summaryrefslogtreecommitdiff
path: root/usr/src/uts/intel/pcbe/p4_pcbe.c
blob: 3f5e38a532877184f0c4cf78dd30bd6e3504978e (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
/*
 * CDDL HEADER START
 *
 * The contents of this file are subject to the terms of the
 * Common Development and Distribution License, Version 1.0 only
 * (the "License").  You may not use this file except in compliance
 * with the License.
 *
 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
 * or http://www.opensolaris.org/os/licensing.
 * See the License for the specific language governing permissions
 * and limitations under the License.
 *
 * When distributing Covered Code, include this CDDL HEADER in each
 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
 * If applicable, add the following below this CDDL HEADER, with the
 * fields enclosed by brackets "[]" replaced with your own identifying
 * information: Portions Copyright [yyyy] [name of copyright owner]
 *
 * CDDL HEADER END
 */
/*
 * Copyright 2004 Sun Microsystems, Inc.  All rights reserved.
 * Use is subject to license terms.
 */

#pragma ident	"%Z%%M%	%I%	%E% SMI"

/*
 * Performance Counter Back-End for Pentium 4.
 */

#include <sys/cpuvar.h>
#include <sys/param.h>
#include <sys/cpc_impl.h>
#include <sys/cpc_pcbe.h>
#include <sys/inttypes.h>
#include <sys/errno.h>
#include <sys/systm.h>
#include <sys/archsystm.h>
#include <sys/x86_archext.h>
#include <sys/modctl.h>
#include <sys/sdt.h>
#include <sys/cred.h>
#include <sys/policy.h>
#include <sys/privregs.h>

static int p4_pcbe_init(void);
static uint_t p4_pcbe_ncounters(void);
static const char *p4_pcbe_impl_name(void);
static const char *p4_pcbe_cpuref(void);
static char *p4_pcbe_list_events(uint_t picnum);
static char *p4_pcbe_list_attrs(void);
static uint64_t p4_pcbe_event_coverage(char *event);
static uint64_t p4_pcbe_overflow_bitmap(void);
static int p4_pcbe_configure(uint_t picnum, char *event, uint64_t preset,
    uint32_t flags, uint_t nattrs, kcpc_attr_t *attrs, void **data,
    void *token);
static void p4_pcbe_program(void *token);
static void p4_pcbe_allstop(void);
static void p4_pcbe_sample(void *token);
static void p4_pcbe_free(void *config);

extern int chip_plat_get_clogid(cpu_t *);

static pcbe_ops_t p4_pcbe_ops = {
	PCBE_VER_1,
	CPC_CAP_OVERFLOW_INTERRUPT | CPC_CAP_OVERFLOW_PRECISE,
	p4_pcbe_ncounters,
	p4_pcbe_impl_name,
	p4_pcbe_cpuref,
	p4_pcbe_list_events,
	p4_pcbe_list_attrs,
	p4_pcbe_event_coverage,
	p4_pcbe_overflow_bitmap,
	p4_pcbe_configure,
	p4_pcbe_program,
	p4_pcbe_allstop,
	p4_pcbe_sample,
	p4_pcbe_free
};

/*
 * P4 Configuration Flags.
 */
#define	P4_THIS_USR	0x1 /* HTT: Measure usr events on this logical CPU */
#define	P4_THIS_SYS	0x2 /* HTT: Measure os events on this logical CPU */
#define	P4_SIBLING_USR	0x4 /* HTT: Measure os events on other logical CPU */
#define	P4_SIBLING_SYS	0x8 /* HTT: Measure usr events on other logical CPU */
#define	P4_PMI		0x10 /* HTT: Set PMI bit for local logical CPU */

typedef struct _p4_pcbe_config {
	uint8_t		p4_flags;
	uint8_t		p4_picno;	/* From 0 to 18 */
	uint8_t		p4_escr_ndx;	/* Which ESCR to use */
	uint32_t	p4_escr;	/* Value to program in selected ESCR */
	uint32_t	p4_cccr;	/* Value to program in counter's CCCR */
	uint64_t	p4_rawpic;
} p4_pcbe_config_t;

typedef uint32_t cntr_map_t;

typedef struct _p4_escr {
	int		pe_num;
	uint32_t	pe_addr;
	uint32_t	pe_map; /* bitmap of counters; bit 1 means ctr 0 */
} p4_escr_t;

#define	MASK40			UINT64_C(0xffffffffff)

/*
 * CCCR field definitions.
 *
 * Note that the Intel Developer's Manual states that the reserved field at
 * bit location 16 and 17 must be set to 11. (??)
 */
#define	CCCR_ENABLE_SHIFT	12
#define	CCCR_ESCR_SEL_SHIFT	13
#define	CCCR_ACTV_THR_SHIFT	16
#define	CCCR_COMPARE_SHIFT	18
#define	CCCR_COMPLEMENT_SHIFT	19
#define	CCCR_THRESHOLD_SHIFT	20
#define	CCCR_EDGE_SHIFT		24
#define	CCCR_OVF_PMI_SHIFT	26
#define	CCCR_OVF_PMI_T0_SHIFT	26
#define	CCCR_OVF_PMI_T1_SHIFT	27
#define	CCCR_OVF_SHIFT		31
#define	CCCR_ACTV_THR_MASK	0x3
#define	CCCR_THRESHOLD_MAX	0xF
#define	CCCR_ENABLE		(1U << CCCR_ENABLE_SHIFT)
#define	CCCR_COMPARE		(1U << CCCR_COMPARE_SHIFT)
#define	CCCR_COMPLEMENT		(1U << CCCR_COMPLEMENT_SHIFT)
#define	CCCR_EDGE		(1U << CCCR_EDGE_SHIFT)
#define	CCCR_OVF_PMI		(1U << CCCR_OVF_PMI_SHIFT)
#define	CCCR_OVF_PMI_T0		(1U << CCCR_OVF_PMI_T0_SHIFT)
#define	CCCR_OVF_PMI_T1		(1U << CCCR_OVF_PMI_T1_SHIFT)
#define	CCCR_INIT		CCCR_ENABLE
#define	CCCR_OVF		(1U << CCCR_OVF_SHIFT)

#define	ESCR_EVSEL_SHIFT	25
#define	ESCR_EVMASK_SHIFT	9
#define	ESCR_TAG_VALUE_SHIFT	5
#define	ESCR_TAG_VALUE_MAX	0xF
#define	ESCR_TAG_ENABLE_SHIFT	4
#define	ESCR_USR_SHIFT		2
#define	ESCR_OS_SHIFT		3
#define	ESCR_USR		(1U << ESCR_USR_SHIFT)
#define	ESCR_OS			(1U << ESCR_OS_SHIFT)
#define	ESCR_TAG_ENABLE		(1U << ESCR_TAG_ENABLE_SHIFT)

/*
 * HyperThreaded ESCR fields.
 */
#define	ESCR_T0_OS_SHIFT	3
#define	ESCR_T0_USR_SHIFT	2
#define	ESCR_T1_OS_SHIFT	1
#define	ESCR_T1_USR_SHIFT	0
#define	ESCR_T0_OS		(1U << ESCR_T0_OS_SHIFT)
#define	ESCR_T0_USR		(1U << ESCR_T0_USR_SHIFT)
#define	ESCR_T1_OS		(1U << ESCR_T1_OS_SHIFT)
#define	ESCR_T1_USR		(1U << ESCR_T1_USR_SHIFT)

/*
 * ESCRs are grouped by counter; each group of ESCRs is associated with a
 * distinct group of counters. Use these macros to fill in the table below.
 */
#define	BPU0_map	(0x1 | 0x2)		/* Counters 0 and 1 */
#define	BPU2_map	(0x4 | 0x8)		/* Counters 2 and 3 */
#define	MS0_map		(0x10 | 0x20)		/* Counters 4 and 5 */
#define	MS2_map		(0x40 | 0x80)		/* Counters 6 and 7 */
#define	FLAME0_map	(0x100 | 0x200)		/* Counters 8 and 9 */
#define	FLAME2_map	(0x400 | 0x800)		/* Counters 10 and 11 */
#define	IQ0_map		(0x1000 | 0x2000 | 0x10000) /* Counters 12, 13, 16 */
#define	IQ2_map		(0x4000 | 0x8000 | 0x20000) /* Counters 14, 15, 17 */

/*
 * Table describing the 45 Event Selection and Control Registers (ESCRs).
 */
const p4_escr_t p4_escrs[] = {
#define	BPU0 (1)
	{ 0, 0x3B2, BPU0_map },		/* 0 */
#define	IS0 (1ULL << 1)
	{ 1, 0x3B4, BPU0_map },		/* 1 */
#define	MOB0 (1ULL << 2)
	{ 2, 0x3AA, BPU0_map },		/* 2 */
#define	ITLB0 (1ULL << 3)
	{ 3, 0x3B6, BPU0_map },		/* 3 */
#define	PMH0 (1ULL << 4)
	{ 4, 0x3AC, BPU0_map },		/* 4 */
#define	IX0 (1ULL << 5)
	{ 5, 0x3C8, BPU0_map },		/* 5 */
#define	FSB0 (1ULL << 6)
	{ 6, 0x3A2, BPU0_map },		/* 6 */
#define	BSU0 (1ULL << 7)
	{ 7, 0x3A0, BPU0_map },		/* 7 */
#define	BPU1 (1ULL << 8)
	{ 0, 0x3B3, BPU2_map },		/* 8 */
#define	IS1 (1ULL << 9)
	{ 1, 0x3B5, BPU2_map },		/* 9 */
#define	MOB1 (1ULL << 10)
	{ 2, 0x3AB, BPU2_map },		/* 10 */
#define	ITLB1 (1ULL << 11)
	{ 3, 0x3B7, BPU2_map },		/* 11 */
#define	PMH1 (1ULL << 12)
	{ 4, 0x3AD, BPU2_map },		/* 12 */
#define	IX1 (1ULL << 13)
	{ 5, 0x3C9, BPU2_map },		/* 13 */
#define	FSB1 (1ULL << 14)
	{ 6, 0x3A3, BPU2_map },		/* 14 */
#define	BSU1 (1ULL << 15)
	{ 7, 0x3A1, BPU2_map },		/* 15 */
#define	MS0 (1ULL << 16)
	{ 0, 0x3C0, MS0_map },		/* 16 */
#define	TC0 (1ULL << 17)
	{ 1, 0x3C4, MS0_map },		/* 17 */
#define	TBPU0 (1ULL << 18)
	{ 2, 0x3C2, MS0_map },		/* 18 */
#define	MS1 (1ULL << 19)
	{ 0, 0x3C1, MS2_map },		/* 19 */
#define	TC1 (1ULL << 20)
	{ 1, 0x3C5, MS2_map },		/* 20 */
#define	TBPU1 (1ULL << 21)
	{ 2, 0x3C3, MS2_map },		/* 21 */
#define	FLAME0 (1ULL << 22)
	{ 0, 0x3A6, FLAME0_map },	/* 22 */
#define	FIRM0 (1ULL << 23)
	{ 1, 0x3A4, FLAME0_map },	/* 23 */
#define	SAAT0 (1ULL << 24)
	{ 2, 0x3AE, FLAME0_map },	/* 24 */
#define	U2L0 (1ULL << 25)
	{ 3, 0x3B0, FLAME0_map },	/* 25 */
#define	DAC0 (1ULL << 26)
	{ 5, 0x3A8, FLAME0_map },	/* 26 */
#define	FLAME1 (1ULL << 27)
	{ 0, 0x3A7, FLAME2_map },	/* 27 */
#define	FIRM1 (1ULL << 28)
	{ 1, 0x3A5, FLAME2_map },	/* 28 */
#define	SAAT1 (1ULL << 29)
	{ 2, 0x3AF, FLAME2_map },	/* 29 */
#define	U2L1 (1ULL << 30)
	{ 3, 0x3B1, FLAME2_map },	/* 30 */
#define	DAC1 (1ULL << 31)
	{ 5, 0x3A9, FLAME2_map },	/* 31 */
#define	IQ0 (1ULL << 32)
	{ 0, 0x3BA, IQ0_map },		/* 32 */
#define	ALF0 (1ULL << 33)
	{ 1, 0x3CA, IQ0_map },		/* 33 */
#define	RAT0 (1ULL << 34)
	{ 2, 0x3BC, IQ0_map },		/* 34 */
#define	SSU0 (1ULL << 35)
	{ 3, 0x3BE, IQ0_map },		/* 35 */
#define	CRU0 (1ULL << 36)
	{ 4, 0x3B8, IQ0_map },		/* 36 */
#define	CRU2 (1ULL << 37)
	{ 5, 0x3CC, IQ0_map },		/* 37 */
#define	CRU4 (1ULL << 38)
	{ 6, 0x3E0, IQ0_map },		/* 38 */
#define	IQ1 (1ULL << 39)
	{ 0, 0x3BB, IQ2_map },		/* 39 */
#define	ALF1 (1ULL << 40)
	{ 1, 0x3CB, IQ2_map },		/* 40 */
#define	RAT1 (1ULL << 41)
	{ 2, 0x3BD, IQ2_map },		/* 41 */
#define	CRU1 (1ULL << 42)
	{ 4, 0x3B9, IQ2_map },		/* 42 */
#define	CRU3 (1ULL << 43)
	{ 5, 0x3CD, IQ2_map },		/* 43 */
#define	CRU5 (1ULL << 44)
	{ 6, 0x3E1, IQ2_map }		/* 44 */
};

#define	ESCR_MAX_INDEX 44

typedef struct _p4_ctr {
	uint32_t	pc_caddr;	/* counter MSR address */
	uint32_t	pc_ctladdr;	/* counter's CCCR MSR address */
	uint64_t	pc_map;		/* bitmap of ESCRs controlling ctr */
} p4_ctr_t;

const p4_ctr_t p4_ctrs[18] = {
{ /* BPU_COUNTER0 */ 0x300, 0x360, BSU0|FSB0|MOB0|PMH0|BPU0|IS0|ITLB0|IX0},
{ /* BPU_COUNTER1 */ 0x301, 0x361, BSU0|FSB0|MOB0|PMH0|BPU0|IS0|ITLB0|IX0},
{ /* BPU_COUNTER2 */ 0x302, 0x362, BSU1|FSB1|MOB1|PMH1|BPU1|IS1|ITLB1|IX1},
{ /* BPU_COUNTER3 */ 0x303, 0x363, BSU1|FSB1|MOB1|PMH1|BPU1|IS1|ITLB1|IX1},
{ /* MS_COUNTER0 */  0x304, 0x364, MS0|TBPU0|TC0 },
{ /* MS_COUNTER1 */  0x305, 0x365, MS0|TBPU0|TC0 },
{ /* MS_COUNTER2 */  0x306, 0x366, MS1|TBPU1|TC1 },
{ /* MS_COUNTER3 */  0x307, 0x367, MS1|TBPU1|TC1 },
{ /* FLAME_COUNTER0 */ 0x308, 0x368, FIRM0|FLAME0|DAC0|SAAT0|U2L0 },
{ /* FLAME_COUNTER1 */ 0x309, 0x369, FIRM0|FLAME0|DAC0|SAAT0|U2L0 },
{ /* FLAME_COUNTER2 */ 0x30A, 0x36A, FIRM1|FLAME1|DAC1|SAAT1|U2L1 },
{ /* FLAME_COUNTER3 */ 0x30B, 0x36B, FIRM1|FLAME1|DAC1|SAAT1|U2L1 },
{ /* IQ_COUNTER0 */  0x30C, 0x36C, CRU0|CRU2|CRU4|IQ0|RAT0|SSU0|ALF0 },
{ /* IQ_COUNTER1 */  0x30D, 0x36D, CRU0|CRU2|CRU4|IQ0|RAT0|SSU0|ALF0 },
{ /* IQ_COUNTER2 */  0x30E, 0x36E, CRU1|CRU3|CRU5|IQ1|RAT1|ALF1 },
{ /* IQ_COUNTER3 */  0x30F, 0x36F, CRU1|CRU3|CRU5|IQ1|RAT1|ALF1 },
{ /* IQ_COUNTER4 */  0x310, 0x370, CRU0|CRU2|CRU4|IQ0|RAT0|SSU0|ALF0 },
{ /* IQ_COUNTER5 */  0x311, 0x371, CRU1|CRU3|CRU5|IQ1|RAT1|ALF1 }
};

typedef struct _p4_event {
	char		*pe_name;	/* Name of event according to docs */
	uint64_t	pe_escr_map;	/* Bitmap of ESCRs capable of event */
	uint32_t	pe_escr_mask;	/* permissible ESCR event mask */
	uint8_t		pe_ev;		/* ESCR event select value */
	uint16_t	pe_cccr;	/* CCCR select value */
	uint32_t	pe_ctr_mask;	/* Bitmap of capable counters */
} p4_event_t;

#define	C(n) (1 << n)

p4_event_t p4_events[] = {
{ "branch_retired", CRU2|CRU3, 0xF, 0x6, 0x5, C(12)|C(13)|C(14)|C(15)|C(16) },
{ "mispred_branch_retired", CRU0|CRU1, 0x1, 0x3, 0x4,
	C(12)|C(13)|C(14)|C(15)|C(16) },
{ "TC_deliver_mode", TC0|TC1, 0xFF, 0x1, 0x1, C(4)|C(5)|C(6)|C(7) },
{ "BPU_fetch_request", BPU0|BPU1, 0x1, 0x3, 0x0, C(0)|C(1)|C(2)|C(3) },
{ "ITLB_reference", ITLB0|ITLB1, 0x7, 0x18, 0x3, C(0)|C(1)|C(2)|C(3) },
{ "memory_cancel", DAC0|DAC1, 0x6, 0x2, 0x5, C(8)|C(9)|C(10)|C(11) },
{ "memory_complete", SAAT0|SAAT1, 0x3, 0x8, 0x2, C(8)|C(9)|C(10)|C(11) },
{ "load_port_replay", SAAT0|SAAT1, 0x1, 0x4, 0x2, C(8)|C(9)|C(10)|C(11) },
{ "store_port_replay", SAAT0|SAAT1, 0x1, 0x5, 0x2, C(8)|C(9)|C(10)|C(11) },
{ "MOB_load_replay", MOB0|MOB1, 0x35, 0x3, 0x2, C(0)|C(1)|C(2)|C(3) },
{ "page_walk_type", PMH0|PMH1, 0x3, 0x1, 0x4, C(0)|C(1)|C(2)|C(3) },
{ "BSQ_cache_reference", BSU0|BSU1, 0x73F, 0xC, 0x7, C(0)|C(1)|C(2)|C(3) },
{ "IOQ_allocation", FSB0, 0xEFFF, 0x3, 0x6, C(0)|C(1) },
{ "IOQ_active_entries", FSB1, 0xEFFF, 0x1A, 0x6, C(2)|C(3) },
{ "FSB_data_activity", FSB0|FSB1, 0x3F, 0x17, 0x6, C(0)|C(1)|C(2)|C(3) },
{ "BSQ_allocation", BSU0, 0x3FEF, 0x5, 0x7, C(0)|C(1) },
{ "bsq_active_entries", BSU1, 0x3FEF, 0x6, 0x7, C(2)|C(3) },
{ "x87_assist", CRU2|CRU3, 0x1F, 0x3, 0x5, C(12)|C(13)|C(14)|C(15)|C(16)|C(17)},
{ "SSE_input_assist", FIRM0|FIRM1, 0x8000, 0x34, 0x1, C(8)|C(9)|C(10)|C(11) },
{ "packed_SP_uop", FIRM0|FIRM1, 0x8000, 0x8, 0x1, C(8)|C(9)|C(10)|C(11) },
{ "packed_DP_uop", FIRM0|FIRM1, 0x8000, 0xC, 0x1, C(8)|C(9)|C(10)|C(11) },
{ "scalar_SP_uop", FIRM0|FIRM1, 0x8000, 0xA, 0x1, C(8)|C(9)|C(10)|C(11) },
{ "scalar_DP_uop", FIRM0|FIRM1, 0x8000, 0xE, 0x1, C(8)|C(9)|C(10)|C(11) },
{ "64bit_MMX_uop", FIRM0|FIRM1, 0x8000, 0x2, 0x1, C(8)|C(9)|C(10)|C(11) },
{ "128bit_MMX_uop", FIRM0|FIRM1, 0x8000, 0x1A, 0x1, C(8)|C(9)|C(10)|C(11) },
{ "x87_FP_uop", FIRM0|FIRM1, 0x8000, 0x4, 0x1, C(8)|C(9)|C(10)|C(11) },
{ "x87_SIMD_moves_uop", FIRM0|FIRM1, 0x18, 0x2E, 0x1, C(8)|C(9)|C(10)|C(11) },
{ "machine_clear", CRU2|CRU3, 0xD, 0x2, 0x5,
	C(12)|C(13)|C(14)|C(15)|C(16)|C(17)},
{ "global_power_events", FSB0|FSB1, 0x1, 0x5, 0x6, C(0)|C(1)|C(2)|C(3) },
{ "tc_ms_xfer", MS0|MS1, 0x1, 0x5, 0x0, C(4)|C(5)|C(6)|C(7) },
{ "uop_queue_writes", MS0|MS1, 0x7, 0x9, 0x0, C(4)|C(5)|C(6)|C(7) },
{ "front_end_event", CRU2|CRU3, 0x3, 0x8, 0x5,
	C(12)|C(13)|C(14)|C(15)|C(16)|C(17)},
{ "execution_event", CRU2|CRU3, 0xFF, 0xC, 0x5,
	C(12)|C(13)|C(14)|C(15)|C(16)|C(17)},
{ "replay_event", CRU2|CRU3, 0x3, 0x9, 0x5,
	C(12)|C(13)|C(14)|C(15)|C(16)|C(17)},
{ "instr_retired", CRU0|CRU1, 0xF, 0x2, 0x4,
	C(12)|C(13)|C(14)|C(15)|C(16)|C(17)},
{ "uops_retired", CRU0|CRU1, 0x3, 0x1, 0x4,
	C(12)|C(13)|C(14)|C(15)|C(16)|C(17)},
{ "uop_type", RAT0|RAT1, 0x3, 0x2, 0x2, C(12)|C(13)|C(14)|C(15)|C(16)|C(17)},
{ "retired_mispred_branch_type", TBPU0|TBPU1, 0x1F, 0x5, 0x2,
	C(4)|C(5)|C(6)|C(7)},
{ "retired_branch_type", TBPU0|TBPU1, 0x1F, 0x4, 0x2, C(4)|C(5)|C(6)|C(7) },
{ NULL, 0, 0, 0, 0 }
};

/*
 * Indicates whether the "rdpmc" instruction is available on this processor.
 */
static int p4_rdpmc_avail = 0;

static const uint64_t p4_cccrstop = 0;

static char *p4_eventlist[18];

/*
 * If set, this processor has HyperThreading.
 */
static int p4_htt = 0;

#define	P4_FAMILY	0xF

static int
p4_pcbe_init(void)
{
	int		i;
	size_t		size;
	p4_event_t	*ev;

	/*
	 * If we're not running on a P4, refuse to load.
	 */
	if (cpuid_getvendor(CPU) != X86_VENDOR_Intel ||
	    cpuid_getfamily(CPU) != P4_FAMILY)
		return (-1);

	/*
	 * Set up the event lists for each counter.
	 *
	 * First pass calculates the size of the event list, and the second
	 * pass copies each event name into the event list.
	 */
	for (i = 0; i < 18; i++) {
		size = 0;
		for (ev = p4_events; ev->pe_name != NULL; ev++) {
			if (ev->pe_ctr_mask & C(i))
				size += strlen(ev->pe_name) + 1;
		}

		/*
		 * We use 'size + 1' here to ensure room for the final
		 * strcat when it terminates the string.
		 */
		p4_eventlist[i] = (char *)kmem_alloc(size + 1, KM_SLEEP);
		*p4_eventlist[i] = '\0';

		for (ev = p4_events; ev->pe_name != NULL; ev++) {
			if (ev->pe_ctr_mask & C(i)) {
				(void) strcat(p4_eventlist[i], ev->pe_name);
				(void) strcat(p4_eventlist[i], ",");
			}
		}
		/*
		 * Remove trailing ','
		 */
		p4_eventlist[i][size - 1] = '\0';
	}

	if (x86_feature & X86_MMX)
		p4_rdpmc_avail = 1;
	/*
	 * The X86_HTT flag may disappear soon, so we'll isolate the impact of
	 * its demise to the following if().
	 */
	if (x86_feature & X86_HTT)
		p4_htt = 1;

	return (0);
}

static uint_t
p4_pcbe_ncounters(void)
{
	return (18);
}

static const char *
p4_pcbe_impl_name(void)
{
	if (p4_htt)
		return ("Pentium 4 with HyperThreading");
	return ("Pentium 4");
}

static const char *
p4_pcbe_cpuref(void)
{
	return ("See Appendix A.1 of the \"IA-32 Intel Architecture Software " \
	    "Developer's Manual Volume 3: System Programming Guide,\" "	       \
	    "Order # 245472-012, 2003");
}

static char *
p4_pcbe_list_events(uint_t picnum)
{
	ASSERT(picnum >= 0 && picnum < 18);

	return (p4_eventlist[picnum]);
}

#define	P4_ATTRS "emask,tag,compare,complement,threshold,edge"

static char *
p4_pcbe_list_attrs(void)
{
	if (p4_htt)
		return (P4_ATTRS ",active_thread,count_sibling_usr,"
		    "count_sibling_sys");
	return (P4_ATTRS);
}

static uint64_t
p4_pcbe_event_coverage(char *event)
{
	p4_event_t *ev;

	for (ev = p4_events; ev->pe_name != NULL; ev++) {
		if (strcmp(event, ev->pe_name) == 0)
			break;
	}

	return (ev->pe_ctr_mask);
}

static uint64_t
p4_pcbe_overflow_bitmap(void)
{
	extern int	kcpc_hw_overflow_intr_installed;
	uint64_t	ret = 0;
	uint64_t	tmp;
	int		i;

	/*
	 * The CCCR's OVF bit indicates that the corresponding counter has
	 * overflowed. It must be explicitly cleared by software, so it is
	 * safe to read the CCCR values here.
	 */
	for (i = 0; i < 18; i++) {
		(void) rdmsr(p4_ctrs[i].pc_ctladdr, &tmp);
		if (tmp & CCCR_OVF)
			ret |= (1 << i);
	}

	/*
	 * Pentium 4 and Xeon turn off the CPC interrupt mask bit in the LVT at
	 * every overflow. Turn it back on here.
	 */
	ASSERT(kcpc_hw_overflow_intr_installed);
	(*kcpc_hw_enable_cpc_intr)();

	return (ret);
}

static int
p4_escr_inuse(p4_pcbe_config_t **cfgs, int escr_ndx)
{
	int i;

	for (i = 0; i < 18; i++) {
		if (cfgs[i] == NULL)
			continue;
		if (cfgs[i]->p4_escr_ndx == escr_ndx)
			return (1);
	}

	return (0);
}

static void
build_cfgs(p4_pcbe_config_t *cfgs[18], uint64_t *data[18], void *token)
{
	p4_pcbe_config_t	*cfg = NULL;
	uint64_t		*daddr;

	bzero(cfgs, 18 * sizeof (p4_pcbe_config_t *));

	do {
		cfg = (p4_pcbe_config_t *)kcpc_next_config(token, cfg, &daddr);

		if (cfg != NULL) {
			ASSERT(cfg->p4_picno < 18);
			cfgs[cfg->p4_picno] = cfg;
			if (data != NULL) {
				ASSERT(daddr != NULL);
				data[cfg->p4_picno] = daddr;
			}
		}
	} while (cfg != NULL);
}

/*
 * Programming a counter:
 *
 * Select event.
 * Choose an ESCR capable of counting that event.
 * Set up the ESCR with the desired parameters (usr, sys, tag).
 * Set up the CCCR to point to the selected ESCR.
 * Set the CCCR parameters (overflow, cascade, edge, etc).
 */
static int
p4_pcbe_configure(uint_t picnum, char *eventname, uint64_t preset,
    uint32_t flags, uint_t nattrs, kcpc_attr_t *attrs, void **data,
    void *token)
{
	p4_pcbe_config_t	*cfgs[18];
	p4_pcbe_config_t	*cfg;
	p4_event_t		*ev;
	int			escr_ndx;
	int			i;
	uint16_t		emask = 0;
	uint8_t			tag;
	int			use_tag = 0;
	int			active_thread = 0x3; /* default is "any" */
	int			compare = 0;
	int			complement = 0;
	int			threshold = 0;
	int			edge = 0;
	int			sibling_usr = 0; /* count usr on other cpu */
	int			sibling_sys = 0; /* count sys on other cpu */

	/*
	 * If we've been handed an existing configuration, we need only preset
	 * the counter value.
	 */
	if (*data != NULL) {
		cfg = *data;
		cfg->p4_rawpic = preset & MASK40;
		return (0);
	}

	if (picnum < 0 || picnum >= 18)
		return (CPC_INVALID_PICNUM);

	for (ev = p4_events; ev->pe_name != NULL; ev++) {
		if (strcmp(eventname, ev->pe_name) == 0)
			break;
	}
	if (ev->pe_name == NULL)
		return (CPC_INVALID_EVENT);

	build_cfgs(cfgs, NULL, token);

	/*
	 * Find an ESCR capable of counting this event.
	 */
	for (escr_ndx = 0; escr_ndx < ESCR_MAX_INDEX; escr_ndx++) {
		if ((ev->pe_escr_map & (1ULL << escr_ndx)) &&
		    p4_escr_inuse(cfgs, escr_ndx) == 0)
			break;
	}

	/*
	 * All ESCRs capable of counting this event are already being
	 * used.
	 */
	if (escr_ndx == ESCR_MAX_INDEX)
		return (CPC_RESOURCE_UNAVAIL);

	/*
	 * At this point, ev points to the desired event and escr is the index
	 * of a capable and available ESCR.
	 *
	 * Now process and verify the attributes.
	 */
	for (i = 0; i < nattrs; i++) {
		if (strcmp("emask", attrs[i].ka_name) == 0) {
			if ((attrs[i].ka_val | ev->pe_escr_mask)
			    != ev->pe_escr_mask)
				return (CPC_ATTRIBUTE_OUT_OF_RANGE);
			emask = attrs[i].ka_val;
			continue;
		} else if (strcmp("tag", attrs[i].ka_name) == 0) {
			if (attrs[i].ka_val > ESCR_TAG_VALUE_MAX)
				return (CPC_ATTRIBUTE_OUT_OF_RANGE);
			tag = attrs[i].ka_val;
			use_tag = 1;
			continue;
		} else if (strcmp("compare", attrs[i].ka_name) == 0) {
			if (attrs[i].ka_val != 0)
				compare = 1;
			continue;
		} else if (strcmp("complement", attrs[i].ka_name) == 0) {
			if (attrs[i].ka_val != 0)
				complement = 1;
			continue;
		} else if (strcmp("threshold", attrs[i].ka_name) == 0) {
			if (attrs[i].ka_val > CCCR_THRESHOLD_MAX)
				return (CPC_ATTRIBUTE_OUT_OF_RANGE);
			threshold = attrs[i].ka_val;
			continue;
		} else if (strcmp("edge", attrs[i].ka_name) == 0) {
			if (attrs[i].ka_val != 0)
				edge = 1;
			continue;
		}

		/*
		 * The remaining attributes are valid only on HyperThreaded P4s
		 * for processes with the "cpc_cpu" privilege.
		 */
		if (p4_htt == 0)
			return (CPC_INVALID_ATTRIBUTE);

		if (secpolicy_cpc_cpu(crgetcred()) != 0)
			return (CPC_ATTR_REQUIRES_PRIVILEGE);

		if (strcmp("active_thread", attrs[i].ka_name) == 0) {
			if ((attrs[i].ka_val | CCCR_ACTV_THR_MASK) !=
			    CCCR_ACTV_THR_MASK)
				return (CPC_ATTRIBUTE_OUT_OF_RANGE);
			active_thread = (int)attrs[i].ka_val;
		} else if (strcmp("count_sibling_usr", attrs[i].ka_name) == 0) {
			if (attrs[i].ka_val != 0)
				sibling_usr = 1;
		} else if (strcmp("count_sibling_sys", attrs[i].ka_name) == 0) {
			if (attrs[i].ka_val != 0)
				sibling_sys = 1;
		} else
			return (CPC_INVALID_ATTRIBUTE);
	}

	/*
	 * Make sure the counter can count this event
	 */
	if ((ev->pe_ctr_mask & C(picnum)) == 0)
		return (CPC_PIC_NOT_CAPABLE);

	/*
	 * Find an ESCR that lines up with the event _and_ the counter.
	 */
	for (escr_ndx = 0; escr_ndx < ESCR_MAX_INDEX; escr_ndx++) {
		if ((ev->pe_escr_map & (1ULL << escr_ndx)) &&
		    (p4_escrs[escr_ndx].pe_map & (1 << picnum)) &&
		    p4_escr_inuse(cfgs, escr_ndx) == 0)
			break;
	}
	if (escr_ndx == ESCR_MAX_INDEX)
		return (CPC_RESOURCE_UNAVAIL);

	cfg = (p4_pcbe_config_t *)kmem_alloc(sizeof (p4_pcbe_config_t),
	    KM_SLEEP);

	cfg->p4_flags = 0;
	cfg->p4_picno = picnum;
	cfg->p4_escr_ndx = escr_ndx;
	cfg->p4_escr = (ev->pe_ev << ESCR_EVSEL_SHIFT) |
	    (emask << ESCR_EVMASK_SHIFT);

	if (use_tag == 1) {
		cfg->p4_escr |= tag << ESCR_TAG_VALUE_SHIFT;
		cfg->p4_escr |= ESCR_TAG_ENABLE;
	}

	if (p4_htt) {
		/*
		 * This is a HyperThreaded P4.  Since we don't know which
		 * logical CPU this configuration will eventually be programmed
		 * on, we can't yet decide which fields of the ESCR to select.
		 *
		 * Record the necessary information in the flags for later.
		 */
		if (flags & CPC_COUNT_USER)
			cfg->p4_flags |= P4_THIS_USR;
		if (flags & CPC_COUNT_SYSTEM)
			cfg->p4_flags |= P4_THIS_SYS;
		if (p4_htt && sibling_usr)
			cfg->p4_flags |= P4_SIBLING_USR;
		if (p4_htt && sibling_sys)
			cfg->p4_flags |= P4_SIBLING_SYS;
	} else {
		/*
		 * This is not HyperThreaded, so we can determine the exact
		 * ESCR value necessary now.
		 */
		if (flags & CPC_COUNT_USER)
			cfg->p4_escr |= ESCR_USR;
		if (flags & CPC_COUNT_SYSTEM)
			cfg->p4_escr |= ESCR_OS;
	}

	cfg->p4_rawpic = preset & MASK40;

	/*
	 * Even on non-HT P4s, Intel states the active_thread field (marked as
	 * "reserved" for the non-HT chips) must be set to all 1s.
	 */
	cfg->p4_cccr = CCCR_INIT | (active_thread << CCCR_ACTV_THR_SHIFT);
	if (compare)
		cfg->p4_cccr |= CCCR_COMPARE;
	if (complement)
		cfg->p4_cccr |= CCCR_COMPLEMENT;
	cfg->p4_cccr |= threshold << CCCR_THRESHOLD_SHIFT;
	if (edge)
		cfg->p4_cccr |= CCCR_EDGE;
	cfg->p4_cccr |= p4_escrs[cfg->p4_escr_ndx].pe_num
	    << CCCR_ESCR_SEL_SHIFT;
	if (flags & CPC_OVF_NOTIFY_EMT) {
		if (p4_htt)
			cfg->p4_flags |= P4_PMI;
		else {
			/*
			 * If the user has asked for notification of overflows,
			 * we automatically program the hardware to generate an
			 * interrupt on overflow.
			 *
			 * This can only be programmed now if this P4 doesn't
			 * have HyperThreading. If it does, we must wait until
			 * we know which logical CPU we'll be programming.
			 */
			cfg->p4_cccr |= CCCR_OVF_PMI;
		}
	}

	*data = cfg;

	return (0);
}

static void
p4_pcbe_program(void *token)
{
	int			i;
	uint64_t		escr;
	uint64_t		cccr;
	p4_pcbe_config_t	*cfgs[18];

	p4_pcbe_allstop();

	build_cfgs(cfgs, NULL, token);

	if (p4_rdpmc_avail) {
		uint32_t curcr4 = getcr4();
		if (kcpc_allow_nonpriv(token))
			setcr4(curcr4 | CR4_PCE);
		else
			setcr4(curcr4 & ~CR4_PCE);
	}

	/*
	 * Ideally we would start all counters with a single operation, but in
	 * P4 each counter is enabled individually via its CCCR. To minimize the
	 * probe effect of enabling the counters, we do it in two passes: the
	 * first programs the counter and ESCR, and the second programs the
	 * CCCR (and thus enables the counter).
	 */
	if (p4_htt) {
		int	lid = chip_plat_get_clogid(CPU); /* Logical ID of CPU */

		for (i = 0; i < 18; i++) {
			if (cfgs[i] == NULL)
				continue;
			escr = (uint64_t)cfgs[i]->p4_escr;

			if (cfgs[i]->p4_flags & P4_THIS_USR)
				escr |= (lid == 0) ? ESCR_T0_USR : ESCR_T1_USR;
			if (cfgs[i]->p4_flags & P4_THIS_SYS)
				escr |= (lid == 0) ? ESCR_T0_OS : ESCR_T1_OS;
			if (cfgs[i]->p4_flags & P4_SIBLING_USR)
				escr |= (lid == 0) ? ESCR_T1_USR : ESCR_T0_USR;
			if (cfgs[i]->p4_flags & P4_SIBLING_SYS)
				escr |= (lid == 0) ? ESCR_T1_OS : ESCR_T0_OS;

			wrmsr(p4_ctrs[i].pc_caddr, &cfgs[i]->p4_rawpic);
			wrmsr(p4_escrs[cfgs[i]->p4_escr_ndx].pe_addr, &escr);
		}

		for (i = 0; i < 18; i++) {
			if (cfgs[i] == NULL)
				continue;
			cccr = (uint64_t)cfgs[i]->p4_cccr;
			/*
			 * We always target the overflow interrupt at the
			 * logical CPU which is doing the counting.
			 */
			if (cfgs[i]->p4_flags & P4_PMI)
				cccr |= (lid == 0) ?
				    CCCR_OVF_PMI_T0 : CCCR_OVF_PMI_T1;
			wrmsr(p4_ctrs[i].pc_ctladdr, &cccr);
		}
	} else {
		for (i = 0; i < 18; i++) {
			if (cfgs[i] == NULL)
				continue;
			escr = (uint64_t)cfgs[i]->p4_escr;
			wrmsr(p4_ctrs[i].pc_caddr, &cfgs[i]->p4_rawpic);
			wrmsr(p4_escrs[cfgs[i]->p4_escr_ndx].pe_addr, &escr);
		}

		for (i = 0; i < 18; i++) {
			if (cfgs[i] == NULL)
				continue;
			cccr = (uint64_t)cfgs[i]->p4_cccr;
			wrmsr(p4_ctrs[i].pc_ctladdr, &cccr);
		}
	}
}

static void
p4_pcbe_allstop(void)
{
	int		i;
	uint64_t	tmp = 0;

	for (i = 0; i < 18; i++)
		wrmsr(p4_ctrs[i].pc_ctladdr, &tmp);

	setcr4(getcr4() & ~CR4_PCE);
}


static void
p4_pcbe_sample(void *token)
{
	p4_pcbe_config_t	*cfgs[18];
	uint64_t		*addrs[18];
	uint64_t		curpic[18];
	int64_t			diff;
	int			i;

	for (i = 0; i < 18; i++)
		(void) rdmsr(p4_ctrs[i].pc_caddr, &curpic[i]);

	build_cfgs(cfgs, addrs, token);

	for (i = 0; i < 18; i++) {
		if (cfgs[i] == NULL)
			continue;
		diff = curpic[i] - cfgs[i]->p4_rawpic;
		if (diff < 0)
			diff += (1ll << 40);
		*addrs[i] += diff;
		DTRACE_PROBE4(p4__pcbe__sample, int, i, uint64_t, *addrs[i],
		    uint64_t, curpic[i], uint64_t, cfgs[i]->p4_rawpic);
		cfgs[i]->p4_rawpic = *addrs[i] & MASK40;
	}
}

static void
p4_pcbe_free(void *config)
{
	kmem_free(config, sizeof (p4_pcbe_config_t));
}

static struct modlpcbe modlpcbe = {
	&mod_pcbeops,
	"Pentium 4 Performance Counters v%I%",
	&p4_pcbe_ops
};

static struct modlinkage modl = {
	MODREV_1,
	&modlpcbe,
};

int
_init(void)
{
	if (p4_pcbe_init() != 0)
		return (ENOTSUP);
	return (mod_install(&modl));
}

int
_fini(void)
{
	return (mod_remove(&modl));
}

int
_info(struct modinfo *mi)
{
	return (mod_info(&modl, mi));
}