN, "failed to create "
"minor node %u: %s", i, buf);
goto fail;
}
}
return (B_TRUE);
fail:
ddi_remove_minor_node(imc->imc_dip, NULL);
return (B_FALSE);
}
/*
* Check the current MC route value for this SAD. On Skylake systems there is
* one per core. Every core should agree. If not, we will not trust the SAD
* MCROUTE values and this will cause system address decoding to fail on
* skylake.
*/
static void
imc_mcroute_check(imc_t *imc, imc_sad_t *sad, imc_stub_t *stub)
{
uint32_t val;
val = pci_config_get32(stub->istub_cfgspace,
IMC_REG_SKX_SAD_MC_ROUTE_TABLE);
if (val == PCI_EINVAL32) {
sad->isad_valid |= IMC_SAD_V_BAD_PCI_READ;
return;
}
if ((sad->isad_flags & IMC_SAD_MCROUTE_VALID) == 0 && val != 0) {
sad->isad_flags |= IMC_SAD_MCROUTE_VALID;
sad->isad_mcroute.ismc_raw_mcroute = val;
return;
}
/*
* Occasionally we see MC ROUTE table entries with a value of zero.
* We should ignore those for now.
*/
if (val != sad->isad_mcroute.ismc_raw_mcroute && val != 0) {
dev_err(imc->imc_dip, CE_WARN, "SAD MC_ROUTE_TABLE mismatch "
"with socket. SAD has val 0x%x, system has %x\n",
val, sad->isad_mcroute.ismc_raw_mcroute);
sad->isad_valid |= IMC_SAD_V_BAD_MCROUTE;
}
}
/*
* On Skylake, many of the devices that we care about are on separate PCI Buses.
* These can be mapped together by the DECS register. However, we need to know
* how to map different buses together so that we can more usefully associate
* information. The set of buses is all present in the DECS register. We'll
* effectively assign sockets to buses. This is also still something that comes
* up on pre-Skylake systems as well.
*/
static boolean_t
imc_map_buses(imc_t *imc)
{
imc_stub_t *stub;
uint_t nsock;
/*
* Find the UBOX_DECS registers so we can establish socket mappings. On
* Skylake, there are three different sets of buses that we need to
* cover all of our devices, while there are only two before that.
*/
for (nsock = 0, stub = avl_first(&imc->imc_stubs); stub != NULL;
stub = AVL_NEXT(&imc->imc_stubs, stub)) {
uint32_t busno;
if (stub->istub_table->imcs_type != IMC_TYPE_UBOX_CPUBUSNO) {
continue;
}
busno = pci_config_get32(stub->istub_cfgspace,
imc->imc_gen_data->igd_ubox_cpubusno_offset);
if (busno == PCI_EINVAL32) {
dev_err(imc->imc_dip, CE_WARN, "failed to read "
"UBOX_DECS CPUBUSNO0: invalid PCI read");
return (B_FALSE);
}
if (imc->imc_gen >= IMC_GEN_SKYLAKE) {
imc->imc_sockets[nsock].isock_nbus = 3;
imc->imc_sockets[nsock].isock_bus[0] =
IMC_UBOX_CPUBUSNO_0(busno);
imc->imc_sockets[nsock].isock_bus[1] =
IMC_UBOX_CPUBUSNO_1(busno);
imc->imc_sockets[nsock].isock_bus[2] =
IMC_UBOX_CPUBUSNO_2(busno);
} else {
imc->imc_sockets[nsock].isock_bus[0] =
IMC_UBOX_CPUBUSNO_0(busno);
imc->imc_sockets[nsock].isock_bus[1] =
IMC_UBOX_CPUBUSNO_1(busno);
imc->imc_sockets[nsock].isock_nbus = 2;
}
nsock++;
}
imc->imc_nsockets = nsock;
return (B_TRUE);
}
/*
* For a given stub that we've found, map it to its corresponding socket based
* on the PCI bus that it has.
*/
static imc_socket_t *
imc_map_find_socket(imc_t *imc, imc_stub_t *stub)
{
uint_t i;
for (i = 0; i < imc->imc_nsockets; i++) {
uint_t bus;
for (bus = 0; bus < imc->imc_sockets[i].isock_nbus; bus++) {
if (imc->imc_sockets[i].isock_bus[bus] ==
stub->istub_bus) {
return (&imc->imc_sockets[i]);
}
}
}
return (NULL);
}
static boolean_t
imc_map_stubs(imc_t *imc)
{
imc_stub_t *stub;
if (!imc_map_buses(imc)) {
return (B_FALSE);
}
stub = avl_first(&imc->imc_stubs);
for (stub = avl_first(&imc->imc_stubs); stub != NULL;
stub = AVL_NEXT(&imc->imc_stubs, stub)) {
imc_socket_t *sock = imc_map_find_socket(imc, stub);
if (sock == NULL) {
dev_err(imc->imc_dip, CE_WARN, "found stub type %u "
"PCI%x,%x with bdf %u/%u/%u that does not match a "
"known PCI bus for any of %u sockets",
stub->istub_table->imcs_type, stub->istub_vid,
stub->istub_did, stub->istub_bus, stub->istub_dev,
stub->istub_func, imc->imc_nsockets);
continue;
}
/*
* We don't have to worry about duplicates here. We check to
* make sure that we have unique bdfs here.
*/
switch (stub->istub_table->imcs_type) {
case IMC_TYPE_MC0_M2M:
sock->isock_imcs[0].icn_m2m = stub;
break;
case IMC_TYPE_MC1_M2M:
sock->isock_imcs[1].icn_m2m = stub;
break;
case IMC_TYPE_MC0_MAIN0:
sock->isock_nimc++;
sock->isock_imcs[0].icn_main0 = stub;
/*
* On Skylake, the MAIN0 does double duty as channel
* zero and as the TAD.
*/
if (imc->imc_gen >= IMC_GEN_SKYLAKE) {
sock->isock_imcs[0].icn_nchannels++;
sock->isock_imcs[0].icn_channels[0].ich_desc =
stub;
sock->isock_tad[0].itad_stub = stub;
sock->isock_ntad++;
}
break;
case IMC_TYPE_MC0_MAIN1:
sock->isock_imcs[0].icn_main1 = stub;
break;
case IMC_TYPE_MC1_MAIN0:
sock->isock_nimc++;
sock->isock_imcs[1].icn_main0 = stub;
/*
* On Skylake, the MAIN0 does double duty as channel
* zero and as the TAD.
*/
if (imc->imc_gen >= IMC_GEN_SKYLAKE) {
sock->isock_imcs[1].icn_nchannels++;
sock->isock_imcs[1].icn_channels[0].ich_desc =
stub;
sock->isock_tad[1].itad_stub = stub;
sock->isock_ntad++;
}
break;
case IMC_TYPE_MC1_MAIN1:
sock->isock_imcs[1].icn_main1 = stub;
break;
case IMC_TYPE_MC0_CHANNEL0:
sock->isock_imcs[0].icn_nchannels++;
sock->isock_imcs[0].icn_channels[0].ich_desc = stub;
break;
case IMC_TYPE_MC0_CHANNEL1:
sock->isock_imcs[0].icn_nchannels++;
sock->isock_imcs[0].icn_channels[1].ich_desc = stub;
break;
case IMC_TYPE_MC0_CHANNEL2:
sock->isock_imcs[0].icn_nchannels++;
sock->isock_imcs[0].icn_channels[2].ich_desc = stub;
break;
case IMC_TYPE_MC0_CHANNEL3:
sock->isock_imcs[0].icn_nchannels++;
sock->isock_imcs[0].icn_channels[3].ich_desc = stub;
break;
case IMC_TYPE_MC1_CHANNEL0:
sock->isock_imcs[1].icn_nchannels++;
sock->isock_imcs[1].icn_channels[0].ich_desc = stub;
break;
case IMC_TYPE_MC1_CHANNEL1:
sock->isock_imcs[1].icn_nchannels++;
sock->isock_imcs[1].icn_channels[1].ich_desc = stub;
break;
case IMC_TYPE_MC1_CHANNEL2:
sock->isock_imcs[1].icn_nchannels++;
sock->isock_imcs[1].icn_channels[2].ich_desc = stub;
break;
case IMC_TYPE_MC1_CHANNEL3:
sock->isock_imcs[1].icn_nchannels++;
sock->isock_imcs[1].icn_channels[3].ich_desc = stub;
break;
case IMC_TYPE_SAD_DRAM:
sock->isock_sad.isad_dram = stub;
break;
case IMC_TYPE_SAD_MMIO:
sock->isock_sad.isad_mmio = stub;
break;
case IMC_TYPE_SAD_MISC:
sock->isock_sad.isad_tolh = stub;
break;
case IMC_TYPE_VTD_MISC:
/*
* Some systems have multiple VT-D Misc. entry points
* in the system. In this case, only use the first one
* we find.
*/
if (imc->imc_gvtd_misc == NULL) {
imc->imc_gvtd_misc = stub;
}
break;
case IMC_TYPE_SAD_MCROUTE:
ASSERT3U(imc->imc_gen, >=, IMC_GEN_SKYLAKE);
imc_mcroute_check(imc, &sock->isock_sad, stub);
break;
case IMC_TYPE_UBOX:
sock->isock_ubox = stub;
break;
case IMC_TYPE_HA0:
sock->isock_ntad++;
sock->isock_tad[0].itad_stub = stub;
break;
case IMC_TYPE_HA1:
sock->isock_ntad++;
sock->isock_tad[1].itad_stub = stub;
break;
case IMC_TYPE_UBOX_CPUBUSNO:
sock->isock_cpubusno = stub;
break;
default:
/*
* Attempt to still attach if we can.
*/
dev_err(imc->imc_dip, CE_WARN, "Encountered unknown "
"IMC type (%u) on PCI %x,%x",
stub->istub_table->imcs_type,
stub->istub_vid, stub->istub_did);
break;
}
}
return (B_TRUE);
}
/*
* Go through and fix up various aspects of the stubs mappings on systems. The
* following are a list of what we need to fix up:
*
* 1. On Haswell and newer systems, there is only one global VT-d device. We
* need to go back and map that to all of the per-socket imc_sad_t entries.
*/
static void
imc_fixup_stubs(imc_t *imc)
{
if (imc->imc_gen >= IMC_GEN_HASWELL) {
uint_t i;
for (i = 0; i < imc->imc_nsockets; i++) {
ASSERT3P(imc->imc_sockets[i].isock_sad.isad_tolh,
==, NULL);
imc->imc_sockets[i].isock_sad.isad_tolh =
imc->imc_gvtd_misc;
}
}
}
/*
* In the wild we've hit a few odd cases where not all devices are exposed that
* we might expect by firmware. In particular we've seen and validate the
* following cases:
*
* o We don't find all of the channel devices that we expect, e.g. we have the
* stubs for channels 1-3, but not 0. That has been seen on an Intel S2600CW
* with an E5-2630v3.
*/
static boolean_t
imc_validate_stubs(imc_t *imc)
{
for (uint_t sock = 0; sock < imc->imc_nsockets; sock++) {
imc_socket_t *socket = &imc->imc_sockets[sock];
for (uint_t mc = 0; mc < socket->isock_nimc; mc++) {
imc_mc_t *mcp = &socket->isock_imcs[mc];
for (uint_t chan = 0; chan < mcp->icn_nchannels;
chan++) {
if (mcp->icn_channels[chan].ich_desc == NULL) {
dev_err(imc->imc_dip, CE_WARN,
"!missing device for socket %u/"
"imc %u/channel %u", sock, mc,
chan);
return (B_FALSE);
}
}
}
}
return (B_TRUE);
}
/*
* Attempt to map all of the discovered sockets to the corresponding APIC based
* socket. We do these mappings by getting the node id of the socket and
* adjusting it to make sure that no home agent is present in it. We use the
* UBOX to avoid any home agent related bits that are present in other
* registers.
*/
static void
imc_map_sockets(imc_t *imc)
{
uint_t i;
for (i = 0; i < imc->imc_nsockets; i++) {
uint32_t nodeid;
ddi_acc_handle_t h;
h = imc->imc_sockets[i].isock_ubox->istub_cfgspace;
nodeid = pci_config_get32(h,
imc->imc_gen_data->igd_sad_nodeid_offset);
if (nodeid == PCI_EINVAL32) {
imc->imc_sockets[i].isock_valid |=
IMC_SOCKET_V_BAD_NODEID;
continue;
}
imc->imc_sockets[i].isock_nodeid = IMC_NODEID_UBOX_MASK(nodeid);
imc->imc_spointers[nodeid] = &imc->imc_sockets[i];
}
}
/*
* Decode the MTR, accounting for variances between processor generations.
*/
static void
imc_decode_mtr(imc_t *imc, imc_mc_t *icn, imc_dimm_t *dimm, uint32_t mtr)
{
uint8_t disable;
/*
* Check present first, before worrying about anything else.
*/
if (imc->imc_gen < IMC_GEN_SKYLAKE &&
IMC_MTR_PRESENT_SNB_BRD(mtr) == 0) {
dimm->idimm_present = B_FALSE;
return;
} else if (imc->imc_gen >= IMC_GEN_SKYLAKE &&
IMC_MTR_PRESENT_SKYLAKE(mtr) == 0) {
dimm->idimm_present = B_FALSE;
return;
}
dimm->idimm_present = B_TRUE;
dimm->idimm_ncolumns = IMC_MTR_CA_WIDTH(mtr) + IMC_MTR_CA_BASE;
if (dimm->idimm_ncolumns < IMC_MTR_CA_MIN ||
dimm->idimm_ncolumns > IMC_MTR_CA_MAX) {
dimm->idimm_valid |= IMC_DIMM_V_BAD_COLUMNS;
}
dimm->idimm_nrows = IMC_MTR_RA_WIDTH(mtr) + IMC_MTR_RA_BASE;
if (dimm->idimm_nrows < IMC_MTR_RA_MIN ||
dimm->idimm_nrows > IMC_MTR_RA_MAX) {
dimm->idimm_valid |= IMC_DIMM_V_BAD_ROWS;
}
/*
* Determine Density, this information is not present on Sandy Bridge.
*/
switch (imc->imc_gen) {
case IMC_GEN_IVY:
dimm->idimm_density = 1U << IMC_MTR_DENSITY_IVY_BRD(mtr);
break;
case IMC_GEN_HASWELL:
case IMC_GEN_BROADWELL:
switch (IMC_MTR_DENSITY_IVY_BRD(mtr)) {
case 0:
default:
dimm->idimm_density = 0;
dimm->idimm_valid |= IMC_DIMM_V_BAD_DENSITY;
break;
case 1:
dimm->idimm_density = 2;
break;
case 2:
dimm->idimm_density = 4;
break;
case 3:
dimm->idimm_density = 8;
break;
}
break;
case IMC_GEN_SKYLAKE:
switch (IMC_MTR_DENSITY_SKX(mtr)) {
case 0:
default:
dimm->idimm_density = 0;
dimm->idimm_valid |= IMC_DIMM_V_BAD_DENSITY;
break;
case 1:
dimm->idimm_density = 2;
break;
case 2:
dimm->idimm_density = 4;
break;
case 3:
dimm->idimm_density = 8;
break;
case 4:
dimm->idimm_density = 16;
break;
case 5:
dimm->idimm_density = 12;
break;
}
break;
case IMC_GEN_UNKNOWN:
case IMC_GEN_SANDY:
dimm->idimm_density = 0;
break;
}
/*
* The values of width are the same on IVY->SKX, but the bits are
* different. This doesn't exist on SNB.
*/
if (imc->imc_gen > IMC_GEN_SANDY) {
uint8_t width;
if (imc->imc_gen >= IMC_GEN_BROADWELL) {
width = IMC_MTR_WIDTH_BRD_SKX(mtr);
} else {
width = IMC_MTR_WIDTH_IVB_HAS(mtr);
}
switch (width) {
case 0:
dimm->idimm_width = 4;
break;
case 1:
dimm->idimm_width = 8;
break;
case 2:
dimm->idimm_width = 16;
break;
default:
dimm->idimm_width = 0;
dimm->idimm_valid |= IMC_DIMM_V_BAD_WIDTH;
break;
}
} else {
dimm->idimm_width = 0;
}
dimm->idimm_nranks = 1 << IMC_MTR_DDR_RANKS(mtr);
switch (imc->imc_gen) {
case IMC_GEN_HASWELL:
case IMC_GEN_BROADWELL:
case IMC_GEN_SKYLAKE:
if (dimm->idimm_nranks > IMC_MTR_DDR_RANKS_MAX_HAS_SKX) {
dimm->idimm_nranks = 0;
dimm->idimm_valid |= IMC_DIMM_V_BAD_RANKS;
}
break;
default:
if (dimm->idimm_nranks > IMC_MTR_DDR_RANKS_MAX) {
dimm->idimm_nranks = 0;
dimm->idimm_valid |= IMC_DIMM_V_BAD_RANKS;
}
}
disable = IMC_MTR_RANK_DISABLE(mtr);
dimm->idimm_ranks_disabled[0] = (disable & 0x1) != 0;
dimm->idimm_ranks_disabled[1] = (disable & 0x2) != 0;
dimm->idimm_ranks_disabled[2] = (disable & 0x4) != 0;
dimm->idimm_ranks_disabled[3] = (disable & 0x8) != 0;
/*
* Only Haswell and later have this information.
*/
if (imc->imc_gen >= IMC_GEN_HASWELL) {
dimm->idimm_hdrl = IMC_MTR_HDRL_HAS_SKX(mtr) != 0;
dimm->idimm_hdrl_parity = IMC_MTR_HDRL_PARITY_HAS_SKX(mtr) != 0;
dimm->idimm_3dsranks = IMC_MTR_3DSRANKS_HAS_SKX(mtr);
if (dimm->idimm_3dsranks != 0) {
dimm->idimm_3dsranks = 1 << dimm->idimm_3dsranks;
}
}
if (icn->icn_dimm_type == IMC_DIMM_DDR4) {
dimm->idimm_nbanks = 16;
} else {
dimm->idimm_nbanks = 8;
}
/*
* To calculate the DIMM size we need first take the number of rows and
* columns. This gives us the number of slots per chip. In a given rank
* there are nbanks of these. There are nrank entries of those. Each of
* these slots can fit a byte.
*/
dimm->idimm_size = dimm->idimm_nbanks * dimm->idimm_nranks * 8 *
(1ULL << (dimm->idimm_ncolumns + dimm->idimm_nrows));
}
static void
imc_fill_dimms(imc_t *imc, imc_mc_t *icn, imc_channel_t *chan)
{
uint_t i;
/*
* There's one register for each DIMM that might be present, we always
* read that information to determine information about the DIMMs.
*/
chan->ich_ndimms = imc->imc_gen_data->igd_max_dimms;
for (i = 0; i < imc->imc_gen_data->igd_max_dimms; i++) {
uint32_t mtr;
imc_dimm_t *dimm = &chan->ich_dimms[i];
bzero(dimm, sizeof (imc_dimm_t));
mtr = pci_config_get32(chan->ich_desc->istub_cfgspace,
imc->imc_gen_data->igd_mtr_offsets[i]);
dimm->idimm_mtr = mtr;
/*
* We don't really expect to get a bad PCIe read. However, if we
* do, treat that for the moment as though the DIMM is bad.
*/
if (mtr == PCI_EINVAL32) {
dimm->idimm_valid |= IMC_DIMM_V_BAD_PCI_READ;
continue;
}
imc_decode_mtr(imc, icn, dimm, mtr);
}
}
static boolean_t
imc_fill_controller(imc_t *imc, imc_mc_t *icn)
{
uint32_t mcmtr;
mcmtr = pci_config_get32(icn->icn_main0->istub_cfgspace,
imc->imc_gen_data->igd_mcmtr_offset);
if (mcmtr == PCI_EINVAL32) {
icn->icn_invalid = B_TRUE;
return (B_FALSE);
}
icn->icn_closed = IMC_MCMTR_CLOSED_PAGE(mcmtr) != 0;
if (imc->imc_gen < IMC_GEN_SKYLAKE) {
icn->icn_lockstep = IMC_MCMTR_LOCKSTEP(mcmtr) != 0;
} else {
icn->icn_lockstep = B_FALSE;
}
icn->icn_ecc = IMC_MCMTR_ECC_ENABLED(mcmtr) != 0;
/*
* SNB and IVB only support DDR3. Haswell and Broadwell may support
* DDR4, depends on the SKU. Skylake only supports DDR4.
*/
switch (imc->imc_gen) {
case IMC_GEN_SANDY:
case IMC_GEN_IVY:
icn->icn_dimm_type = IMC_DIMM_DDR3;
break;
case IMC_GEN_HASWELL:
case IMC_GEN_BROADWELL:
if (IMC_MCMTR_DDR4_HAS_BRD(mcmtr)) {
icn->icn_dimm_type = IMC_DIMM_DDR4;
} else {
icn->icn_dimm_type = IMC_DIMM_DDR3;
}
break;
default:
/*
* Skylake and on are all DDR4.
*/
icn->icn_dimm_type = IMC_DIMM_DDR4;
break;
}
if (imc->imc_gen >= IMC_GEN_SKYLAKE && icn->icn_m2m != NULL) {
icn->icn_topo = pci_config_get32(icn->icn_m2m->istub_cfgspace,
imc->imc_gen_data->igd_topo_offset);
}
return (B_TRUE);
}
/*
* Walk the IMC data and fill in the information on DIMMs and the memory
* controller configurations.
*/
static void
imc_fill_data(imc_t *imc)
{
uint_t csock, cmc, cchan;
for (csock = 0; csock < imc->imc_nsockets; csock++) {
imc_socket_t *sock = &imc->imc_sockets[csock];
for (cmc = 0; cmc < sock->isock_nimc; cmc++) {
imc_mc_t *icn = &sock->isock_imcs[cmc];
if (!imc_fill_controller(imc, icn))
continue;
for (cchan = 0; cchan < icn->icn_nchannels; cchan++) {
imc_fill_dimms(imc, icn,
&icn->icn_channels[cchan]);
}
}
}
}
static nvlist_t *
imc_nvl_create_dimm(imc_t *imc, imc_dimm_t *dimm)
{
nvlist_t *nvl;
nvl = fnvlist_alloc();
fnvlist_add_boolean_value(nvl, MCINTEL_NVLIST_V1_DIMM_PRESENT,
dimm->idimm_present);
if (!dimm->idimm_present) {
return (nvl);
}
fnvlist_add_uint64(nvl, MCINTEL_NVLIST_V1_DIMM_SIZE, dimm->idimm_size);
fnvlist_add_uint32(nvl, MCINTEL_NVLIST_V1_DIMM_NCOLS,
dimm->idimm_ncolumns);
fnvlist_add_uint32(nvl, MCINTEL_NVLIST_V1_DIMM_NROWS,
dimm->idimm_nrows);
if (imc->imc_gen > IMC_GEN_SANDY) {
fnvlist_add_uint64(nvl, MCINTEL_NVLIST_V1_DIMM_DENSITY,
dimm->idimm_density * (1ULL << 30));
fnvlist_add_uint32(nvl, MCINTEL_NVLIST_V1_DIMM_WIDTH,
dimm->idimm_width);
}
fnvlist_add_uint32(nvl, MCINTEL_NVLIST_V1_DIMM_RANKS,
dimm->idimm_nranks);
fnvlist_add_uint32(nvl, MCINTEL_NVLIST_V1_DIMM_BANKS,
dimm->idimm_nbanks);
fnvlist_add_boolean_array(nvl, MCINTEL_NVLIST_V1_DIMM_RDIS,
dimm->idimm_ranks_disabled, IMC_MAX_RANK_DISABLE);
if (imc->imc_gen >= IMC_GEN_HASWELL) {
fnvlist_add_boolean_value(nvl, MCINTEL_NVLIST_V1_DIMM_HDRL,
dimm->idimm_hdrl);
fnvlist_add_boolean_value(nvl, MCINTEL_NVLIST_V1_DIMM_HDRLP,
dimm->idimm_hdrl_parity);
if (dimm->idimm_3dsranks > 0) {
fnvlist_add_uint32(nvl, MCINTEL_NVLIST_V1_DIMM_3DRANK,
dimm->idimm_3dsranks);
}
}
return (nvl);
}
static nvlist_t *
imc_nvl_create_channel(imc_t *imc, imc_channel_t *chan)
{
nvlist_t *nvl;
nvlist_t *dimms[IMC_MAX_DIMMPERCHAN];
uint_t i;
nvl = fnvlist_alloc();
fnvlist_add_uint32(nvl, MCINTEL_NVLIST_V1_CHAN_NDPC,
imc->imc_gen_data->igd_max_dimms);
for (i = 0; i < imc->imc_gen_data->igd_max_dimms; i++) {
dimms[i] = imc_nvl_create_dimm(imc, &chan->ich_dimms[i]);
}
fnvlist_add_nvlist_array(nvl, MCINTEL_NVLIST_V1_CHAN_DIMMS,
dimms, i);
for (; i > 0; i--) {
nvlist_free(dimms[i-1]);
}
return (nvl);
}
static nvlist_t *
imc_nvl_create_mc(imc_t *imc, imc_mc_t *icn)
{
nvlist_t *nvl;
nvlist_t *channels[IMC_MAX_CHANPERMC];
uint_t i;
nvl = fnvlist_alloc();
fnvlist_add_uint32(nvl, MCINTEL_NVLIST_V1_MC_NCHAN, icn->icn_nchannels);
fnvlist_add_boolean_value(nvl, MCINTEL_NVLIST_V1_MC_ECC,
icn->icn_ecc);
if (icn->icn_lockstep) {
fnvlist_add_string(nvl, MCINTEL_NVLIST_V1_MC_CHAN_MODE,
MCINTEL_NVLIST_V1_MC_CHAN_MODE_LOCK);
} else {
fnvlist_add_string(nvl, MCINTEL_NVLIST_V1_MC_CHAN_MODE,
MCINTEL_NVLIST_V1_MC_CHAN_MODE_INDEP);
}
if (icn->icn_closed) {
fnvlist_add_string(nvl, MCINTEL_NVLIST_V1_MC_POLICY,
MCINTEL_NVLIST_V1_MC_POLICY_CLOSED);
} else {
fnvlist_add_string(nvl, MCINTEL_NVLIST_V1_MC_POLICY,
MCINTEL_NVLIST_V1_MC_POLICY_OPEN);
}
for (i = 0; i < icn->icn_nchannels; i++) {
channels[i] = imc_nvl_create_channel(imc,
&icn->icn_channels[i]);
}
fnvlist_add_nvlist_array(nvl, MCINTEL_NVLIST_V1_MC_CHANNELS,
channels, icn->icn_nchannels);
for (i = 0; i < icn->icn_nchannels; i++) {
nvlist_free(channels[i]);
}
return (nvl);
}
static void
imc_nvl_pack(imc_socket_t *sock, boolean_t sleep)
{
char *buf = NULL;
size_t len = 0;
int kmflag;
if (sock->isock_nvl == NULL)
return;
if (sock->isock_buf != NULL)
return;
if (sleep) {
kmflag = KM_SLEEP;
} else {
kmflag = KM_NOSLEEP_LAZY;
}
if (nvlist_pack(sock->isock_nvl, &buf, &len, NV_ENCODE_XDR,
kmflag) != 0) {
return;
}
sock->isock_buf = buf;
sock->isock_buflen = len;
sock->isock_gen++;
}
static void
imc_decoder_pack(imc_t *imc)
{
char *buf = NULL;
size_t len = 0;
if (imc->imc_decoder_buf != NULL)
return;
if (imc->imc_decoder_dump == NULL) {
imc->imc_decoder_dump = imc_dump_decoder(imc);
}
if (nvlist_pack(imc->imc_decoder_dump, &buf, &len, NV_ENCODE_XDR,
KM_NOSLEEP_LAZY) != 0) {
return;
}
imc->imc_decoder_buf = buf;
imc->imc_decoder_len = len;
}
static void
imc_nvl_create(imc_t *imc)
{
uint_t csock;
for (csock = 0; csock < imc->imc_nsockets; csock++) {
uint_t i;
nvlist_t *nvl;
nvlist_t *mcs[IMC_MAX_IMCPERSOCK];
imc_socket_t *sock = &imc->imc_sockets[csock];
nvl = fnvlist_alloc();
fnvlist_add_uint8(nvl, MCINTEL_NVLIST_VERSTR,
MCINTEL_NVLIST_VERS1);
fnvlist_add_uint8(nvl, MCINTEL_NVLIST_V1_NMC,
sock->isock_nimc);
for (i = 0; i < sock->isock_nimc; i++) {
mcs[i] = imc_nvl_create_mc(imc, &sock->isock_imcs[i]);
}
fnvlist_add_nvlist_array(nvl, MCINTEL_NVLIST_V1_MCS,
mcs, sock->isock_nimc);
for (i = 0; i < sock->isock_nimc; i++) {
nvlist_free(mcs[i]);
}
sock->isock_nvl = nvl;
imc_nvl_pack(sock, B_TRUE);
}
}
/*
* Determine the top of low and high memory. These determine whether transaction
* addresses target main memory or not. Unfortunately, the way that these are
* stored and fetched changes with different generations.
*/
static void
imc_sad_read_tohm(imc_t *imc, imc_sad_t *sad)
{
uint32_t tolm, tohm_low, tohm_hi;
tolm = pci_config_get32(sad->isad_tolh->istub_cfgspace,
imc->imc_gen_data->igd_tolm_offset);
tohm_low = pci_config_get32(sad->isad_tolh->istub_cfgspace,
imc->imc_gen_data->igd_tohm_low_offset);
if (imc->imc_gen_data->igd_tohm_hi_offset != 0) {
tohm_hi = pci_config_get32(sad->isad_tolh->istub_cfgspace,
imc->imc_gen_data->igd_tohm_hi_offset);
} else {
tohm_hi = 0;
}
if (tolm == PCI_EINVAL32 || tohm_low == PCI_EINVAL32 ||
tohm_hi == PCI_EINVAL32) {
sad->isad_valid |= IMC_SAD_V_BAD_PCI_READ;
return;
}
switch (imc->imc_gen) {
case IMC_GEN_SANDY:
case IMC_GEN_IVY:
sad->isad_tolm = ((uint64_t)tolm & IMC_TOLM_SNB_IVY_MASK) <<
IMC_TOLM_SNB_IVY_SHIFT;
sad->isad_tohm = ((uint64_t)tohm_low & IMC_TOHM_SNB_IVY_MASK) <<
IMC_TOLM_SNB_IVY_SHIFT;
break;
case IMC_GEN_HASWELL:
case IMC_GEN_BROADWELL:
case IMC_GEN_SKYLAKE:
sad->isad_tolm = (uint64_t)tolm & IMC_TOLM_HAS_SKX_MASK;
sad->isad_tohm = ((uint64_t)tohm_low &
IMC_TOHM_LOW_HAS_SKX_MASK) | ((uint64_t)tohm_hi << 32);
/*
* Adjust the values to turn them into an exclusive range.
*/
sad->isad_tolm += IMC_TOLM_HAS_SKY_EXCL;
sad->isad_tohm += IMC_TOHM_HAS_SKY_EXCL;
break;
default:
dev_err(imc->imc_dip, CE_PANIC, "imc driver programmer error: "
"set to unknown generation: %u", imc->imc_gen);
return;
}
}
static void
imc_sad_fill_rule(imc_t *imc, imc_sad_t *sad, imc_sad_rule_t *rule,
uint32_t raw)
{
uint_t attr;
uint64_t limit;
bzero(rule, sizeof (imc_sad_rule_t));
rule->isr_raw_dram = raw;
rule->isr_enable = IMC_SAD_DRAM_RULE_ENABLE(raw) != 0;
if (imc->imc_gen < IMC_GEN_SKYLAKE) {
switch (IMC_SAD_DRAM_INTERLEAVE_SNB_BRD(raw)) {
case IMC_SAD_DRAM_INTERLEAVE_SNB_BRD_8t6:
rule->isr_imode = IMC_SAD_IMODE_8t6;
break;
case IMC_SAD_DRAM_INTERLEAVE_SNB_BRD_8t6XOR:
rule->isr_imode = IMC_SAD_IMODE_8t6XOR;
break;
}
} else {
switch (IMC_SAD_DRAM_INTERLEAVE_SKX(raw)) {
case IMC_SAD_DRAM_INTERLEAVE_SKX_8t6:
rule->isr_imode = IMC_SAD_IMODE_8t6;
break;
case IMC_SAD_DRAM_INTERLEAVE_SKX_10t8:
rule->isr_imode = IMC_SAD_IMODE_10t8;
break;
case IMC_SAD_DRAM_INTERLEAVE_SKX_14t12:
rule->isr_imode = IMC_SAD_IMODE_14t12;
break;
case IMC_SAD_DRAM_INTERLEAVE_SKX_32t30:
rule->isr_imode = IMC_SAD_IMODE_32t30;
break;
}
}
if (imc->imc_gen >= IMC_GEN_SKYLAKE) {
attr = IMC_SAD_DRAM_ATTR_SKX(raw);
} else {
attr = IMC_SAD_DRAM_ATTR_SNB_BRD(raw);
}
switch (attr) {
case IMC_SAD_DRAM_ATTR_DRAM:
rule->isr_type = IMC_SAD_TYPE_DRAM;
break;
case IMC_SAD_DRAM_ATTR_MMCFG:
rule->isr_type = IMC_SAD_TYPE_MMCFG;
break;
case IMC_SAD_DRAM_ATTR_NXM:
if (imc->imc_gen < IMC_GEN_SKYLAKE) {
sad->isad_valid |= IMC_SAD_V_BAD_DRAM_ATTR;
}
rule->isr_type = IMC_SAD_TYPE_NXM;
break;
default:
sad->isad_valid |= IMC_SAD_V_BAD_DRAM_ATTR;
break;
}
/*
* Fetch the limit which represents bits 45:26 and then adjust this so
* that it is exclusive.
*/
if (imc->imc_gen >= IMC_GEN_SKYLAKE) {
limit = IMC_SAD_DRAM_LIMIT_SKX(raw);
} else {
limit = IMC_SAD_DRAM_LIMIT_SNB_BRD(raw);
}
rule->isr_limit = (limit << IMC_SAD_DRAM_LIMIT_SHIFT) +
IMC_SAD_DRAM_LIMIT_EXCLUSIVE;
/*
* The rest of this does not apply to Sandy Bridge.
*/
if (imc->imc_gen == IMC_GEN_SANDY)
return;
if (imc->imc_gen >= IMC_GEN_IVY && imc->imc_gen < IMC_GEN_SKYLAKE) {
rule->isr_a7mode = IMC_SAD_DRAM_A7_IVB_BRD(raw) != 0;
return;
}
switch (IMC_SAD_DRAM_MOD23_SKX(raw)) {
case IMC_SAD_DRAM_MOD23_MOD3:
rule->isr_mod_type = IMC_SAD_MOD_TYPE_MOD3;
break;
case IMC_SAD_DRAM_MOD23_MOD2_C01:
rule->isr_mod_type = IMC_SAD_MOD_TYPE_MOD2_01;
break;
case IMC_SAD_DRAM_MOD23_MOD2_C12:
rule->isr_mod_type = IMC_SAD_MOD_TYPE_MOD2_12;
break;
case IMC_SAD_DRAM_MOD23_MOD2_C02:
rule->isr_mod_type = IMC_SAD_MOD_TYPE_MOD2_02;
break;
}
rule->isr_need_mod3 = IMC_SAD_DRAM_MOD3_SKX(raw) != 0;
switch (IMC_SAD_DRAM_MOD3_SKX(raw)) {
case IMC_SAD_DRAM_MOD3_MODE_45t6:
rule->isr_mod_mode = IMC_SAD_MOD_MODE_45t6;
break;
case IMC_SAD_DRAM_MOD3_MODE_45t8:
rule->isr_mod_mode = IMC_SAD_MOD_MODE_45t8;
break;
case IMC_SAD_DRAM_MOD3_MODE_45t12:
rule->isr_mod_mode = IMC_SAD_MOD_MODE_45t12;
break;
default:
sad->isad_valid |= IMC_SAD_V_BAD_MOD3;
break;
}
}
static void
imc_sad_fill_rule_interleave(imc_t *imc, imc_sad_rule_t *rule, uint32_t raw)
{
uint_t i;
uint32_t mlen, mbase, skipbits, skipafter;
rule->isr_raw_interleave = raw;
/*
* Right now all architectures always have the maximum number of SAD
* interleave targets.
*/
rule->isr_ntargets = IMC_MAX_SAD_INTERLEAVE;
/*
* Sandy Bridge has a gap in the interleave list due to the fact that it
* uses a smaller length.
*/
if (imc->imc_gen > IMC_GEN_SANDY) {
mlen = IMC_SAD_ILEAVE_IVB_SKX_LEN;
mbase = IMC_SAD_ILEAVE_IVB_SKX_MASK;
skipbits = skipafter = 0;
} else {
mlen = IMC_SAD_ILEAVE_SNB_LEN;
mbase = IMC_SAD_ILEAVE_SNB_MASK;
skipbits = 2;
skipafter = 4;
}
for (i = 0; i < rule->isr_ntargets; i++) {
uint32_t mask, shift;
shift = i * mlen;
if (i >= skipafter)
shift += skipbits;
mask = mbase << shift;
rule->isr_targets[i] = (raw & mask) >> shift;
}
}
static void
imc_sad_read_dram_rules(imc_t *imc, imc_sad_t *sad)
{
uint_t i;
off_t off;
sad->isad_nrules = imc->imc_gen_data->igd_sad_ndram_rules;
for (i = 0, off = imc->imc_gen_data->igd_sad_dram_offset;
i < sad->isad_nrules; i++, off += sizeof (uint64_t)) {
uint32_t dram, interleave;
imc_sad_rule_t *rule = &sad->isad_rules[i];
dram = pci_config_get32(sad->isad_dram->istub_cfgspace, off);
interleave = pci_config_get32(sad->isad_dram->istub_cfgspace,
off + 4);
if (dram == PCI_EINVAL32 || interleave == PCI_EINVAL32) {
sad->isad_valid |= IMC_SAD_V_BAD_PCI_READ;
return;
}
imc_sad_fill_rule(imc, sad, rule, dram);
imc_sad_fill_rule_interleave(imc, rule, interleave);
}
}
static void
imc_sad_decode_mcroute(imc_t *imc, imc_sad_t *sad)
{
uint_t i;
imc_sad_mcroute_table_t *mc = &sad->isad_mcroute;
if (imc->imc_gen < IMC_GEN_SKYLAKE)
return;
if (sad->isad_valid != 0)
return;
mc->ismc_nroutes = IMC_MAX_SAD_MCROUTES;
for (i = 0; i < IMC_MAX_SAD_MCROUTES; i++) {
uint_t chanoff, ringoff;
ringoff = i * IMC_MC_ROUTE_RING_BITS;
chanoff = i * IMC_MC_ROUTE_CHAN_BITS + IMC_MC_ROUTE_CHAN_OFFSET;
mc->ismc_mcroutes[i].ismce_imc = (mc->ismc_raw_mcroute >>
ringoff) & IMC_MC_ROUTE_RING_MASK;
mc->ismc_mcroutes[i].ismce_pchannel = (mc->ismc_raw_mcroute >>
chanoff) & IMC_MC_ROUTE_CHAN_MASK;
}
}
/*
* Initialize the SAD. To do this we have to do a few different things:
*
* 1. Determine where the top of low and high memory is.
* 2. Read and decode all of the rules for the SAD
* 3. On systems with a route table, decode the raw routes
*
* At this point in time, we treat TOLM and TOHM as a per-socket construct, even
* though it really should be global, this just makes life a bit simpler.
*/
static void
imc_decoder_init_sad(imc_t *imc)
{
uint_t i;
for (i = 0; i < imc->imc_nsockets; i++) {
imc_sad_read_tohm(imc, &imc->imc_sockets[i].isock_sad);
imc_sad_read_dram_rules(imc, &imc->imc_sockets[i].isock_sad);
imc_sad_decode_mcroute(imc, &imc->imc_sockets[i].isock_sad);
}
}
static void
imc_tad_fill_rule(imc_t *imc, imc_tad_t *tad, imc_tad_rule_t *prev,
imc_tad_rule_t *rule, uint32_t val)
{
uint64_t limit;
limit = IMC_TAD_LIMIT(val);
rule->itr_limit = (limit << IMC_TAD_LIMIT_SHIFT) +
IMC_TAD_LIMIT_EXCLUSIVE;
rule->itr_raw = val;
switch (IMC_TAD_SOCK_WAY(val)) {
case IMC_TAD_SOCK_WAY_1:
rule->itr_sock_way = 1;
break;
case IMC_TAD_SOCK_WAY_2:
rule->itr_sock_way = 2;
break;
case IMC_TAD_SOCK_WAY_4:
rule->itr_sock_way = 4;
break;
case IMC_TAD_SOCK_WAY_8:
rule->itr_sock_way = 8;
break;
}
rule->itr_chan_way = IMC_TAD_CHAN_WAY(val) + 1;
rule->itr_sock_gran = IMC_TAD_GRAN_64B;
rule->itr_chan_gran = IMC_TAD_GRAN_64B;
/*
* Starting with Skylake the targets that are used are no longer part of
* the TAD. Those come from the IMC route table.
*/
if (imc->imc_gen >= IMC_GEN_SKYLAKE) {
rule->itr_ntargets = 0;
return;
}
rule->itr_ntargets = IMC_TAD_SNB_BRD_NTARGETS;
rule->itr_targets[0] = IMC_TAD_TARG0(val);
rule->itr_targets[1] = IMC_TAD_TARG1(val);
rule->itr_targets[2] = IMC_TAD_TARG2(val);
rule->itr_targets[3] = IMC_TAD_TARG3(val);
if (prev == NULL) {
rule->itr_base = 0;
} else {
rule->itr_base = prev->itr_limit + 1;
}
}
static void
imc_tad_fill_skx(imc_t *imc, imc_tad_t *tad, imc_tad_rule_t *rule,
uint32_t val)
{
uint64_t base;
rule->itr_raw_gran = val;
base = IMC_TAD_BASE_BASE(val);
rule->itr_base = base << IMC_TAD_BASE_SHIFT;
switch (IMC_TAD_BASE_CHAN_GRAN(val)) {
case IMC_TAD_BASE_CHAN_GRAN_64B:
rule->itr_sock_gran = IMC_TAD_GRAN_64B;
break;
case IMC_TAD_BASE_CHAN_GRAN_256B:
rule->itr_sock_gran = IMC_TAD_GRAN_256B;
break;
case IMC_TAD_BASE_CHAN_GRAN_4KB:
rule->itr_sock_gran = IMC_TAD_GRAN_4KB;
break;
default:
tad->itad_valid |= IMC_TAD_V_BAD_CHAN_GRAN;
return;
}
switch (IMC_TAD_BASE_SOCK_GRAN(val)) {
case IMC_TAD_BASE_SOCK_GRAN_64B:
rule->itr_sock_gran = IMC_TAD_GRAN_64B;
break;
case IMC_TAD_BASE_SOCK_GRAN_256B:
rule->itr_sock_gran = IMC_TAD_GRAN_256B;
break;
case IMC_TAD_BASE_SOCK_GRAN_4KB:
rule->itr_sock_gran = IMC_TAD_GRAN_4KB;
break;
case IMC_TAD_BASE_SOCK_GRAN_1GB:
rule->itr_sock_gran = IMC_TAD_GRAN_1GB;
break;
}
}
/*
* When mirroring is enabled, at least in Sandy Bridge to Broadwell, it's
* suggested that the channel wayness will take this into account and therefore
* should be accurately reflected.
*/
static void
imc_tad_read_rules(imc_t *imc, imc_tad_t *tad)
{
uint_t i;
off_t baseoff;
imc_tad_rule_t *prev;
tad->itad_nrules = imc->imc_gen_data->igd_tad_nrules;
for (i = 0, baseoff = imc->imc_gen_data->igd_tad_rule_offset,
prev = NULL; i < tad->itad_nrules;
i++, baseoff += sizeof (uint32_t)) {
uint32_t val;
off_t off;
imc_tad_rule_t *rule = &tad->itad_rules[i];
/*
* On Skylake, the TAD rules are split among two registers. The
* latter set mimics what exists on pre-Skylake.
*/
if (imc->imc_gen >= IMC_GEN_SKYLAKE) {
off = baseoff + IMC_SKX_WAYNESS_OFFSET;
} else {
off = baseoff;
}
val = pci_config_get32(tad->itad_stub->istub_cfgspace, off);
if (val == PCI_EINVAL32) {
tad->itad_valid |= IMC_TAD_V_BAD_PCI_READ;
return;
}
imc_tad_fill_rule(imc, tad, prev, rule, val);
prev = rule;
if (imc->imc_gen < IMC_GEN_SKYLAKE)
continue;
val = pci_config_get32(tad->itad_stub->istub_cfgspace, baseoff);
if (val == PCI_EINVAL32) {
tad->itad_valid |= IMC_TAD_V_BAD_PCI_READ;
return;
}
imc_tad_fill_skx(imc, tad, rule, val);
}
}
/*
* Check for features which change how decoding works.
*/
static void
imc_tad_read_features(imc_t *imc, imc_tad_t *tad, imc_mc_t *mc)
{
uint32_t val;
/*
* Determine whether or not lockstep mode or mirroring are enabled.
* These change the behavior of how we're supposed to interpret channel
* wayness. Lockstep is available in the TAD's features. Mirroring is
* available on the IMC's features. This isn't present in Skylake+. On
* Skylake Mirorring is a property of the SAD rule and there is no
* lockstep.
*/
switch (imc->imc_gen) {
case IMC_GEN_SANDY:
case IMC_GEN_IVY:
case IMC_GEN_HASWELL:
case IMC_GEN_BROADWELL:
val = pci_config_get32(tad->itad_stub->istub_cfgspace,
imc->imc_gen_data->igd_tad_sysdef);
if (val == PCI_EINVAL32) {
tad->itad_valid |= IMC_TAD_V_BAD_PCI_READ;
return;
}
if (IMC_TAD_SYSDEF_LOCKSTEP(val)) {
tad->itad_flags |= IMC_TAD_FLAG_LOCKSTEP;
}
val = pci_config_get32(mc->icn_main1->istub_cfgspace,
imc->imc_gen_data->igd_mc_mirror);
if (val == PCI_EINVAL32) {
tad->itad_valid |= IMC_TAD_V_BAD_PCI_READ;
return;
}
if (IMC_MC_MIRROR_SNB_BRD(val)) {
tad->itad_flags |= IMC_TAD_FLAG_MIRROR;
}
break;
default:
break;
}
/*
* Now, go through and look at values that'll change how we do the
* channel index and adddress calculation. These are only present
* between Ivy Bridge and Broadwell. They don't exist on Sandy Bridge
* and they don't exist on Skylake+.
*/
switch (imc->imc_gen) {
case IMC_GEN_IVY:
case IMC_GEN_HASWELL:
case IMC_GEN_BROADWELL:
val = pci_config_get32(tad->itad_stub->istub_cfgspace,
imc->imc_gen_data->igd_tad_sysdef2);
if (val == PCI_EINVAL32) {
tad->itad_valid |= IMC_TAD_V_BAD_PCI_READ;
return;
}
if (IMC_TAD_SYSDEF2_SHIFTUP(val)) {
tad->itad_flags |= IMC_TAD_FLAG_CHANSHIFT;
}
if (IMC_TAD_SYSDEF2_SHIFTUP(val)) {
tad->itad_flags |= IMC_TAD_FLAG_CHANHASH;
}
break;
default:
break;
}
}
/*
* Read the IMC channel interleave records
*/
static void
imc_tad_read_interleave(imc_t *imc, imc_channel_t *chan)
{
uint_t i;
off_t off;
chan->ich_ntad_offsets = imc->imc_gen_data->igd_tad_nrules;
for (i = 0, off = imc->imc_gen_data->igd_tad_chan_offset;
i < chan->ich_ntad_offsets; i++, off += sizeof (uint32_t)) {
uint32_t val;
uint64_t offset;
val = pci_config_get32(chan->ich_desc->istub_cfgspace,
off);
if (val == PCI_EINVAL32) {
chan->ich_valid |= IMC_CHANNEL_V_BAD_PCI_READ;
return;
}
if (imc->imc_gen >= IMC_GEN_SKYLAKE) {
offset = IMC_TADCHAN_OFFSET_SKX(val);
} else {
offset = IMC_TADCHAN_OFFSET_SNB_BRD(val);
}
chan->ich_tad_offsets[i] = offset << IMC_TADCHAN_OFFSET_SHIFT;
chan->ich_tad_offsets_raw[i] = val;
}
}
static void
imc_decoder_init_tad(imc_t *imc)
{
uint_t i;
for (i = 0; i < imc->imc_nsockets; i++) {
uint_t j;
for (j = 0; j < imc->imc_sockets[i].isock_ntad; j++) {
imc_tad_read_features(imc,
&imc->imc_sockets[i].isock_tad[j],
&imc->imc_sockets[i].isock_imcs[j]);
imc_tad_read_rules(imc,
&imc->imc_sockets[i].isock_tad[j]);
}
}
for (i = 0; i < imc->imc_nsockets; i++) {
uint_t j;
imc_socket_t *sock = &imc->imc_sockets[i];
for (j = 0; j < imc->imc_sockets[i].isock_nimc; j++) {
uint_t k;
imc_mc_t *mc = &sock->isock_imcs[j];
for (k = 0; k < mc->icn_nchannels; k++) {
imc_channel_t *chan = &mc->icn_channels[k];
imc_tad_read_interleave(imc, chan);
}
}
}
}
static void
imc_rir_read_ileave_offsets(imc_t *imc, imc_channel_t *chan,
imc_rank_ileave_t *rank, uint_t rirno, boolean_t contig)
{
uint_t i;
off_t off, incr;
/*
* Rank interleave offset registers come in two forms. Either they are
* contiguous for a given wayness, meaning that all of the entries for
* wayness zero are contiguous, or they are sparse, meaning that there
* is a bank for entry zero for all wayness, then entry one for all
* wayness, etc.
*/
if (contig) {
off = imc->imc_gen_data->igd_rir_ileave_offset +
(rirno * imc->imc_gen_data->igd_rir_nileaves *
sizeof (uint32_t));
incr = sizeof (uint32_t);
} else {
off = imc->imc_gen_data->igd_rir_ileave_offset +
(rirno * sizeof (uint32_t));
incr = imc->imc_gen_data->igd_rir_nileaves * sizeof (uint32_t);
}
for (i = 0; i < rank->irle_nentries; i++, off += incr) {
uint32_t val;
uint64_t offset;
imc_rank_ileave_entry_t *ent = &rank->irle_entries[i];
val = pci_config_get32(chan->ich_desc->istub_cfgspace, off);
if (val == PCI_EINVAL32) {
chan->ich_valid |= IMC_CHANNEL_V_BAD_PCI_READ;
return;
}
switch (imc->imc_gen) {
case IMC_GEN_BROADWELL:
ent->irle_target = IMC_RIR_OFFSET_TARGET_BRD(val);
break;
default:
ent->irle_target = IMC_RIR_OFFSET_TARGET(val);
break;
}
if (imc->imc_gen >= IMC_GEN_HASWELL) {
offset = IMC_RIR_OFFSET_OFFSET_HAS_SKX(val);
} else {
offset = IMC_RIR_OFFSET_OFFSET_SNB_IVB(val);
}
ent->irle_offset = offset << IMC_RIR_OFFSET_SHIFT;
}
}
static void
imc_rir_read_wayness(imc_t *imc, imc_channel_t *chan)
{
uint_t i;
off_t off;
chan->ich_nrankileaves = imc->imc_gen_data->igd_rir_nways;
for (i = 0, off = imc->imc_gen_data->igd_rir_way_offset;
i < chan->ich_nrankileaves; i++, off += sizeof (uint32_t)) {
uint32_t val;
uint64_t lim;
imc_rank_ileave_t *ent = &chan->ich_rankileaves[i];
val = pci_config_get32(chan->ich_desc->istub_cfgspace, off);
if (val == PCI_EINVAL32) {
chan->ich_valid |= IMC_CHANNEL_V_BAD_PCI_READ;
return;
}
ent->irle_raw = val;
ent->irle_enabled = IMC_RIR_WAYNESS_ENABLED(val) != 0;
ent->irle_nways = 1 << IMC_RIR_WAYNESS_WAY(val);
ent->irle_nwaysbits = IMC_RIR_WAYNESS_WAY(val);
if (imc->imc_gen >= IMC_GEN_HASWELL) {
lim = IMC_RIR_LIMIT_HAS_SKX(val);
} else {
lim = IMC_RIR_LIMIT_SNB_IVB(val);
}
ent->irle_limit = (lim << IMC_RIR_LIMIT_SHIFT) +
IMC_RIR_LIMIT_EXCLUSIVE;
ent->irle_nentries = imc->imc_gen_data->igd_rir_nileaves;
if (imc->imc_gen >= IMC_GEN_SKYLAKE) {
imc_rir_read_ileave_offsets(imc, chan, ent, i, B_FALSE);
} else {
imc_rir_read_ileave_offsets(imc, chan, ent, i, B_TRUE);
}
}
}
static void
imc_decoder_init_rir(imc_t *imc)
{
uint_t i;
for (i = 0; i < imc->imc_nsockets; i++) {
uint_t j;
imc_socket_t *sock = &imc->imc_sockets[i];
for (j = 0; j < imc->imc_sockets[i].isock_nimc; j++) {
uint_t k;
imc_mc_t *mc = &sock->isock_imcs[j];
for (k = 0; k < mc->icn_nchannels; k++) {
imc_channel_t *chan = &mc->icn_channels[k];
imc_rir_read_wayness(imc, chan);
}
}
}
}
static cmi_errno_t
imc_mc_patounum(void *arg, uint64_t pa, uint8_t valid_hi, uint8_t valid_lo,
uint32_t synd, int syndtype, mc_unum_t *unump)
{
imc_t *imc = arg;
uint_t i;
imc_decode_state_t dec;
bzero(&dec, sizeof (dec));
if (!imc_decode_pa(imc, pa, &dec)) {
switch (dec.ids_fail) {
case IMC_DECODE_F_LEGACY_RANGE:
case IMC_DECODE_F_OUTSIDE_DRAM:
return (CMIERR_MC_NOTDIMMADDR);
default:
return (CMIERR_MC_BADSTATE);
}
}
unump->unum_board = 0;
/*
* The chip id needs to be in the order that the OS expects it, which
* may not be our order.
*/
for (i = 0; i < imc->imc_nsockets; i++) {
if (imc->imc_spointers[i] == dec.ids_socket)
break;
}
if (i == imc->imc_nsockets) {
return (CMIERR_MC_BADSTATE);
}
unump->unum_chip = i;
unump->unum_mc = dec.ids_tadid;
unump->unum_chan = dec.ids_channelid;
unump->unum_cs = dec.ids_dimmid;
unump->unum_rank = dec.ids_rankid;
unump->unum_offset = dec.ids_rankaddr;
for (i = 0; i < MC_UNUM_NDIMM; i++) {
unump->unum_dimms[i] = MC_INVALNUM;
}
return (CMI_SUCCESS);
}
static cmi_errno_t
imc_mc_unumtopa(void *arg, mc_unum_t *unum, nvlist_t *nvl, uint64_t *pa)
{
return (CMIERR_UNKNOWN);
}
static const cmi_mc_ops_t imc_mc_ops = {
.cmi_mc_patounum = imc_mc_patounum,
.cmi_mc_unumtopa = imc_mc_unumtopa
};
/*
* This is where we really finish attaching and become open for business. This
* occurs once we have all of the expected stubs attached. Here's where all of
* the real fun begins.
*/
static void
imc_attach_complete(void *arg)
{
imc_t *imc = arg;
cmi_errno_t err;
imc_set_gen_data(imc);
/*
* On SKX and newer, we can fail to map PCI buses at this point due to
* bad PCIe reads.
*/
if (!imc_map_stubs(imc)) {
goto done;
}
if (!imc_validate_stubs(imc)) {
imc->imc_flags |= IMC_F_VALIDATE_FAILED;
goto done;
}
imc_fixup_stubs(imc);
imc_map_sockets(imc);
if (!imc_create_minors(imc)) {
goto done;
}
imc_fill_data(imc);
imc_nvl_create(imc);
/*
* Gather additional information that we need so that we can properly
* initialize the memory decoder and encoder.
*/
imc_decoder_init_sad(imc);
imc_decoder_init_tad(imc);
imc_decoder_init_rir(imc);
/*
* Register decoder functions. This may fail. If so, try and complain
* loudly, but stay active to allow other data to be useful. Register a
* global handle.
*/
if ((err = cmi_mc_register_global(&imc_mc_ops, imc)) != CMI_SUCCESS) {
imc->imc_flags |= IMC_F_MCREG_FAILED;
dev_err(imc->imc_dip, CE_WARN, "failed to register memory "
"decoding operations: 0x%x", err);
}
done:
mutex_enter(&imc->imc_lock);
imc->imc_flags &= IMC_F_ATTACH_DISPATCHED;
imc->imc_flags |= IMC_F_ATTACH_COMPLETE;
mutex_exit(&imc->imc_lock);
}
static int
imc_stub_comparator(const void *l, const void *r)
{
const imc_stub_t *sl = l, *sr = r;
if (sl->istub_bus > sr->istub_bus)
return (1);
if (sl->istub_bus < sr->istub_bus)
return (-1);
if (sl->istub_dev > sr->istub_dev)
return (1);
if (sl->istub_dev < sr->istub_dev)
return (-1);
if (sl->istub_func > sr->istub_func)
return (1);
if (sl->istub_func < sr->istub_func)
return (-1);
return (0);
}
static int
imc_stub_scan_cb(dev_info_t *dip, void *arg)
{
int vid, did;
const imc_stub_table_t *table;
imc_t *imc = arg;
int *regs;
uint_t i, nregs;
if (dip == ddi_root_node()) {
return (DDI_WALK_CONTINUE);
}
/*
* Get the dev info name. PCI devices will always be children of PCI
* devices today on x86. If we reach something that has a device name
* that's not PCI, then we can prune it's children.
*/
if (strncmp("pci", ddi_get_name(dip), 3) != 0) {
return (DDI_WALK_PRUNECHILD);
}
/*
* Get the device and vendor ID and see if this is something the imc
* knows about or cares about.
*/
vid = ddi_prop_get_int(DDI_DEV_T_ANY, dip, DDI_PROP_DONTPASS,
"vendor-id", PCI_EINVAL16);
did = ddi_prop_get_int(DDI_DEV_T_ANY, dip, DDI_PROP_DONTPASS,
"device-id", PCI_EINVAL16);
if (vid == PCI_EINVAL16 || did == PCI_EINVAL16) {
return (DDI_WALK_CONTINUE);
}
if (vid != IMC_PCI_VENDOR_INTC) {
return (DDI_WALK_PRUNECHILD);
}
if (ddi_prop_lookup_int_array(DDI_DEV_T_ANY, dip, DDI_PROP_DONTPASS,
"reg", ®s, &nregs) != DDI_PROP_SUCCESS) {
return (DDI_WALK_CONTINUE);
}
if (nregs == 0) {
ddi_prop_free(regs);
return (DDI_WALK_CONTINUE);
}
table = NULL;
for (i = 0; i < ARRAY_SIZE(imc_stub_table); i++) {
if (imc_stub_table[i].imcs_devid == did &&
imc_stub_table[i].imcs_pcidev == PCI_REG_DEV_G(regs[0]) &&
imc_stub_table[i].imcs_pcifunc == PCI_REG_FUNC_G(regs[0])) {
table = &imc_stub_table[i];
break;
}
}
ddi_prop_free(regs);
/*
* Not a match, not interesting.
*/
if (table == NULL) {
return (DDI_WALK_CONTINUE);
}
mutex_enter(&imc->imc_lock);
imc->imc_nscanned++;
mutex_exit(&imc->imc_lock);
return (DDI_WALK_CONTINUE);
}
/*
* From here, go through and see how many of the devices that we know about.
*/
static void
imc_stub_scan(void *arg)
{
imc_t *imc = arg;
boolean_t dispatch = B_FALSE;
/*
* Zero out the scan results in case we've been detached and reattached.
*/
mutex_enter(&imc->imc_lock);
imc->imc_nscanned = 0;
mutex_exit(&imc->imc_lock);
ddi_walk_devs(ddi_root_node(), imc_stub_scan_cb, imc);
mutex_enter(&imc->imc_lock);
imc->imc_flags |= IMC_F_SCAN_COMPLETE;
imc->imc_flags &= ~IMC_F_SCAN_DISPATCHED;
/*
* If the scan found no nodes, then that means that we're on a hardware
* platform that we don't support. Therefore, there's no reason to do
* anything here.
*/
if (imc->imc_nscanned == 0) {
imc->imc_flags |= IMC_F_UNSUP_PLATFORM;
mutex_exit(&imc->imc_lock);
return;
}
if (avl_numnodes(&imc->imc_stubs) == imc->imc_nscanned) {
imc->imc_flags |= IMC_F_ATTACH_DISPATCHED;
dispatch = B_TRUE;
}
mutex_exit(&imc->imc_lock);
if (dispatch) {
(void) ddi_taskq_dispatch(imc->imc_taskq, imc_attach_complete,
imc, DDI_SLEEP);
}
}
/*
* By default, refuse to allow stubs to detach.
*/
int
imc_detach_stub(dev_info_t *dip, ddi_detach_cmd_t cmd)
{
imc_stub_t *stub;
imc_t *imc = imc_data;
mutex_enter(&imc->imc_lock);
/*
* By default, we do not allow stubs to detach. However, if the driver
* has attached to devices on a platform it doesn't recognize or
* support or if the override flag has been set, then allow detach to
* proceed.
*/
if ((imc->imc_flags & IMC_F_UNSUP_PLATFORM) == 0 &&
imc_allow_detach == 0) {
mutex_exit(&imc->imc_lock);
return (DDI_FAILURE);
}
for (stub = avl_first(&imc->imc_stubs); stub != NULL;
stub = AVL_NEXT(&imc->imc_stubs, stub)) {
if (stub->istub_dip == dip) {
break;
}
}
/*
* A device was attached to us that we somehow don't know about. Allow
* this to proceed.
*/
if (stub == NULL) {
mutex_exit(&imc->imc_lock);
return (DDI_SUCCESS);
}
pci_config_teardown(&stub->istub_cfgspace);
avl_remove(&imc->imc_stubs, stub);
kmem_free(stub, sizeof (imc_stub_t));
mutex_exit(&imc->imc_lock);
return (DDI_SUCCESS);
}
int
imc_attach_stub(dev_info_t *dip, ddi_attach_cmd_t cmd)
{
imc_stub_t *stub, *lookup;
int did, vid, *regs;
uint_t i, nregs;
const imc_stub_table_t *table;
avl_index_t idx;
boolean_t dispatch = B_FALSE;
imc_t *imc = imc_data;
if (cmd != DDI_ATTACH) {
return (DDI_FAILURE);
}
/*
* We've been asked to attach a stub. First, determine if this is even a
* PCI device that we should care about. Then, append it to our global
* list and kick off the configuration task. Note that we do this
* configuration task in a taskq so that we don't interfere with the
* normal attach / detach path processing.
*/
if (strncmp("pci", ddi_get_name(dip), 3) != 0) {
return (DDI_FAILURE);
}
/*
* Get the device and vendor ID and see if this is something the imc
* knows about or cares about.
*/
vid = ddi_prop_get_int(DDI_DEV_T_ANY, dip, DDI_PROP_DONTPASS,
"vendor-id", PCI_EINVAL16);
did = ddi_prop_get_int(DDI_DEV_T_ANY, dip, DDI_PROP_DONTPASS,
"device-id", PCI_EINVAL16);
if (vid == PCI_EINVAL16 || did == PCI_EINVAL16) {
return (DDI_FAILURE);
}
/*
* Only accept INTC parts on the imc driver.
*/
if (vid != IMC_PCI_VENDOR_INTC) {
return (DDI_FAILURE);
}
if (ddi_prop_lookup_int_array(DDI_DEV_T_ANY, dip, DDI_PROP_DONTPASS,
"reg", ®s, &nregs) != DDI_PROP_SUCCESS) {
return (DDI_FAILURE);
}
if (nregs == 0) {
ddi_prop_free(regs);
return (DDI_FAILURE);
}
/*
* Determine if this matches a known device.
*/
table = NULL;
for (i = 0; i < ARRAY_SIZE(imc_stub_table); i++) {
if (imc_stub_table[i].imcs_devid == did &&
imc_stub_table[i].imcs_pcidev == PCI_REG_DEV_G(regs[0]) &&
imc_stub_table[i].imcs_pcifunc == PCI_REG_FUNC_G(regs[0])) {
table = &imc_stub_table[i];
break;
}
}
if (i == ARRAY_SIZE(imc_stub_table)) {
ddi_prop_free(regs);
return (DDI_FAILURE);
}
/*
* We've found something. Make sure the generation matches our current
* one. If it does, construct the entry and append it to the list.
*/
mutex_enter(&imc->imc_lock);
if (imc->imc_gen != IMC_GEN_UNKNOWN && imc->imc_gen !=
table->imcs_gen) {
mutex_exit(&imc->imc_lock);
ddi_prop_free(regs);
dev_err(dip, CE_WARN, "Encountered IMC stub device (%u/%u) "
"that has different hardware generation (%u) from current "
"generation (%u)", vid, did, table->imcs_gen, imc->imc_gen);
return (DDI_FAILURE);
} else {
imc->imc_gen = table->imcs_gen;
}
mutex_exit(&imc->imc_lock);
stub = kmem_zalloc(sizeof (imc_stub_t), KM_SLEEP);
stub->istub_dip = dip;
stub->istub_vid = vid;
stub->istub_did = did;
stub->istub_bus = PCI_REG_BUS_G(regs[0]);
stub->istub_dev = PCI_REG_DEV_G(regs[0]);
stub->istub_func = PCI_REG_FUNC_G(regs[0]);
ddi_prop_free(regs);
stub->istub_table = table;
if (pci_config_setup(dip, &stub->istub_cfgspace) != DDI_SUCCESS) {
kmem_free(stub, sizeof (stub));
dev_err(dip, CE_WARN, "Failed to set up PCI config space "
"for IMC stub device %s (%u/%u)", ddi_node_name(dip),
vid, did);
return (DDI_FAILURE);
}
mutex_enter(&imc->imc_lock);
if ((lookup = avl_find(&imc->imc_stubs, stub, &idx)) != NULL) {
dev_err(dip, CE_WARN, "IMC stub %s (%u/%u) has duplicate "
"bdf %u/%u/%u with %s (%u/%u), not attaching",
ddi_node_name(imc->imc_dip), vid, did,
stub->istub_bus, stub->istub_dev, stub->istub_func,
ddi_node_name(lookup->istub_dip), lookup->istub_vid,
lookup->istub_did);
mutex_exit(&imc->imc_lock);
pci_config_teardown(&stub->istub_cfgspace);
kmem_free(stub, sizeof (stub));
return (DDI_FAILURE);
}
avl_insert(&imc->imc_stubs, stub, idx);
if ((imc->imc_flags & IMC_F_ALL_FLAGS) == IMC_F_SCAN_COMPLETE &&
avl_numnodes(&imc->imc_stubs) == imc->imc_nscanned) {
imc->imc_flags |= IMC_F_ATTACH_DISPATCHED;
dispatch = B_TRUE;
}
mutex_exit(&imc->imc_lock);
if (dispatch) {
(void) ddi_taskq_dispatch(imc->imc_taskq, imc_attach_complete,
imc, DDI_SLEEP);
}
return (DDI_SUCCESS);
}
static int
imc_open(dev_t *devp, int flag, int otyp, cred_t *credp)
{
imc_t *imc = imc_data;
if ((flag & (FEXCL | FNDELAY)) != 0)
return (EINVAL);
if (otyp != OTYP_CHR)
return (EINVAL);
mutex_enter(&imc->imc_lock);
if ((imc->imc_flags & IMC_F_UNSUP_PLATFORM) != 0) {
mutex_exit(&imc->imc_lock);
return (ENOTSUP);
}
/*
* It's possible that someone has come in during the window between when
* we've created the minor node and when we've finished doing work.
*/
if ((imc->imc_flags & IMC_F_ATTACH_COMPLETE) == 0) {
mutex_exit(&imc->imc_lock);
return (EAGAIN);
}
/*
* It's not clear how someone would get a minor that we didn't create.
* But be paranoid and make sure.
*/
if (getminor(*devp) >= imc->imc_nsockets) {
mutex_exit(&imc->imc_lock);
return (EINVAL);
}
/*
* Make sure this socket entry has been filled in.
*/
if (imc->imc_spointers[getminor(*devp)] == NULL) {
mutex_exit(&imc->imc_lock);
return (EINVAL);
}
mutex_exit(&imc->imc_lock);
return (0);
}
static void
imc_ioctl_decode(imc_t *imc, mc_encode_ioc_t *encode)
{
imc_decode_state_t dec;
uint_t i;
bzero(&dec, sizeof (dec));
if (!imc_decode_pa(imc, encode->mcei_pa, &dec)) {
encode->mcei_err = (uint32_t)dec.ids_fail;
encode->mcei_errdata = dec.ids_fail_data;
return;
}
encode->mcei_errdata = 0;
encode->mcei_err = 0;
encode->mcei_board = 0;
for (i = 0; i < imc->imc_nsockets; i++) {
if (imc->imc_spointers[i] == dec.ids_socket)
break;
}
encode->mcei_chip = i;
/*
* These Intel platforms are all monolithic dies, so set the die to
* zero.
*/
encode->mcei_die = 0;
encode->mcei_mc = dec.ids_tadid;
encode->mcei_chan_addr = dec.ids_chanaddr;
encode->mcei_chan = dec.ids_channelid;
encode->mcei_dimm = dec.ids_dimmid;
encode->mcei_rank_addr = dec.ids_rankaddr;
encode->mcei_rank = dec.ids_rankid;
encode->mcei_row = UINT32_MAX;
encode->mcei_column = UINT32_MAX;
encode->mcei_cs = encode->mcei_rm = UINT8_MAX;
encode->mcei_bank = encode->mcei_bank_group = UINT8_MAX;
encode->mcei_subchan = UINT8_MAX;
}
static int
imc_ioctl(dev_t dev, int cmd, intptr_t arg, int mode, cred_t *credp,
int *rvalp)
{
int ret;
minor_t m;
mc_snapshot_info_t info;
mc_encode_ioc_t encode;
imc_t *imc = imc_data;
imc_socket_t *sock;
mutex_enter(&imc->imc_lock);
m = getminor(dev);
if (m >= imc->imc_nsockets) {
ret = EINVAL;
goto done;
}
sock = imc->imc_spointers[m];
if (sock == NULL) {
ret = EINVAL;
goto done;
}
/*
* Note, other memory controller drivers don't check mode for reading
* data nor do they care who can read it from a credential perspective.
* As such we don't either at this time.
*/
switch (cmd) {
case MC_IOC_SNAPSHOT_INFO:
imc_nvl_pack(sock, B_FALSE);
if (sock->isock_buf == NULL) {
ret = EIO;
break;
}
info.mcs_size = sock->isock_buflen;
info.mcs_gen = sock->isock_gen;
if (ddi_copyout(&info, (void *)arg, sizeof (info), mode) != 0) {
ret = EFAULT;
break;
}
ret = 0;
break;
case MC_IOC_SNAPSHOT:
imc_nvl_pack(sock, B_FALSE);
if (sock->isock_buf == NULL) {
ret = EIO;
break;
}
if (ddi_copyout(sock->isock_buf, (void *)arg,
sock->isock_buflen, mode) != 0) {
ret = EFAULT;
break;
}
ret = 0;
break;
case MC_IOC_DECODE_SNAPSHOT_INFO:
imc_decoder_pack(imc);
if (imc->imc_decoder_buf == NULL) {
ret = EIO;
break;
}
info.mcs_size = imc->imc_decoder_len;
info.mcs_gen = imc->imc_spointers[0]->isock_gen;
if (ddi_copyout(&info, (void *)arg, sizeof (info), mode) != 0) {
ret = EFAULT;
break;
}
ret = 0;
break;
case MC_IOC_DECODE_SNAPSHOT:
imc_decoder_pack(imc);
if (imc->imc_decoder_buf == NULL) {
ret = EIO;
break;
}
if (ddi_copyout(imc->imc_decoder_buf, (void *)arg,
imc->imc_decoder_len, mode) != 0) {
ret = EFAULT;
break;
}
ret = 0;
break;
case MC_IOC_DECODE_PA:
if (crgetzoneid(credp) != GLOBAL_ZONEID ||
drv_priv(credp) != 0) {
ret = EPERM;
break;
}
if (ddi_copyin((void *)arg, &encode, sizeof (encode),
mode & FKIOCTL) != 0) {
ret = EPERM;
break;
}
imc_ioctl_decode(imc, &encode);
ret = 0;
if (ddi_copyout(&encode, (void *)arg, sizeof (encode),
mode & FKIOCTL) != 0) {
ret = EPERM;
break;
}
break;
default:
ret = EINVAL;
goto done;
}
done:
mutex_exit(&imc->imc_lock);
return (ret);
}
static int
imc_close(dev_t dev, int flag, int otyp, cred_t *credp)
{
return (0);
}
static int
imc_attach(dev_info_t *dip, ddi_attach_cmd_t cmd)
{
if (cmd != DDI_ATTACH) {
return (DDI_FAILURE);
}
if (imc_data == NULL || imc_data->imc_dip != NULL) {
return (DDI_FAILURE);
}
mutex_enter(&imc_data->imc_lock);
if ((imc_data->imc_taskq = ddi_taskq_create(dip, "imc", 1,
TASKQ_DEFAULTPRI, 0)) == NULL) {
mutex_exit(&imc_data->imc_lock);
return (DDI_FAILURE);
}
imc_data->imc_dip = dip;
imc_data->imc_flags |= IMC_F_SCAN_DISPATCHED;
mutex_exit(&imc_data->imc_lock);
(void) ddi_taskq_dispatch(imc_data->imc_taskq, imc_stub_scan, imc_data,
DDI_SLEEP);
return (DDI_SUCCESS);
}
/*
* We only export a single instance.
*/
static int
imc_getinfo(dev_info_t *dip, ddi_info_cmd_t infocmd, void *arg, void **resultp)
{
/*
* getinfo(9E) shouldn't be called if we're not attached. But be
* paranoid.
*/
if (imc_data == NULL || imc_data->imc_dip == NULL) {
return (DDI_FAILURE);
}
switch (infocmd) {
case DDI_INFO_DEVT2DEVINFO:
*resultp = imc_data->imc_dip;
break;
case DDI_INFO_DEVT2INSTANCE:
*resultp = (void *)0;
break;
default:
return (DDI_FAILURE);
}
return (DDI_SUCCESS);
}
static int
imc_detach(dev_info_t *dip, ddi_detach_cmd_t cmd)
{
if (cmd != DDI_DETACH) {
return (DDI_FAILURE);
}
if (imc_data == NULL || imc_data->imc_dip) {
return (DDI_FAILURE);
}
mutex_enter(&imc_data->imc_lock);
/*
* While a scan or attach is outstanding, don't allow us to detach.
*/
if ((imc_data->imc_flags &
(IMC_F_SCAN_DISPATCHED | IMC_F_ATTACH_DISPATCHED)) != 0) {
mutex_exit(&imc_data->imc_lock);
return (DDI_FAILURE);
}
/*
* Because the stub driver depends on the imc driver, we shouldn't be
* able to have any entries in this list when we detach. However, we
* check just to make sure.
*/
if (!avl_is_empty(&imc_data->imc_stubs)) {
mutex_exit(&imc_data->imc_lock);
return (DDI_FAILURE);
}
nvlist_free(imc_data->imc_decoder_dump);
imc_data->imc_decoder_dump = NULL;
if (imc_data->imc_decoder_buf != NULL) {
kmem_free(imc_data->imc_decoder_buf, imc_data->imc_decoder_len);
imc_data->imc_decoder_buf = NULL;
imc_data->imc_decoder_len = 0;
}
ddi_remove_minor_node(imc_data->imc_dip, NULL);
imc_data->imc_dip = NULL;
mutex_exit(&imc_data->imc_lock);
ddi_taskq_wait(imc_data->imc_taskq);
ddi_taskq_destroy(imc_data->imc_taskq);
imc_data->imc_taskq = NULL;
return (DDI_SUCCESS);
}
static void
imc_free(void)
{
if (imc_data == NULL) {
return;
}
VERIFY(avl_is_empty(&imc_data->imc_stubs));
avl_destroy(&imc_data->imc_stubs);
mutex_destroy(&imc_data->imc_lock);
kmem_free(imc_data, sizeof (imc_t));
imc_data = NULL;
}
static void
imc_alloc(void)
{
imc_data = kmem_zalloc(sizeof (imc_t), KM_SLEEP);
mutex_init(&imc_data->imc_lock, NULL, MUTEX_DRIVER, NULL);
avl_create(&imc_data->imc_stubs, imc_stub_comparator,
sizeof (imc_stub_t), offsetof(imc_stub_t, istub_link));
}
static struct cb_ops imc_cb_ops = {
.cb_open = imc_open,
.cb_close = imc_close,
.cb_strategy = nodev,
.cb_print = nodev,
.cb_dump = nodev,
.cb_read = nodev,
.cb_write = nodev,
.cb_ioctl = imc_ioctl,
.cb_devmap = nodev,
.cb_mmap = nodev,
.cb_segmap = nodev,
.cb_chpoll = nochpoll,
.cb_prop_op = ddi_prop_op,
.cb_flag = D_MP,
.cb_rev = CB_REV,
.cb_aread = nodev,
.cb_awrite = nodev
};
static struct dev_ops imc_dev_ops = {
.devo_rev = DEVO_REV,
.devo_refcnt = 0,
.devo_getinfo = imc_getinfo,
.devo_identify = nulldev,
.devo_probe = nulldev,
.devo_attach = imc_attach,
.devo_detach = imc_detach,
.devo_reset = nodev,
.devo_cb_ops = &imc_cb_ops,
.devo_quiesce = ddi_quiesce_not_needed
};
static struct modldrv imc_modldrv = {
.drv_modops = &mod_driverops,
.drv_linkinfo = "Intel Integrated Memory Controller Driver",
.drv_dev_ops = &imc_dev_ops
};
static struct modlinkage imc_modlinkage = {
.ml_rev = MODREV_1,
.ml_linkage = { &imc_modldrv, NULL }
};
int
_init(void)
{
int ret;
if ((ret = mod_install(&imc_modlinkage)) == 0) {
imc_alloc();
}
return (ret);
}
int
_info(struct modinfo *modinfop)
{
return (mod_info(&imc_modlinkage, modinfop));
}
int
_fini(void)
{
int ret;
if ((ret = mod_remove(&imc_modlinkage)) == 0) {
imc_free();
}
return (ret);
}
|