1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
|
/*
* CDDL HEADER START
*
* The contents of this file are subject to the terms of the
* Common Development and Distribution License (the "License").
* You may not use this file except in compliance with the License.
*
* You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
* or http://www.opensolaris.org/os/licensing.
* See the License for the specific language governing permissions
* and limitations under the License.
*
* When distributing Covered Code, include this CDDL HEADER in each
* file and include the License file at usr/src/OPENSOLARIS.LICENSE.
* If applicable, add the following below this CDDL HEADER, with the
* fields enclosed by brackets "[]" replaced with your own identifying
* information: Portions Copyright [yyyy] [name of copyright owner]
*
* CDDL HEADER END
*/
/*
* Copyright (c) 1999, 2010, Oracle and/or its affiliates. All rights reserved.
*/
#include "assym.h"
/*
* General assembly language routines.
* It is the intent of this file to contain routines that are
* specific to cpu architecture.
*/
/*
* WARNING: If you add a fast trap handler which can be invoked by a
* non-privileged user, you may have to use the FAST_TRAP_DONE macro
* instead of "done" instruction to return back to the user mode. See
* comments for the "fast_trap_done" entry point for more information.
*/
#define FAST_TRAP_DONE \
ba,a fast_trap_done
/*
* Override GET_NATIVE_TIME for the cpu module code. This is not
* guaranteed to be exactly one instruction, be careful of using
* the macro in delay slots.
*
* Do not use any instruction that modifies condition codes as the
* caller may depend on these to remain unchanged across the macro.
*/
#if defined(CHEETAH) || defined(OLYMPUS_C)
#define GET_NATIVE_TIME(out, scr1, scr2) \
rd STICK, out
#define DELTA_NATIVE_TIME(delta, reg, scr1, scr2, scr3) \
rd STICK, reg; \
add reg, delta, reg; \
wr reg, STICK
#define RD_TICKCMPR(out, scr) \
rd STICK_COMPARE, out
#define WR_TICKCMPR(in, scr1, scr2, label) \
wr in, STICK_COMPARE
#elif defined(HUMMINGBIRD)
#include <sys/spitregs.h>
/*
* the current hummingbird version of %stick and %stick_cmp
* were both implemented as (2) 32-bit locations in ASI_IO space;
* the hdwr should support atomic r/w; meanwhile: ugly alert! ...
*
* 64-bit opcodes are required, but move only 32-bits:
*
* ldxa [phys]ASI_IO, %dst reads the low 32-bits from phys into %dst
* stxa %src, [phys]ASI_IO writes the low 32-bits from %src into phys
*
* reg equivalent [phys]ASI_IO
* ------------------ ---------------
* %stick_cmp low-32 0x1FE.0000.F060
* %stick_cmp high-32 0x1FE.0000.F068
* %stick low-32 0x1FE.0000.F070
* %stick high-32 0x1FE.0000.F078
*/
#define HSTC_LOW 0x60 /* stick_cmp low 32-bits */
#define HSTC_HIGH 0x68 /* stick_cmp high 32-bits */
#define HST_LOW 0x70 /* stick low 32-bits */
#define HST_HIGH 0x78 /* stick high 32-bits */
#define HST_DIFF 0x08 /* low<-->high diff */
/*
* Any change in the number of instructions in SETL41()
* will affect SETL41_OFF
*/
#define SETL41(reg, byte) \
sethi %hi(0x1FE00000), reg; /* 0000.0000.1FE0.0000 */ \
or reg, 0xF, reg; /* 0000.0000.1FE0.000F */ \
sllx reg, 12, reg; /* 0000.01FE.0000.F000 */ \
or reg, byte, reg; /* 0000.01FE.0000.F0xx */
/*
* SETL41_OFF is used to calulate the relative PC value when a
* branch instruction needs to go over SETL41() macro
*/
#define SETL41_OFF 16
/*
* reading stick requires 2 loads, and there could be an intervening
* low-to-high 32-bit rollover resulting in a return value that is
* off by about (2 ^ 32); this rare case is prevented by re-reading
* the low-32 bits after the high-32 and verifying the "after" value
* is >= the "before" value; if not, increment the high-32 value.
*
* this method is limited to 1 rollover, and based on the fixed
* stick-frequency (5555555), requires the loads to complete within
* 773 seconds; incrementing the high-32 value will not overflow for
* about 52644 years.
*
* writing stick requires 2 stores; if the old/new low-32 value is
* near 0xffffffff, there could be another rollover (also rare).
* to prevent this, we first write a 0 to the low-32, then write
* new values to the high-32 then the low-32.
*
* When we detect a carry in the lower %stick register, we need to
* read HST_HIGH again. However at the point where we detect this,
* we need to rebuild the register address HST_HIGH.This involves more
* than one instructions and a branch is unavoidable. However, most of
* the time, there is no carry. So we take the penalty of a branch
* instruction only when there is carry (less frequent).
*
* For GET_NATIVE_TIME(), we start afresh and branch to SETL41().
* For DELTA_NATIVE_TIME(), we branch to just after SETL41() since
* addr already points to HST_LOW.
*
* NOTE: this method requires disabling interrupts before using
* DELTA_NATIVE_TIME.
*/
#define GET_NATIVE_TIME(out, scr, tmp) \
SETL41(scr, HST_LOW); \
ldxa [scr]ASI_IO, tmp; \
inc HST_DIFF, scr; \
ldxa [scr]ASI_IO, out; \
dec HST_DIFF, scr; \
ldxa [scr]ASI_IO, scr; \
sub scr, tmp, tmp; \
brlz,pn tmp, .-(SETL41_OFF+24); \
sllx out, 32, out; \
or out, scr, out
#define DELTA_NATIVE_TIME(delta, addr, high, low, tmp) \
SETL41(addr, HST_LOW); \
ldxa [addr]ASI_IO, tmp; \
inc HST_DIFF, addr; \
ldxa [addr]ASI_IO, high; \
dec HST_DIFF, addr; \
ldxa [addr]ASI_IO, low; \
sub low, tmp, tmp; \
brlz,pn tmp, .-24; \
sllx high, 32, high; \
or high, low, high; \
add high, delta, high; \
srl high, 0, low; \
srlx high, 32, high; \
stxa %g0, [addr]ASI_IO; \
inc HST_DIFF, addr; \
stxa high, [addr]ASI_IO; \
dec HST_DIFF, addr; \
stxa low, [addr]ASI_IO
#define RD_TICKCMPR(out, scr) \
SETL41(scr, HSTC_LOW); \
ldxa [scr]ASI_IO, out; \
inc HST_DIFF, scr; \
ldxa [scr]ASI_IO, scr; \
sllx scr, 32, scr; \
or scr, out, out
#define WR_TICKCMPR(in, scra, scrd, label) \
SETL41(scra, HSTC_HIGH); \
srlx in, 32, scrd; \
stxa scrd, [scra]ASI_IO; \
dec HST_DIFF, scra; \
stxa in, [scra]ASI_IO
#else /* !CHEETAH && !HUMMINGBIRD */
#define GET_NATIVE_TIME(out, scr1, scr2) \
rdpr %tick, out
#define DELTA_NATIVE_TIME(delta, reg, scr1, scr2, scr3) \
rdpr %tick, reg; \
add reg, delta, reg; \
wrpr reg, %tick
#define RD_TICKCMPR(out, scr) \
rd TICK_COMPARE, out
#ifdef BB_ERRATA_1 /* writes to TICK_COMPARE may fail */
/*
* Writes to the TICK_COMPARE register sometimes fail on blackbird modules.
* The failure occurs only when the following instruction decodes to wr or
* wrpr. The workaround is to immediately follow writes to TICK_COMPARE
* with a read, thus stalling the pipe and keeping following instructions
* from causing data corruption. Aligning to a quadword will ensure these
* two instructions are not split due to i$ misses.
*/
#define WR_TICKCMPR(cmpr,scr1,scr2,label) \
ba,a .bb_errata_1.label ;\
.align 64 ;\
.bb_errata_1.label: ;\
wr cmpr, TICK_COMPARE ;\
rd TICK_COMPARE, %g0
#else /* BB_ERRATA_1 */
#define WR_TICKCMPR(in,scr1,scr2,label) \
wr in, TICK_COMPARE
#endif /* BB_ERRATA_1 */
#endif /* !CHEETAH && !HUMMINGBIRD */
#include <sys/clock.h>
#include <sys/asm_linkage.h>
#include <sys/privregs.h>
#include <sys/machparam.h> /* To get SYSBASE and PAGESIZE */
#include <sys/machthread.h>
#include <sys/clock.h>
#include <sys/intreg.h>
#include <sys/psr_compat.h>
#include <sys/isa_defs.h>
#include <sys/dditypes.h>
#include <sys/intr.h>
#include "assym.h"
ENTRY(get_impl)
GET_CPU_IMPL(%o0)
retl
nop
SET_SIZE(get_impl)
/*
* Softint generated when counter field of tick reg matches value field
* of tick_cmpr reg
*/
ENTRY_NP(tickcmpr_set)
! get 64-bit clock_cycles interval
mov %o0, %o2
mov 8, %o3 ! A reasonable initial step size
1:
WR_TICKCMPR(%o2,%o4,%o5,__LINE__) ! Write to TICK_CMPR
GET_NATIVE_TIME(%o0, %o4, %o5) ! Read %tick to confirm the
sllx %o0, 1, %o0 ! value we wrote was in the future.
srlx %o0, 1, %o0
cmp %o2, %o0 ! If the value we wrote was in the
bg,pt %xcc, 2f ! future, then blow out of here.
sllx %o3, 1, %o3 ! If not, then double our step size,
ba,pt %xcc, 1b ! and take another lap.
add %o0, %o3, %o2 !
2:
retl
nop
SET_SIZE(tickcmpr_set)
ENTRY_NP(tickcmpr_disable)
mov 1, %g1
sllx %g1, TICKINT_DIS_SHFT, %o0
WR_TICKCMPR(%o0,%o4,%o5,__LINE__) ! Write to TICK_CMPR
retl
nop
SET_SIZE(tickcmpr_disable)
#ifdef DEBUG
.seg ".text"
tick_write_panic:
.asciz "tick_write_delta: interrupts already disabled on entry"
#endif /* DEBUG */
/*
* tick_write_delta() increments %tick by the specified delta. This should
* only be called after a CPR event to assure that gethrtime() continues to
* increase monotonically. Obviously, writing %tick needs to de done very
* carefully to avoid introducing unnecessary %tick skew across CPUs. For
* this reason, we make sure we're i-cache hot before actually writing to
* %tick.
*/
ENTRY_NP(tick_write_delta)
rdpr %pstate, %g1
#ifdef DEBUG
andcc %g1, PSTATE_IE, %g0 ! If DEBUG, check that interrupts
bnz 0f ! aren't already disabled.
sethi %hi(tick_write_panic), %o1
save %sp, -SA(MINFRAME), %sp ! get a new window to preserve caller
call panic
or %i1, %lo(tick_write_panic), %o0
#endif /* DEBUG */
0: wrpr %g1, PSTATE_IE, %pstate ! Disable interrupts
mov %o0, %o2
ba 0f ! Branch to cache line-aligned instr.
nop
.align 16
0: nop ! The next 3 instructions are now hot.
DELTA_NATIVE_TIME(%o2, %o3, %o4, %o5, %g2) ! read/inc/write %tick
retl ! Return
wrpr %g0, %g1, %pstate ! delay: Re-enable interrupts
ENTRY_NP(tickcmpr_disabled)
RD_TICKCMPR(%g1, %o0)
retl
srlx %g1, TICKINT_DIS_SHFT, %o0
SET_SIZE(tickcmpr_disabled)
/*
* Get current tick
*/
ENTRY(gettick)
ALTENTRY(randtick)
GET_NATIVE_TIME(%o0, %o2, %o3)
retl
nop
SET_SIZE(randtick)
SET_SIZE(gettick)
/*
* Return the counter portion of the tick register.
*/
ENTRY_NP(gettick_counter)
rdpr %tick, %o0
sllx %o0, 1, %o0
retl
srlx %o0, 1, %o0 ! shake off npt bit
SET_SIZE(gettick_counter)
/*
* Provide a C callable interface to the trap that reads the hi-res timer.
* Returns 64-bit nanosecond timestamp in %o0 and %o1.
*/
ENTRY_NP(gethrtime)
GET_HRTIME(%g1, %o0, %o1, %o2, %o3, %o4, %o5, %g2)
! %g1 = hrtime
retl
mov %g1, %o0
SET_SIZE(gethrtime)
ENTRY_NP(gethrtime_unscaled)
GET_NATIVE_TIME(%g1, %o2, %o3) ! %g1 = native time
retl
mov %g1, %o0
SET_SIZE(gethrtime_unscaled)
ENTRY_NP(gethrtime_waitfree)
ALTENTRY(dtrace_gethrtime)
GET_NATIVE_TIME(%g1, %o2, %o3) ! %g1 = native time
NATIVE_TIME_TO_NSEC(%g1, %o2, %o3)
retl
mov %g1, %o0
SET_SIZE(dtrace_gethrtime)
SET_SIZE(gethrtime_waitfree)
ENTRY(gethrtime_max)
NATIVE_TIME_MAX(%g1)
NATIVE_TIME_TO_NSEC(%g1, %o0, %o1)
! hrtime_t's are signed, max hrtime_t must be positive
mov -1, %o2
brlz,a %g1, 1f
srlx %o2, 1, %g1
1:
retl
mov %g1, %o0
SET_SIZE(gethrtime_max)
ENTRY(scalehrtime)
ldx [%o0], %o1
NATIVE_TIME_TO_NSEC(%o1, %o2, %o3)
retl
stx %o1, [%o0]
SET_SIZE(scalehrtime)
/*
* Fast trap to return a timestamp, uses trap window, leaves traps
* disabled. Returns a 64-bit nanosecond timestamp in %o0 and %o1.
*
* This is the handler for the ST_GETHRTIME trap.
*/
ENTRY_NP(get_timestamp)
GET_HRTIME(%g1, %g2, %g3, %g4, %g5, %o0, %o1, %o2) ! %g1 = hrtime
srlx %g1, 32, %o0 ! %o0 = hi32(%g1)
srl %g1, 0, %o1 ! %o1 = lo32(%g1)
FAST_TRAP_DONE
SET_SIZE(get_timestamp)
/*
* Macro to convert GET_HRESTIME() bits into a timestamp.
*
* We use two separate macros so that the platform-dependent GET_HRESTIME()
* can be as small as possible; CONV_HRESTIME() implements the generic part.
*/
#define CONV_HRESTIME(hrestsec, hrestnsec, adj, nslt, nano) \
brz,pt adj, 3f; /* no adjustments, it's easy */ \
add hrestnsec, nslt, hrestnsec; /* hrest.tv_nsec += nslt */ \
brlz,pn adj, 2f; /* if hrestime_adj negative */ \
srlx nslt, ADJ_SHIFT, nslt; /* delay: nslt >>= 4 */ \
subcc adj, nslt, %g0; /* hrestime_adj - nslt/16 */ \
movg %xcc, nslt, adj; /* adj by min(adj, nslt/16) */ \
ba 3f; /* go convert to sec/nsec */ \
add hrestnsec, adj, hrestnsec; /* delay: apply adjustment */ \
2: addcc adj, nslt, %g0; /* hrestime_adj + nslt/16 */ \
bge,a,pt %xcc, 3f; /* is adj less negative? */ \
add hrestnsec, adj, hrestnsec; /* yes: hrest.nsec += adj */ \
sub hrestnsec, nslt, hrestnsec; /* no: hrest.nsec -= nslt/16 */ \
3: cmp hrestnsec, nano; /* more than a billion? */ \
bl,pt %xcc, 4f; /* if not, we're done */ \
nop; /* delay: do nothing :( */ \
add hrestsec, 1, hrestsec; /* hrest.tv_sec++; */ \
sub hrestnsec, nano, hrestnsec; /* hrest.tv_nsec -= NANOSEC; */ \
ba,a 3b; /* check >= billion again */ \
4:
ENTRY_NP(gethrestime)
GET_HRESTIME(%o1, %o2, %o3, %o4, %o5, %g1, %g2, %g3, %g4)
CONV_HRESTIME(%o1, %o2, %o3, %o4, %o5)
stn %o1, [%o0]
retl
stn %o2, [%o0 + CLONGSIZE]
SET_SIZE(gethrestime)
/*
* Similar to gethrestime(), but gethrestime_sec() returns current hrestime
* seconds.
*/
ENTRY_NP(gethrestime_sec)
GET_HRESTIME(%o0, %o2, %o3, %o4, %o5, %g1, %g2, %g3, %g4)
CONV_HRESTIME(%o0, %o2, %o3, %o4, %o5)
retl ! %o0 current hrestime seconds
nop
SET_SIZE(gethrestime_sec)
/*
* Returns the hrestime on the last tick. This is simpler than gethrestime()
* and gethrestime_sec(): no conversion is required. gethrestime_lasttick()
* follows the same locking algorithm as GET_HRESTIME and GET_HRTIME,
* outlined in detail in clock.h. (Unlike GET_HRESTIME/GET_HRTIME, we don't
* rely on load dependencies to effect the membar #LoadLoad, instead declaring
* it explicitly.)
*/
ENTRY_NP(gethrestime_lasttick)
sethi %hi(hres_lock), %o1
0:
lduw [%o1 + %lo(hres_lock)], %o2 ! Load lock value
membar #LoadLoad ! Load of lock must complete
andn %o2, 1, %o2 ! Mask off lowest bit
ldn [%o1 + %lo(hrestime)], %g1 ! Seconds.
add %o1, %lo(hrestime), %o4
ldn [%o4 + CLONGSIZE], %g2 ! Nanoseconds.
membar #LoadLoad ! All loads must complete
lduw [%o1 + %lo(hres_lock)], %o3 ! Reload lock value
cmp %o3, %o2 ! If lock is locked or has
bne 0b ! changed, retry.
stn %g1, [%o0] ! Delay: store seconds
retl
stn %g2, [%o0 + CLONGSIZE] ! Delay: store nanoseconds
SET_SIZE(gethrestime_lasttick)
/*
* Fast trap for gettimeofday(). Returns a timestruc_t in %o0 and %o1.
*
* This is the handler for the ST_GETHRESTIME trap.
*/
ENTRY_NP(get_hrestime)
GET_HRESTIME(%o0, %o1, %g1, %g2, %g3, %g4, %g5, %o2, %o3)
CONV_HRESTIME(%o0, %o1, %g1, %g2, %g3)
FAST_TRAP_DONE
SET_SIZE(get_hrestime)
/*
* Fast trap to return lwp virtual time, uses trap window, leaves traps
* disabled. Returns a 64-bit number in %o0:%o1, which is the number
* of nanoseconds consumed.
*
* This is the handler for the ST_GETHRVTIME trap.
*
* Register usage:
* %o0, %o1 = return lwp virtual time
* %o2 = CPU/thread
* %o3 = lwp
* %g1 = scratch
* %g5 = scratch
*/
ENTRY_NP(get_virtime)
GET_NATIVE_TIME(%g5, %g1, %g2) ! %g5 = native time in ticks
CPU_ADDR(%g2, %g3) ! CPU struct ptr to %g2
ldn [%g2 + CPU_THREAD], %g2 ! thread pointer to %g2
ldn [%g2 + T_LWP], %g3 ! lwp pointer to %g3
/*
* Subtract start time of current microstate from time
* of day to get increment for lwp virtual time.
*/
ldx [%g3 + LWP_STATE_START], %g1 ! ms_state_start
sub %g5, %g1, %g5
/*
* Add current value of ms_acct[LMS_USER]
*/
ldx [%g3 + LWP_ACCT_USER], %g1 ! ms_acct[LMS_USER]
add %g5, %g1, %g5
NATIVE_TIME_TO_NSEC(%g5, %g1, %o0)
srl %g5, 0, %o1 ! %o1 = lo32(%g5)
srlx %g5, 32, %o0 ! %o0 = hi32(%g5)
FAST_TRAP_DONE
SET_SIZE(get_virtime)
.seg ".text"
hrtime_base_panic:
.asciz "hrtime_base stepping back"
ENTRY_NP(hres_tick)
save %sp, -SA(MINFRAME), %sp ! get a new window
sethi %hi(hrestime), %l4
ldstub [%l4 + %lo(hres_lock + HRES_LOCK_OFFSET)], %l5 ! try locking
7: tst %l5
bz,pt %xcc, 8f ! if we got it, drive on
ld [%l4 + %lo(nsec_scale)], %l5 ! delay: %l5 = scaling factor
ldub [%l4 + %lo(hres_lock + HRES_LOCK_OFFSET)], %l5
9: tst %l5
bz,a,pn %xcc, 7b
ldstub [%l4 + %lo(hres_lock + HRES_LOCK_OFFSET)], %l5
ba,pt %xcc, 9b
ldub [%l4 + %lo(hres_lock + HRES_LOCK_OFFSET)], %l5
8:
membar #StoreLoad|#StoreStore
!
! update hres_last_tick. %l5 has the scaling factor (nsec_scale).
!
ldx [%l4 + %lo(hrtime_base)], %g1 ! load current hrtime_base
GET_NATIVE_TIME(%l0, %l3, %l6) ! current native time
stx %l0, [%l4 + %lo(hres_last_tick)]! prev = current
! convert native time to nsecs
NATIVE_TIME_TO_NSEC_SCALE(%l0, %l5, %l2, NSEC_SHIFT)
sub %l0, %g1, %i1 ! get accurate nsec delta
ldx [%l4 + %lo(hrtime_base)], %l1
cmp %l1, %l0
bg,pn %xcc, 9f
nop
stx %l0, [%l4 + %lo(hrtime_base)] ! update hrtime_base
!
! apply adjustment, if any
!
ldx [%l4 + %lo(hrestime_adj)], %l0 ! %l0 = hrestime_adj
brz %l0, 2f
! hrestime_adj == 0 ?
! yes, skip adjustments
clr %l5 ! delay: set adj to zero
tst %l0 ! is hrestime_adj >= 0 ?
bge,pt %xcc, 1f ! yes, go handle positive case
srl %i1, ADJ_SHIFT, %l5 ! delay: %l5 = adj
addcc %l0, %l5, %g0 ! hrestime_adj < -adj ?
bl,pt %xcc, 2f ! yes, use current adj
neg %l5 ! delay: %l5 = -adj
ba,pt %xcc, 2f
mov %l0, %l5 ! no, so set adj = hrestime_adj
1:
subcc %l0, %l5, %g0 ! hrestime_adj < adj ?
bl,a,pt %xcc, 2f ! yes, set adj = hrestime_adj
mov %l0, %l5 ! delay: adj = hrestime_adj
2:
ldx [%l4 + %lo(timedelta)], %l0 ! %l0 = timedelta
sub %l0, %l5, %l0 ! timedelta -= adj
stx %l0, [%l4 + %lo(timedelta)] ! store new timedelta
stx %l0, [%l4 + %lo(hrestime_adj)] ! hrestime_adj = timedelta
or %l4, %lo(hrestime), %l2
ldn [%l2], %i2 ! %i2:%i3 = hrestime sec:nsec
ldn [%l2 + CLONGSIZE], %i3
add %i3, %l5, %i3 ! hrestime.nsec += adj
add %i3, %i1, %i3 ! hrestime.nsec += nslt
set NANOSEC, %l5 ! %l5 = NANOSEC
cmp %i3, %l5
bl,pt %xcc, 5f ! if hrestime.tv_nsec < NANOSEC
sethi %hi(one_sec), %i1 ! delay
add %i2, 0x1, %i2 ! hrestime.tv_sec++
sub %i3, %l5, %i3 ! hrestime.tv_nsec - NANOSEC
mov 0x1, %l5
st %l5, [%i1 + %lo(one_sec)]
5:
stn %i2, [%l2]
stn %i3, [%l2 + CLONGSIZE] ! store the new hrestime
membar #StoreStore
ld [%l4 + %lo(hres_lock)], %i1
inc %i1 ! release lock
st %i1, [%l4 + %lo(hres_lock)] ! clear hres_lock
ret
restore
9:
!
! release hres_lock
!
ld [%l4 + %lo(hres_lock)], %i1
inc %i1
st %i1, [%l4 + %lo(hres_lock)]
sethi %hi(hrtime_base_panic), %o0
call panic
or %o0, %lo(hrtime_base_panic), %o0
SET_SIZE(hres_tick)
.seg ".text"
kstat_q_panic_msg:
.asciz "kstat_q_exit: qlen == 0"
ENTRY(kstat_q_panic)
save %sp, -SA(MINFRAME), %sp
sethi %hi(kstat_q_panic_msg), %o0
call panic
or %o0, %lo(kstat_q_panic_msg), %o0
/*NOTREACHED*/
SET_SIZE(kstat_q_panic)
#define BRZPN brz,pn
#define BRZPT brz,pt
#define KSTAT_Q_UPDATE(QOP, QBR, QZERO, QRETURN, QTYPE) \
ld [%o0 + QTYPE/**/CNT], %o1; /* %o1 = old qlen */ \
QOP %o1, 1, %o2; /* %o2 = new qlen */ \
QBR %o1, QZERO; /* done if qlen == 0 */ \
st %o2, [%o0 + QTYPE/**/CNT]; /* delay: save qlen */ \
ldx [%o0 + QTYPE/**/LASTUPDATE], %o3; \
ldx [%o0 + QTYPE/**/TIME], %o4; /* %o4 = old time */ \
ldx [%o0 + QTYPE/**/LENTIME], %o5; /* %o5 = old lentime */ \
sub %g1, %o3, %o2; /* %o2 = time delta */ \
mulx %o1, %o2, %o3; /* %o3 = cur lentime */ \
add %o4, %o2, %o4; /* %o4 = new time */ \
add %o5, %o3, %o5; /* %o5 = new lentime */ \
stx %o4, [%o0 + QTYPE/**/TIME]; /* save time */ \
stx %o5, [%o0 + QTYPE/**/LENTIME]; /* save lentime */ \
QRETURN; \
stx %g1, [%o0 + QTYPE/**/LASTUPDATE]; /* lastupdate = now */
#if !defined(DEBUG)
/*
* same as KSTAT_Q_UPDATE but without:
* QBR %o1, QZERO;
* to be used only with non-debug build. mimics ASSERT() behaviour.
*/
#define KSTAT_Q_UPDATE_ND(QOP, QRETURN, QTYPE) \
ld [%o0 + QTYPE/**/CNT], %o1; /* %o1 = old qlen */ \
QOP %o1, 1, %o2; /* %o2 = new qlen */ \
st %o2, [%o0 + QTYPE/**/CNT]; /* delay: save qlen */ \
ldx [%o0 + QTYPE/**/LASTUPDATE], %o3; \
ldx [%o0 + QTYPE/**/TIME], %o4; /* %o4 = old time */ \
ldx [%o0 + QTYPE/**/LENTIME], %o5; /* %o5 = old lentime */ \
sub %g1, %o3, %o2; /* %o2 = time delta */ \
mulx %o1, %o2, %o3; /* %o3 = cur lentime */ \
add %o4, %o2, %o4; /* %o4 = new time */ \
add %o5, %o3, %o5; /* %o5 = new lentime */ \
stx %o4, [%o0 + QTYPE/**/TIME]; /* save time */ \
stx %o5, [%o0 + QTYPE/**/LENTIME]; /* save lentime */ \
QRETURN; \
stx %g1, [%o0 + QTYPE/**/LASTUPDATE]; /* lastupdate = now */
#endif
.align 16
ENTRY(kstat_waitq_enter)
GET_NATIVE_TIME(%g1, %g2, %g3)
KSTAT_Q_UPDATE(add, BRZPT, 1f, 1:retl, KSTAT_IO_W)
SET_SIZE(kstat_waitq_enter)
.align 16
ENTRY(kstat_waitq_exit)
GET_NATIVE_TIME(%g1, %g2, %g3)
#if defined(DEBUG)
KSTAT_Q_UPDATE(sub, BRZPN, kstat_q_panic, retl, KSTAT_IO_W)
#else
KSTAT_Q_UPDATE_ND(sub, retl, KSTAT_IO_W)
#endif
SET_SIZE(kstat_waitq_exit)
.align 16
ENTRY(kstat_runq_enter)
GET_NATIVE_TIME(%g1, %g2, %g3)
KSTAT_Q_UPDATE(add, BRZPT, 1f, 1:retl, KSTAT_IO_R)
SET_SIZE(kstat_runq_enter)
.align 16
ENTRY(kstat_runq_exit)
GET_NATIVE_TIME(%g1, %g2, %g3)
#if defined(DEBUG)
KSTAT_Q_UPDATE(sub, BRZPN, kstat_q_panic, retl, KSTAT_IO_R)
#else
KSTAT_Q_UPDATE_ND(sub, retl, KSTAT_IO_R)
#endif
SET_SIZE(kstat_runq_exit)
.align 16
ENTRY(kstat_waitq_to_runq)
GET_NATIVE_TIME(%g1, %g2, %g3)
#if defined(DEBUG)
KSTAT_Q_UPDATE(sub, BRZPN, kstat_q_panic, 1:, KSTAT_IO_W)
#else
KSTAT_Q_UPDATE_ND(sub, 1:, KSTAT_IO_W)
#endif
KSTAT_Q_UPDATE(add, BRZPT, 1f, 1:retl, KSTAT_IO_R)
SET_SIZE(kstat_waitq_to_runq)
.align 16
ENTRY(kstat_runq_back_to_waitq)
GET_NATIVE_TIME(%g1, %g2, %g3)
#if defined(DEBUG)
KSTAT_Q_UPDATE(sub, BRZPN, kstat_q_panic, 1:, KSTAT_IO_R)
#else
KSTAT_Q_UPDATE_ND(sub, 1:, KSTAT_IO_R)
#endif
KSTAT_Q_UPDATE(add, BRZPT, 1f, 1:retl, KSTAT_IO_W)
SET_SIZE(kstat_runq_back_to_waitq)
/*
* -- WARNING --
*
* The following variables MUST be together on a 128-byte boundary.
* In addition to the primary performance motivation (having them all
* on the same cache line(s)), code here and in the GET*TIME() macros
* assumes that they all have the same high 22 address bits (so
* there's only one sethi).
*/
.seg ".data"
.global timedelta, hres_last_tick, hrestime, hrestime_adj
.global hres_lock, nsec_scale, hrtime_base, traptrace_use_stick
.global nsec_shift, adj_shift
/* XXX - above comment claims 128-bytes is necessary */
.align 64
timedelta:
.word 0, 0 /* int64_t */
hres_last_tick:
.word 0, 0 /* hrtime_t */
hrestime:
.nword 0, 0 /* 2 longs */
hrestime_adj:
.word 0, 0 /* int64_t */
hres_lock:
.word 0
nsec_scale:
.word 0
hrtime_base:
.word 0, 0
traptrace_use_stick:
.word 0
nsec_shift:
.word NSEC_SHIFT
adj_shift:
.word ADJ_SHIFT
/*
* drv_usecwait(clock_t n) [DDI/DKI - section 9F]
* usec_delay(int n) [compatibility - should go one day]
* Delay by spinning.
*
* delay for n microseconds. numbers <= 0 delay 1 usec
*
* With UltraSPARC-III the combination of supporting mixed-speed CPUs
* and variable clock rate for power management requires that we
* use %stick to implement this routine.
*
* For OPL platforms that support the "sleep" instruction, we
* conditionally (ifdef'ed) insert a "sleep" instruction in
* the loop. Note that theoritically we should have move (duplicated)
* the code down to spitfire/us3/opl specific asm files - but this
* is alot of code duplication just to add one "sleep" instruction.
* We chose less code duplication for this.
*/
ENTRY(drv_usecwait)
ALTENTRY(usec_delay)
brlez,a,pn %o0, 0f
mov 1, %o0
0:
sethi %hi(sticks_per_usec), %o1
lduw [%o1 + %lo(sticks_per_usec)], %o1
mulx %o1, %o0, %o1 ! Scale usec to ticks
inc %o1 ! We don't start on a tick edge
GET_NATIVE_TIME(%o2, %o3, %o4)
add %o1, %o2, %o1
1:
#ifdef _OPL
.word 0x81b01060 ! insert "sleep" instruction
#endif /* _OPL */ ! use byte code for now
cmp %o1, %o2
GET_NATIVE_TIME(%o2, %o3, %o4)
bgeu,pt %xcc, 1b
nop
retl
nop
SET_SIZE(usec_delay)
SET_SIZE(drv_usecwait)
/*
* Level-14 interrupt prologue.
*/
ENTRY_NP(pil14_interrupt)
CPU_ADDR(%g1, %g2)
rdpr %pil, %g6 ! %g6 = interrupted PIL
stn %g6, [%g1 + CPU_PROFILE_PIL] ! record interrupted PIL
rdpr %tstate, %g6
rdpr %tpc, %g5
btst TSTATE_PRIV, %g6 ! trap from supervisor mode?
bnz,a,pt %xcc, 1f
stn %g5, [%g1 + CPU_PROFILE_PC] ! if so, record kernel PC
stn %g5, [%g1 + CPU_PROFILE_UPC] ! if not, record user PC
ba pil_interrupt_common ! must be large-disp branch
stn %g0, [%g1 + CPU_PROFILE_PC] ! zero kernel PC
1: ba pil_interrupt_common ! must be large-disp branch
stn %g0, [%g1 + CPU_PROFILE_UPC] ! zero user PC
SET_SIZE(pil14_interrupt)
ENTRY_NP(tick_rtt)
!
! Load TICK_COMPARE into %o5; if bit 63 is set, then TICK_COMPARE is
! disabled. If TICK_COMPARE is enabled, we know that we need to
! reenqueue the interrupt request structure. We'll then check TICKINT
! in SOFTINT; if it's set, then we know that we were in a TICK_COMPARE
! interrupt. In this case, TICK_COMPARE may have been rewritten
! recently; we'll compare %o5 to the current time to verify that it's
! in the future.
!
! Note that %o5 is live until after 1f.
! XXX - there is a subroutine call while %o5 is live!
!
RD_TICKCMPR(%o5, %g1)
srlx %o5, TICKINT_DIS_SHFT, %g1
brnz,pt %g1, 2f
nop
rdpr %pstate, %g5
andn %g5, PSTATE_IE, %g1
wrpr %g0, %g1, %pstate ! Disable vec interrupts
sethi %hi(cbe_level14_inum), %o1
ldx [%o1 + %lo(cbe_level14_inum)], %o1
call intr_enqueue_req ! preserves %o5 and %g5
mov PIL_14, %o0
! Check SOFTINT for TICKINT/STICKINT
rd SOFTINT, %o4
set (TICK_INT_MASK | STICK_INT_MASK), %o0
andcc %o4, %o0, %g0
bz,a,pn %icc, 2f
wrpr %g0, %g5, %pstate ! Enable vec interrupts
! clear TICKINT/STICKINT
wr %o0, CLEAR_SOFTINT
!
! Now that we've cleared TICKINT, we can reread %tick and confirm
! that the value we programmed is still in the future. If it isn't,
! we need to reprogram TICK_COMPARE to fire as soon as possible.
!
GET_NATIVE_TIME(%o0, %g1, %g2) ! %o0 = tick
sllx %o0, 1, %o0 ! Clear the DIS bit
srlx %o0, 1, %o0
cmp %o5, %o0 ! In the future?
bg,a,pt %xcc, 2f ! Yes, drive on.
wrpr %g0, %g5, %pstate ! delay: enable vec intr
!
! If we're here, then we have programmed TICK_COMPARE with a %tick
! which is in the past; we'll now load an initial step size, and loop
! until we've managed to program TICK_COMPARE to fire in the future.
!
mov 8, %o4 ! 8 = arbitrary inital step
1: add %o0, %o4, %o5 ! Add the step
WR_TICKCMPR(%o5,%g1,%g2,__LINE__) ! Write to TICK_CMPR
GET_NATIVE_TIME(%o0, %g1, %g2) ! %o0 = tick
sllx %o0, 1, %o0 ! Clear the DIS bit
srlx %o0, 1, %o0
cmp %o5, %o0 ! In the future?
bg,a,pt %xcc, 2f ! Yes, drive on.
wrpr %g0, %g5, %pstate ! delay: enable vec intr
ba 1b ! No, try again.
sllx %o4, 1, %o4 ! delay: double step size
2: ba current_thread_complete
nop
SET_SIZE(tick_rtt)
/*
* Level-15 interrupt prologue.
*/
ENTRY_NP(pil15_interrupt)
CPU_ADDR(%g1, %g2)
rdpr %tstate, %g6
rdpr %tpc, %g5
btst TSTATE_PRIV, %g6 ! trap from supervisor mode?
bnz,a,pt %xcc, 1f
stn %g5, [%g1 + CPU_CPCPROFILE_PC] ! if so, record kernel PC
stn %g5, [%g1 + CPU_CPCPROFILE_UPC] ! if not, record user PC
ba pil15_epilogue ! must be large-disp branch
stn %g0, [%g1 + CPU_CPCPROFILE_PC] ! zero kernel PC
1: ba pil15_epilogue ! must be large-disp branch
stn %g0, [%g1 + CPU_CPCPROFILE_UPC] ! zero user PC
SET_SIZE(pil15_interrupt)
#ifdef DEBUG
.seg ".text"
find_cpufreq_panic:
.asciz "find_cpufrequency: interrupts already disabled on entry"
#endif /* DEBUG */
ENTRY_NP(find_cpufrequency)
rdpr %pstate, %g1
#ifdef DEBUG
andcc %g1, PSTATE_IE, %g0 ! If DEBUG, check that interrupts
bnz 0f ! are currently enabled
sethi %hi(find_cpufreq_panic), %o1
call panic
or %o1, %lo(find_cpufreq_panic), %o0
#endif /* DEBUG */
0:
wrpr %g1, PSTATE_IE, %pstate ! Disable interrupts
3:
ldub [%o0], %o1 ! Read the number of seconds
mov %o1, %o2 ! remember initial value in %o2
1:
GET_NATIVE_TIME(%o3, %g4, %g5)
cmp %o1, %o2 ! did the seconds register roll over?
be,pt %icc, 1b ! branch back if unchanged
ldub [%o0], %o2 ! delay: load the new seconds val
brz,pn %o2, 3b ! if the minutes just rolled over,
! the last second could have been
! inaccurate; try again.
mov %o2, %o4 ! delay: store init. val. in %o2
2:
GET_NATIVE_TIME(%o5, %g4, %g5)
cmp %o2, %o4 ! did the seconds register roll over?
be,pt %icc, 2b ! branch back if unchanged
ldub [%o0], %o4 ! delay: load the new seconds val
brz,pn %o4, 0b ! if the minutes just rolled over,
! the last second could have been
! inaccurate; try again.
wrpr %g0, %g1, %pstate ! delay: re-enable interrupts
retl
sub %o5, %o3, %o0 ! return the difference in ticks
SET_SIZE(find_cpufrequency)
#if defined(CHEETAH) || defined(CHEETAH_PLUS) || defined(JALAPENO) || \
defined(SERRANO)
!
! On US-III, the prefetch instruction queue is 8 entries deep.
! Also, prefetches for write put data in the E$, which has
! lines of 512 bytes for an 8MB cache. Each E$ line is further
! subblocked into 64 byte chunks.
!
! Since prefetch can only bring in 64 bytes at a time (See Sparc
! v9 Architecture Manual pp.204) and a page_t is 128 bytes,
! then 2 prefetches are required in order to bring an entire
! page into the E$.
!
! Since the prefetch queue is 8 entries deep, we currently can
! only have 4 prefetches for page_t's outstanding. Thus, we
! prefetch n+4 ahead of where we are now:
!
! 4 * sizeof(page_t) -> 512
! 4 * sizeof(page_t) +64 -> 576
!
! Example
! =======
! contiguous page array in memory...
!
! |AAA1|AAA2|BBB1|BBB2|CCC1|CCC2|DDD1|DDD2|XXX1|XXX2|YYY1|YYY2|...
! ^ ^ ^ ^ ^ ^
! pp | pp+4*sizeof(page)+64
! |
! pp+4*sizeof(page)
!
! Prefetch
! Queue
! +-------+<--- In this iteration, we're working with pp (AAA1),
! |Preftch| but we enqueue prefetch for addr = XXX1
! | XXX1 |
! +-------+<--- this queue slot will be a prefetch instruction for
! |Preftch| for addr = pp + 4*sizeof(page_t) + 64 (or second
! | XXX2 | half of page XXX)
! +-------+
! |Preftch|<-+- The next time around this function, we'll be
! | YYY1 | | working with pp = BBB1, but will be enqueueing
! +-------+ | prefetches to for both halves of page YYY,
! |Preftch| | while both halves of page XXX are in transit
! | YYY2 |<-+ make their way into the E$.
! +-------+
! |Preftch|
! | ZZZ1 |
! +-------+
! . .
! : :
!
! E$
! +============================================...
! | XXX1 | XXX2 | YYY1 | YYY2 | ZZZ1 | ZZZ2 |
! +============================================...
! | | | | | | |
! +============================================...
! .
! :
!
! So we should expect the first four page accesses to stall
! while we warm up the cache, afterwhich, most of the pages
! will have their pp ready in the E$.
!
! Also note that if sizeof(page_t) grows beyond 128, then
! we'll need an additional prefetch to get an entire page
! into the E$, thus reducing the number of outstanding page
! prefetches to 2 (ie. 3 prefetches/page = 6 queue slots)
! etc.
!
! Cheetah+
! ========
! On Cheetah+ we use "#n_write" prefetches as these avoid
! unnecessary RTS->RTO bus transaction state change, and
! just issues RTO transaction. (See pp.77 of Cheetah+ Delta
! PRM). On Cheetah, #n_write prefetches are reflected with
! RTS->RTO state transition regardless.
!
#define STRIDE1 512
#define STRIDE2 576
#if STRIDE1 != (PAGE_SIZE * 4)
#error "STRIDE1 != (PAGE_SIZE * 4)"
#endif /* STRIDE1 != (PAGE_SIZE * 4) */
/*
* Prefetch a page_t for write or read, this assumes a linear
* scan of sequential page_t's.
*/
ENTRY(prefetch_page_w)
prefetch [%o0+STRIDE1], #n_writes
retl
prefetch [%o0+STRIDE2], #n_writes
SET_SIZE(prefetch_page_w)
!
! Note on CHEETAH to prefetch for read, we really use #one_write.
! This fetches to E$ (general use) rather than P$ (floating point use).
!
ENTRY(prefetch_page_r)
prefetch [%o0+STRIDE1], #one_write
retl
prefetch [%o0+STRIDE2], #one_write
SET_SIZE(prefetch_page_r)
#elif defined(SPITFIRE) || defined(HUMMINGBIRD)
!
! UltraSparcII can have up to 3 prefetches outstanding.
! A page_t is 128 bytes (2 prefetches of 64 bytes each)
! So prefetch for pp + 1, which is
!
! pp + sizeof(page_t)
! and
! pp + sizeof(page_t) + 64
!
#define STRIDE1 128
#define STRIDE2 192
#if STRIDE1 != PAGE_SIZE
#error "STRIDE1 != PAGE_SIZE"
#endif /* STRIDE1 != PAGE_SIZE */
ENTRY(prefetch_page_w)
prefetch [%o0+STRIDE1], #n_writes
retl
prefetch [%o0+STRIDE2], #n_writes
SET_SIZE(prefetch_page_w)
ENTRY(prefetch_page_r)
prefetch [%o0+STRIDE1], #n_reads
retl
prefetch [%o0+STRIDE2], #n_reads
SET_SIZE(prefetch_page_r)
#elif defined(OLYMPUS_C)
!
! Prefetch strides for Olympus-C
!
#define STRIDE1 0x440
#define STRIDE2 0x640
ENTRY(prefetch_page_w)
prefetch [%o0+STRIDE1], #n_writes
retl
prefetch [%o0+STRIDE2], #n_writes
SET_SIZE(prefetch_page_w)
ENTRY(prefetch_page_r)
prefetch [%o0+STRIDE1], #n_writes
retl
prefetch [%o0+STRIDE2], #n_writes
SET_SIZE(prefetch_page_r)
#else /* OLYMPUS_C */
#error "You need to fix this for your new cpu type."
#endif /* OLYMPUS_C */
#if defined(CHEETAH) || defined(CHEETAH_PLUS) || defined(JALAPENO) || \
defined(SERRANO)
#define PREFETCH_Q_LEN 8
#elif defined(SPITFIRE) || defined(HUMMINGBIRD)
#define PREFETCH_Q_LEN 3
#elif defined(OLYMPUS_C)
!
! Use length of one for now.
!
#define PREFETCH_Q_LEN 1
#else /* OLYMPUS_C */
#error You need to fix this for your new cpu type.
#endif /* OLYMPUS_C */
#include <vm/kpm.h>
#ifdef SEGKPM_SUPPORT
#define SMAP_SIZE 72
#define SMAP_STRIDE (((PREFETCH_Q_LEN * 64) / SMAP_SIZE) * 64)
#else /* SEGKPM_SUPPORT */
!
! The hardware will prefetch the 64 byte cache aligned block
! that contains the address specified in the prefetch instruction.
! Since the size of the smap struct is 48 bytes, issuing 1 prefetch
! per pass will suffice as long as we prefetch far enough ahead to
! make sure we don't stall for the cases where the smap object
! spans multiple hardware prefetch blocks. Let's prefetch as far
! ahead as the hardware will allow.
!
! The smap array is processed with decreasing address pointers.
!
#define SMAP_SIZE 48
#define SMAP_STRIDE (PREFETCH_Q_LEN * SMAP_SIZE)
#endif /* SEGKPM_SUPPORT */
/*
* Prefetch struct smap for write.
*/
ENTRY(prefetch_smap_w)
retl
prefetch [%o0-SMAP_STRIDE], #n_writes
SET_SIZE(prefetch_smap_w)
ENTRY_NP(getidsr)
retl
ldxa [%g0]ASI_INTR_DISPATCH_STATUS, %o0
SET_SIZE(getidsr)
|