summaryrefslogtreecommitdiff
path: root/usr/src/uts/common/io/cryptmod.c
diff options
context:
space:
mode:
authorstevel@tonic-gate <none@none>2005-06-14 00:00:00 -0700
committerstevel@tonic-gate <none@none>2005-06-14 00:00:00 -0700
commit7c478bd95313f5f23a4c958a745db2134aa03244 (patch)
treec871e58545497667cbb4b0a4f2daf204743e1fe7 /usr/src/uts/common/io/cryptmod.c
downloadillumos-joyent-7c478bd95313f5f23a4c958a745db2134aa03244.tar.gz
OpenSolaris Launch
Diffstat (limited to 'usr/src/uts/common/io/cryptmod.c')
-rw-r--r--usr/src/uts/common/io/cryptmod.c3799
1 files changed, 3799 insertions, 0 deletions
diff --git a/usr/src/uts/common/io/cryptmod.c b/usr/src/uts/common/io/cryptmod.c
new file mode 100644
index 0000000000..98c8bf3b70
--- /dev/null
+++ b/usr/src/uts/common/io/cryptmod.c
@@ -0,0 +1,3799 @@
+/*
+ * CDDL HEADER START
+ *
+ * The contents of this file are subject to the terms of the
+ * Common Development and Distribution License, Version 1.0 only
+ * (the "License"). You may not use this file except in compliance
+ * with the License.
+ *
+ * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
+ * or http://www.opensolaris.org/os/licensing.
+ * See the License for the specific language governing permissions
+ * and limitations under the License.
+ *
+ * When distributing Covered Code, include this CDDL HEADER in each
+ * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
+ * If applicable, add the following below this CDDL HEADER, with the
+ * fields enclosed by brackets "[]" replaced with your own identifying
+ * information: Portions Copyright [yyyy] [name of copyright owner]
+ *
+ * CDDL HEADER END
+ */
+/*
+ * Copyright 2004 Sun Microsystems, Inc. All rights reserved.
+ * Use is subject to license terms.
+ *
+ * STREAMS Crypto Module
+ *
+ * This module is used to facilitate Kerberos encryption
+ * operations for the telnet daemon and rlogin daemon.
+ * Because the Solaris telnet and rlogin daemons run mostly
+ * in-kernel via 'telmod' and 'rlmod', this module must be
+ * pushed on the STREAM *below* telmod or rlmod.
+ *
+ * Parts of the 3DES key derivation code are covered by the
+ * following copyright.
+ *
+ * Copyright (C) 1998 by the FundsXpress, INC.
+ *
+ * All rights reserved.
+ *
+ * Export of this software from the United States of America may require
+ * a specific license from the United States Government. It is the
+ * responsibility of any person or organization contemplating export to
+ * obtain such a license before exporting.
+ *
+ * WITHIN THAT CONSTRAINT, permission to use, copy, modify, and
+ * distribute this software and its documentation for any purpose and
+ * without fee is hereby granted, provided that the above copyright
+ * notice appear in all copies and that both that copyright notice and
+ * this permission notice appear in supporting documentation, and that
+ * the name of FundsXpress. not be used in advertising or publicity pertaining
+ * to distribution of the software without specific, written prior
+ * permission. FundsXpress makes no representations about the suitability of
+ * this software for any purpose. It is provided "as is" without express
+ * or implied warranty.
+ *
+ * THIS SOFTWARE IS PROVIDED ``AS IS'' AND WITHOUT ANY EXPRESS OR
+ * IMPLIED WARRANTIES, INCLUDING, WITHOUT LIMITATION, THE IMPLIED
+ * WARRANTIES OF MERCHANTIBILITY AND FITNESS FOR A PARTICULAR PURPOSE.
+ */
+#pragma ident "%Z%%M% %I% %E% SMI"
+
+#include <sys/types.h>
+#include <sys/sysmacros.h>
+#include <sys/errno.h>
+#include <sys/debug.h>
+#include <sys/time.h>
+#include <sys/stropts.h>
+#include <sys/stream.h>
+#include <sys/strsubr.h>
+#include <sys/strlog.h>
+#include <sys/cmn_err.h>
+#include <sys/conf.h>
+#include <sys/sunddi.h>
+#include <sys/kmem.h>
+#include <sys/strsun.h>
+#include <sys/random.h>
+#include <sys/types.h>
+#include <sys/byteorder.h>
+#include <sys/cryptmod.h>
+#include <sys/crc32.h>
+#include <sys/policy.h>
+
+#include <sys/crypto/api.h>
+
+#include <sys/strft.h>
+/*
+ * Function prototypes.
+ */
+static int cryptmodopen(queue_t *, dev_t *, int, int, cred_t *);
+static void cryptmodrput(queue_t *, mblk_t *);
+static void cryptmodwput(queue_t *, mblk_t *);
+static int cryptmodclose(queue_t *);
+static int cryptmodwsrv(queue_t *);
+static int cryptmodrsrv(queue_t *);
+
+static mblk_t *do_encrypt(queue_t *q, mblk_t *mp);
+static mblk_t *do_decrypt(queue_t *q, mblk_t *mp);
+
+#define CRYPTMOD_ID 5150
+
+#define CFB_BLKSZ 8
+
+#define K5CLENGTH 5
+
+static struct module_info cryptmod_minfo = {
+ CRYPTMOD_ID, /* mi_idnum */
+ "cryptmod", /* mi_idname */
+ 0, /* mi_minpsz */
+ INFPSZ, /* mi_maxpsz */
+ 65536, /* mi_hiwat */
+ 1024 /* mi_lowat */
+};
+
+static struct qinit cryptmod_rinit = {
+ (int (*)())cryptmodrput, /* qi_putp */
+ cryptmodrsrv, /* qi_svc */
+ cryptmodopen, /* qi_qopen */
+ cryptmodclose, /* qi_qclose */
+ NULL, /* qi_qadmin */
+ &cryptmod_minfo, /* qi_minfo */
+ NULL /* qi_mstat */
+};
+
+static struct qinit cryptmod_winit = {
+ (int (*)())cryptmodwput, /* qi_putp */
+ cryptmodwsrv, /* qi_srvp */
+ NULL, /* qi_qopen */
+ NULL, /* qi_qclose */
+ NULL, /* qi_qadmin */
+ &cryptmod_minfo, /* qi_minfo */
+ NULL /* qi_mstat */
+};
+
+static struct streamtab cryptmod_info = {
+ &cryptmod_rinit, /* st_rdinit */
+ &cryptmod_winit, /* st_wrinit */
+ NULL, /* st_muxrinit */
+ NULL /* st_muxwinit */
+};
+
+typedef struct {
+ uint_t hash_len;
+ uint_t confound_len;
+ int (*hashfunc)();
+} hash_info_t;
+
+#define MAX_CKSUM_LEN 20
+#define CONFOUNDER_LEN 8
+
+#define SHA1_HASHSIZE 20
+#define MD5_HASHSIZE 16
+#define CRC32_HASHSIZE 4
+
+static int crc32_calc(uchar_t *, uchar_t *, uint_t);
+static int md5_calc(uchar_t *, uchar_t *, uint_t);
+static int sha1_calc(uchar_t *, uchar_t *, uint_t);
+
+static hash_info_t null_hash = {0, 0, NULL};
+static hash_info_t crc32_hash = {CRC32_HASHSIZE, CONFOUNDER_LEN, crc32_calc};
+static hash_info_t md5_hash = {MD5_HASHSIZE, CONFOUNDER_LEN, md5_calc};
+static hash_info_t sha1_hash = {SHA1_HASHSIZE, CONFOUNDER_LEN, sha1_calc};
+
+static crypto_mech_type_t sha1_hmac_mech = CRYPTO_MECH_INVALID;
+static crypto_mech_type_t md5_hmac_mech = CRYPTO_MECH_INVALID;
+static crypto_mech_type_t sha1_hash_mech = CRYPTO_MECH_INVALID;
+static crypto_mech_type_t md5_hash_mech = CRYPTO_MECH_INVALID;
+
+static int kef_crypt(struct cipher_data_t *, void *,
+ crypto_data_format_t, size_t, int);
+static mblk_t *
+arcfour_hmac_md5_encrypt(queue_t *, struct tmodinfo *,
+ mblk_t *, hash_info_t *);
+static mblk_t *
+arcfour_hmac_md5_decrypt(queue_t *, struct tmodinfo *,
+ mblk_t *, hash_info_t *);
+
+static int
+do_hmac(crypto_mech_type_t, crypto_key_t *, char *, int, char *, int);
+
+/*
+ * This is the loadable module wrapper.
+ */
+#include <sys/modctl.h>
+
+static struct fmodsw fsw = {
+ "cryptmod",
+ &cryptmod_info,
+ D_MP | D_MTQPAIR
+};
+
+/*
+ * Module linkage information for the kernel.
+ */
+static struct modlstrmod modlstrmod = {
+ &mod_strmodops,
+ "STREAMS encryption module %I%",
+ &fsw
+};
+
+static struct modlinkage modlinkage = {
+ MODREV_1,
+ &modlstrmod,
+ NULL
+};
+
+int
+_init(void)
+{
+ return (mod_install(&modlinkage));
+}
+
+int
+_fini(void)
+{
+ return (mod_remove(&modlinkage));
+}
+
+int
+_info(struct modinfo *modinfop)
+{
+ return (mod_info(&modlinkage, modinfop));
+}
+
+static void
+cleanup(struct cipher_data_t *cd)
+{
+ if (cd->key != NULL) {
+ bzero(cd->key, cd->keylen);
+ kmem_free(cd->key, cd->keylen);
+ cd->key = NULL;
+ }
+
+ if (cd->ckey != NULL) {
+ /*
+ * ckey is a crypto_key_t structure which references
+ * "cd->key" for its raw key data. Since that was already
+ * cleared out, we don't need another "bzero" here.
+ */
+ kmem_free(cd->ckey, sizeof (crypto_key_t));
+ cd->ckey = NULL;
+ }
+
+ if (cd->block != NULL) {
+ kmem_free(cd->block, cd->blocklen);
+ cd->block = NULL;
+ }
+
+ if (cd->saveblock != NULL) {
+ kmem_free(cd->saveblock, cd->blocklen);
+ cd->saveblock = NULL;
+ }
+
+ if (cd->ivec != NULL) {
+ kmem_free(cd->ivec, cd->ivlen);
+ cd->ivec = NULL;
+ }
+
+ if (cd->d_encr_key.ck_data != NULL) {
+ bzero(cd->d_encr_key.ck_data, cd->keylen);
+ kmem_free(cd->d_encr_key.ck_data, cd->keylen);
+ }
+
+ if (cd->d_hmac_key.ck_data != NULL) {
+ bzero(cd->d_hmac_key.ck_data, cd->keylen);
+ kmem_free(cd->d_hmac_key.ck_data, cd->keylen);
+ }
+
+ if (cd->enc_tmpl != NULL)
+ (void) crypto_destroy_ctx_template(cd->enc_tmpl);
+
+ if (cd->hmac_tmpl != NULL)
+ (void) crypto_destroy_ctx_template(cd->hmac_tmpl);
+
+ if (cd->ctx != NULL) {
+ crypto_cancel_ctx(cd->ctx);
+ cd->ctx = NULL;
+ }
+}
+
+/* ARGSUSED */
+static int
+cryptmodopen(queue_t *rq, dev_t *dev, int oflag, int sflag, cred_t *crp)
+{
+ struct tmodinfo *tmi;
+ ASSERT(rq);
+
+ if (sflag != MODOPEN)
+ return (EINVAL);
+
+ (void) (STRLOG(CRYPTMOD_ID, 0, 5, SL_TRACE|SL_NOTE,
+ "cryptmodopen: opening module(PID %d)",
+ ddi_get_pid()));
+
+ if (rq->q_ptr != NULL) {
+ cmn_err(CE_WARN, "cryptmodopen: already opened");
+ return (0);
+ }
+
+ /*
+ * Allocate and initialize per-Stream structure.
+ */
+ tmi = (struct tmodinfo *)kmem_zalloc(sizeof (struct tmodinfo),
+ KM_SLEEP);
+
+ tmi->enc_data.method = CRYPT_METHOD_NONE;
+ tmi->dec_data.method = CRYPT_METHOD_NONE;
+
+ tmi->ready = (CRYPT_READ_READY | CRYPT_WRITE_READY);
+
+ rq->q_ptr = WR(rq)->q_ptr = tmi;
+
+ sha1_hmac_mech = crypto_mech2id(SUN_CKM_SHA1_HMAC);
+ md5_hmac_mech = crypto_mech2id(SUN_CKM_MD5_HMAC);
+ sha1_hash_mech = crypto_mech2id(SUN_CKM_SHA1);
+ md5_hash_mech = crypto_mech2id(SUN_CKM_MD5);
+
+ qprocson(rq);
+
+ return (0);
+}
+
+static int
+cryptmodclose(queue_t *rq)
+{
+ struct tmodinfo *tmi = (struct tmodinfo *)rq->q_ptr;
+ ASSERT(tmi);
+
+ qprocsoff(rq);
+
+ cleanup(&tmi->enc_data);
+ cleanup(&tmi->dec_data);
+
+ kmem_free(tmi, sizeof (struct tmodinfo));
+ rq->q_ptr = WR(rq)->q_ptr = NULL;
+
+ return (0);
+}
+
+/*
+ * plaintext_offset
+ *
+ * Calculate exactly how much space is needed in front
+ * of the "plaintext" in an mbuf so it can be positioned
+ * 1 time instead of potentially moving the data multiple
+ * times.
+ */
+static int
+plaintext_offset(struct cipher_data_t *cd)
+{
+ int headspace = 0;
+
+ /* 4 byte length prepended to all RCMD msgs */
+ if (ANY_RCMD_MODE(cd->option_mask))
+ headspace += RCMD_LEN_SZ;
+
+ /* RCMD V2 mode adds an additional 4 byte plaintext length */
+ if (cd->option_mask & CRYPTOPT_RCMD_MODE_V2)
+ headspace += RCMD_LEN_SZ;
+
+ /* Need extra space for hash and counfounder */
+ switch (cd->method) {
+ case CRYPT_METHOD_DES_CBC_NULL:
+ headspace += null_hash.hash_len + null_hash.confound_len;
+ break;
+ case CRYPT_METHOD_DES_CBC_CRC:
+ headspace += crc32_hash.hash_len + crc32_hash.confound_len;
+ break;
+ case CRYPT_METHOD_DES_CBC_MD5:
+ headspace += md5_hash.hash_len + md5_hash.confound_len;
+ break;
+ case CRYPT_METHOD_DES3_CBC_SHA1:
+ headspace += sha1_hash.confound_len;
+ break;
+ case CRYPT_METHOD_ARCFOUR_HMAC_MD5:
+ headspace += md5_hash.hash_len + md5_hash.confound_len;
+ break;
+ case CRYPT_METHOD_AES128:
+ case CRYPT_METHOD_AES256:
+ headspace += DEFAULT_AES_BLOCKLEN;
+ break;
+ case CRYPT_METHOD_DES_CFB:
+ case CRYPT_METHOD_NONE:
+ break;
+ }
+
+ return (headspace);
+}
+/*
+ * encrypt_size
+ *
+ * Calculate the resulting size when encrypting 'plainlen' bytes
+ * of data.
+ */
+static size_t
+encrypt_size(struct cipher_data_t *cd, size_t plainlen)
+{
+ size_t cipherlen;
+
+ switch (cd->method) {
+ case CRYPT_METHOD_DES_CBC_NULL:
+ cipherlen = (size_t)P2ROUNDUP(null_hash.hash_len +
+ plainlen, 8);
+ break;
+ case CRYPT_METHOD_DES_CBC_MD5:
+ cipherlen = (size_t)P2ROUNDUP(md5_hash.hash_len +
+ md5_hash.confound_len +
+ plainlen, 8);
+ break;
+ case CRYPT_METHOD_DES_CBC_CRC:
+ cipherlen = (size_t)P2ROUNDUP(crc32_hash.hash_len +
+ crc32_hash.confound_len +
+ plainlen, 8);
+ break;
+ case CRYPT_METHOD_DES3_CBC_SHA1:
+ cipherlen = (size_t)P2ROUNDUP(sha1_hash.confound_len +
+ plainlen, 8) +
+ sha1_hash.hash_len;
+ break;
+ case CRYPT_METHOD_ARCFOUR_HMAC_MD5:
+ cipherlen = (size_t)P2ROUNDUP(md5_hash.confound_len +
+ plainlen, 1) + md5_hash.hash_len;
+ break;
+ case CRYPT_METHOD_AES128:
+ case CRYPT_METHOD_AES256:
+ /* No roundup for AES-CBC-CTS */
+ cipherlen = DEFAULT_AES_BLOCKLEN + plainlen +
+ AES_TRUNCATED_HMAC_LEN;
+ break;
+ case CRYPT_METHOD_DES_CFB:
+ case CRYPT_METHOD_NONE:
+ cipherlen = plainlen;
+ break;
+ }
+
+ return (cipherlen);
+}
+
+/*
+ * des_cfb_encrypt
+ *
+ * Encrypt the mblk data using DES with cipher feedback.
+ *
+ * Given that V[i] is the initial 64 bit vector, V[n] is the nth 64 bit
+ * vector, D[n] is the nth chunk of 64 bits of data to encrypt
+ * (decrypt), and O[n] is the nth chunk of 64 bits of encrypted
+ * (decrypted) data, then:
+ *
+ * V[0] = DES(V[i], key)
+ * O[n] = D[n] <exclusive or > V[n]
+ * V[n+1] = DES(O[n], key)
+ *
+ * The size of the message being encrypted does not change in this
+ * algorithm, num_bytes in == num_bytes out.
+ */
+static mblk_t *
+des_cfb_encrypt(queue_t *q, struct tmodinfo *tmi, mblk_t *mp)
+{
+ int savedbytes;
+ char *iptr, *optr, *lastoutput;
+
+ lastoutput = optr = (char *)mp->b_rptr;
+ iptr = (char *)mp->b_rptr;
+ savedbytes = tmi->enc_data.bytes % CFB_BLKSZ;
+
+ while (iptr < (char *)mp->b_wptr) {
+ /*
+ * Do DES-ECB.
+ * The first time this runs, the 'tmi->enc_data.block' will
+ * contain the initialization vector that should have been
+ * passed in with the SETUP ioctl.
+ *
+ * V[n] = DES(V[n-1], key)
+ */
+ if (!(tmi->enc_data.bytes % CFB_BLKSZ)) {
+ int retval = 0;
+ retval = kef_crypt(&tmi->enc_data,
+ tmi->enc_data.block,
+ CRYPTO_DATA_RAW,
+ tmi->enc_data.blocklen,
+ CRYPT_ENCRYPT);
+
+ if (retval != CRYPTO_SUCCESS) {
+#ifdef DEBUG
+ cmn_err(CE_WARN, "des_cfb_encrypt: kef_crypt "
+ "failed - error 0x%0x", retval);
+#endif
+ mp->b_datap->db_type = M_ERROR;
+ mp->b_rptr = mp->b_datap->db_base;
+ *mp->b_rptr = EIO;
+ mp->b_wptr = mp->b_rptr + sizeof (char);
+ freemsg(mp->b_cont);
+ mp->b_cont = NULL;
+ qreply(WR(q), mp);
+ return (NULL);
+ }
+ }
+
+ /* O[n] = I[n] ^ V[n] */
+ *(optr++) = *(iptr++) ^
+ tmi->enc_data.block[tmi->enc_data.bytes % CFB_BLKSZ];
+
+ tmi->enc_data.bytes++;
+ /*
+ * Feedback the encrypted output as the input to next DES call.
+ */
+ if (!(tmi->enc_data.bytes % CFB_BLKSZ)) {
+ char *dbptr = tmi->enc_data.block;
+ /*
+ * Get the last bits of input from the previous
+ * msg block that we haven't yet used as feedback input.
+ */
+ if (savedbytes > 0) {
+ bcopy(tmi->enc_data.saveblock,
+ dbptr, (size_t)savedbytes);
+ dbptr += savedbytes;
+ }
+
+ /*
+ * Now copy the correct bytes from the current input
+ * stream and update the 'lastoutput' ptr
+ */
+ bcopy(lastoutput, dbptr,
+ (size_t)(CFB_BLKSZ - savedbytes));
+
+ lastoutput += (CFB_BLKSZ - savedbytes);
+ savedbytes = 0;
+ }
+ }
+ /*
+ * If there are bytes of input here that we need in the next
+ * block to build an ivec, save them off here.
+ */
+ if (lastoutput < optr) {
+ bcopy(lastoutput,
+ tmi->enc_data.saveblock + savedbytes,
+ (uint_t)(optr - lastoutput));
+ }
+ return (mp);
+}
+
+/*
+ * des_cfb_decrypt
+ *
+ * Decrypt the data in the mblk using DES in Cipher Feedback mode
+ *
+ * # bytes in == # bytes out, no padding, confounding, or hashing
+ * is added.
+ *
+ */
+static mblk_t *
+des_cfb_decrypt(queue_t *q, struct tmodinfo *tmi, mblk_t *mp)
+{
+ uint_t len;
+ uint_t savedbytes;
+ char *iptr;
+ char *lastinput;
+ uint_t cp;
+
+ len = MBLKL(mp);
+
+ /* decrypted output goes into the new data buffer */
+ lastinput = iptr = (char *)mp->b_rptr;
+
+ savedbytes = tmi->dec_data.bytes % tmi->dec_data.blocklen;
+
+ /*
+ * Save the input CFB_BLKSZ bytes at a time.
+ * We are trying to decrypt in-place, but need to keep
+ * a small sliding window of encrypted text to be
+ * used to construct the feedback buffer.
+ */
+ cp = ((tmi->dec_data.blocklen - savedbytes) > len ? len :
+ tmi->dec_data.blocklen - savedbytes);
+
+ bcopy(lastinput, tmi->dec_data.saveblock + savedbytes, cp);
+ savedbytes += cp;
+
+ lastinput += cp;
+
+ while (iptr < (char *)mp->b_wptr) {
+ /*
+ * Do DES-ECB.
+ * The first time this runs, the 'tmi->dec_data.block' will
+ * contain the initialization vector that should have been
+ * passed in with the SETUP ioctl.
+ */
+ if (!(tmi->dec_data.bytes % CFB_BLKSZ)) {
+ int retval;
+ retval = kef_crypt(&tmi->dec_data,
+ tmi->dec_data.block,
+ CRYPTO_DATA_RAW,
+ tmi->dec_data.blocklen,
+ CRYPT_ENCRYPT);
+
+ if (retval != CRYPTO_SUCCESS) {
+#ifdef DEBUG
+ cmn_err(CE_WARN, "des_cfb_decrypt: kef_crypt "
+ "failed - status 0x%0x", retval);
+#endif
+ mp->b_datap->db_type = M_ERROR;
+ mp->b_rptr = mp->b_datap->db_base;
+ *mp->b_rptr = EIO;
+ mp->b_wptr = mp->b_rptr + sizeof (char);
+ freemsg(mp->b_cont);
+ mp->b_cont = NULL;
+ qreply(WR(q), mp);
+ return (NULL);
+ }
+ }
+
+ /*
+ * To decrypt, XOR the input with the output from the DES call
+ */
+ *(iptr++) ^= tmi->dec_data.block[tmi->dec_data.bytes %
+ CFB_BLKSZ];
+
+ tmi->dec_data.bytes++;
+
+ /*
+ * Feedback the encrypted input for next DES call.
+ */
+ if (!(tmi->dec_data.bytes % tmi->dec_data.blocklen)) {
+ char *dbptr = tmi->dec_data.block;
+ /*
+ * Get the last bits of input from the previous block
+ * that we haven't yet processed.
+ */
+ if (savedbytes > 0) {
+ bcopy(tmi->dec_data.saveblock,
+ dbptr, savedbytes);
+ dbptr += savedbytes;
+ }
+
+ savedbytes = 0;
+
+ /*
+ * This block makes sure that our local
+ * buffer of input data is full and can
+ * be accessed from the beginning.
+ */
+ if (lastinput < (char *)mp->b_wptr) {
+
+ /* How many bytes are left in the mblk? */
+ cp = (((char *)mp->b_wptr - lastinput) >
+ tmi->dec_data.blocklen ?
+ tmi->dec_data.blocklen :
+ (char *)mp->b_wptr - lastinput);
+
+ /* copy what we need */
+ bcopy(lastinput, tmi->dec_data.saveblock,
+ cp);
+
+ lastinput += cp;
+ savedbytes = cp;
+ }
+ }
+ }
+
+ return (mp);
+}
+
+/*
+ * crc32_calc
+ *
+ * Compute a CRC32 checksum on the input
+ */
+static int
+crc32_calc(uchar_t *buf, uchar_t *input, uint_t len)
+{
+ uint32_t crc;
+
+ CRC32(crc, input, len, 0, crc32_table);
+
+ buf[0] = (uchar_t)(crc & 0xff);
+ buf[1] = (uchar_t)((crc >> 8) & 0xff);
+ buf[2] = (uchar_t)((crc >> 16) & 0xff);
+ buf[3] = (uchar_t)((crc >> 24) & 0xff);
+
+ return (CRYPTO_SUCCESS);
+}
+
+static int
+kef_digest(crypto_mech_type_t digest_type,
+ uchar_t *input, uint_t inlen,
+ uchar_t *output, uint_t hashlen)
+{
+ iovec_t v1, v2;
+ crypto_data_t d1, d2;
+ crypto_mechanism_t mech;
+ int rv;
+
+ mech.cm_type = digest_type;
+ mech.cm_param = 0;
+ mech.cm_param_len = 0;
+
+ v1.iov_base = (void *)input;
+ v1.iov_len = inlen;
+
+ d1.cd_format = CRYPTO_DATA_RAW;
+ d1.cd_offset = 0;
+ d1.cd_length = v1.iov_len;
+ d1.cd_raw = v1;
+
+ v2.iov_base = (void *)output;
+ v2.iov_len = hashlen;
+
+ d2.cd_format = CRYPTO_DATA_RAW;
+ d2.cd_offset = 0;
+ d2.cd_length = v2.iov_len;
+ d2.cd_raw = v2;
+
+ rv = crypto_digest(&mech, &d1, &d2, NULL);
+
+ return (rv);
+}
+
+/*
+ * sha1_calc
+ *
+ * Get a SHA1 hash on the input data.
+ */
+static int
+sha1_calc(uchar_t *output, uchar_t *input, uint_t inlen)
+{
+ int rv;
+
+ rv = kef_digest(sha1_hash_mech, input, inlen, output, SHA1_HASHSIZE);
+
+ return (rv);
+}
+
+/*
+ * Get an MD5 hash on the input data.
+ * md5_calc
+ *
+ */
+static int
+md5_calc(uchar_t *output, uchar_t *input, uint_t inlen)
+{
+ int rv;
+
+ rv = kef_digest(md5_hash_mech, input, inlen, output, MD5_HASHSIZE);
+
+ return (rv);
+}
+
+/*
+ * nfold
+ * duplicate the functionality of the krb5_nfold function from
+ * the userland kerberos mech.
+ * This is needed to derive keys for use with 3DES/SHA1-HMAC
+ * ciphers.
+ */
+static void
+nfold(int inbits, uchar_t *in, int outbits, uchar_t *out)
+{
+ int a, b, c, lcm;
+ int byte, i, msbit;
+
+ inbits >>= 3;
+ outbits >>= 3;
+
+ /* first compute lcm(n,k) */
+ a = outbits;
+ b = inbits;
+
+ while (b != 0) {
+ c = b;
+ b = a%b;
+ a = c;
+ }
+
+ lcm = outbits*inbits/a;
+
+ /* now do the real work */
+
+ bzero(out, outbits);
+ byte = 0;
+
+ /*
+ * Compute the msbit in k which gets added into this byte
+ * first, start with the msbit in the first, unrotated byte
+ * then, for each byte, shift to the right for each repetition
+ * last, pick out the correct byte within that shifted repetition
+ */
+ for (i = lcm-1; i >= 0; i--) {
+ msbit = (((inbits<<3)-1)
+ +(((inbits<<3)+13)*(i/inbits))
+ +((inbits-(i%inbits))<<3)) %(inbits<<3);
+
+ /* pull out the byte value itself */
+ byte += (((in[((inbits-1)-(msbit>>3))%inbits]<<8)|
+ (in[((inbits)-(msbit>>3))%inbits]))
+ >>((msbit&7)+1))&0xff;
+
+ /* do the addition */
+ byte += out[i%outbits];
+ out[i%outbits] = byte&0xff;
+
+ byte >>= 8;
+ }
+
+ /* if there's a carry bit left over, add it back in */
+ if (byte) {
+ for (i = outbits-1; i >= 0; i--) {
+ /* do the addition */
+ byte += out[i];
+ out[i] = byte&0xff;
+
+ /* keep around the carry bit, if any */
+ byte >>= 8;
+ }
+ }
+}
+
+#define smask(step) ((1<<step)-1)
+#define pstep(x, step) (((x)&smask(step))^(((x)>>step)&smask(step)))
+#define parity_char(x) pstep(pstep(pstep((x), 4), 2), 1)
+
+/*
+ * Duplicate the functionality of the "dk_derive_key" function
+ * in the Kerberos mechanism.
+ */
+static int
+derive_key(struct cipher_data_t *cdata, uchar_t *constdata,
+ int constlen, char *dkey, int keybytes,
+ int blocklen)
+{
+ int rv = 0;
+ int n = 0, i;
+ char *inblock;
+ char *rawkey;
+ char *zeroblock;
+ char *saveblock;
+
+ inblock = kmem_zalloc(blocklen, KM_SLEEP);
+ rawkey = kmem_zalloc(keybytes, KM_SLEEP);
+ zeroblock = kmem_zalloc(blocklen, KM_SLEEP);
+
+ if (constlen == blocklen)
+ bcopy(constdata, inblock, blocklen);
+ else
+ nfold(constlen * 8, constdata,
+ blocklen * 8, (uchar_t *)inblock);
+
+ /*
+ * zeroblock is an IV of all 0's.
+ *
+ * The "block" section of the cdata record is used as the
+ * IV for crypto operations in the kef_crypt function.
+ *
+ * We use 'block' as a generic IV data buffer because it
+ * is attached to the stream state data and thus can
+ * be used to hold information that must carry over
+ * from processing of one mblk to another.
+ *
+ * Here, we save the current IV and replace it with
+ * and empty IV (all 0's) for use when deriving the
+ * keys. Once the key derivation is done, we swap the
+ * old IV back into place.
+ */
+ saveblock = cdata->block;
+ cdata->block = zeroblock;
+
+ while (n < keybytes) {
+ rv = kef_crypt(cdata, inblock, CRYPTO_DATA_RAW,
+ blocklen, CRYPT_ENCRYPT);
+ if (rv != CRYPTO_SUCCESS) {
+ /* put the original IV block back in place */
+ cdata->block = saveblock;
+ cmn_err(CE_WARN, "failed to derive a key: %0x", rv);
+ goto cleanup;
+ }
+
+ if (keybytes - n < blocklen) {
+ bcopy(inblock, rawkey+n, (keybytes-n));
+ break;
+ }
+ bcopy(inblock, rawkey+n, blocklen);
+ n += blocklen;
+ }
+ /* put the original IV block back in place */
+ cdata->block = saveblock;
+
+ /* finally, make the key */
+ if (cdata->method == CRYPT_METHOD_DES3_CBC_SHA1) {
+ /*
+ * 3DES key derivation requires that we make sure the
+ * key has the proper parity.
+ */
+ for (i = 0; i < 3; i++) {
+ bcopy(rawkey+(i*7), dkey+(i*8), 7);
+
+ /* 'dkey' is our derived key output buffer */
+ dkey[i*8+7] = (((dkey[i*8]&1)<<1) |
+ ((dkey[i*8+1]&1)<<2) |
+ ((dkey[i*8+2]&1)<<3) |
+ ((dkey[i*8+3]&1)<<4) |
+ ((dkey[i*8+4]&1)<<5) |
+ ((dkey[i*8+5]&1)<<6) |
+ ((dkey[i*8+6]&1)<<7));
+
+ for (n = 0; n < 8; n++) {
+ dkey[i*8 + n] &= 0xfe;
+ dkey[i*8 + n] |= 1^parity_char(dkey[i*8 + n]);
+ }
+ }
+ } else if (IS_AES_METHOD(cdata->method)) {
+ bcopy(rawkey, dkey, keybytes);
+ }
+cleanup:
+ kmem_free(inblock, blocklen);
+ kmem_free(zeroblock, blocklen);
+ kmem_free(rawkey, keybytes);
+ return (rv);
+}
+
+/*
+ * create_derived_keys
+ *
+ * Algorithm for deriving a new key and an HMAC key
+ * before computing the 3DES-SHA1-HMAC operation on the plaintext
+ * This algorithm matches the work done by Kerberos mechanism
+ * in userland.
+ */
+static int
+create_derived_keys(struct cipher_data_t *cdata, uint32_t usage,
+ crypto_key_t *enckey, crypto_key_t *hmackey)
+{
+ uchar_t constdata[K5CLENGTH];
+ int keybytes;
+ int rv;
+
+ constdata[0] = (usage>>24)&0xff;
+ constdata[1] = (usage>>16)&0xff;
+ constdata[2] = (usage>>8)&0xff;
+ constdata[3] = usage & 0xff;
+ /* Use "0xAA" for deriving encryption key */
+ constdata[4] = 0xAA; /* from MIT Kerberos code */
+
+ enckey->ck_length = cdata->keylen * 8;
+ enckey->ck_format = CRYPTO_KEY_RAW;
+ enckey->ck_data = kmem_zalloc(cdata->keylen, KM_SLEEP);
+
+ switch (cdata->method) {
+ case CRYPT_METHOD_DES_CFB:
+ case CRYPT_METHOD_DES_CBC_NULL:
+ case CRYPT_METHOD_DES_CBC_MD5:
+ case CRYPT_METHOD_DES_CBC_CRC:
+ keybytes = 8;
+ break;
+ case CRYPT_METHOD_DES3_CBC_SHA1:
+ keybytes = CRYPT_DES3_KEYBYTES;
+ break;
+ case CRYPT_METHOD_ARCFOUR_HMAC_MD5:
+ case CRYPT_METHOD_ARCFOUR_HMAC_MD5_EXP:
+ keybytes = CRYPT_ARCFOUR_KEYBYTES;
+ break;
+ case CRYPT_METHOD_AES128:
+ keybytes = CRYPT_AES128_KEYBYTES;
+ break;
+ case CRYPT_METHOD_AES256:
+ keybytes = CRYPT_AES256_KEYBYTES;
+ break;
+ }
+
+ /* derive main crypto key */
+ rv = derive_key(cdata, constdata, sizeof (constdata),
+ enckey->ck_data, keybytes, cdata->blocklen);
+
+ if (rv == CRYPTO_SUCCESS) {
+
+ /* Use "0x55" for deriving mac key */
+ constdata[4] = 0x55;
+
+ hmackey->ck_length = cdata->keylen * 8;
+ hmackey->ck_format = CRYPTO_KEY_RAW;
+ hmackey->ck_data = kmem_zalloc(cdata->keylen, KM_SLEEP);
+
+ rv = derive_key(cdata, constdata, sizeof (constdata),
+ hmackey->ck_data, keybytes,
+ cdata->blocklen);
+ } else {
+ cmn_err(CE_WARN, "failed to derive crypto key: %02x", rv);
+ }
+
+ return (rv);
+}
+
+/*
+ * Compute 3-DES crypto and HMAC.
+ */
+static int
+kef_decr_hmac(struct cipher_data_t *cdata,
+ mblk_t *mp, int length,
+ char *hmac, int hmaclen)
+{
+ int rv = CRYPTO_FAILED;
+
+ crypto_mechanism_t encr_mech;
+ crypto_mechanism_t mac_mech;
+ crypto_data_t dd;
+ crypto_data_t mac;
+ iovec_t v1;
+
+ ASSERT(cdata != NULL);
+ ASSERT(mp != NULL);
+ ASSERT(hmac != NULL);
+
+ bzero(&dd, sizeof (dd));
+ dd.cd_format = CRYPTO_DATA_MBLK;
+ dd.cd_offset = 0;
+ dd.cd_length = length;
+ dd.cd_mp = mp;
+
+ v1.iov_base = hmac;
+ v1.iov_len = hmaclen;
+
+ mac.cd_format = CRYPTO_DATA_RAW;
+ mac.cd_offset = 0;
+ mac.cd_length = hmaclen;
+ mac.cd_raw = v1;
+
+ /*
+ * cdata->block holds the IVEC
+ */
+ encr_mech.cm_type = cdata->mech_type;
+ encr_mech.cm_param = cdata->block;
+
+ if (cdata->block != NULL)
+ encr_mech.cm_param_len = cdata->blocklen;
+ else
+ encr_mech.cm_param_len = 0;
+
+ rv = crypto_decrypt(&encr_mech, &dd, &cdata->d_encr_key,
+ cdata->enc_tmpl, NULL, NULL);
+ if (rv != CRYPTO_SUCCESS) {
+ cmn_err(CE_WARN, "crypto_decrypt failed: %0x", rv);
+ return (rv);
+ }
+
+ mac_mech.cm_type = sha1_hmac_mech;
+ mac_mech.cm_param = NULL;
+ mac_mech.cm_param_len = 0;
+
+ /*
+ * Compute MAC of the plaintext decrypted above.
+ */
+ rv = crypto_mac(&mac_mech, &dd, &cdata->d_hmac_key,
+ cdata->hmac_tmpl, &mac, NULL);
+
+ if (rv != CRYPTO_SUCCESS) {
+ cmn_err(CE_WARN, "crypto_mac failed: %0x", rv);
+ }
+
+ return (rv);
+}
+
+/*
+ * Compute 3-DES crypto and HMAC.
+ */
+static int
+kef_encr_hmac(struct cipher_data_t *cdata,
+ mblk_t *mp, int length,
+ char *hmac, int hmaclen)
+{
+ int rv = CRYPTO_FAILED;
+
+ crypto_mechanism_t encr_mech;
+ crypto_mechanism_t mac_mech;
+ crypto_data_t dd;
+ crypto_data_t mac;
+ iovec_t v1;
+
+ ASSERT(cdata != NULL);
+ ASSERT(mp != NULL);
+ ASSERT(hmac != NULL);
+
+ bzero(&dd, sizeof (dd));
+ dd.cd_format = CRYPTO_DATA_MBLK;
+ dd.cd_offset = 0;
+ dd.cd_length = length;
+ dd.cd_mp = mp;
+
+ v1.iov_base = hmac;
+ v1.iov_len = hmaclen;
+
+ mac.cd_format = CRYPTO_DATA_RAW;
+ mac.cd_offset = 0;
+ mac.cd_length = hmaclen;
+ mac.cd_raw = v1;
+
+ /*
+ * cdata->block holds the IVEC
+ */
+ encr_mech.cm_type = cdata->mech_type;
+ encr_mech.cm_param = cdata->block;
+
+ if (cdata->block != NULL)
+ encr_mech.cm_param_len = cdata->blocklen;
+ else
+ encr_mech.cm_param_len = 0;
+
+ mac_mech.cm_type = sha1_hmac_mech;
+ mac_mech.cm_param = NULL;
+ mac_mech.cm_param_len = 0;
+
+ rv = crypto_mac(&mac_mech, &dd, &cdata->d_hmac_key,
+ cdata->hmac_tmpl, &mac, NULL);
+
+ if (rv != CRYPTO_SUCCESS) {
+ cmn_err(CE_WARN, "crypto_mac failed: %0x", rv);
+ return (rv);
+ }
+
+ rv = crypto_encrypt(&encr_mech, &dd, &cdata->d_encr_key,
+ cdata->enc_tmpl, NULL, NULL);
+ if (rv != CRYPTO_SUCCESS) {
+ cmn_err(CE_WARN, "crypto_encrypt failed: %0x", rv);
+ }
+
+ return (rv);
+}
+
+/*
+ * kef_crypt
+ *
+ * Use the Kernel encryption framework to provide the
+ * crypto operations for the indicated data.
+ */
+static int
+kef_crypt(struct cipher_data_t *cdata,
+ void *indata, crypto_data_format_t fmt,
+ size_t length, int mode)
+{
+ int rv = CRYPTO_FAILED;
+
+ crypto_mechanism_t mech;
+ crypto_key_t crkey;
+ iovec_t v1;
+ crypto_data_t d1;
+
+ ASSERT(cdata != NULL);
+ ASSERT(indata != NULL);
+ ASSERT(fmt == CRYPTO_DATA_RAW || fmt == CRYPTO_DATA_MBLK);
+
+ bzero(&crkey, sizeof (crkey));
+ bzero(&d1, sizeof (d1));
+
+ crkey.ck_format = CRYPTO_KEY_RAW;
+ crkey.ck_data = cdata->key;
+
+ /* keys are measured in bits, not bytes, so multiply by 8 */
+ crkey.ck_length = cdata->keylen * 8;
+
+ if (fmt == CRYPTO_DATA_RAW) {
+ v1.iov_base = (char *)indata;
+ v1.iov_len = length;
+ }
+
+ d1.cd_format = fmt;
+ d1.cd_offset = 0;
+ d1.cd_length = length;
+ if (fmt == CRYPTO_DATA_RAW)
+ d1.cd_raw = v1;
+ else if (fmt == CRYPTO_DATA_MBLK)
+ d1.cd_mp = (mblk_t *)indata;
+
+ mech.cm_type = cdata->mech_type;
+ mech.cm_param = cdata->block;
+ /*
+ * cdata->block holds the IVEC
+ */
+ if (cdata->block != NULL)
+ mech.cm_param_len = cdata->blocklen;
+ else
+ mech.cm_param_len = 0;
+
+ /*
+ * encrypt and decrypt in-place
+ */
+ if (mode == CRYPT_ENCRYPT)
+ rv = crypto_encrypt(&mech, &d1, &crkey, NULL, NULL, NULL);
+ else
+ rv = crypto_decrypt(&mech, &d1, &crkey, NULL, NULL, NULL);
+
+ if (rv != CRYPTO_SUCCESS) {
+ cmn_err(CE_WARN, "%s returned error %08x",
+ (mode == CRYPT_ENCRYPT ? "crypto_encrypt" :
+ "crypto_decrypt"), rv);
+ return (CRYPTO_FAILED);
+ }
+
+ return (rv);
+}
+
+static int
+do_hmac(crypto_mech_type_t mech,
+ crypto_key_t *key,
+ char *data, int datalen,
+ char *hmac, int hmaclen)
+{
+ int rv = 0;
+ crypto_mechanism_t mac_mech;
+ crypto_data_t dd;
+ crypto_data_t mac;
+ iovec_t vdata, vmac;
+
+ mac_mech.cm_type = mech;
+ mac_mech.cm_param = NULL;
+ mac_mech.cm_param_len = 0;
+
+ vdata.iov_base = data;
+ vdata.iov_len = datalen;
+
+ bzero(&dd, sizeof (dd));
+ dd.cd_format = CRYPTO_DATA_RAW;
+ dd.cd_offset = 0;
+ dd.cd_length = datalen;
+ dd.cd_raw = vdata;
+
+ vmac.iov_base = hmac;
+ vmac.iov_len = hmaclen;
+
+ mac.cd_format = CRYPTO_DATA_RAW;
+ mac.cd_offset = 0;
+ mac.cd_length = hmaclen;
+ mac.cd_raw = vmac;
+
+ /*
+ * Compute MAC of the plaintext decrypted above.
+ */
+ rv = crypto_mac(&mac_mech, &dd, key, NULL, &mac, NULL);
+
+ if (rv != CRYPTO_SUCCESS) {
+ cmn_err(CE_WARN, "crypto_mac failed: %0x", rv);
+ }
+
+ return (rv);
+}
+
+#define XOR_BLOCK(src, dst) \
+ (dst)[0] ^= (src)[0]; \
+ (dst)[1] ^= (src)[1]; \
+ (dst)[2] ^= (src)[2]; \
+ (dst)[3] ^= (src)[3]; \
+ (dst)[4] ^= (src)[4]; \
+ (dst)[5] ^= (src)[5]; \
+ (dst)[6] ^= (src)[6]; \
+ (dst)[7] ^= (src)[7]; \
+ (dst)[8] ^= (src)[8]; \
+ (dst)[9] ^= (src)[9]; \
+ (dst)[10] ^= (src)[10]; \
+ (dst)[11] ^= (src)[11]; \
+ (dst)[12] ^= (src)[12]; \
+ (dst)[13] ^= (src)[13]; \
+ (dst)[14] ^= (src)[14]; \
+ (dst)[15] ^= (src)[15]
+
+#define xorblock(x, y) XOR_BLOCK(y, x)
+
+static int
+aes_cbc_cts_encrypt(struct tmodinfo *tmi, uchar_t *plain, size_t length)
+{
+ int result = CRYPTO_SUCCESS;
+ unsigned char tmp[DEFAULT_AES_BLOCKLEN];
+ unsigned char tmp2[DEFAULT_AES_BLOCKLEN];
+ unsigned char tmp3[DEFAULT_AES_BLOCKLEN];
+ int nblocks = 0, blockno;
+ crypto_data_t ct, pt;
+ crypto_mechanism_t mech;
+
+ mech.cm_type = tmi->enc_data.mech_type;
+ if (tmi->enc_data.ivlen > 0 && tmi->enc_data.ivec != NULL) {
+ bcopy(tmi->enc_data.ivec, tmp, DEFAULT_AES_BLOCKLEN);
+ mech.cm_param = tmi->enc_data.ivec;
+ mech.cm_param_len = tmi->enc_data.ivlen;
+ } else {
+ bzero(tmp, sizeof (tmp));
+ mech.cm_param = NULL;
+ mech.cm_param_len = 0;
+ }
+
+ nblocks = (length + DEFAULT_AES_BLOCKLEN - 1) / DEFAULT_AES_BLOCKLEN;
+
+ bzero(&ct, sizeof (crypto_data_t));
+ bzero(&pt, sizeof (crypto_data_t));
+
+ if (nblocks == 1) {
+ pt.cd_format = CRYPTO_DATA_RAW;
+ pt.cd_length = length;
+ pt.cd_raw.iov_base = (char *)plain;
+ pt.cd_raw.iov_len = length;
+
+ result = crypto_encrypt(&mech, &pt,
+ &tmi->enc_data.d_encr_key, NULL, NULL, NULL);
+
+ if (result != CRYPTO_SUCCESS) {
+ cmn_err(CE_WARN, "aes_cbc_cts_encrypt: "
+ "crypto_encrypt failed: %0x", result);
+ }
+ } else {
+ size_t nleft;
+
+ ct.cd_format = CRYPTO_DATA_RAW;
+ ct.cd_offset = 0;
+ ct.cd_length = DEFAULT_AES_BLOCKLEN;
+
+ pt.cd_format = CRYPTO_DATA_RAW;
+ pt.cd_offset = 0;
+ pt.cd_length = DEFAULT_AES_BLOCKLEN;
+
+ result = crypto_encrypt_init(&mech,
+ &tmi->enc_data.d_encr_key,
+ tmi->enc_data.enc_tmpl,
+ &tmi->enc_data.ctx, NULL);
+
+ if (result != CRYPTO_SUCCESS) {
+ cmn_err(CE_WARN, "aes_cbc_cts_encrypt: "
+ "crypto_encrypt_init failed: %0x", result);
+ goto cleanup;
+ }
+
+ for (blockno = 0; blockno < nblocks - 2; blockno++) {
+ xorblock(tmp, plain + blockno * DEFAULT_AES_BLOCKLEN);
+
+ pt.cd_raw.iov_base = (char *)tmp;
+ pt.cd_raw.iov_len = DEFAULT_AES_BLOCKLEN;
+
+ ct.cd_raw.iov_base = (char *)plain +
+ blockno * DEFAULT_AES_BLOCKLEN;
+ ct.cd_raw.iov_len = DEFAULT_AES_BLOCKLEN;
+
+ result = crypto_encrypt_update(tmi->enc_data.ctx,
+ &pt, &ct, NULL);
+
+ if (result != CRYPTO_SUCCESS) {
+ cmn_err(CE_WARN, "aes_cbc_cts_encrypt: "
+ "crypto_encrypt_update failed: %0x",
+ result);
+ goto cleanup;
+ }
+ /* copy result over original bytes */
+ /* make another copy for the next XOR step */
+ bcopy(plain + blockno * DEFAULT_AES_BLOCKLEN,
+ tmp, DEFAULT_AES_BLOCKLEN);
+ }
+ /* XOR cipher text from n-3 with plain text from n-2 */
+ xorblock(tmp, plain + (nblocks - 2) * DEFAULT_AES_BLOCKLEN);
+
+ pt.cd_raw.iov_base = (char *)tmp;
+ pt.cd_raw.iov_len = DEFAULT_AES_BLOCKLEN;
+
+ ct.cd_raw.iov_base = (char *)tmp2;
+ ct.cd_raw.iov_len = DEFAULT_AES_BLOCKLEN;
+
+ /* encrypt XOR-ed block N-2 */
+ result = crypto_encrypt_update(tmi->enc_data.ctx,
+ &pt, &ct, NULL);
+ if (result != CRYPTO_SUCCESS) {
+ cmn_err(CE_WARN, "aes_cbc_cts_encrypt: "
+ "crypto_encrypt_update(2) failed: %0x",
+ result);
+ goto cleanup;
+ }
+ nleft = length - (nblocks - 1) * DEFAULT_AES_BLOCKLEN;
+
+ bzero(tmp3, sizeof (tmp3));
+ /* Save final plaintext bytes from n-1 */
+ bcopy(plain + (nblocks - 1) * DEFAULT_AES_BLOCKLEN, tmp3,
+ nleft);
+
+ /* Overwrite n-1 with cipher text from n-2 */
+ bcopy(tmp2, plain + (nblocks - 1) * DEFAULT_AES_BLOCKLEN,
+ nleft);
+
+ bcopy(tmp2, tmp, DEFAULT_AES_BLOCKLEN);
+ /* XOR cipher text from n-1 with plain text from n-1 */
+ xorblock(tmp, tmp3);
+
+ pt.cd_raw.iov_base = (char *)tmp;
+ pt.cd_raw.iov_len = DEFAULT_AES_BLOCKLEN;
+
+ ct.cd_raw.iov_base = (char *)tmp2;
+ ct.cd_raw.iov_len = DEFAULT_AES_BLOCKLEN;
+
+ /* encrypt block N-2 */
+ result = crypto_encrypt_update(tmi->enc_data.ctx,
+ &pt, &ct, NULL);
+
+ if (result != CRYPTO_SUCCESS) {
+ cmn_err(CE_WARN, "aes_cbc_cts_encrypt: "
+ "crypto_encrypt_update(3) failed: %0x",
+ result);
+ goto cleanup;
+ }
+
+ bcopy(tmp2, plain + (nblocks - 2) * DEFAULT_AES_BLOCKLEN,
+ DEFAULT_AES_BLOCKLEN);
+
+
+ ct.cd_raw.iov_base = (char *)tmp2;
+ ct.cd_raw.iov_len = DEFAULT_AES_BLOCKLEN;
+
+ /*
+ * Ignore the output on the final step.
+ */
+ result = crypto_encrypt_final(tmi->enc_data.ctx, &ct, NULL);
+ if (result != CRYPTO_SUCCESS) {
+ cmn_err(CE_WARN, "aes_cbc_cts_encrypt: "
+ "crypto_encrypt_final(3) failed: %0x",
+ result);
+ }
+ tmi->enc_data.ctx = NULL;
+ }
+cleanup:
+ bzero(tmp, sizeof (tmp));
+ bzero(tmp2, sizeof (tmp));
+ bzero(tmp3, sizeof (tmp));
+ bzero(tmi->enc_data.block, tmi->enc_data.blocklen);
+ return (result);
+}
+
+static int
+aes_cbc_cts_decrypt(struct tmodinfo *tmi, uchar_t *buff, size_t length)
+{
+ int result = CRYPTO_SUCCESS;
+ unsigned char tmp[DEFAULT_AES_BLOCKLEN];
+ unsigned char tmp2[DEFAULT_AES_BLOCKLEN];
+ unsigned char tmp3[DEFAULT_AES_BLOCKLEN];
+ int nblocks = 0, blockno;
+ crypto_data_t ct, pt;
+ crypto_mechanism_t mech;
+
+ mech.cm_type = tmi->enc_data.mech_type;
+
+ if (tmi->dec_data.ivec_usage != IVEC_NEVER &&
+ tmi->dec_data.ivlen > 0 && tmi->dec_data.ivec != NULL) {
+ bcopy(tmi->dec_data.ivec, tmp, DEFAULT_AES_BLOCKLEN);
+ mech.cm_param = tmi->dec_data.ivec;
+ mech.cm_param_len = tmi->dec_data.ivlen;
+ } else {
+ bzero(tmp, sizeof (tmp));
+ mech.cm_param_len = 0;
+ mech.cm_param = NULL;
+ }
+ nblocks = (length + DEFAULT_AES_BLOCKLEN - 1) / DEFAULT_AES_BLOCKLEN;
+
+ bzero(&pt, sizeof (pt));
+ bzero(&ct, sizeof (ct));
+
+ if (nblocks == 1) {
+ ct.cd_format = CRYPTO_DATA_RAW;
+ ct.cd_length = length;
+ ct.cd_raw.iov_base = (char *)buff;
+ ct.cd_raw.iov_len = length;
+
+ result = crypto_decrypt(&mech, &ct,
+ &tmi->dec_data.d_encr_key, NULL, NULL, NULL);
+
+ if (result != CRYPTO_SUCCESS) {
+ cmn_err(CE_WARN, "aes_cbc_cts_decrypt: "
+ "crypto_decrypt failed: %0x", result);
+ goto cleanup;
+ }
+ } else {
+ ct.cd_format = CRYPTO_DATA_RAW;
+ ct.cd_offset = 0;
+ ct.cd_length = DEFAULT_AES_BLOCKLEN;
+
+ pt.cd_format = CRYPTO_DATA_RAW;
+ pt.cd_offset = 0;
+ pt.cd_length = DEFAULT_AES_BLOCKLEN;
+
+ result = crypto_encrypt_init(&mech,
+ &tmi->dec_data.d_encr_key,
+ tmi->dec_data.enc_tmpl,
+ &tmi->dec_data.ctx, NULL);
+
+ if (result != CRYPTO_SUCCESS) {
+ cmn_err(CE_WARN, "aes_cbc_cts_decrypt: "
+ "crypto_decrypt_init failed: %0x", result);
+ goto cleanup;
+ }
+ for (blockno = 0; blockno < nblocks - 2; blockno++) {
+ ct.cd_raw.iov_base = (char *)buff +
+ (blockno * DEFAULT_AES_BLOCKLEN);
+ ct.cd_raw.iov_len = DEFAULT_AES_BLOCKLEN;
+
+ pt.cd_raw.iov_base = (char *)tmp2;
+ pt.cd_raw.iov_len = DEFAULT_AES_BLOCKLEN;
+
+ /*
+ * Save the input to the decrypt so it can
+ * be used later for an XOR operation
+ */
+ bcopy(buff + (blockno * DEFAULT_AES_BLOCKLEN),
+ tmi->dec_data.block, DEFAULT_AES_BLOCKLEN);
+
+ result = crypto_decrypt_update(&tmi->dec_data.ctx,
+ &ct, &pt, NULL);
+ if (result != CRYPTO_SUCCESS) {
+ cmn_err(CE_WARN, "aes_cbc_cts_decrypt: "
+ "crypto_decrypt_update(1) error - "
+ "result = 0x%08x", result);
+ goto cleanup;
+ }
+ xorblock(tmp2, tmp);
+ bcopy(tmp2, buff + blockno * DEFAULT_AES_BLOCKLEN,
+ DEFAULT_AES_BLOCKLEN);
+ /*
+ * The original cipher text is used as the xor
+ * for the next block, save it here.
+ */
+ bcopy(tmi->dec_data.block, tmp, DEFAULT_AES_BLOCKLEN);
+ }
+ ct.cd_raw.iov_base = (char *)buff +
+ ((nblocks - 2) * DEFAULT_AES_BLOCKLEN);
+ ct.cd_raw.iov_len = DEFAULT_AES_BLOCKLEN;
+ pt.cd_raw.iov_base = (char *)tmp2;
+ pt.cd_raw.iov_len = DEFAULT_AES_BLOCKLEN;
+
+ result = crypto_decrypt_update(tmi->dec_data.ctx,
+ &ct, &pt, NULL);
+ if (result != CRYPTO_SUCCESS) {
+ cmn_err(CE_WARN,
+ "aes_cbc_cts_decrypt: "
+ "crypto_decrypt_update(2) error -"
+ " result = 0x%08x", result);
+ goto cleanup;
+ }
+ bzero(tmp3, sizeof (tmp3));
+ bcopy(buff + (nblocks - 1) * DEFAULT_AES_BLOCKLEN, tmp3,
+ length - ((nblocks - 1) * DEFAULT_AES_BLOCKLEN));
+
+ xorblock(tmp2, tmp3);
+ bcopy(tmp2, buff + (nblocks - 1) * DEFAULT_AES_BLOCKLEN,
+ length - ((nblocks - 1) * DEFAULT_AES_BLOCKLEN));
+
+ /* 2nd to last block ... */
+ bcopy(tmp3, tmp2,
+ length - ((nblocks - 1) * DEFAULT_AES_BLOCKLEN));
+
+ ct.cd_raw.iov_base = (char *)tmp2;
+ ct.cd_raw.iov_len = DEFAULT_AES_BLOCKLEN;
+ pt.cd_raw.iov_base = (char *)tmp3;
+ pt.cd_raw.iov_len = DEFAULT_AES_BLOCKLEN;
+
+ result = crypto_decrypt_update(tmi->dec_data.ctx,
+ &ct, &pt, NULL);
+ if (result != CRYPTO_SUCCESS) {
+ cmn_err(CE_WARN,
+ "aes_cbc_cts_decrypt: "
+ "crypto_decrypt_update(3) error - "
+ "result = 0x%08x", result);
+ goto cleanup;
+ }
+ xorblock(tmp3, tmp);
+
+
+ /* Finally, update the 2nd to last block and we are done. */
+ bcopy(tmp3, buff + (nblocks - 2) * DEFAULT_AES_BLOCKLEN,
+ DEFAULT_AES_BLOCKLEN);
+
+ /* Do Final step, but ignore output */
+ pt.cd_raw.iov_base = (char *)tmp2;
+ pt.cd_raw.iov_len = DEFAULT_AES_BLOCKLEN;
+ result = crypto_decrypt_final(tmi->dec_data.ctx, &pt, NULL);
+ if (result != CRYPTO_SUCCESS) {
+ cmn_err(CE_WARN, "aes_cbc_cts_decrypt: "
+ "crypto_decrypt_final error - "
+ "result = 0x%0x", result);
+ }
+ tmi->dec_data.ctx = NULL;
+ }
+
+cleanup:
+ bzero(tmp, sizeof (tmp));
+ bzero(tmp2, sizeof (tmp));
+ bzero(tmp3, sizeof (tmp));
+ bzero(tmi->dec_data.block, tmi->dec_data.blocklen);
+ return (result);
+}
+
+/*
+ * AES decrypt
+ *
+ * format of ciphertext when using AES
+ * +-------------+------------+------------+
+ * | confounder | msg-data | hmac |
+ * +-------------+------------+------------+
+ */
+static mblk_t *
+aes_decrypt(queue_t *q, struct tmodinfo *tmi, mblk_t *mp,
+ hash_info_t *hash)
+{
+ int result;
+ size_t enclen;
+ size_t inlen;
+ uchar_t hmacbuff[64];
+ uchar_t tmpiv[DEFAULT_AES_BLOCKLEN];
+
+ inlen = (size_t)MBLKL(mp);
+
+ enclen = inlen - AES_TRUNCATED_HMAC_LEN;
+ if (tmi->dec_data.ivec_usage != IVEC_NEVER &&
+ tmi->dec_data.ivec != NULL && tmi->dec_data.ivlen > 0) {
+ int nblocks = (enclen + DEFAULT_AES_BLOCKLEN - 1) /
+ DEFAULT_AES_BLOCKLEN;
+ bcopy(mp->b_rptr + DEFAULT_AES_BLOCKLEN * (nblocks - 2),
+ tmpiv, DEFAULT_AES_BLOCKLEN);
+ }
+
+ /* AES Decrypt */
+ result = aes_cbc_cts_decrypt(tmi, mp->b_rptr, enclen);
+
+ if (result != CRYPTO_SUCCESS) {
+ cmn_err(CE_WARN,
+ "aes_decrypt: aes_cbc_cts_decrypt "
+ "failed - error %0x", result);
+ goto cleanup;
+ }
+
+ /* Verify the HMAC */
+ result = do_hmac(sha1_hmac_mech,
+ &tmi->dec_data.d_hmac_key,
+ (char *)mp->b_rptr, enclen,
+ (char *)hmacbuff, hash->hash_len);
+
+ if (result != CRYPTO_SUCCESS) {
+ cmn_err(CE_WARN,
+ "aes_decrypt: do_hmac failed - error %0x", result);
+ goto cleanup;
+ }
+
+ if (bcmp(hmacbuff, mp->b_rptr + enclen,
+ AES_TRUNCATED_HMAC_LEN) != 0) {
+ result = -1;
+ cmn_err(CE_WARN, "aes_decrypt: checksum verification failed");
+ goto cleanup;
+ }
+
+ /* truncate the mblk at the end of the decrypted text */
+ mp->b_wptr = mp->b_rptr + enclen;
+
+ /* Adjust the beginning of the buffer to skip the confounder */
+ mp->b_rptr += DEFAULT_AES_BLOCKLEN;
+
+ if (tmi->dec_data.ivec_usage != IVEC_NEVER &&
+ tmi->dec_data.ivec != NULL && tmi->dec_data.ivlen > 0)
+ bcopy(tmpiv, tmi->dec_data.ivec, DEFAULT_AES_BLOCKLEN);
+
+cleanup:
+ if (result != CRYPTO_SUCCESS) {
+ mp->b_datap->db_type = M_ERROR;
+ mp->b_rptr = mp->b_datap->db_base;
+ *mp->b_rptr = EIO;
+ mp->b_wptr = mp->b_rptr + sizeof (char);
+ freemsg(mp->b_cont);
+ mp->b_cont = NULL;
+ qreply(WR(q), mp);
+ return (NULL);
+ }
+ return (mp);
+}
+
+/*
+ * AES encrypt
+ *
+ * format of ciphertext when using AES
+ * +-------------+------------+------------+
+ * | confounder | msg-data | hmac |
+ * +-------------+------------+------------+
+ */
+static mblk_t *
+aes_encrypt(queue_t *q, struct tmodinfo *tmi, mblk_t *mp,
+ hash_info_t *hash)
+{
+ int result;
+ size_t cipherlen;
+ size_t inlen;
+ uchar_t hmacbuff[64];
+
+ inlen = (size_t)MBLKL(mp);
+
+ cipherlen = encrypt_size(&tmi->enc_data, inlen);
+
+ ASSERT(MBLKSIZE(mp) >= cipherlen);
+
+ /*
+ * Shift the rptr back enough to insert the confounder.
+ */
+ mp->b_rptr -= DEFAULT_AES_BLOCKLEN;
+
+ /* Get random data for confounder */
+ (void) random_get_pseudo_bytes((uint8_t *)mp->b_rptr,
+ DEFAULT_AES_BLOCKLEN);
+
+ /*
+ * Because we encrypt in-place, we need to calculate
+ * the HMAC of the plaintext now, then stick it on
+ * the end of the ciphertext down below.
+ */
+ result = do_hmac(sha1_hmac_mech,
+ &tmi->enc_data.d_hmac_key,
+ (char *)mp->b_rptr, DEFAULT_AES_BLOCKLEN + inlen,
+ (char *)hmacbuff, hash->hash_len);
+
+ if (result != CRYPTO_SUCCESS) {
+ cmn_err(CE_WARN, "aes_encrypt: do_hmac failed - error %0x",
+ result);
+ goto cleanup;
+ }
+ /* Encrypt using AES-CBC-CTS */
+ result = aes_cbc_cts_encrypt(tmi, mp->b_rptr,
+ inlen + DEFAULT_AES_BLOCKLEN);
+
+ if (result != CRYPTO_SUCCESS) {
+ cmn_err(CE_WARN, "aes_encrypt: aes_cbc_cts_encrypt "
+ "failed - error %0x", result);
+ goto cleanup;
+ }
+
+ /* copy the truncated HMAC to the end of the mblk */
+ bcopy(hmacbuff, mp->b_rptr + DEFAULT_AES_BLOCKLEN + inlen,
+ AES_TRUNCATED_HMAC_LEN);
+
+ mp->b_wptr = mp->b_rptr + cipherlen;
+
+ /*
+ * The final block of cipher text (not the HMAC) is used
+ * as the next IV.
+ */
+ if (tmi->enc_data.ivec_usage != IVEC_NEVER &&
+ tmi->enc_data.ivec != NULL) {
+ int nblocks = (inlen + 2 * DEFAULT_AES_BLOCKLEN - 1) /
+ DEFAULT_AES_BLOCKLEN;
+
+ bcopy(mp->b_rptr + (nblocks - 2) * DEFAULT_AES_BLOCKLEN,
+ tmi->enc_data.ivec, DEFAULT_AES_BLOCKLEN);
+ }
+
+cleanup:
+ if (result != CRYPTO_SUCCESS) {
+ mp->b_datap->db_type = M_ERROR;
+ mp->b_rptr = mp->b_datap->db_base;
+ *mp->b_rptr = EIO;
+ mp->b_wptr = mp->b_rptr + sizeof (char);
+ freemsg(mp->b_cont);
+ mp->b_cont = NULL;
+ qreply(WR(q), mp);
+ return (NULL);
+ }
+ return (mp);
+}
+
+/*
+ * ARCFOUR-HMAC-MD5 decrypt
+ *
+ * format of ciphertext when using ARCFOUR-HMAC-MD5
+ * +-----------+------------+------------+
+ * | hmac | confounder | msg-data |
+ * +-----------+------------+------------+
+ *
+ */
+static mblk_t *
+arcfour_hmac_md5_decrypt(queue_t *q, struct tmodinfo *tmi, mblk_t *mp,
+ hash_info_t *hash)
+{
+ int result;
+ size_t cipherlen;
+ size_t inlen;
+ size_t saltlen;
+ crypto_key_t k1, k2;
+ crypto_data_t indata;
+ iovec_t v1;
+ uchar_t ms_exp[9] = {0xab, 0xab, 0xab, 0xab, 0xab,
+ 0xab, 0xab, 0xab, 0xab };
+ uchar_t k1data[CRYPT_ARCFOUR_KEYBYTES];
+ uchar_t k2data[CRYPT_ARCFOUR_KEYBYTES];
+ uchar_t cksum[MD5_HASHSIZE];
+ uchar_t saltdata[CRYPT_ARCFOUR_KEYBYTES];
+ crypto_mechanism_t mech;
+ int usage;
+
+ /* The usage constant is 1026 for all "old" rcmd mode operations */
+ if (tmi->dec_data.option_mask & CRYPTOPT_RCMD_MODE_V1)
+ usage = RCMDV1_USAGE;
+ else
+ usage = ARCFOUR_DECRYPT_USAGE;
+
+ /*
+ * The size at this point should be the size of
+ * all the plaintext plus the optional plaintext length
+ * needed for RCMD V2 mode. There should also be room
+ * at the head of the mblk for the confounder and hash info.
+ */
+ inlen = (size_t)MBLKL(mp);
+
+ /*
+ * The cipherlen does not include the HMAC at the
+ * head of the buffer.
+ */
+ cipherlen = inlen - hash->hash_len;
+
+ ASSERT(MBLKSIZE(mp) >= cipherlen);
+ if (tmi->dec_data.method == CRYPT_METHOD_ARCFOUR_HMAC_MD5_EXP) {
+ bcopy(ARCFOUR_EXP_SALT, saltdata, strlen(ARCFOUR_EXP_SALT));
+ saltdata[9] = 0;
+ saltdata[10] = usage & 0xff;
+ saltdata[11] = (usage >> 8) & 0xff;
+ saltdata[12] = (usage >> 16) & 0xff;
+ saltdata[13] = (usage >> 24) & 0xff;
+ saltlen = 14;
+ } else {
+ saltdata[0] = usage & 0xff;
+ saltdata[1] = (usage >> 8) & 0xff;
+ saltdata[2] = (usage >> 16) & 0xff;
+ saltdata[3] = (usage >> 24) & 0xff;
+ saltlen = 4;
+ }
+ /*
+ * Use the salt value to create a key to be used
+ * for subsequent HMAC operations.
+ */
+ result = do_hmac(md5_hmac_mech,
+ tmi->dec_data.ckey,
+ (char *)saltdata, saltlen,
+ (char *)k1data, sizeof (k1data));
+ if (result != CRYPTO_SUCCESS) {
+ cmn_err(CE_WARN,
+ "arcfour_hmac_md5_decrypt: do_hmac(k1)"
+ "failed - error %0x", result);
+ goto cleanup;
+ }
+ bcopy(k1data, k2data, sizeof (k1data));
+
+ /*
+ * For the neutered MS RC4 encryption type,
+ * set the trailing 9 bytes to 0xab per the
+ * RC4-HMAC spec.
+ */
+ if (tmi->dec_data.method == CRYPT_METHOD_ARCFOUR_HMAC_MD5_EXP) {
+ bcopy((void *)&k1data[7], ms_exp, sizeof (ms_exp));
+ }
+
+ mech.cm_type = tmi->dec_data.mech_type;
+ mech.cm_param = NULL;
+ mech.cm_param_len = 0;
+
+ /*
+ * If we have not yet initialized the decryption key,
+ * context, and template, do it now.
+ */
+ if (tmi->dec_data.ctx == NULL ||
+ (tmi->dec_data.option_mask & CRYPTOPT_RCMD_MODE_V1)) {
+ k1.ck_format = CRYPTO_KEY_RAW;
+ k1.ck_length = CRYPT_ARCFOUR_KEYBYTES * 8;
+ k1.ck_data = k1data;
+
+ tmi->dec_data.d_encr_key.ck_format = CRYPTO_KEY_RAW;
+ tmi->dec_data.d_encr_key.ck_length = k1.ck_length;
+ if (tmi->dec_data.d_encr_key.ck_data == NULL)
+ tmi->dec_data.d_encr_key.ck_data = kmem_zalloc(
+ CRYPT_ARCFOUR_KEYBYTES, KM_SLEEP);
+
+ /*
+ * HMAC operation creates the encryption
+ * key to be used for the decrypt operations.
+ */
+ result = do_hmac(md5_hmac_mech, &k1,
+ (char *)mp->b_rptr, hash->hash_len,
+ (char *)tmi->dec_data.d_encr_key.ck_data,
+ CRYPT_ARCFOUR_KEYBYTES);
+
+
+ if (result != CRYPTO_SUCCESS) {
+ cmn_err(CE_WARN,
+ "arcfour_hmac_md5_decrypt: do_hmac(k3)"
+ "failed - error %0x", result);
+ goto cleanup;
+ }
+ }
+
+ tmi->dec_data.enc_tmpl = NULL;
+
+ if (tmi->dec_data.ctx == NULL &&
+ (tmi->dec_data.option_mask & CRYPTOPT_RCMD_MODE_V2)) {
+ /*
+ * Only create a template if we are doing
+ * chaining from block to block.
+ */
+ result = crypto_create_ctx_template(&mech,
+ &tmi->dec_data.d_encr_key,
+ &tmi->dec_data.enc_tmpl,
+ KM_SLEEP);
+ if (result == CRYPTO_NOT_SUPPORTED) {
+ tmi->dec_data.enc_tmpl = NULL;
+ } else if (result != CRYPTO_SUCCESS) {
+ cmn_err(CE_WARN,
+ "arcfour_hmac_md5_decrypt: "
+ "failed to create dec template "
+ "for RC4 encrypt: %0x", result);
+ goto cleanup;
+ }
+
+ result = crypto_decrypt_init(&mech,
+ &tmi->dec_data.d_encr_key,
+ tmi->dec_data.enc_tmpl,
+ &tmi->dec_data.ctx, NULL);
+
+ if (result != CRYPTO_SUCCESS) {
+ cmn_err(CE_WARN, "crypto_decrypt_init failed:"
+ " %0x", result);
+ goto cleanup;
+ }
+ }
+
+ /* adjust the rptr so we don't decrypt the original hmac field */
+
+ v1.iov_base = (char *)mp->b_rptr + hash->hash_len;
+ v1.iov_len = cipherlen;
+
+ indata.cd_format = CRYPTO_DATA_RAW;
+ indata.cd_offset = 0;
+ indata.cd_length = cipherlen;
+ indata.cd_raw = v1;
+
+ if (tmi->dec_data.option_mask & CRYPTOPT_RCMD_MODE_V2)
+ result = crypto_decrypt_update(tmi->dec_data.ctx,
+ &indata, NULL, NULL);
+ else
+ result = crypto_decrypt(&mech, &indata,
+ &tmi->dec_data.d_encr_key, NULL, NULL, NULL);
+
+ if (result != CRYPTO_SUCCESS) {
+ cmn_err(CE_WARN, "crypto_decrypt_update failed:"
+ " %0x", result);
+ goto cleanup;
+ }
+
+ k2.ck_format = CRYPTO_KEY_RAW;
+ k2.ck_length = sizeof (k2data) * 8;
+ k2.ck_data = k2data;
+
+ result = do_hmac(md5_hmac_mech,
+ &k2,
+ (char *)mp->b_rptr + hash->hash_len, cipherlen,
+ (char *)cksum, hash->hash_len);
+
+ if (result != CRYPTO_SUCCESS) {
+ cmn_err(CE_WARN,
+ "arcfour_hmac_md5_decrypt: do_hmac(k2)"
+ "failed - error %0x", result);
+ goto cleanup;
+ }
+
+ if (bcmp(cksum, mp->b_rptr, hash->hash_len) != 0) {
+ cmn_err(CE_WARN, "arcfour_decrypt HMAC comparison failed");
+ result = -1;
+ goto cleanup;
+ }
+
+ /*
+ * adjust the start of the mblk to skip over the
+ * hash and confounder.
+ */
+ mp->b_rptr += hash->hash_len + hash->confound_len;
+
+cleanup:
+ bzero(k1data, sizeof (k1data));
+ bzero(k2data, sizeof (k2data));
+ bzero(cksum, sizeof (cksum));
+ bzero(saltdata, sizeof (saltdata));
+ if (result != CRYPTO_SUCCESS) {
+ mp->b_datap->db_type = M_ERROR;
+ mp->b_rptr = mp->b_datap->db_base;
+ *mp->b_rptr = EIO;
+ mp->b_wptr = mp->b_rptr + sizeof (char);
+ freemsg(mp->b_cont);
+ mp->b_cont = NULL;
+ qreply(WR(q), mp);
+ return (NULL);
+ }
+ return (mp);
+}
+
+/*
+ * ARCFOUR-HMAC-MD5 encrypt
+ *
+ * format of ciphertext when using ARCFOUR-HMAC-MD5
+ * +-----------+------------+------------+
+ * | hmac | confounder | msg-data |
+ * +-----------+------------+------------+
+ *
+ */
+static mblk_t *
+arcfour_hmac_md5_encrypt(queue_t *q, struct tmodinfo *tmi, mblk_t *mp,
+ hash_info_t *hash)
+{
+ int result;
+ size_t cipherlen;
+ size_t inlen;
+ size_t saltlen;
+ crypto_key_t k1, k2;
+ crypto_data_t indata;
+ iovec_t v1;
+ uchar_t ms_exp[9] = {0xab, 0xab, 0xab, 0xab, 0xab,
+ 0xab, 0xab, 0xab, 0xab };
+ uchar_t k1data[CRYPT_ARCFOUR_KEYBYTES];
+ uchar_t k2data[CRYPT_ARCFOUR_KEYBYTES];
+ uchar_t saltdata[CRYPT_ARCFOUR_KEYBYTES];
+ crypto_mechanism_t mech;
+ int usage;
+
+ /* The usage constant is 1026 for all "old" rcmd mode operations */
+ if (tmi->enc_data.option_mask & CRYPTOPT_RCMD_MODE_V1)
+ usage = RCMDV1_USAGE;
+ else
+ usage = ARCFOUR_ENCRYPT_USAGE;
+
+ mech.cm_type = tmi->enc_data.mech_type;
+ mech.cm_param = NULL;
+ mech.cm_param_len = 0;
+
+ /*
+ * The size at this point should be the size of
+ * all the plaintext plus the optional plaintext length
+ * needed for RCMD V2 mode. There should also be room
+ * at the head of the mblk for the confounder and hash info.
+ */
+ inlen = (size_t)MBLKL(mp);
+
+ cipherlen = encrypt_size(&tmi->enc_data, inlen);
+
+ ASSERT(MBLKSIZE(mp) >= cipherlen);
+
+ /*
+ * Shift the rptr back enough to insert
+ * the confounder and hash.
+ */
+ mp->b_rptr -= (hash->confound_len + hash->hash_len);
+
+ /* zero out the hash area */
+ bzero(mp->b_rptr, (size_t)hash->hash_len);
+
+ if (cipherlen > inlen) {
+ bzero(mp->b_wptr, MBLKTAIL(mp));
+ }
+
+ if (tmi->enc_data.method == CRYPT_METHOD_ARCFOUR_HMAC_MD5_EXP) {
+ bcopy(ARCFOUR_EXP_SALT, saltdata, strlen(ARCFOUR_EXP_SALT));
+ saltdata[9] = 0;
+ saltdata[10] = usage & 0xff;
+ saltdata[11] = (usage >> 8) & 0xff;
+ saltdata[12] = (usage >> 16) & 0xff;
+ saltdata[13] = (usage >> 24) & 0xff;
+ saltlen = 14;
+ } else {
+ saltdata[0] = usage & 0xff;
+ saltdata[1] = (usage >> 8) & 0xff;
+ saltdata[2] = (usage >> 16) & 0xff;
+ saltdata[3] = (usage >> 24) & 0xff;
+ saltlen = 4;
+ }
+ /*
+ * Use the salt value to create a key to be used
+ * for subsequent HMAC operations.
+ */
+ result = do_hmac(md5_hmac_mech,
+ tmi->enc_data.ckey,
+ (char *)saltdata, saltlen,
+ (char *)k1data, sizeof (k1data));
+ if (result != CRYPTO_SUCCESS) {
+ cmn_err(CE_WARN,
+ "arcfour_hmac_md5_encrypt: do_hmac(k1)"
+ "failed - error %0x", result);
+ goto cleanup;
+ }
+
+ bcopy(k1data, k2data, sizeof (k2data));
+
+ /*
+ * For the neutered MS RC4 encryption type,
+ * set the trailing 9 bytes to 0xab per the
+ * RC4-HMAC spec.
+ */
+ if (tmi->enc_data.method == CRYPT_METHOD_ARCFOUR_HMAC_MD5_EXP) {
+ bcopy((void *)&k1data[7], ms_exp, sizeof (ms_exp));
+ }
+
+ /*
+ * Get the confounder bytes.
+ */
+ (void) random_get_pseudo_bytes(
+ (uint8_t *)(mp->b_rptr + hash->hash_len),
+ (size_t)hash->confound_len);
+
+ k2.ck_data = k2data;
+ k2.ck_format = CRYPTO_KEY_RAW;
+ k2.ck_length = sizeof (k2data) * 8;
+
+ /*
+ * This writes the HMAC to the hash area in the
+ * mblk. The key used is the one just created by
+ * the previous HMAC operation.
+ * The data being processed is the confounder bytes
+ * PLUS the input plaintext.
+ */
+ result = do_hmac(md5_hmac_mech, &k2,
+ (char *)mp->b_rptr + hash->hash_len,
+ hash->confound_len + inlen,
+ (char *)mp->b_rptr, hash->hash_len);
+ if (result != CRYPTO_SUCCESS) {
+ cmn_err(CE_WARN,
+ "arcfour_hmac_md5_encrypt: do_hmac(k2)"
+ "failed - error %0x", result);
+ goto cleanup;
+ }
+ /*
+ * Because of the odd way that MIT uses RC4 keys
+ * on the rlogin stream, we only need to create
+ * this key once.
+ * However, if using "old" rcmd mode, we need to do
+ * it every time.
+ */
+ if (tmi->enc_data.ctx == NULL ||
+ (tmi->enc_data.option_mask & CRYPTOPT_RCMD_MODE_V1)) {
+ crypto_key_t *key = &tmi->enc_data.d_encr_key;
+
+ k1.ck_data = k1data;
+ k1.ck_format = CRYPTO_KEY_RAW;
+ k1.ck_length = sizeof (k1data) * 8;
+
+ key->ck_format = CRYPTO_KEY_RAW;
+ key->ck_length = k1.ck_length;
+ if (key->ck_data == NULL)
+ key->ck_data = kmem_zalloc(
+ CRYPT_ARCFOUR_KEYBYTES, KM_SLEEP);
+
+ /*
+ * The final HMAC operation creates the encryption
+ * key to be used for the encrypt operation.
+ */
+ result = do_hmac(md5_hmac_mech, &k1,
+ (char *)mp->b_rptr, hash->hash_len,
+ (char *)key->ck_data, CRYPT_ARCFOUR_KEYBYTES);
+
+ if (result != CRYPTO_SUCCESS) {
+ cmn_err(CE_WARN,
+ "arcfour_hmac_md5_encrypt: do_hmac(k3)"
+ "failed - error %0x", result);
+ goto cleanup;
+ }
+ }
+
+ /*
+ * If the context has not been initialized, do it now.
+ */
+ if (tmi->enc_data.ctx == NULL &&
+ (tmi->enc_data.option_mask & CRYPTOPT_RCMD_MODE_V2)) {
+ /*
+ * Only create a template if we are doing
+ * chaining from block to block.
+ */
+ result = crypto_create_ctx_template(&mech,
+ &tmi->enc_data.d_encr_key,
+ &tmi->enc_data.enc_tmpl,
+ KM_SLEEP);
+ if (result == CRYPTO_NOT_SUPPORTED) {
+ tmi->enc_data.enc_tmpl = NULL;
+ } else if (result != CRYPTO_SUCCESS) {
+ cmn_err(CE_WARN, "failed to create enc template "
+ "for RC4 encrypt: %0x", result);
+ goto cleanup;
+ }
+
+ result = crypto_encrypt_init(&mech,
+ &tmi->enc_data.d_encr_key,
+ tmi->enc_data.enc_tmpl,
+ &tmi->enc_data.ctx, NULL);
+ if (result != CRYPTO_SUCCESS) {
+ cmn_err(CE_WARN, "crypto_encrypt_init failed:"
+ " %0x", result);
+ goto cleanup;
+ }
+ }
+ v1.iov_base = (char *)mp->b_rptr + hash->hash_len;
+ v1.iov_len = hash->confound_len + inlen;
+
+ indata.cd_format = CRYPTO_DATA_RAW;
+ indata.cd_offset = 0;
+ indata.cd_length = hash->confound_len + inlen;
+ indata.cd_raw = v1;
+
+ if (tmi->enc_data.option_mask & CRYPTOPT_RCMD_MODE_V2)
+ result = crypto_encrypt_update(tmi->enc_data.ctx,
+ &indata, NULL, NULL);
+ else
+ result = crypto_encrypt(&mech, &indata,
+ &tmi->enc_data.d_encr_key, NULL,
+ NULL, NULL);
+
+ if (result != CRYPTO_SUCCESS) {
+ cmn_err(CE_WARN, "crypto_encrypt_update failed: 0x%0x",
+ result);
+ }
+
+cleanup:
+ bzero(k1data, sizeof (k1data));
+ bzero(k2data, sizeof (k2data));
+ bzero(saltdata, sizeof (saltdata));
+ if (result != CRYPTO_SUCCESS) {
+ mp->b_datap->db_type = M_ERROR;
+ mp->b_rptr = mp->b_datap->db_base;
+ *mp->b_rptr = EIO;
+ mp->b_wptr = mp->b_rptr + sizeof (char);
+ freemsg(mp->b_cont);
+ mp->b_cont = NULL;
+ qreply(WR(q), mp);
+ return (NULL);
+ }
+ return (mp);
+}
+
+/*
+ * DES-CBC-[HASH] encrypt
+ *
+ * Needed to support userland apps that must support Kerberos V5
+ * encryption DES-CBC encryption modes.
+ *
+ * The HASH values supported are RAW(NULL), MD5, CRC32, and SHA1
+ *
+ * format of ciphertext for DES-CBC functions, per RFC1510 is:
+ * +-----------+----------+-------------+-----+
+ * |confounder | cksum | msg-data | pad |
+ * +-----------+----------+-------------+-----+
+ *
+ * format of ciphertext when using DES3-SHA1-HMAC
+ * +-----------+----------+-------------+-----+
+ * |confounder | msg-data | hmac | pad |
+ * +-----------+----------+-------------+-----+
+ *
+ * The confounder is 8 bytes of random data.
+ * The cksum depends on the hash being used.
+ * 4 bytes for CRC32
+ * 16 bytes for MD5
+ * 20 bytes for SHA1
+ * 0 bytes for RAW
+ *
+ */
+static mblk_t *
+des_cbc_encrypt(queue_t *q, struct tmodinfo *tmi, mblk_t *mp, hash_info_t *hash)
+{
+ int result;
+ size_t cipherlen;
+ size_t inlen;
+ size_t plainlen;
+
+ /*
+ * The size at this point should be the size of
+ * all the plaintext plus the optional plaintext length
+ * needed for RCMD V2 mode. There should also be room
+ * at the head of the mblk for the confounder and hash info.
+ */
+ inlen = (size_t)MBLKL(mp);
+
+ /*
+ * The output size will be a multiple of 8 because this algorithm
+ * only works on 8 byte chunks.
+ */
+ cipherlen = encrypt_size(&tmi->enc_data, inlen);
+
+ ASSERT(MBLKSIZE(mp) >= cipherlen);
+
+ if (cipherlen > inlen) {
+ bzero(mp->b_wptr, MBLKTAIL(mp));
+ }
+
+ /*
+ * Shift the rptr back enough to insert
+ * the confounder and hash.
+ */
+ if (tmi->enc_data.method == CRYPT_METHOD_DES3_CBC_SHA1) {
+ mp->b_rptr -= hash->confound_len;
+ } else {
+ mp->b_rptr -= (hash->confound_len + hash->hash_len);
+
+ /* zero out the hash area */
+ bzero(mp->b_rptr + hash->confound_len, (size_t)hash->hash_len);
+ }
+
+ /* get random confounder from our friend, the 'random' module */
+ if (hash->confound_len > 0) {
+ (void) random_get_pseudo_bytes((uint8_t *)mp->b_rptr,
+ (size_t)hash->confound_len);
+ }
+
+ /*
+ * For 3DES we calculate an HMAC later.
+ */
+ if (tmi->enc_data.method != CRYPT_METHOD_DES3_CBC_SHA1) {
+ /* calculate chksum of confounder + input */
+ if (hash->hash_len > 0 && hash->hashfunc != NULL) {
+ uchar_t cksum[MAX_CKSUM_LEN];
+
+ result = hash->hashfunc(cksum, mp->b_rptr,
+ cipherlen);
+ if (result != CRYPTO_SUCCESS) {
+ goto failure;
+ }
+
+ /* put hash in place right after the confounder */
+ bcopy(cksum, (mp->b_rptr + hash->confound_len),
+ (size_t)hash->hash_len);
+ }
+ }
+ /*
+ * In order to support the "old" Kerberos RCMD protocol,
+ * we must use the IVEC 3 different ways:
+ * IVEC_REUSE = keep using the same IV each time, this is
+ * ugly and insecure, but necessary for
+ * backwards compatibility with existing MIT code.
+ * IVEC_ONETIME = Use the ivec as initialized when the crypto
+ * was setup (see setup_crypto routine).
+ * IVEC_NEVER = never use an IVEC, use a bunch of 0's as the IV (yuk).
+ */
+ if (tmi->enc_data.ivec_usage == IVEC_NEVER) {
+ bzero(tmi->enc_data.block, tmi->enc_data.blocklen);
+ } else if (tmi->enc_data.ivec_usage == IVEC_REUSE) {
+ bcopy(tmi->enc_data.ivec, tmi->enc_data.block,
+ tmi->enc_data.blocklen);
+ }
+
+ if (tmi->enc_data.method == CRYPT_METHOD_DES3_CBC_SHA1) {
+ /*
+ * The input length already included the hash size,
+ * don't include this in the plaintext length
+ * calculations.
+ */
+ plainlen = cipherlen - hash->hash_len;
+
+ mp->b_wptr = mp->b_rptr + plainlen;
+
+ result = kef_encr_hmac(&tmi->enc_data,
+ (void *)mp, (size_t)plainlen,
+ (char *)(mp->b_rptr + plainlen),
+ hash->hash_len);
+ } else {
+ ASSERT(mp->b_rptr + cipherlen <= DB_LIM(mp));
+ mp->b_wptr = mp->b_rptr + cipherlen;
+ result = kef_crypt(&tmi->enc_data, (void *)mp,
+ CRYPTO_DATA_MBLK, (size_t)cipherlen,
+ CRYPT_ENCRYPT);
+ }
+failure:
+ if (result != CRYPTO_SUCCESS) {
+#ifdef DEBUG
+ cmn_err(CE_WARN,
+ "des_cbc_encrypt: kef_crypt encrypt "
+ "failed (len: %ld) - error %0x",
+ cipherlen, result);
+#endif
+ mp->b_datap->db_type = M_ERROR;
+ mp->b_rptr = mp->b_datap->db_base;
+ *mp->b_rptr = EIO;
+ mp->b_wptr = mp->b_rptr + sizeof (char);
+ freemsg(mp->b_cont);
+ mp->b_cont = NULL;
+ qreply(WR(q), mp);
+ return (NULL);
+ } else if (tmi->enc_data.ivec_usage == IVEC_ONETIME) {
+ /*
+ * Because we are using KEF, we must manually
+ * update our IV.
+ */
+ bcopy(mp->b_wptr - tmi->enc_data.ivlen,
+ tmi->enc_data.block, tmi->enc_data.ivlen);
+ }
+ if (tmi->enc_data.method == CRYPT_METHOD_DES3_CBC_SHA1) {
+ mp->b_wptr = mp->b_rptr + cipherlen;
+ }
+
+ return (mp);
+}
+
+/*
+ * des_cbc_decrypt
+ *
+ *
+ * Needed to support userland apps that must support Kerberos V5
+ * encryption DES-CBC decryption modes.
+ *
+ * The HASH values supported are RAW(NULL), MD5, CRC32, and SHA1
+ *
+ * format of ciphertext for DES-CBC functions, per RFC1510 is:
+ * +-----------+----------+-------------+-----+
+ * |confounder | cksum | msg-data | pad |
+ * +-----------+----------+-------------+-----+
+ *
+ * format of ciphertext when using DES3-SHA1-HMAC
+ * +-----------+----------+-------------+-----+
+ * |confounder | msg-data | hmac | pad |
+ * +-----------+----------+-------------+-----+
+ *
+ * The confounder is 8 bytes of random data.
+ * The cksum depends on the hash being used.
+ * 4 bytes for CRC32
+ * 16 bytes for MD5
+ * 20 bytes for SHA1
+ * 0 bytes for RAW
+ *
+ */
+static mblk_t *
+des_cbc_decrypt(queue_t *q, struct tmodinfo *tmi, mblk_t *mp, hash_info_t *hash)
+{
+ uint_t inlen, datalen;
+ int result = 0;
+ uchar_t *optr = NULL;
+ uchar_t cksum[MAX_CKSUM_LEN], newcksum[MAX_CKSUM_LEN];
+ uchar_t nextiv[DEFAULT_DES_BLOCKLEN];
+
+ /* Compute adjusted size */
+ inlen = MBLKL(mp);
+
+ optr = mp->b_rptr;
+
+ /*
+ * In order to support the "old" Kerberos RCMD protocol,
+ * we must use the IVEC 3 different ways:
+ * IVEC_REUSE = keep using the same IV each time, this is
+ * ugly and insecure, but necessary for
+ * backwards compatibility with existing MIT code.
+ * IVEC_ONETIME = Use the ivec as initialized when the crypto
+ * was setup (see setup_crypto routine).
+ * IVEC_NEVER = never use an IVEC, use a bunch of 0's as the IV (yuk).
+ */
+ if (tmi->dec_data.ivec_usage == IVEC_NEVER)
+ bzero(tmi->dec_data.block, tmi->dec_data.blocklen);
+ else if (tmi->dec_data.ivec_usage == IVEC_REUSE)
+ bcopy(tmi->dec_data.ivec, tmi->dec_data.block,
+ tmi->dec_data.blocklen);
+
+ if (tmi->dec_data.method == CRYPT_METHOD_DES3_CBC_SHA1) {
+ /*
+ * Do not decrypt the HMAC at the end
+ */
+ int decrypt_len = inlen - hash->hash_len;
+
+ /*
+ * Move the wptr so the mblk appears to end
+ * BEFORE the HMAC section.
+ */
+ mp->b_wptr = mp->b_rptr + decrypt_len;
+
+ /*
+ * Because we are using KEF, we must manually update our
+ * IV.
+ */
+ if (tmi->dec_data.ivec_usage == IVEC_ONETIME) {
+ bcopy(mp->b_rptr + decrypt_len - tmi->dec_data.ivlen,
+ nextiv, tmi->dec_data.ivlen);
+ }
+
+ result = kef_decr_hmac(&tmi->dec_data, mp, decrypt_len,
+ (char *)newcksum, hash->hash_len);
+ } else {
+ /*
+ * Because we are using KEF, we must manually update our
+ * IV.
+ */
+ if (tmi->dec_data.ivec_usage == IVEC_ONETIME) {
+ bcopy(mp->b_wptr - tmi->enc_data.ivlen, nextiv,
+ tmi->dec_data.ivlen);
+ }
+ result = kef_crypt(&tmi->dec_data, (void *)mp,
+ CRYPTO_DATA_MBLK, (size_t)inlen, CRYPT_DECRYPT);
+ }
+ if (result != CRYPTO_SUCCESS) {
+#ifdef DEBUG
+ cmn_err(CE_WARN,
+ "des_cbc_decrypt: kef_crypt decrypt "
+ "failed - error %0x", result);
+#endif
+ mp->b_datap->db_type = M_ERROR;
+ mp->b_rptr = mp->b_datap->db_base;
+ *mp->b_rptr = EIO;
+ mp->b_wptr = mp->b_rptr + sizeof (char);
+ freemsg(mp->b_cont);
+ mp->b_cont = NULL;
+ qreply(WR(q), mp);
+ return (NULL);
+ }
+
+ /*
+ * Manually update the IV, KEF does not track this for us.
+ */
+ if (tmi->dec_data.ivec_usage == IVEC_ONETIME) {
+ bcopy(nextiv, tmi->dec_data.block, tmi->dec_data.ivlen);
+ }
+
+ /* Verify the checksum(if necessary) */
+ if (hash->hash_len > 0) {
+ if (tmi->dec_data.method == CRYPT_METHOD_DES3_CBC_SHA1) {
+ bcopy(mp->b_rptr + inlen - hash->hash_len, cksum,
+ hash->hash_len);
+ } else {
+ bcopy(optr + hash->confound_len, cksum, hash->hash_len);
+
+ /* zero the cksum in the buffer */
+ ASSERT(optr + hash->confound_len + hash->hash_len <=
+ DB_LIM(mp));
+ bzero(optr + hash->confound_len, hash->hash_len);
+
+ /* calculate MD5 chksum of confounder + input */
+ if (hash->hashfunc) {
+ (void) hash->hashfunc(newcksum, optr, inlen);
+ }
+ }
+
+ if (bcmp(cksum, newcksum, hash->hash_len)) {
+#ifdef DEBUG
+ cmn_err(CE_WARN, "des_cbc_decrypt: checksum "
+ "verification failed");
+#endif
+ mp->b_datap->db_type = M_ERROR;
+ mp->b_rptr = mp->b_datap->db_base;
+ *mp->b_rptr = EIO;
+ mp->b_wptr = mp->b_rptr + sizeof (char);
+ freemsg(mp->b_cont);
+ mp->b_cont = NULL;
+ qreply(WR(q), mp);
+ return (NULL);
+ }
+ }
+
+ datalen = inlen - hash->confound_len - hash->hash_len;
+
+ /* Move just the decrypted input into place if necessary */
+ if (hash->confound_len > 0 || hash->hash_len > 0) {
+ if (tmi->dec_data.method == CRYPT_METHOD_DES3_CBC_SHA1)
+ mp->b_rptr += hash->confound_len;
+ else
+ mp->b_rptr += hash->confound_len + hash->hash_len;
+ }
+
+ ASSERT(mp->b_rptr + datalen <= DB_LIM(mp));
+ mp->b_wptr = mp->b_rptr + datalen;
+
+ return (mp);
+}
+
+static mblk_t *
+do_decrypt(queue_t *q, mblk_t *mp)
+{
+ struct tmodinfo *tmi = (struct tmodinfo *)q->q_ptr;
+ mblk_t *outmp;
+
+ switch (tmi->dec_data.method) {
+ case CRYPT_METHOD_DES_CFB:
+ outmp = des_cfb_decrypt(q, tmi, mp);
+ break;
+ case CRYPT_METHOD_NONE:
+ outmp = mp;
+ break;
+ case CRYPT_METHOD_DES_CBC_NULL:
+ outmp = des_cbc_decrypt(q, tmi, mp, &null_hash);
+ break;
+ case CRYPT_METHOD_DES_CBC_MD5:
+ outmp = des_cbc_decrypt(q, tmi, mp, &md5_hash);
+ break;
+ case CRYPT_METHOD_DES_CBC_CRC:
+ outmp = des_cbc_decrypt(q, tmi, mp, &crc32_hash);
+ break;
+ case CRYPT_METHOD_DES3_CBC_SHA1:
+ outmp = des_cbc_decrypt(q, tmi, mp, &sha1_hash);
+ break;
+ case CRYPT_METHOD_ARCFOUR_HMAC_MD5:
+ case CRYPT_METHOD_ARCFOUR_HMAC_MD5_EXP:
+ outmp = arcfour_hmac_md5_decrypt(q, tmi, mp, &md5_hash);
+ break;
+ case CRYPT_METHOD_AES128:
+ case CRYPT_METHOD_AES256:
+ outmp = aes_decrypt(q, tmi, mp, &sha1_hash);
+ break;
+ }
+ return (outmp);
+}
+
+/*
+ * do_encrypt
+ *
+ * Generic encryption routine for a single message block.
+ * The input mblk may be replaced by some encrypt routines
+ * because they add extra data in some cases that may exceed
+ * the input mblk_t size limit.
+ */
+static mblk_t *
+do_encrypt(queue_t *q, mblk_t *mp)
+{
+ struct tmodinfo *tmi = (struct tmodinfo *)q->q_ptr;
+ mblk_t *outmp;
+
+ switch (tmi->enc_data.method) {
+ case CRYPT_METHOD_DES_CFB:
+ outmp = des_cfb_encrypt(q, tmi, mp);
+ break;
+ case CRYPT_METHOD_DES_CBC_NULL:
+ outmp = des_cbc_encrypt(q, tmi, mp, &null_hash);
+ break;
+ case CRYPT_METHOD_DES_CBC_MD5:
+ outmp = des_cbc_encrypt(q, tmi, mp, &md5_hash);
+ break;
+ case CRYPT_METHOD_DES_CBC_CRC:
+ outmp = des_cbc_encrypt(q, tmi, mp, &crc32_hash);
+ break;
+ case CRYPT_METHOD_DES3_CBC_SHA1:
+ outmp = des_cbc_encrypt(q, tmi, mp, &sha1_hash);
+ break;
+ case CRYPT_METHOD_ARCFOUR_HMAC_MD5:
+ case CRYPT_METHOD_ARCFOUR_HMAC_MD5_EXP:
+ outmp = arcfour_hmac_md5_encrypt(q, tmi, mp, &md5_hash);
+ break;
+ case CRYPT_METHOD_AES128:
+ case CRYPT_METHOD_AES256:
+ outmp = aes_encrypt(q, tmi, mp, &sha1_hash);
+ break;
+ case CRYPT_METHOD_NONE:
+ outmp = mp;
+ break;
+ }
+ return (outmp);
+}
+
+/*
+ * setup_crypto
+ *
+ * This takes the data from the CRYPTIOCSETUP ioctl
+ * and sets up a cipher_data_t structure for either
+ * encryption or decryption. This is where the
+ * key and initialization vector data get stored
+ * prior to beginning any crypto functions.
+ *
+ * Special note:
+ * Some applications(e.g. telnetd) have ability to switch
+ * crypto on/off periodically. Thus, the application may call
+ * the CRYPTIOCSETUP ioctl many times for the same stream.
+ * If the CRYPTIOCSETUP is called with 0 length key or ivec fields
+ * assume that the key, block, and saveblock fields that are already
+ * set from a previous CRIOCSETUP call are still valid. This helps avoid
+ * a rekeying error that could occur if we overwrite these fields
+ * with each CRYPTIOCSETUP call.
+ * In short, sometimes, CRYPTIOCSETUP is used to simply toggle on/off
+ * without resetting the original crypto parameters.
+ *
+ */
+static int
+setup_crypto(struct cr_info_t *ci, struct cipher_data_t *cd, int encrypt)
+{
+ uint_t newblocklen;
+ uint32_t enc_usage = 0, dec_usage = 0;
+ int rv;
+
+ /*
+ * Initial sanity checks
+ */
+ if (!CR_METHOD_OK(ci->crypto_method)) {
+ cmn_err(CE_WARN, "Illegal crypto method (%d)",
+ ci->crypto_method);
+ return (EINVAL);
+ }
+ if (!CR_OPTIONS_OK(ci->option_mask)) {
+ cmn_err(CE_WARN, "Illegal crypto options (%d)",
+ ci->option_mask);
+ return (EINVAL);
+ }
+ if (!CR_IVUSAGE_OK(ci->ivec_usage)) {
+ cmn_err(CE_WARN, "Illegal ivec usage value (%d)",
+ ci->ivec_usage);
+ return (EINVAL);
+ }
+
+ cd->method = ci->crypto_method;
+ cd->bytes = 0;
+
+ if (ci->keylen > 0) {
+ if (cd->key != NULL) {
+ kmem_free(cd->key, cd->keylen);
+ cd->key = NULL;
+ cd->keylen = 0;
+ }
+ /*
+ * cd->key holds the copy of the raw key bytes passed in
+ * from the userland app.
+ */
+ cd->key = (char *)kmem_alloc((size_t)ci->keylen, KM_SLEEP);
+
+ cd->keylen = ci->keylen;
+ bcopy(ci->key, cd->key, (size_t)ci->keylen);
+ }
+
+ /*
+ * Configure the block size based on the type of cipher.
+ */
+ switch (cd->method) {
+ case CRYPT_METHOD_NONE:
+ newblocklen = 0;
+ break;
+ case CRYPT_METHOD_DES_CFB:
+ newblocklen = DEFAULT_DES_BLOCKLEN;
+ cd->mech_type = crypto_mech2id(SUN_CKM_DES_ECB);
+ break;
+ case CRYPT_METHOD_DES_CBC_NULL:
+ case CRYPT_METHOD_DES_CBC_MD5:
+ case CRYPT_METHOD_DES_CBC_CRC:
+ newblocklen = DEFAULT_DES_BLOCKLEN;
+ cd->mech_type = crypto_mech2id(SUN_CKM_DES_CBC);
+ break;
+ case CRYPT_METHOD_DES3_CBC_SHA1:
+ newblocklen = DEFAULT_DES_BLOCKLEN;
+ cd->mech_type = crypto_mech2id(SUN_CKM_DES3_CBC);
+ /* 3DES always uses the old usage constant */
+ enc_usage = RCMDV1_USAGE;
+ dec_usage = RCMDV1_USAGE;
+ break;
+ case CRYPT_METHOD_ARCFOUR_HMAC_MD5:
+ case CRYPT_METHOD_ARCFOUR_HMAC_MD5_EXP:
+ newblocklen = 0;
+ cd->mech_type = crypto_mech2id(SUN_CKM_RC4);
+ break;
+ case CRYPT_METHOD_AES128:
+ case CRYPT_METHOD_AES256:
+ newblocklen = DEFAULT_AES_BLOCKLEN;
+ cd->mech_type = crypto_mech2id(SUN_CKM_AES_ECB);
+ enc_usage = AES_ENCRYPT_USAGE;
+ dec_usage = AES_DECRYPT_USAGE;
+ break;
+ }
+ if (cd->mech_type == CRYPTO_MECH_INVALID) {
+ return (CRYPTO_FAILED);
+ }
+
+ /*
+ * If RC4, initialize the master crypto key used by
+ * the RC4 algorithm to derive the final encrypt and decrypt keys.
+ */
+ if (cd->keylen > 0 && IS_RC4_METHOD(cd->method)) {
+ /*
+ * cd->ckey is a kernel crypto key structure used as the
+ * master key in the RC4-HMAC crypto operations.
+ */
+ if (cd->ckey == NULL) {
+ cd->ckey = (crypto_key_t *)kmem_zalloc(
+ sizeof (crypto_key_t), KM_SLEEP);
+ }
+
+ cd->ckey->ck_format = CRYPTO_KEY_RAW;
+ cd->ckey->ck_data = cd->key;
+
+ /* key length for EF is measured in bits */
+ cd->ckey->ck_length = cd->keylen * 8;
+ }
+
+ /*
+ * cd->block and cd->saveblock are used as temporary storage for
+ * data that must be carried over between encrypt/decrypt operations
+ * in some of the "feedback" modes.
+ */
+ if (newblocklen != cd->blocklen) {
+ if (cd->block != NULL) {
+ kmem_free(cd->block, cd->blocklen);
+ cd->block = NULL;
+ }
+
+ if (cd->saveblock != NULL) {
+ kmem_free(cd->saveblock, cd->blocklen);
+ cd->saveblock = NULL;
+ }
+
+ cd->blocklen = newblocklen;
+ if (cd->blocklen) {
+ cd->block = (char *)kmem_zalloc((size_t)cd->blocklen,
+ KM_SLEEP);
+ }
+
+ if (cd->method == CRYPT_METHOD_DES_CFB)
+ cd->saveblock = (char *)kmem_zalloc(cd->blocklen,
+ KM_SLEEP);
+ else
+ cd->saveblock = NULL;
+ }
+
+ if (ci->iveclen != cd->ivlen) {
+ if (cd->ivec != NULL) {
+ kmem_free(cd->ivec, cd->ivlen);
+ cd->ivec = NULL;
+ }
+ if (ci->ivec_usage != IVEC_NEVER && ci->iveclen > 0) {
+ cd->ivec = (char *)kmem_zalloc((size_t)ci->iveclen,
+ KM_SLEEP);
+ cd->ivlen = ci->iveclen;
+ } else {
+ cd->ivlen = 0;
+ cd->ivec = NULL;
+ }
+ }
+ cd->option_mask = ci->option_mask;
+
+ /*
+ * Old protocol requires a static 'usage' value for
+ * deriving keys. Yuk.
+ */
+ if (cd->option_mask & CRYPTOPT_RCMD_MODE_V1) {
+ enc_usage = dec_usage = RCMDV1_USAGE;
+ }
+
+ if (cd->ivlen > cd->blocklen) {
+ cmn_err(CE_WARN, "setup_crypto: IV longer than block size");
+ return (EINVAL);
+ }
+
+ /*
+ * If we are using an IVEC "correctly" (i.e. set it once)
+ * copy it here.
+ */
+ if (ci->ivec_usage == IVEC_ONETIME && cd->block != NULL)
+ bcopy(ci->ivec, cd->block, (size_t)cd->ivlen);
+
+ cd->ivec_usage = ci->ivec_usage;
+ if (cd->ivec != NULL) {
+ /* Save the original IVEC in case we need it later */
+ bcopy(ci->ivec, cd->ivec, (size_t)cd->ivlen);
+ }
+ /*
+ * Special handling for 3DES-SHA1-HMAC and AES crypto:
+ * generate derived keys and context templates
+ * for better performance.
+ */
+ if (cd->method == CRYPT_METHOD_DES3_CBC_SHA1 ||
+ IS_AES_METHOD(cd->method)) {
+ crypto_mechanism_t enc_mech;
+ crypto_mechanism_t hmac_mech;
+
+ if (cd->d_encr_key.ck_data != NULL) {
+ bzero(cd->d_encr_key.ck_data, cd->keylen);
+ kmem_free(cd->d_encr_key.ck_data, cd->keylen);
+ }
+
+ if (cd->d_hmac_key.ck_data != NULL) {
+ bzero(cd->d_hmac_key.ck_data, cd->keylen);
+ kmem_free(cd->d_hmac_key.ck_data, cd->keylen);
+ }
+
+ if (cd->enc_tmpl != NULL)
+ (void) crypto_destroy_ctx_template(cd->enc_tmpl);
+
+ if (cd->hmac_tmpl != NULL)
+ (void) crypto_destroy_ctx_template(cd->hmac_tmpl);
+
+ enc_mech.cm_type = cd->mech_type;
+ enc_mech.cm_param = cd->ivec;
+ enc_mech.cm_param_len = cd->ivlen;
+
+ hmac_mech.cm_type = sha1_hmac_mech;
+ hmac_mech.cm_param = NULL;
+ hmac_mech.cm_param_len = 0;
+
+ /*
+ * Create the derived keys.
+ */
+ rv = create_derived_keys(cd,
+ (encrypt ? enc_usage : dec_usage),
+ &cd->d_encr_key, &cd->d_hmac_key);
+
+ if (rv != CRYPTO_SUCCESS) {
+ cmn_err(CE_WARN, "failed to create derived "
+ "keys: %0x", rv);
+ return (CRYPTO_FAILED);
+ }
+
+ rv = crypto_create_ctx_template(&enc_mech,
+ &cd->d_encr_key,
+ &cd->enc_tmpl, KM_SLEEP);
+ if (rv == CRYPTO_MECH_NOT_SUPPORTED) {
+ cd->enc_tmpl = NULL;
+ } else if (rv != CRYPTO_SUCCESS) {
+ cmn_err(CE_WARN, "failed to create enc template "
+ "for d_encr_key: %0x", rv);
+ return (CRYPTO_FAILED);
+ }
+
+ rv = crypto_create_ctx_template(&hmac_mech,
+ &cd->d_hmac_key,
+ &cd->hmac_tmpl, KM_SLEEP);
+ if (rv == CRYPTO_MECH_NOT_SUPPORTED) {
+ cd->hmac_tmpl = NULL;
+ } else if (rv != CRYPTO_SUCCESS) {
+ cmn_err(CE_WARN, "failed to create hmac template:"
+ " %0x", rv);
+ return (CRYPTO_FAILED);
+ }
+ } else if (IS_RC4_METHOD(cd->method)) {
+ bzero(&cd->d_encr_key, sizeof (crypto_key_t));
+ bzero(&cd->d_hmac_key, sizeof (crypto_key_t));
+ cd->ctx = NULL;
+ cd->enc_tmpl = NULL;
+ cd->hmac_tmpl = NULL;
+ }
+
+ /* Final sanity checks, make sure no fields are NULL */
+ if (cd->method != CRYPT_METHOD_NONE) {
+ if (cd->block == NULL && cd->blocklen > 0) {
+#ifdef DEBUG
+ cmn_err(CE_WARN,
+ "setup_crypto: IV block not allocated");
+#endif
+ return (ENOMEM);
+ }
+ if (cd->key == NULL && cd->keylen > 0) {
+#ifdef DEBUG
+ cmn_err(CE_WARN,
+ "setup_crypto: key block not allocated");
+#endif
+ return (ENOMEM);
+ }
+ if (cd->method == CRYPT_METHOD_DES_CFB &&
+ cd->saveblock == NULL && cd->blocklen > 0) {
+#ifdef DEBUG
+ cmn_err(CE_WARN,
+ "setup_crypto: save block not allocated");
+#endif
+ return (ENOMEM);
+ }
+ if (cd->ivec == NULL && cd->ivlen > 0) {
+#ifdef DEBUG
+ cmn_err(CE_WARN,
+ "setup_crypto: IV not allocated");
+#endif
+ return (ENOMEM);
+ }
+ }
+ return (0);
+}
+
+/*
+ * RCMDS require a 4 byte, clear text
+ * length field before each message.
+ * Add it now.
+ */
+static mblk_t *
+mklenmp(mblk_t *bp, uint32_t len)
+{
+ mblk_t *lenmp;
+ uchar_t *ucp;
+
+ if (bp->b_rptr - 4 < DB_BASE(bp) || DB_REF(bp) > 1) {
+ lenmp = allocb(4, BPRI_MED);
+ if (lenmp != NULL) {
+ lenmp->b_rptr = lenmp->b_wptr = DB_LIM(lenmp);
+ linkb(lenmp, bp);
+ bp = lenmp;
+ }
+ }
+ ucp = bp->b_rptr;
+ *--ucp = len;
+ *--ucp = len >> 8;
+ *--ucp = len >> 16;
+ *--ucp = len >> 24;
+
+ bp->b_rptr = ucp;
+
+ return (bp);
+}
+
+/*
+ * encrypt_msgb
+ *
+ * encrypt a single message. This routine adds the
+ * RCMD overhead bytes when necessary.
+ */
+static mblk_t *
+encrypt_msgb(queue_t *q, struct tmodinfo *tmi, mblk_t *mp)
+{
+ mblk_t *newmp;
+ size_t plainlen;
+ size_t headspace;
+
+ if (tmi->enc_data.method == CRYPT_METHOD_NONE) {
+ return (mp);
+ }
+
+ /*
+ * process message
+ */
+ newmp = NULL;
+ if ((plainlen = MBLKL(mp)) > 0) {
+ mblk_t *cbp;
+ size_t cipherlen;
+ size_t extra = 0;
+ uint32_t ptlen = (uint32_t)plainlen;
+
+ /*
+ * If we are using the "NEW" RCMD mode,
+ * add 4 bytes to the plaintext for the
+ * plaintext length that gets prepended
+ * before encrypting.
+ */
+ if (tmi->enc_data.option_mask & CRYPTOPT_RCMD_MODE_V2)
+ ptlen += 4;
+
+ cipherlen = encrypt_size(&tmi->enc_data, (size_t)ptlen);
+
+ /*
+ * if we must allocb, then make sure its enough
+ * to hold the length field so we dont have to allocb
+ * again down below in 'mklenmp'
+ */
+ if (ANY_RCMD_MODE(tmi->enc_data.option_mask)) {
+ extra = sizeof (uint32_t);
+ }
+
+ /*
+ * Calculate how much space is needed in front of
+ * the data.
+ */
+ headspace = plaintext_offset(&tmi->enc_data);
+
+ /*
+ * If the current block is too small, reallocate
+ * one large enough to hold the hdr, tail, and
+ * ciphertext.
+ */
+ if ((cipherlen + extra >= MBLKSIZE(mp)) || DB_REF(mp) > 1) {
+ int sz = P2ROUNDUP(cipherlen+extra, 8);
+
+ cbp = allocb_tmpl(sz, mp);
+ if (cbp == NULL) {
+ cmn_err(CE_WARN,
+ "allocb (%d bytes) failed", sz);
+ return (NULL);
+ }
+
+ cbp->b_cont = mp->b_cont;
+
+ /*
+ * headspace includes the length fields needed
+ * for the RCMD modes (v1 == 4 bytes, V2 = 8)
+ */
+ cbp->b_rptr = DB_BASE(cbp) + headspace;
+
+ ASSERT(cbp->b_rptr + P2ROUNDUP(plainlen, 8)
+ <= DB_LIM(cbp));
+
+ bcopy(mp->b_rptr, cbp->b_rptr, plainlen);
+ cbp->b_wptr = cbp->b_rptr + plainlen;
+
+ freeb(mp);
+ } else {
+ size_t extra = 0;
+ cbp = mp;
+
+ /*
+ * Some ciphers add HMAC after the final block
+ * of the ciphertext, not at the beginning like the
+ * 1-DES ciphers.
+ */
+ if (tmi->enc_data.method ==
+ CRYPT_METHOD_DES3_CBC_SHA1 ||
+ IS_AES_METHOD(tmi->enc_data.method)) {
+ extra = sha1_hash.hash_len;
+ }
+
+ /*
+ * Make sure the rptr is positioned correctly so that
+ * routines later do not have to shift this data around
+ */
+ if ((cbp->b_rptr + P2ROUNDUP(plainlen + extra, 8) >
+ DB_LIM(cbp)) ||
+ (cbp->b_rptr - headspace < DB_BASE(cbp))) {
+ ovbcopy(cbp->b_rptr, DB_BASE(cbp) + headspace,
+ plainlen);
+ cbp->b_rptr = DB_BASE(cbp) + headspace;
+ cbp->b_wptr = cbp->b_rptr + plainlen;
+ }
+ }
+
+ ASSERT(cbp->b_rptr - headspace >= DB_BASE(cbp));
+ ASSERT(cbp->b_wptr <= DB_LIM(cbp));
+
+ /*
+ * If using RCMD_MODE_V2 (new rcmd mode), prepend
+ * the plaintext length before the actual plaintext.
+ */
+ if (tmi->enc_data.option_mask & CRYPTOPT_RCMD_MODE_V2) {
+ cbp->b_rptr -= RCMD_LEN_SZ;
+
+ /* put plaintext length at head of buffer */
+ *(cbp->b_rptr + 3) = (uchar_t)(plainlen & 0xff);
+ *(cbp->b_rptr + 2) = (uchar_t)((plainlen >> 8) & 0xff);
+ *(cbp->b_rptr + 1) = (uchar_t)((plainlen >> 16) & 0xff);
+ *(cbp->b_rptr) = (uchar_t)((plainlen >> 24) & 0xff);
+ }
+
+ newmp = do_encrypt(q, cbp);
+
+ if (newmp != NULL &&
+ (tmi->enc_data.option_mask &
+ (CRYPTOPT_RCMD_MODE_V1 | CRYPTOPT_RCMD_MODE_V2))) {
+ mblk_t *lp;
+ /*
+ * Add length field, required when this is
+ * used to encrypt "r*" commands(rlogin, rsh)
+ * with Kerberos.
+ */
+ lp = mklenmp(newmp, plainlen);
+
+ if (lp == NULL) {
+ freeb(newmp);
+ return (NULL);
+ } else {
+ newmp = lp;
+ }
+ }
+ } else {
+ freeb(mp);
+ }
+
+ return (newmp);
+}
+
+/*
+ * cryptmodwsrv
+ *
+ * Service routine for the write queue.
+ *
+ * Because data may be placed in the queue to hold between
+ * the CRYPTIOCSTOP and CRYPTIOCSTART ioctls, the service routine is needed.
+ */
+static int
+cryptmodwsrv(queue_t *q)
+{
+ mblk_t *mp;
+ struct tmodinfo *tmi = (struct tmodinfo *)q->q_ptr;
+
+ while ((mp = getq(q)) != NULL) {
+ switch (mp->b_datap->db_type) {
+ default:
+ /*
+ * wput does not queue anything > QPCTL
+ */
+ if (!canputnext(q) ||
+ !(tmi->ready & CRYPT_WRITE_READY)) {
+ if (!putbq(q, mp)) {
+ freemsg(mp);
+ }
+ return (0);
+ }
+ putnext(q, mp);
+ break;
+ case M_DATA:
+ if (canputnext(q) && (tmi->ready & CRYPT_WRITE_READY)) {
+ mblk_t *bp;
+ mblk_t *newmsg = NULL;
+
+ /*
+ * If multiple msgs, concat into 1
+ * to minimize crypto operations later.
+ */
+ if (mp->b_cont != NULL) {
+ bp = msgpullup(mp, -1);
+ if (bp != NULL) {
+ freemsg(mp);
+ mp = bp;
+ }
+ }
+ newmsg = encrypt_msgb(q, tmi, mp);
+ if (newmsg != NULL)
+ putnext(q, newmsg);
+ } else {
+ if (!putbq(q, mp)) {
+ freemsg(mp);
+ }
+ return (0);
+ }
+ break;
+ }
+ }
+ return (0);
+}
+
+static void
+start_stream(queue_t *wq, mblk_t *mp, uchar_t dir)
+{
+ mblk_t *newmp = NULL;
+ struct tmodinfo *tmi = (struct tmodinfo *)wq->q_ptr;
+
+ if (dir == CRYPT_ENCRYPT) {
+ tmi->ready |= CRYPT_WRITE_READY;
+ (void) (STRLOG(CRYPTMOD_ID, 0, 5, SL_TRACE|SL_NOTE,
+ "start_stream: restart ENCRYPT/WRITE q"));
+
+ enableok(wq);
+ qenable(wq);
+ } else if (dir == CRYPT_DECRYPT) {
+ /*
+ * put any extra data in the RD
+ * queue to be processed and
+ * sent back up.
+ */
+ newmp = mp->b_cont;
+ mp->b_cont = NULL;
+
+ tmi->ready |= CRYPT_READ_READY;
+ (void) (STRLOG(CRYPTMOD_ID, 0, 5,
+ SL_TRACE|SL_NOTE,
+ "start_stream: restart "
+ "DECRYPT/READ q"));
+
+ if (newmp != NULL)
+ if (!putbq(RD(wq), newmp))
+ freemsg(newmp);
+
+ enableok(RD(wq));
+ qenable(RD(wq));
+ }
+
+ miocack(wq, mp, 0, 0);
+}
+
+/*
+ * Write-side put procedure. Its main task is to detect ioctls and
+ * FLUSH operations. Other message types are passed on through.
+ */
+static void
+cryptmodwput(queue_t *wq, mblk_t *mp)
+{
+ struct iocblk *iocp;
+ struct tmodinfo *tmi = (struct tmodinfo *)wq->q_ptr;
+ int ret, err;
+
+ switch (mp->b_datap->db_type) {
+ case M_DATA:
+ if (wq->q_first == NULL && canputnext(wq) &&
+ (tmi->ready & CRYPT_WRITE_READY) &&
+ tmi->enc_data.method == CRYPT_METHOD_NONE) {
+ putnext(wq, mp);
+ return;
+ }
+ /* else, put it in the service queue */
+ if (!putq(wq, mp)) {
+ freemsg(mp);
+ }
+ break;
+ case M_FLUSH:
+ if (*mp->b_rptr & FLUSHW) {
+ flushq(wq, FLUSHDATA);
+ }
+ putnext(wq, mp);
+ break;
+ case M_IOCTL:
+ iocp = (struct iocblk *)mp->b_rptr;
+ switch (iocp->ioc_cmd) {
+ case CRYPTIOCSETUP:
+ ret = 0;
+ (void) (STRLOG(CRYPTMOD_ID, 0, 5,
+ SL_TRACE | SL_NOTE,
+ "wput: got CRYPTIOCSETUP "
+ "ioctl(%d)", iocp->ioc_cmd));
+
+ if ((err = miocpullup(mp,
+ sizeof (struct cr_info_t))) != 0) {
+ cmn_err(CE_WARN,
+ "wput: miocpullup failed for cr_info_t");
+ miocnak(wq, mp, 0, err);
+ } else {
+ struct cr_info_t *ci;
+ ci = (struct cr_info_t *)mp->b_cont->b_rptr;
+
+ if (ci->direction_mask & CRYPT_ENCRYPT) {
+ ret = setup_crypto(ci, &tmi->enc_data, 1);
+ }
+
+ if (ret == 0 &&
+ (ci->direction_mask & CRYPT_DECRYPT)) {
+ ret = setup_crypto(ci, &tmi->dec_data, 0);
+ }
+ if (ret == 0 &&
+ (ci->direction_mask & CRYPT_DECRYPT) &&
+ ANY_RCMD_MODE(tmi->dec_data.option_mask)) {
+ bzero(&tmi->rcmd_state,
+ sizeof (tmi->rcmd_state));
+ }
+ if (ret == 0) {
+ miocack(wq, mp, 0, 0);
+ } else {
+ cmn_err(CE_WARN,
+ "wput: setup_crypto failed");
+ miocnak(wq, mp, 0, ret);
+ }
+ (void) (STRLOG(CRYPTMOD_ID, 0, 5,
+ SL_TRACE|SL_NOTE,
+ "wput: done with SETUP "
+ "ioctl"));
+ }
+ break;
+ case CRYPTIOCSTOP:
+ (void) (STRLOG(CRYPTMOD_ID, 0, 5,
+ SL_TRACE|SL_NOTE,
+ "wput: got CRYPTIOCSTOP "
+ "ioctl(%d)", iocp->ioc_cmd));
+
+ if ((err = miocpullup(mp, sizeof (uint32_t))) != 0) {
+ cmn_err(CE_WARN,
+ "wput: CRYPTIOCSTOP ioctl wrong "
+ "size (%d should be %d)",
+ (int)iocp->ioc_count,
+ (int)sizeof (uint32_t));
+ miocnak(wq, mp, 0, err);
+ } else {
+ uint32_t *stopdir;
+
+ stopdir = (uint32_t *)mp->b_cont->b_rptr;
+ if (!CR_DIRECTION_OK(*stopdir)) {
+ miocnak(wq, mp, 0, EINVAL);
+ return;
+ }
+
+ /* disable the queues until further notice */
+ if (*stopdir & CRYPT_ENCRYPT) {
+ noenable(wq);
+ tmi->ready &= ~CRYPT_WRITE_READY;
+ }
+ if (*stopdir & CRYPT_DECRYPT) {
+ noenable(RD(wq));
+ tmi->ready &= ~CRYPT_READ_READY;
+ }
+
+ miocack(wq, mp, 0, 0);
+ }
+ break;
+ case CRYPTIOCSTARTDEC:
+ (void) (STRLOG(CRYPTMOD_ID, 0, 5,
+ SL_TRACE|SL_NOTE,
+ "wput: got CRYPTIOCSTARTDEC "
+ "ioctl(%d)", iocp->ioc_cmd));
+
+ start_stream(wq, mp, CRYPT_DECRYPT);
+ break;
+ case CRYPTIOCSTARTENC:
+ (void) (STRLOG(CRYPTMOD_ID, 0, 5,
+ SL_TRACE|SL_NOTE,
+ "wput: got CRYPTIOCSTARTENC "
+ "ioctl(%d)", iocp->ioc_cmd));
+
+ start_stream(wq, mp, CRYPT_ENCRYPT);
+ break;
+ default:
+ putnext(wq, mp);
+ break;
+ }
+ break;
+ default:
+ if (queclass(mp) < QPCTL) {
+ if (wq->q_first != NULL || !canputnext(wq)) {
+ if (!putq(wq, mp))
+ freemsg(mp);
+ return;
+ }
+ }
+ putnext(wq, mp);
+ break;
+ }
+}
+
+/*
+ * decrypt_rcmd_mblks
+ *
+ * Because kerberized r* commands(rsh, rlogin, etc)
+ * use a 4 byte length field to indicate the # of
+ * PLAINTEXT bytes that are encrypted in the field
+ * that follows, we must parse out each message and
+ * break out the length fields prior to sending them
+ * upstream to our Solaris r* clients/servers which do
+ * NOT understand this format.
+ *
+ * Kerberized/encrypted message format:
+ * -------------------------------
+ * | XXXX | N bytes of ciphertext|
+ * -------------------------------
+ *
+ * Where: XXXX = number of plaintext bytes that were encrypted in
+ * to make the ciphertext field. This is done
+ * because we are using a cipher that pads out to
+ * an 8 byte boundary. We only want the application
+ * layer to see the correct number of plain text bytes,
+ * not plaintext + pad. So, after we decrypt, we
+ * must trim the output block down to the intended
+ * plaintext length and eliminate the pad bytes.
+ *
+ * This routine takes the entire input message, breaks it into
+ * a new message that does not contain these length fields and
+ * returns a message consisting of mblks filled with just ciphertext.
+ *
+ */
+static mblk_t *
+decrypt_rcmd_mblks(queue_t *q, mblk_t *mp)
+{
+ mblk_t *newmp = NULL;
+ size_t msglen;
+ struct tmodinfo *tmi = (struct tmodinfo *)q->q_ptr;
+
+ msglen = msgsize(mp);
+
+ /*
+ * If we need the length field, get it here.
+ * Test the "plaintext length" indicator.
+ */
+ if (tmi->rcmd_state.pt_len == 0) {
+ uint32_t elen;
+ int tocopy;
+ mblk_t *nextp;
+
+ /*
+ * Make sure we have recieved all 4 bytes of the
+ * length field.
+ */
+ while (mp != NULL) {
+ ASSERT(tmi->rcmd_state.cd_len < sizeof (uint32_t));
+
+ tocopy = sizeof (uint32_t) -
+ tmi->rcmd_state.cd_len;
+ if (tocopy > msglen)
+ tocopy = msglen;
+
+ ASSERT(mp->b_rptr + tocopy <= DB_LIM(mp));
+ bcopy(mp->b_rptr,
+ (char *)(&tmi->rcmd_state.next_len +
+ tmi->rcmd_state.cd_len), tocopy);
+
+ tmi->rcmd_state.cd_len += tocopy;
+
+ if (tmi->rcmd_state.cd_len >= sizeof (uint32_t)) {
+ tmi->rcmd_state.next_len =
+ ntohl(tmi->rcmd_state.next_len);
+ break;
+ }
+
+ nextp = mp->b_cont;
+ mp->b_cont = NULL;
+ freeb(mp);
+ mp = nextp;
+ }
+
+ if (mp == NULL) {
+ return (NULL);
+ }
+ /*
+ * recalculate the msglen now that we've read the
+ * length and adjusted the bufptr (b_rptr).
+ */
+ msglen -= tocopy;
+ mp->b_rptr += tocopy;
+
+ tmi->rcmd_state.pt_len = tmi->rcmd_state.next_len;
+
+ if (tmi->rcmd_state.pt_len <= 0) {
+ /*
+ * Return an IO error to break the connection. there
+ * is no way to recover from this. Usually it means
+ * the app has incorrectly requested decryption on
+ * a non-encrypted stream, thus the "pt_len" field
+ * is negative.
+ */
+ mp->b_datap->db_type = M_ERROR;
+ mp->b_rptr = mp->b_datap->db_base;
+ *mp->b_rptr = EIO;
+ mp->b_wptr = mp->b_rptr + sizeof (char);
+
+ freemsg(mp->b_cont);
+ mp->b_cont = NULL;
+ qreply(WR(q), mp);
+ tmi->rcmd_state.cd_len = tmi->rcmd_state.pt_len = 0;
+ return (NULL);
+ }
+
+ /*
+ * If this is V2 mode, then the encrypted data is actually
+ * 4 bytes bigger than the indicated len because the plaintext
+ * length is encrypted for an additional security check, but
+ * its not counted as part of the overall length we just read.
+ * Strange and confusing, but true.
+ */
+
+ if (tmi->dec_data.option_mask & CRYPTOPT_RCMD_MODE_V2)
+ elen = tmi->rcmd_state.pt_len + 4;
+ else
+ elen = tmi->rcmd_state.pt_len;
+
+ tmi->rcmd_state.cd_len = encrypt_size(&tmi->dec_data, elen);
+
+ /*
+ * Allocate an mblk to hold the cipher text until it is
+ * all ready to be processed.
+ */
+ tmi->rcmd_state.c_msg = allocb(tmi->rcmd_state.cd_len,
+ BPRI_HI);
+ if (tmi->rcmd_state.c_msg == NULL) {
+#ifdef DEBUG
+ cmn_err(CE_WARN, "decrypt_rcmd_msgb: allocb failed "
+ "for %d bytes",
+ (int)tmi->rcmd_state.cd_len);
+#endif
+ /*
+ * Return an IO error to break the connection.
+ */
+ mp->b_datap->db_type = M_ERROR;
+ mp->b_rptr = mp->b_datap->db_base;
+ *mp->b_rptr = EIO;
+ mp->b_wptr = mp->b_rptr + sizeof (char);
+ freemsg(mp->b_cont);
+ mp->b_cont = NULL;
+ tmi->rcmd_state.cd_len = tmi->rcmd_state.pt_len = 0;
+ qreply(WR(q), mp);
+ return (NULL);
+ }
+ }
+
+ /*
+ * If this entire message was just the length field,
+ * free and return. The actual data will probably be next.
+ */
+ if (msglen == 0) {
+ freemsg(mp);
+ return (NULL);
+ }
+
+ /*
+ * Copy as much of the cipher text as possible into
+ * the new msgb (c_msg).
+ *
+ * Logic: if we got some bytes (msglen) and we still
+ * "need" some bytes (len-rcvd), get them here.
+ */
+ ASSERT(tmi->rcmd_state.c_msg != NULL);
+ if (msglen > 0 &&
+ (tmi->rcmd_state.cd_len > MBLKL(tmi->rcmd_state.c_msg))) {
+ mblk_t *bp, *nextp;
+ size_t n;
+
+ /*
+ * Walk the mblks and copy just as many bytes as we need
+ * for this particular block of cipher text.
+ */
+ bp = mp;
+ while (bp != NULL) {
+ size_t needed;
+ size_t tocopy;
+ n = MBLKL(bp);
+
+ needed = tmi->rcmd_state.cd_len -
+ MBLKL(tmi->rcmd_state.c_msg);
+
+ tocopy = (needed >= n ? n : needed);
+
+ ASSERT(bp->b_rptr + tocopy <= DB_LIM(bp));
+ ASSERT(tmi->rcmd_state.c_msg->b_wptr + tocopy <=
+ DB_LIM(tmi->rcmd_state.c_msg));
+
+ /* Copy to end of new mblk */
+ bcopy(bp->b_rptr, tmi->rcmd_state.c_msg->b_wptr,
+ tocopy);
+
+ tmi->rcmd_state.c_msg->b_wptr += tocopy;
+
+ bp->b_rptr += tocopy;
+
+ nextp = bp->b_cont;
+
+ /*
+ * If we used this whole block, free it and
+ * move on.
+ */
+ if (!MBLKL(bp)) {
+ freeb(bp);
+ bp = NULL;
+ }
+
+ /* If we got what we needed, stop the loop */
+ if (MBLKL(tmi->rcmd_state.c_msg) ==
+ tmi->rcmd_state.cd_len) {
+ /*
+ * If there is more data in the message,
+ * its for another block of cipher text,
+ * put it back in the queue for next time.
+ */
+ if (bp) {
+ if (!putbq(q, bp))
+ freemsg(bp);
+ } else if (nextp != NULL) {
+ /*
+ * If there is more, put it back in the
+ * queue for another pass thru.
+ */
+ if (!putbq(q, nextp))
+ freemsg(nextp);
+ }
+ break;
+ }
+ bp = nextp;
+ }
+ }
+ /*
+ * Finally, if we received all the cipher text data for
+ * this message, decrypt it into a new msg and send it up
+ * to the app.
+ */
+ if (tmi->rcmd_state.pt_len > 0 &&
+ MBLKL(tmi->rcmd_state.c_msg) == tmi->rcmd_state.cd_len) {
+ mblk_t *bp;
+ mblk_t *newbp;
+
+ /*
+ * Now we can use our msg that we created when the
+ * initial message boundary was detected.
+ */
+ bp = tmi->rcmd_state.c_msg;
+ tmi->rcmd_state.c_msg = NULL;
+
+ newbp = do_decrypt(q, bp);
+ if (newbp != NULL) {
+ bp = newbp;
+ /*
+ * If using RCMD_MODE_V2 ("new" mode),
+ * look at the 4 byte plaintext length that
+ * was just decrypted and compare with the
+ * original pt_len value that was received.
+ */
+ if (tmi->dec_data.option_mask &
+ CRYPTOPT_RCMD_MODE_V2) {
+ uint32_t pt_len2;
+
+ pt_len2 = *(uint32_t *)bp->b_rptr;
+ pt_len2 = ntohl(pt_len2);
+ /*
+ * Make sure the 2 pt len fields agree.
+ */
+ if (pt_len2 != tmi->rcmd_state.pt_len) {
+ cmn_err(CE_WARN,
+ "Inconsistent length fields"
+ " received %d != %d",
+ (int)tmi->rcmd_state.pt_len,
+ (int)pt_len2);
+ bp->b_datap->db_type = M_ERROR;
+ bp->b_rptr = bp->b_datap->db_base;
+ *bp->b_rptr = EIO;
+ bp->b_wptr = bp->b_rptr + sizeof (char);
+ freemsg(bp->b_cont);
+ bp->b_cont = NULL;
+ tmi->rcmd_state.cd_len = 0;
+ qreply(WR(q), bp);
+ return (NULL);
+ }
+ bp->b_rptr += sizeof (uint32_t);
+ }
+
+ /*
+ * Trim the decrypted block the length originally
+ * indicated by the sender. This is to remove any
+ * padding bytes that the sender added to satisfy
+ * requirements of the crypto algorithm.
+ */
+ bp->b_wptr = bp->b_rptr + tmi->rcmd_state.pt_len;
+
+ newmp = bp;
+
+ /*
+ * Reset our state to indicate we are ready
+ * for a new message.
+ */
+ tmi->rcmd_state.pt_len = 0;
+ tmi->rcmd_state.cd_len = 0;
+ } else {
+#ifdef DEBUG
+ cmn_err(CE_WARN,
+ "decrypt_rcmd: do_decrypt on %d bytes failed",
+ (int)tmi->rcmd_state.cd_len);
+#endif
+ /*
+ * do_decrypt already handled failures, just
+ * return NULL.
+ */
+ tmi->rcmd_state.pt_len = 0;
+ tmi->rcmd_state.cd_len = 0;
+ return (NULL);
+ }
+ }
+
+ /*
+ * return the new message with the 'length' fields removed
+ */
+ return (newmp);
+}
+
+/*
+ * cryptmodrsrv
+ *
+ * Read queue service routine
+ * Necessary because if the ready flag is not set
+ * (via CRYPTIOCSTOP/CRYPTIOCSTART ioctls) then the data
+ * must remain on queue and not be passed along.
+ */
+static int
+cryptmodrsrv(queue_t *q)
+{
+ mblk_t *mp, *bp;
+ struct tmodinfo *tmi = (struct tmodinfo *)q->q_ptr;
+
+ while ((mp = getq(q)) != NULL) {
+ switch (mp->b_datap->db_type) {
+ case M_DATA:
+ if (canputnext(q) && tmi->ready & CRYPT_READ_READY) {
+ /*
+ * Process "rcmd" messages differently because
+ * they contain a 4 byte plaintext length
+ * id that needs to be removed.
+ */
+ if (tmi->dec_data.method != CRYPT_METHOD_NONE &&
+ (tmi->dec_data.option_mask &
+ (CRYPTOPT_RCMD_MODE_V1 |
+ CRYPTOPT_RCMD_MODE_V2))) {
+ mp = decrypt_rcmd_mblks(q, mp);
+ if (mp)
+ putnext(q, mp);
+ continue;
+ }
+ if ((bp = msgpullup(mp, -1)) != NULL) {
+ freemsg(mp);
+ if (MBLKL(bp) > 0) {
+ mp = do_decrypt(q, bp);
+ if (mp != NULL)
+ putnext(q, mp);
+ }
+ }
+ } else {
+ if (!putbq(q, mp)) {
+ freemsg(mp);
+ }
+ return (0);
+ }
+ break;
+ default:
+ /*
+ * rput does not queue anything > QPCTL, so we don't
+ * need to check for it here.
+ */
+ if (!canputnext(q)) {
+ if (!putbq(q, mp))
+ freemsg(mp);
+ return (0);
+ }
+ putnext(q, mp);
+ break;
+ }
+ }
+ return (0);
+}
+
+
+/*
+ * Read-side put procedure.
+ */
+static void
+cryptmodrput(queue_t *rq, mblk_t *mp)
+{
+ switch (mp->b_datap->db_type) {
+ case M_DATA:
+ if (!putq(rq, mp)) {
+ freemsg(mp);
+ }
+ break;
+ case M_FLUSH:
+ if (*mp->b_rptr & FLUSHR) {
+ flushq(rq, FLUSHALL);
+ }
+ putnext(rq, mp);
+ break;
+ default:
+ if (queclass(mp) < QPCTL) {
+ if (rq->q_first != NULL || !canputnext(rq)) {
+ if (!putq(rq, mp))
+ freemsg(mp);
+ return;
+ }
+ }
+ putnext(rq, mp);
+ break;
+ }
+}