1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
|
/*
* CDDL HEADER START
*
* The contents of this file are subject to the terms of the
* Common Development and Distribution License (the "License").
* You may not use this file except in compliance with the License.
*
* You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
* or http://www.opensolaris.org/os/licensing.
* See the License for the specific language governing permissions
* and limitations under the License.
*
* When distributing Covered Code, include this CDDL HEADER in each
* file and include the License file at usr/src/OPENSOLARIS.LICENSE.
* If applicable, add the following below this CDDL HEADER, with the
* fields enclosed by brackets "[]" replaced with your own identifying
* information: Portions Copyright [yyyy] [name of copyright owner]
*
* CDDL HEADER END
*/
/*
* Copyright 2008 Sun Microsystems, Inc. All rights reserved.
* Use is subject to license terms.
*/
#include <sys/types.h>
#include <sys/sysmacros.h>
#include <sys/modctl.h>
#include <sys/conf.h>
#include <sys/devops.h>
#include <sys/cmn_err.h>
#include <sys/kmem.h>
#include <sys/stat.h>
#include <sys/open.h>
#include <sys/file.h>
#include <sys/ddi.h>
#include <sys/sunddi.h>
#include <sys/cpuvar.h>
#include <sys/disp.h>
#include <sys/hsvc.h>
#include <sys/machsystm.h>
#include <sys/param.h>
#include <sys/hypervisor_api.h>
#include <sys/n2rng.h>
/*
* There are 3 noise cells each with its own oscillator, and each
* oscillator can be set to 4 different bias setttings. The bias
* setting controls the nominal frequency of the oscillator. The 3
* and 4 and hardcoded throughout this file.
*/
#define BITS_IN(type) (8 * sizeof (type))
#define EXTRACTBIT64(val, bit) (((val) >> (bit)) & 1UL)
/*
* Policy settings
*/
/* Log2 of the number of bits */
#define SETTLECYCLES 1000000
#define NORMAL_BYPASS 1
#define NUMOSC 3
#define LOG2_DATA_WORDS 15
#define DATA_WORDS (1 << LOG2_DATA_WORDS)
#define ENTROPY_PASS_VALUE 150000000ULL
/*
* There is a hardware bug that causes the RNG_DATA register to
* occasionally be read one cycle before the specifed time.
* LOGIC_TEST_EXPECTED_M1 is the value one cycle before
* LOGIC_TEST_CYCLES. And there is a second bug that causes the read
* to be delayed. We have seen delays of about 150 cycles, but do not
* know that maximum that could possibly occur.
*
* We collect LOGIC_TEST_WORDS words using a diagnostic read with all
* entropy turned off. The first one we skip, becuase we have no
* knowledge of the time since the last read. We check that the
* remaining values fall in the window of values that should occur
* between LOGIC_TEST_CYCLES - 1 and LOGIC_TEST_CYCLES +
* LOGIC_TEST_BUG_MAX. As further protecion against false positives,
* we report success if the the number of mismatches does not exceed
* LOGIC_TEST_ERRORS_ALLOWED.
*
* When running on maramba systems, delays as high as 20000 were observed
* LOGIC_TEST_BUG_MAX was increased to twice this observed value since all
* that matters is that the hardware is indeed generating the expected values
* in diag mode. The code was also modified to exit as soon as the required
* number of matches is detected.
*/
#define LOGIC_TEST_CYCLES 38859
#define LOGIC_TEST_EXPECTED_M1 0xb8820c7bd387e32cULL
#define LOGIC_TEST_BUG_MAX 40000
#define LOGIC_TEST_WORDS 8 /* includes first one, unused */
#define LOGIC_TEST_ERRORS_ALLOWED 1
#define LOGIC_TEST_MATCHES_NEEDED (LOGIC_TEST_WORDS - 1 - \
LOGIC_TEST_ERRORS_ALLOWED)
#define RNG_POLY 0x231dcee91262b8a3ULL
#define ENTDIVISOR (((1ULL << LOG_VAL_SCALE) + 500ULL) / 1000ULL)
#define ENCODEBIAS(osc, bias) (((bias) & 0x3) << (2 * (osc)))
#define EXTRACTBIAS(blob, osc) (((blob) >> (2 * (osc))) & 0x3)
extern int n2rng_herr2kerr(uint64_t hv_errcode);
/*
* Each value is a representation of the polynomail bit_i * x^i, where
* i=0 corresponds to the least significant bit of the word. The
* modulus polynomial is x^64 + the interpretation of poly. Out is
* set to in * x^exp mod moduluspolynomial. This corresponds to
* running the LFSR exp cycles. This implemenation directly simulates
* the lfsr. It's running time is O(exp), but the constant is small.
* (This code was taken verbatim from Legion.)
*/
static void
lfsr64_adv_seq(uint64_t poly, uint64_t in, uint64_t exp, uint64_t *out)
{
int i;
uint64_t res = in;
for (i = 0; i < exp; i++) {
if (res & 0x8000000000000000ULL) {
res = (res << 1) ^ poly;
} else {
res <<= 1;
}
}
*out = res;
}
int
n2rng_logic_test(n2rng_t *n2rng, int rngid)
{
n2rng_setup_t logictest;
uint64_t buffer[LOGIC_TEST_WORDS];
uint64_t reg;
int rv;
int i, j;
int correctcount = 0;
rng_entry_t *rng = &n2rng->n_ctl_data->n_rngs[rngid];
int cycles[LOGIC_TEST_WORDS] =
{0, 0, 0, 0, 0, 0, 0, 0};
/*
* This test runs the RNG with no entropy for
* LOGIC_TEST_CYCLES cycles. Ideally the value would be be
* LOGIC_TEST_RESULT, but because of the RNG bug, the actual
* register read may be delayed by upto LOGIC_TEST_BUG_MAX
* cycles. So we simulate over that window, and a match
* occurs, we report success.
*/
logictest.ctlwds[0].word = 0;
logictest.ctlwds[0].fields.rnc_anlg_sel = N2RNG_NOANALOGOUT;
logictest.ctlwds[1] = logictest.ctlwds[0];
logictest.ctlwds[2] = logictest.ctlwds[0];
logictest.ctlwds[3] = logictest.ctlwds[0];
logictest.ctlwds[3].fields.rnc_mode = 1;
logictest.ctlwds[3].fields.rnc_cnt = LOGIC_TEST_CYCLES - 2;
/* read LOGIC_TEST_WORDS 64-bit words */
rv = n2rng_collect_diag_bits(n2rng, rngid, &logictest, buffer,
LOGIC_TEST_WORDS * sizeof (uint64_t),
&rng->n_preferred_config, rng->n_rng_state);
if (rv) {
cmn_err(CE_WARN, "n2rng: n2rng_collect_diag_bits failed with "
"0x%x on rng(%d)", rv, rngid);
return (rv);
}
reg = LOGIC_TEST_EXPECTED_M1;
for (i = 0; i <= LOGIC_TEST_BUG_MAX; i++) {
for (j = 1; j < LOGIC_TEST_WORDS; ++j) {
if (buffer[j] == reg) {
++correctcount;
cycles[j] = i;
}
}
/* exit loop if we have already found enough matches */
if (correctcount >= LOGIC_TEST_MATCHES_NEEDED) {
break;
}
/* advance reg by one step */
lfsr64_adv_seq(RNG_POLY, reg, 1, ®);
}
if (correctcount < LOGIC_TEST_MATCHES_NEEDED) {
/*
* Don't log a warning here since the calling routine will
* retry and log it's own warning if the retry fails.
*/
DBG2(n2rng, DHEALTH, "n2rng: logic error on rng(%d), only %d "
"matches found", rngid, correctcount);
for (i = 0; i < LOGIC_TEST_WORDS; i++) {
DBG3(n2rng, DHEALTH, "buffer[%d] %016llx, cycles = %d",
i, buffer[i], cycles[i]);
}
return (EIO);
} else {
DBG3(n2rng, DHEALTH, "n2rng: rng(%d) logic test passed, "
"%d matches in %d cycles", rngid, correctcount, i);
for (i = 0; i < LOGIC_TEST_WORDS; i++) {
DBG3(n2rng, DCHATTY, "buffer[%d] %016llx, cycles = %d",
i, buffer[i], cycles[i]);
}
}
return (0);
}
/*
* gets the metric for the specified state.
*/
int
n2rng_collect_metrics(n2rng_t *n2rng, int rngid, n2rng_setup_t *setupp,
n2rng_setup_t *exit_setupp,
uint64_t exit_state, n2rng_osc_perf_t *metricp)
{
int rv;
int bufsize;
uint64_t *buffer = NULL;
bufsize = DATA_WORDS * sizeof (uint64_t);
buffer = (uint64_t *)contig_mem_alloc_align(bufsize,
CONTIG_ALIGNMENT);
if (buffer == NULL) {
return (ENOMEM);
}
rv = n2rng_collect_diag_bits(n2rng, rngid, setupp, buffer, bufsize,
exit_setupp, exit_state);
if (rv) {
cmn_err(CE_WARN,
"n2rng: n2rng_collect_bits returns 0x%x", rv);
} else {
n2rng_renyi_entropy(buffer, LOG2_DATA_WORDS, metricp);
}
contig_mem_free(buffer, bufsize);
return (rv);
}
/*
* Fills in table with the performance of each oscillator at each
* bias setting. A particular datum goes in table[osc][bias].
*/
int
collect_rng_perf(n2rng_t *n2rng, int rngid, n2rng_osc_perf_table_t ptable)
{
int bias;
int osc;
n2rng_setup_t rngstate;
int rv;
rng_entry_t *rng = &n2rng->n_ctl_data->n_rngs[rngid];
rngstate.ctlwds[0].word = 0;
rngstate.ctlwds[0].fields.rnc_anlg_sel = N2RNG_NOANALOGOUT;
rngstate.ctlwds[1] = rngstate.ctlwds[0];
rngstate.ctlwds[2] = rngstate.ctlwds[0];
rngstate.ctlwds[3] = rngstate.ctlwds[0];
for (osc = 0; osc < N2RNG_NOSC; osc++) {
rngstate.ctlwds[3].fields.rnc_selbits = 1 << osc;
for (bias = 0; bias < N2RNG_NBIASES; bias++) {
rngstate.ctlwds[3].fields.rnc_vcoctl = bias;
rv = n2rng_collect_metrics(n2rng, rngid, &rngstate,
&rng->n_preferred_config, rng->n_rng_state,
&(ptable[osc][bias]));
if (rv) {
return (rv);
}
}
}
return (rv);
}
/*
* The following 2 functions test the performance of each noise cell
* and select the bias settings. They implement the following
* policies:
*
* 1. No two cells may be set to the same bias. (Cells with the same bias,
* which controls frequency, may beat together, with long
* runs of no entropy as a pair when they are nearly synchronized.)
* 2. The entropy of each cell is determined (for now) by the Renyi H2
* entropy of a collection of samples of raw bits.
* 3. The selected configuration is the one that has the largest total
* entropy, computed as stated above.
* 4. The delay is hard coded.
*/
/*
* Finds the preferred configuration from perf data. Sets the
* preferred configuration in the n2rng structure.
*/
int
n2rng_noise_gen_preferred(n2rng_t *n2rng, int rngid)
{
int rv;
int rventropy = 0; /* EIO if entropy is too low */
int b0, b1, b2;
int osc;
int bset;
n2rng_osc_perf_t *candidates[N2RNG_NOSC];
uint64_t bestcellentropy[N2RNG_NOSC] = {0};
uint64_t bestentropy = 0;
n2rng_ctl_t rng_ctl = {0};
int i;
rng_entry_t *rng = &n2rng->n_ctl_data->n_rngs[rngid];
rv = collect_rng_perf(n2rng, rngid, rng->n_perftable);
if (rv) {
return (rv);
}
/*
* bset is the bias setting of all 3 oscillators packed into a
* word, 2 bits for each: b2:b1:b0. First we set up an
* arbitrary assignment, because in an earlier version of
* this code, there were cases where the assignment would
* never happen. Also, that way we don't need to prove
* assignment to prove we never have uninitalized variables,
* and hence it might avoid lint warnings.
*
* This block of code picks the "best" setting of the biases,
* where "best" is defined by the rules in the big comment
* block above.
*
* There are only 24 possible combinations such that no two
* oscillators get the same bias. We just do a brute force
* exhaustive search of the entire space.
*/
bset = ENCODEBIAS(2, 2) | ENCODEBIAS(1, 1) | ENCODEBIAS(0, 0);
for (b0 = 0; b0 < N2RNG_NBIASES; b0++) {
candidates[0] = &rng->n_perftable[0][b0];
for (b1 = 0; b1 < N2RNG_NBIASES; b1++) {
if (b0 == b1) continue;
candidates[1] = &rng->n_perftable[1][b1];
for (b2 = 0; b2 < N2RNG_NBIASES; b2++) {
uint64_t totalentropy = 0;
if (b0 == b2 || b1 == b2) continue;
candidates[2] = &rng->n_perftable[2][b2];
for (i = 0; i < N2RNG_NOSC; i++) {
totalentropy += candidates[i]->H2;
}
if (totalentropy > bestentropy) {
bestentropy = totalentropy;
bset = ENCODEBIAS(0, b0) |
ENCODEBIAS(1, b1) |
ENCODEBIAS(2, b2);
for (i = 0; i < N2RNG_NOSC; i++) {
bestcellentropy[i] =
candidates[i]->H2;
}
}
}
}
}
if (bestentropy < ENTROPY_PASS_VALUE) {
cmn_err(CE_WARN,
"n2rng: RNG hardware producing insufficient "
"entropy (producing %ld, need %lld)",
bestentropy, ENTROPY_PASS_VALUE);
rventropy = EIO;
}
/*
* Set up fields of control words that will be the same for all
* osciallators and for final value that selects all
* oscillators.
*/
rng_ctl.fields.rnc_cnt = n2rng->n_ctl_data->n_accumulate_cycles;
rng_ctl.fields.rnc_mode = 1; /* set normal mode */
rng_ctl.fields.rnc_anlg_sel = N2RNG_NOANALOGOUT;
/*
* Now set the oscillator biases.
*/
for (osc = 0; osc < N2RNG_NOSC; osc++) {
rng_ctl.fields.rnc_selbits = 1 << osc;
rng_ctl.fields.rnc_vcoctl = EXTRACTBIAS(bset, osc);
rng->n_preferred_config.ctlwds[osc] = rng_ctl;
}
rng_ctl.fields.rnc_cnt = n2rng->n_ctl_data->n_accumulate_cycles;
rng_ctl.fields.rnc_vcoctl = 0;
rng_ctl.fields.rnc_selbits = 0x7;
rng->n_preferred_config.ctlwds[3] = rng_ctl;
if (rventropy == 0) {
/* Save bias and entropy results for kstats */
for (i = 0; i < N2RNG_NOSC; i++) {
rng->n_bias_info[i].bias =
(uint64_t)EXTRACTBIAS(bset, i);
rng->n_bias_info[i].entropy =
(uint64_t)(bestcellentropy[i] / ENTDIVISOR);
DBG4(n2rng, DCHATTY,
"n2rng_noise_gen_preferred: rng %d cell %d bias "
"%ld: %ld", rngid, i, rng->n_bias_info[i].bias,
rng->n_bias_info[i].entropy);
}
} else {
/* Clear bias and entropy results for kstats */
for (i = 0; i < N2RNG_NOSC; i++) {
rng->n_bias_info[i].bias = 0;
rng->n_bias_info[i].entropy = 0;
}
}
return (rv ? rv : rventropy);
}
/*
* Do a logic test, then find and set the best bias confuration
* (failing if insufficient entropy is generated, then set state to
* configured. This function should only be called when running in
* the control domain.
*/
int
n2rng_do_health_check(n2rng_t *n2rng, int rngid)
{
int rv = EIO;
rng_entry_t *rng = &n2rng->n_ctl_data->n_rngs[rngid];
int attempts;
for (attempts = 0;
(attempts < RNG_MAX_LOGIC_TEST_ATTEMPTS) && rv; attempts++) {
rv = n2rng_logic_test(n2rng, rngid);
}
if (rv) {
cmn_err(CE_WARN, "n2rng: n2rng_logic_test failed %d attempts",
RNG_MAX_LOGIC_TEST_ATTEMPTS);
goto errorexit;
} else if (attempts > 1) {
DBG1(n2rng, DHEALTH,
"n2rng: n2rng_logic_test failed %d attempts",
attempts - 1);
goto errorexit;
}
rv = n2rng_noise_gen_preferred(n2rng, rngid);
if (rv) {
DBG0(n2rng, DHEALTH,
"n2rng: n2rng_noise_gen_preferred failed");
goto errorexit;
}
/* Push the selected config into HW */
rv = n2rng_collect_diag_bits(n2rng, rngid, NULL, NULL, 0,
&rng->n_preferred_config, CTL_STATE_CONFIGURED);
if (rv) {
DBG0(n2rng, DHEALTH,
"n2rng: n2rng_collect_diag_bits failed");
goto errorexit;
}
return (rv);
errorexit:
/* Push the selected config into HW with an error state */
(void) n2rng_collect_diag_bits(n2rng, rngid, NULL, NULL, 0,
&rng->n_preferred_config, CTL_STATE_ERROR);
return (rv);
}
|