diff options
| author | stevel@tonic-gate <none@none> | 2005-06-14 00:00:00 -0700 |
|---|---|---|
| committer | stevel@tonic-gate <none@none> | 2005-06-14 00:00:00 -0700 |
| commit | 7c478bd95313f5f23a4c958a745db2134aa03244 (patch) | |
| tree | c871e58545497667cbb4b0a4f2daf204743e1fe7 /usr/src/uts/common/io/cryptmod.c | |
| download | illumos-joyent-7c478bd95313f5f23a4c958a745db2134aa03244.tar.gz | |
OpenSolaris Launch
Diffstat (limited to 'usr/src/uts/common/io/cryptmod.c')
| -rw-r--r-- | usr/src/uts/common/io/cryptmod.c | 3799 |
1 files changed, 3799 insertions, 0 deletions
diff --git a/usr/src/uts/common/io/cryptmod.c b/usr/src/uts/common/io/cryptmod.c new file mode 100644 index 0000000000..98c8bf3b70 --- /dev/null +++ b/usr/src/uts/common/io/cryptmod.c @@ -0,0 +1,3799 @@ +/* + * CDDL HEADER START + * + * The contents of this file are subject to the terms of the + * Common Development and Distribution License, Version 1.0 only + * (the "License"). You may not use this file except in compliance + * with the License. + * + * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE + * or http://www.opensolaris.org/os/licensing. + * See the License for the specific language governing permissions + * and limitations under the License. + * + * When distributing Covered Code, include this CDDL HEADER in each + * file and include the License file at usr/src/OPENSOLARIS.LICENSE. + * If applicable, add the following below this CDDL HEADER, with the + * fields enclosed by brackets "[]" replaced with your own identifying + * information: Portions Copyright [yyyy] [name of copyright owner] + * + * CDDL HEADER END + */ +/* + * Copyright 2004 Sun Microsystems, Inc. All rights reserved. + * Use is subject to license terms. + * + * STREAMS Crypto Module + * + * This module is used to facilitate Kerberos encryption + * operations for the telnet daemon and rlogin daemon. + * Because the Solaris telnet and rlogin daemons run mostly + * in-kernel via 'telmod' and 'rlmod', this module must be + * pushed on the STREAM *below* telmod or rlmod. + * + * Parts of the 3DES key derivation code are covered by the + * following copyright. + * + * Copyright (C) 1998 by the FundsXpress, INC. + * + * All rights reserved. + * + * Export of this software from the United States of America may require + * a specific license from the United States Government. It is the + * responsibility of any person or organization contemplating export to + * obtain such a license before exporting. + * + * WITHIN THAT CONSTRAINT, permission to use, copy, modify, and + * distribute this software and its documentation for any purpose and + * without fee is hereby granted, provided that the above copyright + * notice appear in all copies and that both that copyright notice and + * this permission notice appear in supporting documentation, and that + * the name of FundsXpress. not be used in advertising or publicity pertaining + * to distribution of the software without specific, written prior + * permission. FundsXpress makes no representations about the suitability of + * this software for any purpose. It is provided "as is" without express + * or implied warranty. + * + * THIS SOFTWARE IS PROVIDED ``AS IS'' AND WITHOUT ANY EXPRESS OR + * IMPLIED WARRANTIES, INCLUDING, WITHOUT LIMITATION, THE IMPLIED + * WARRANTIES OF MERCHANTIBILITY AND FITNESS FOR A PARTICULAR PURPOSE. + */ +#pragma ident "%Z%%M% %I% %E% SMI" + +#include <sys/types.h> +#include <sys/sysmacros.h> +#include <sys/errno.h> +#include <sys/debug.h> +#include <sys/time.h> +#include <sys/stropts.h> +#include <sys/stream.h> +#include <sys/strsubr.h> +#include <sys/strlog.h> +#include <sys/cmn_err.h> +#include <sys/conf.h> +#include <sys/sunddi.h> +#include <sys/kmem.h> +#include <sys/strsun.h> +#include <sys/random.h> +#include <sys/types.h> +#include <sys/byteorder.h> +#include <sys/cryptmod.h> +#include <sys/crc32.h> +#include <sys/policy.h> + +#include <sys/crypto/api.h> + +#include <sys/strft.h> +/* + * Function prototypes. + */ +static int cryptmodopen(queue_t *, dev_t *, int, int, cred_t *); +static void cryptmodrput(queue_t *, mblk_t *); +static void cryptmodwput(queue_t *, mblk_t *); +static int cryptmodclose(queue_t *); +static int cryptmodwsrv(queue_t *); +static int cryptmodrsrv(queue_t *); + +static mblk_t *do_encrypt(queue_t *q, mblk_t *mp); +static mblk_t *do_decrypt(queue_t *q, mblk_t *mp); + +#define CRYPTMOD_ID 5150 + +#define CFB_BLKSZ 8 + +#define K5CLENGTH 5 + +static struct module_info cryptmod_minfo = { + CRYPTMOD_ID, /* mi_idnum */ + "cryptmod", /* mi_idname */ + 0, /* mi_minpsz */ + INFPSZ, /* mi_maxpsz */ + 65536, /* mi_hiwat */ + 1024 /* mi_lowat */ +}; + +static struct qinit cryptmod_rinit = { + (int (*)())cryptmodrput, /* qi_putp */ + cryptmodrsrv, /* qi_svc */ + cryptmodopen, /* qi_qopen */ + cryptmodclose, /* qi_qclose */ + NULL, /* qi_qadmin */ + &cryptmod_minfo, /* qi_minfo */ + NULL /* qi_mstat */ +}; + +static struct qinit cryptmod_winit = { + (int (*)())cryptmodwput, /* qi_putp */ + cryptmodwsrv, /* qi_srvp */ + NULL, /* qi_qopen */ + NULL, /* qi_qclose */ + NULL, /* qi_qadmin */ + &cryptmod_minfo, /* qi_minfo */ + NULL /* qi_mstat */ +}; + +static struct streamtab cryptmod_info = { + &cryptmod_rinit, /* st_rdinit */ + &cryptmod_winit, /* st_wrinit */ + NULL, /* st_muxrinit */ + NULL /* st_muxwinit */ +}; + +typedef struct { + uint_t hash_len; + uint_t confound_len; + int (*hashfunc)(); +} hash_info_t; + +#define MAX_CKSUM_LEN 20 +#define CONFOUNDER_LEN 8 + +#define SHA1_HASHSIZE 20 +#define MD5_HASHSIZE 16 +#define CRC32_HASHSIZE 4 + +static int crc32_calc(uchar_t *, uchar_t *, uint_t); +static int md5_calc(uchar_t *, uchar_t *, uint_t); +static int sha1_calc(uchar_t *, uchar_t *, uint_t); + +static hash_info_t null_hash = {0, 0, NULL}; +static hash_info_t crc32_hash = {CRC32_HASHSIZE, CONFOUNDER_LEN, crc32_calc}; +static hash_info_t md5_hash = {MD5_HASHSIZE, CONFOUNDER_LEN, md5_calc}; +static hash_info_t sha1_hash = {SHA1_HASHSIZE, CONFOUNDER_LEN, sha1_calc}; + +static crypto_mech_type_t sha1_hmac_mech = CRYPTO_MECH_INVALID; +static crypto_mech_type_t md5_hmac_mech = CRYPTO_MECH_INVALID; +static crypto_mech_type_t sha1_hash_mech = CRYPTO_MECH_INVALID; +static crypto_mech_type_t md5_hash_mech = CRYPTO_MECH_INVALID; + +static int kef_crypt(struct cipher_data_t *, void *, + crypto_data_format_t, size_t, int); +static mblk_t * +arcfour_hmac_md5_encrypt(queue_t *, struct tmodinfo *, + mblk_t *, hash_info_t *); +static mblk_t * +arcfour_hmac_md5_decrypt(queue_t *, struct tmodinfo *, + mblk_t *, hash_info_t *); + +static int +do_hmac(crypto_mech_type_t, crypto_key_t *, char *, int, char *, int); + +/* + * This is the loadable module wrapper. + */ +#include <sys/modctl.h> + +static struct fmodsw fsw = { + "cryptmod", + &cryptmod_info, + D_MP | D_MTQPAIR +}; + +/* + * Module linkage information for the kernel. + */ +static struct modlstrmod modlstrmod = { + &mod_strmodops, + "STREAMS encryption module %I%", + &fsw +}; + +static struct modlinkage modlinkage = { + MODREV_1, + &modlstrmod, + NULL +}; + +int +_init(void) +{ + return (mod_install(&modlinkage)); +} + +int +_fini(void) +{ + return (mod_remove(&modlinkage)); +} + +int +_info(struct modinfo *modinfop) +{ + return (mod_info(&modlinkage, modinfop)); +} + +static void +cleanup(struct cipher_data_t *cd) +{ + if (cd->key != NULL) { + bzero(cd->key, cd->keylen); + kmem_free(cd->key, cd->keylen); + cd->key = NULL; + } + + if (cd->ckey != NULL) { + /* + * ckey is a crypto_key_t structure which references + * "cd->key" for its raw key data. Since that was already + * cleared out, we don't need another "bzero" here. + */ + kmem_free(cd->ckey, sizeof (crypto_key_t)); + cd->ckey = NULL; + } + + if (cd->block != NULL) { + kmem_free(cd->block, cd->blocklen); + cd->block = NULL; + } + + if (cd->saveblock != NULL) { + kmem_free(cd->saveblock, cd->blocklen); + cd->saveblock = NULL; + } + + if (cd->ivec != NULL) { + kmem_free(cd->ivec, cd->ivlen); + cd->ivec = NULL; + } + + if (cd->d_encr_key.ck_data != NULL) { + bzero(cd->d_encr_key.ck_data, cd->keylen); + kmem_free(cd->d_encr_key.ck_data, cd->keylen); + } + + if (cd->d_hmac_key.ck_data != NULL) { + bzero(cd->d_hmac_key.ck_data, cd->keylen); + kmem_free(cd->d_hmac_key.ck_data, cd->keylen); + } + + if (cd->enc_tmpl != NULL) + (void) crypto_destroy_ctx_template(cd->enc_tmpl); + + if (cd->hmac_tmpl != NULL) + (void) crypto_destroy_ctx_template(cd->hmac_tmpl); + + if (cd->ctx != NULL) { + crypto_cancel_ctx(cd->ctx); + cd->ctx = NULL; + } +} + +/* ARGSUSED */ +static int +cryptmodopen(queue_t *rq, dev_t *dev, int oflag, int sflag, cred_t *crp) +{ + struct tmodinfo *tmi; + ASSERT(rq); + + if (sflag != MODOPEN) + return (EINVAL); + + (void) (STRLOG(CRYPTMOD_ID, 0, 5, SL_TRACE|SL_NOTE, + "cryptmodopen: opening module(PID %d)", + ddi_get_pid())); + + if (rq->q_ptr != NULL) { + cmn_err(CE_WARN, "cryptmodopen: already opened"); + return (0); + } + + /* + * Allocate and initialize per-Stream structure. + */ + tmi = (struct tmodinfo *)kmem_zalloc(sizeof (struct tmodinfo), + KM_SLEEP); + + tmi->enc_data.method = CRYPT_METHOD_NONE; + tmi->dec_data.method = CRYPT_METHOD_NONE; + + tmi->ready = (CRYPT_READ_READY | CRYPT_WRITE_READY); + + rq->q_ptr = WR(rq)->q_ptr = tmi; + + sha1_hmac_mech = crypto_mech2id(SUN_CKM_SHA1_HMAC); + md5_hmac_mech = crypto_mech2id(SUN_CKM_MD5_HMAC); + sha1_hash_mech = crypto_mech2id(SUN_CKM_SHA1); + md5_hash_mech = crypto_mech2id(SUN_CKM_MD5); + + qprocson(rq); + + return (0); +} + +static int +cryptmodclose(queue_t *rq) +{ + struct tmodinfo *tmi = (struct tmodinfo *)rq->q_ptr; + ASSERT(tmi); + + qprocsoff(rq); + + cleanup(&tmi->enc_data); + cleanup(&tmi->dec_data); + + kmem_free(tmi, sizeof (struct tmodinfo)); + rq->q_ptr = WR(rq)->q_ptr = NULL; + + return (0); +} + +/* + * plaintext_offset + * + * Calculate exactly how much space is needed in front + * of the "plaintext" in an mbuf so it can be positioned + * 1 time instead of potentially moving the data multiple + * times. + */ +static int +plaintext_offset(struct cipher_data_t *cd) +{ + int headspace = 0; + + /* 4 byte length prepended to all RCMD msgs */ + if (ANY_RCMD_MODE(cd->option_mask)) + headspace += RCMD_LEN_SZ; + + /* RCMD V2 mode adds an additional 4 byte plaintext length */ + if (cd->option_mask & CRYPTOPT_RCMD_MODE_V2) + headspace += RCMD_LEN_SZ; + + /* Need extra space for hash and counfounder */ + switch (cd->method) { + case CRYPT_METHOD_DES_CBC_NULL: + headspace += null_hash.hash_len + null_hash.confound_len; + break; + case CRYPT_METHOD_DES_CBC_CRC: + headspace += crc32_hash.hash_len + crc32_hash.confound_len; + break; + case CRYPT_METHOD_DES_CBC_MD5: + headspace += md5_hash.hash_len + md5_hash.confound_len; + break; + case CRYPT_METHOD_DES3_CBC_SHA1: + headspace += sha1_hash.confound_len; + break; + case CRYPT_METHOD_ARCFOUR_HMAC_MD5: + headspace += md5_hash.hash_len + md5_hash.confound_len; + break; + case CRYPT_METHOD_AES128: + case CRYPT_METHOD_AES256: + headspace += DEFAULT_AES_BLOCKLEN; + break; + case CRYPT_METHOD_DES_CFB: + case CRYPT_METHOD_NONE: + break; + } + + return (headspace); +} +/* + * encrypt_size + * + * Calculate the resulting size when encrypting 'plainlen' bytes + * of data. + */ +static size_t +encrypt_size(struct cipher_data_t *cd, size_t plainlen) +{ + size_t cipherlen; + + switch (cd->method) { + case CRYPT_METHOD_DES_CBC_NULL: + cipherlen = (size_t)P2ROUNDUP(null_hash.hash_len + + plainlen, 8); + break; + case CRYPT_METHOD_DES_CBC_MD5: + cipherlen = (size_t)P2ROUNDUP(md5_hash.hash_len + + md5_hash.confound_len + + plainlen, 8); + break; + case CRYPT_METHOD_DES_CBC_CRC: + cipherlen = (size_t)P2ROUNDUP(crc32_hash.hash_len + + crc32_hash.confound_len + + plainlen, 8); + break; + case CRYPT_METHOD_DES3_CBC_SHA1: + cipherlen = (size_t)P2ROUNDUP(sha1_hash.confound_len + + plainlen, 8) + + sha1_hash.hash_len; + break; + case CRYPT_METHOD_ARCFOUR_HMAC_MD5: + cipherlen = (size_t)P2ROUNDUP(md5_hash.confound_len + + plainlen, 1) + md5_hash.hash_len; + break; + case CRYPT_METHOD_AES128: + case CRYPT_METHOD_AES256: + /* No roundup for AES-CBC-CTS */ + cipherlen = DEFAULT_AES_BLOCKLEN + plainlen + + AES_TRUNCATED_HMAC_LEN; + break; + case CRYPT_METHOD_DES_CFB: + case CRYPT_METHOD_NONE: + cipherlen = plainlen; + break; + } + + return (cipherlen); +} + +/* + * des_cfb_encrypt + * + * Encrypt the mblk data using DES with cipher feedback. + * + * Given that V[i] is the initial 64 bit vector, V[n] is the nth 64 bit + * vector, D[n] is the nth chunk of 64 bits of data to encrypt + * (decrypt), and O[n] is the nth chunk of 64 bits of encrypted + * (decrypted) data, then: + * + * V[0] = DES(V[i], key) + * O[n] = D[n] <exclusive or > V[n] + * V[n+1] = DES(O[n], key) + * + * The size of the message being encrypted does not change in this + * algorithm, num_bytes in == num_bytes out. + */ +static mblk_t * +des_cfb_encrypt(queue_t *q, struct tmodinfo *tmi, mblk_t *mp) +{ + int savedbytes; + char *iptr, *optr, *lastoutput; + + lastoutput = optr = (char *)mp->b_rptr; + iptr = (char *)mp->b_rptr; + savedbytes = tmi->enc_data.bytes % CFB_BLKSZ; + + while (iptr < (char *)mp->b_wptr) { + /* + * Do DES-ECB. + * The first time this runs, the 'tmi->enc_data.block' will + * contain the initialization vector that should have been + * passed in with the SETUP ioctl. + * + * V[n] = DES(V[n-1], key) + */ + if (!(tmi->enc_data.bytes % CFB_BLKSZ)) { + int retval = 0; + retval = kef_crypt(&tmi->enc_data, + tmi->enc_data.block, + CRYPTO_DATA_RAW, + tmi->enc_data.blocklen, + CRYPT_ENCRYPT); + + if (retval != CRYPTO_SUCCESS) { +#ifdef DEBUG + cmn_err(CE_WARN, "des_cfb_encrypt: kef_crypt " + "failed - error 0x%0x", retval); +#endif + mp->b_datap->db_type = M_ERROR; + mp->b_rptr = mp->b_datap->db_base; + *mp->b_rptr = EIO; + mp->b_wptr = mp->b_rptr + sizeof (char); + freemsg(mp->b_cont); + mp->b_cont = NULL; + qreply(WR(q), mp); + return (NULL); + } + } + + /* O[n] = I[n] ^ V[n] */ + *(optr++) = *(iptr++) ^ + tmi->enc_data.block[tmi->enc_data.bytes % CFB_BLKSZ]; + + tmi->enc_data.bytes++; + /* + * Feedback the encrypted output as the input to next DES call. + */ + if (!(tmi->enc_data.bytes % CFB_BLKSZ)) { + char *dbptr = tmi->enc_data.block; + /* + * Get the last bits of input from the previous + * msg block that we haven't yet used as feedback input. + */ + if (savedbytes > 0) { + bcopy(tmi->enc_data.saveblock, + dbptr, (size_t)savedbytes); + dbptr += savedbytes; + } + + /* + * Now copy the correct bytes from the current input + * stream and update the 'lastoutput' ptr + */ + bcopy(lastoutput, dbptr, + (size_t)(CFB_BLKSZ - savedbytes)); + + lastoutput += (CFB_BLKSZ - savedbytes); + savedbytes = 0; + } + } + /* + * If there are bytes of input here that we need in the next + * block to build an ivec, save them off here. + */ + if (lastoutput < optr) { + bcopy(lastoutput, + tmi->enc_data.saveblock + savedbytes, + (uint_t)(optr - lastoutput)); + } + return (mp); +} + +/* + * des_cfb_decrypt + * + * Decrypt the data in the mblk using DES in Cipher Feedback mode + * + * # bytes in == # bytes out, no padding, confounding, or hashing + * is added. + * + */ +static mblk_t * +des_cfb_decrypt(queue_t *q, struct tmodinfo *tmi, mblk_t *mp) +{ + uint_t len; + uint_t savedbytes; + char *iptr; + char *lastinput; + uint_t cp; + + len = MBLKL(mp); + + /* decrypted output goes into the new data buffer */ + lastinput = iptr = (char *)mp->b_rptr; + + savedbytes = tmi->dec_data.bytes % tmi->dec_data.blocklen; + + /* + * Save the input CFB_BLKSZ bytes at a time. + * We are trying to decrypt in-place, but need to keep + * a small sliding window of encrypted text to be + * used to construct the feedback buffer. + */ + cp = ((tmi->dec_data.blocklen - savedbytes) > len ? len : + tmi->dec_data.blocklen - savedbytes); + + bcopy(lastinput, tmi->dec_data.saveblock + savedbytes, cp); + savedbytes += cp; + + lastinput += cp; + + while (iptr < (char *)mp->b_wptr) { + /* + * Do DES-ECB. + * The first time this runs, the 'tmi->dec_data.block' will + * contain the initialization vector that should have been + * passed in with the SETUP ioctl. + */ + if (!(tmi->dec_data.bytes % CFB_BLKSZ)) { + int retval; + retval = kef_crypt(&tmi->dec_data, + tmi->dec_data.block, + CRYPTO_DATA_RAW, + tmi->dec_data.blocklen, + CRYPT_ENCRYPT); + + if (retval != CRYPTO_SUCCESS) { +#ifdef DEBUG + cmn_err(CE_WARN, "des_cfb_decrypt: kef_crypt " + "failed - status 0x%0x", retval); +#endif + mp->b_datap->db_type = M_ERROR; + mp->b_rptr = mp->b_datap->db_base; + *mp->b_rptr = EIO; + mp->b_wptr = mp->b_rptr + sizeof (char); + freemsg(mp->b_cont); + mp->b_cont = NULL; + qreply(WR(q), mp); + return (NULL); + } + } + + /* + * To decrypt, XOR the input with the output from the DES call + */ + *(iptr++) ^= tmi->dec_data.block[tmi->dec_data.bytes % + CFB_BLKSZ]; + + tmi->dec_data.bytes++; + + /* + * Feedback the encrypted input for next DES call. + */ + if (!(tmi->dec_data.bytes % tmi->dec_data.blocklen)) { + char *dbptr = tmi->dec_data.block; + /* + * Get the last bits of input from the previous block + * that we haven't yet processed. + */ + if (savedbytes > 0) { + bcopy(tmi->dec_data.saveblock, + dbptr, savedbytes); + dbptr += savedbytes; + } + + savedbytes = 0; + + /* + * This block makes sure that our local + * buffer of input data is full and can + * be accessed from the beginning. + */ + if (lastinput < (char *)mp->b_wptr) { + + /* How many bytes are left in the mblk? */ + cp = (((char *)mp->b_wptr - lastinput) > + tmi->dec_data.blocklen ? + tmi->dec_data.blocklen : + (char *)mp->b_wptr - lastinput); + + /* copy what we need */ + bcopy(lastinput, tmi->dec_data.saveblock, + cp); + + lastinput += cp; + savedbytes = cp; + } + } + } + + return (mp); +} + +/* + * crc32_calc + * + * Compute a CRC32 checksum on the input + */ +static int +crc32_calc(uchar_t *buf, uchar_t *input, uint_t len) +{ + uint32_t crc; + + CRC32(crc, input, len, 0, crc32_table); + + buf[0] = (uchar_t)(crc & 0xff); + buf[1] = (uchar_t)((crc >> 8) & 0xff); + buf[2] = (uchar_t)((crc >> 16) & 0xff); + buf[3] = (uchar_t)((crc >> 24) & 0xff); + + return (CRYPTO_SUCCESS); +} + +static int +kef_digest(crypto_mech_type_t digest_type, + uchar_t *input, uint_t inlen, + uchar_t *output, uint_t hashlen) +{ + iovec_t v1, v2; + crypto_data_t d1, d2; + crypto_mechanism_t mech; + int rv; + + mech.cm_type = digest_type; + mech.cm_param = 0; + mech.cm_param_len = 0; + + v1.iov_base = (void *)input; + v1.iov_len = inlen; + + d1.cd_format = CRYPTO_DATA_RAW; + d1.cd_offset = 0; + d1.cd_length = v1.iov_len; + d1.cd_raw = v1; + + v2.iov_base = (void *)output; + v2.iov_len = hashlen; + + d2.cd_format = CRYPTO_DATA_RAW; + d2.cd_offset = 0; + d2.cd_length = v2.iov_len; + d2.cd_raw = v2; + + rv = crypto_digest(&mech, &d1, &d2, NULL); + + return (rv); +} + +/* + * sha1_calc + * + * Get a SHA1 hash on the input data. + */ +static int +sha1_calc(uchar_t *output, uchar_t *input, uint_t inlen) +{ + int rv; + + rv = kef_digest(sha1_hash_mech, input, inlen, output, SHA1_HASHSIZE); + + return (rv); +} + +/* + * Get an MD5 hash on the input data. + * md5_calc + * + */ +static int +md5_calc(uchar_t *output, uchar_t *input, uint_t inlen) +{ + int rv; + + rv = kef_digest(md5_hash_mech, input, inlen, output, MD5_HASHSIZE); + + return (rv); +} + +/* + * nfold + * duplicate the functionality of the krb5_nfold function from + * the userland kerberos mech. + * This is needed to derive keys for use with 3DES/SHA1-HMAC + * ciphers. + */ +static void +nfold(int inbits, uchar_t *in, int outbits, uchar_t *out) +{ + int a, b, c, lcm; + int byte, i, msbit; + + inbits >>= 3; + outbits >>= 3; + + /* first compute lcm(n,k) */ + a = outbits; + b = inbits; + + while (b != 0) { + c = b; + b = a%b; + a = c; + } + + lcm = outbits*inbits/a; + + /* now do the real work */ + + bzero(out, outbits); + byte = 0; + + /* + * Compute the msbit in k which gets added into this byte + * first, start with the msbit in the first, unrotated byte + * then, for each byte, shift to the right for each repetition + * last, pick out the correct byte within that shifted repetition + */ + for (i = lcm-1; i >= 0; i--) { + msbit = (((inbits<<3)-1) + +(((inbits<<3)+13)*(i/inbits)) + +((inbits-(i%inbits))<<3)) %(inbits<<3); + + /* pull out the byte value itself */ + byte += (((in[((inbits-1)-(msbit>>3))%inbits]<<8)| + (in[((inbits)-(msbit>>3))%inbits])) + >>((msbit&7)+1))&0xff; + + /* do the addition */ + byte += out[i%outbits]; + out[i%outbits] = byte&0xff; + + byte >>= 8; + } + + /* if there's a carry bit left over, add it back in */ + if (byte) { + for (i = outbits-1; i >= 0; i--) { + /* do the addition */ + byte += out[i]; + out[i] = byte&0xff; + + /* keep around the carry bit, if any */ + byte >>= 8; + } + } +} + +#define smask(step) ((1<<step)-1) +#define pstep(x, step) (((x)&smask(step))^(((x)>>step)&smask(step))) +#define parity_char(x) pstep(pstep(pstep((x), 4), 2), 1) + +/* + * Duplicate the functionality of the "dk_derive_key" function + * in the Kerberos mechanism. + */ +static int +derive_key(struct cipher_data_t *cdata, uchar_t *constdata, + int constlen, char *dkey, int keybytes, + int blocklen) +{ + int rv = 0; + int n = 0, i; + char *inblock; + char *rawkey; + char *zeroblock; + char *saveblock; + + inblock = kmem_zalloc(blocklen, KM_SLEEP); + rawkey = kmem_zalloc(keybytes, KM_SLEEP); + zeroblock = kmem_zalloc(blocklen, KM_SLEEP); + + if (constlen == blocklen) + bcopy(constdata, inblock, blocklen); + else + nfold(constlen * 8, constdata, + blocklen * 8, (uchar_t *)inblock); + + /* + * zeroblock is an IV of all 0's. + * + * The "block" section of the cdata record is used as the + * IV for crypto operations in the kef_crypt function. + * + * We use 'block' as a generic IV data buffer because it + * is attached to the stream state data and thus can + * be used to hold information that must carry over + * from processing of one mblk to another. + * + * Here, we save the current IV and replace it with + * and empty IV (all 0's) for use when deriving the + * keys. Once the key derivation is done, we swap the + * old IV back into place. + */ + saveblock = cdata->block; + cdata->block = zeroblock; + + while (n < keybytes) { + rv = kef_crypt(cdata, inblock, CRYPTO_DATA_RAW, + blocklen, CRYPT_ENCRYPT); + if (rv != CRYPTO_SUCCESS) { + /* put the original IV block back in place */ + cdata->block = saveblock; + cmn_err(CE_WARN, "failed to derive a key: %0x", rv); + goto cleanup; + } + + if (keybytes - n < blocklen) { + bcopy(inblock, rawkey+n, (keybytes-n)); + break; + } + bcopy(inblock, rawkey+n, blocklen); + n += blocklen; + } + /* put the original IV block back in place */ + cdata->block = saveblock; + + /* finally, make the key */ + if (cdata->method == CRYPT_METHOD_DES3_CBC_SHA1) { + /* + * 3DES key derivation requires that we make sure the + * key has the proper parity. + */ + for (i = 0; i < 3; i++) { + bcopy(rawkey+(i*7), dkey+(i*8), 7); + + /* 'dkey' is our derived key output buffer */ + dkey[i*8+7] = (((dkey[i*8]&1)<<1) | + ((dkey[i*8+1]&1)<<2) | + ((dkey[i*8+2]&1)<<3) | + ((dkey[i*8+3]&1)<<4) | + ((dkey[i*8+4]&1)<<5) | + ((dkey[i*8+5]&1)<<6) | + ((dkey[i*8+6]&1)<<7)); + + for (n = 0; n < 8; n++) { + dkey[i*8 + n] &= 0xfe; + dkey[i*8 + n] |= 1^parity_char(dkey[i*8 + n]); + } + } + } else if (IS_AES_METHOD(cdata->method)) { + bcopy(rawkey, dkey, keybytes); + } +cleanup: + kmem_free(inblock, blocklen); + kmem_free(zeroblock, blocklen); + kmem_free(rawkey, keybytes); + return (rv); +} + +/* + * create_derived_keys + * + * Algorithm for deriving a new key and an HMAC key + * before computing the 3DES-SHA1-HMAC operation on the plaintext + * This algorithm matches the work done by Kerberos mechanism + * in userland. + */ +static int +create_derived_keys(struct cipher_data_t *cdata, uint32_t usage, + crypto_key_t *enckey, crypto_key_t *hmackey) +{ + uchar_t constdata[K5CLENGTH]; + int keybytes; + int rv; + + constdata[0] = (usage>>24)&0xff; + constdata[1] = (usage>>16)&0xff; + constdata[2] = (usage>>8)&0xff; + constdata[3] = usage & 0xff; + /* Use "0xAA" for deriving encryption key */ + constdata[4] = 0xAA; /* from MIT Kerberos code */ + + enckey->ck_length = cdata->keylen * 8; + enckey->ck_format = CRYPTO_KEY_RAW; + enckey->ck_data = kmem_zalloc(cdata->keylen, KM_SLEEP); + + switch (cdata->method) { + case CRYPT_METHOD_DES_CFB: + case CRYPT_METHOD_DES_CBC_NULL: + case CRYPT_METHOD_DES_CBC_MD5: + case CRYPT_METHOD_DES_CBC_CRC: + keybytes = 8; + break; + case CRYPT_METHOD_DES3_CBC_SHA1: + keybytes = CRYPT_DES3_KEYBYTES; + break; + case CRYPT_METHOD_ARCFOUR_HMAC_MD5: + case CRYPT_METHOD_ARCFOUR_HMAC_MD5_EXP: + keybytes = CRYPT_ARCFOUR_KEYBYTES; + break; + case CRYPT_METHOD_AES128: + keybytes = CRYPT_AES128_KEYBYTES; + break; + case CRYPT_METHOD_AES256: + keybytes = CRYPT_AES256_KEYBYTES; + break; + } + + /* derive main crypto key */ + rv = derive_key(cdata, constdata, sizeof (constdata), + enckey->ck_data, keybytes, cdata->blocklen); + + if (rv == CRYPTO_SUCCESS) { + + /* Use "0x55" for deriving mac key */ + constdata[4] = 0x55; + + hmackey->ck_length = cdata->keylen * 8; + hmackey->ck_format = CRYPTO_KEY_RAW; + hmackey->ck_data = kmem_zalloc(cdata->keylen, KM_SLEEP); + + rv = derive_key(cdata, constdata, sizeof (constdata), + hmackey->ck_data, keybytes, + cdata->blocklen); + } else { + cmn_err(CE_WARN, "failed to derive crypto key: %02x", rv); + } + + return (rv); +} + +/* + * Compute 3-DES crypto and HMAC. + */ +static int +kef_decr_hmac(struct cipher_data_t *cdata, + mblk_t *mp, int length, + char *hmac, int hmaclen) +{ + int rv = CRYPTO_FAILED; + + crypto_mechanism_t encr_mech; + crypto_mechanism_t mac_mech; + crypto_data_t dd; + crypto_data_t mac; + iovec_t v1; + + ASSERT(cdata != NULL); + ASSERT(mp != NULL); + ASSERT(hmac != NULL); + + bzero(&dd, sizeof (dd)); + dd.cd_format = CRYPTO_DATA_MBLK; + dd.cd_offset = 0; + dd.cd_length = length; + dd.cd_mp = mp; + + v1.iov_base = hmac; + v1.iov_len = hmaclen; + + mac.cd_format = CRYPTO_DATA_RAW; + mac.cd_offset = 0; + mac.cd_length = hmaclen; + mac.cd_raw = v1; + + /* + * cdata->block holds the IVEC + */ + encr_mech.cm_type = cdata->mech_type; + encr_mech.cm_param = cdata->block; + + if (cdata->block != NULL) + encr_mech.cm_param_len = cdata->blocklen; + else + encr_mech.cm_param_len = 0; + + rv = crypto_decrypt(&encr_mech, &dd, &cdata->d_encr_key, + cdata->enc_tmpl, NULL, NULL); + if (rv != CRYPTO_SUCCESS) { + cmn_err(CE_WARN, "crypto_decrypt failed: %0x", rv); + return (rv); + } + + mac_mech.cm_type = sha1_hmac_mech; + mac_mech.cm_param = NULL; + mac_mech.cm_param_len = 0; + + /* + * Compute MAC of the plaintext decrypted above. + */ + rv = crypto_mac(&mac_mech, &dd, &cdata->d_hmac_key, + cdata->hmac_tmpl, &mac, NULL); + + if (rv != CRYPTO_SUCCESS) { + cmn_err(CE_WARN, "crypto_mac failed: %0x", rv); + } + + return (rv); +} + +/* + * Compute 3-DES crypto and HMAC. + */ +static int +kef_encr_hmac(struct cipher_data_t *cdata, + mblk_t *mp, int length, + char *hmac, int hmaclen) +{ + int rv = CRYPTO_FAILED; + + crypto_mechanism_t encr_mech; + crypto_mechanism_t mac_mech; + crypto_data_t dd; + crypto_data_t mac; + iovec_t v1; + + ASSERT(cdata != NULL); + ASSERT(mp != NULL); + ASSERT(hmac != NULL); + + bzero(&dd, sizeof (dd)); + dd.cd_format = CRYPTO_DATA_MBLK; + dd.cd_offset = 0; + dd.cd_length = length; + dd.cd_mp = mp; + + v1.iov_base = hmac; + v1.iov_len = hmaclen; + + mac.cd_format = CRYPTO_DATA_RAW; + mac.cd_offset = 0; + mac.cd_length = hmaclen; + mac.cd_raw = v1; + + /* + * cdata->block holds the IVEC + */ + encr_mech.cm_type = cdata->mech_type; + encr_mech.cm_param = cdata->block; + + if (cdata->block != NULL) + encr_mech.cm_param_len = cdata->blocklen; + else + encr_mech.cm_param_len = 0; + + mac_mech.cm_type = sha1_hmac_mech; + mac_mech.cm_param = NULL; + mac_mech.cm_param_len = 0; + + rv = crypto_mac(&mac_mech, &dd, &cdata->d_hmac_key, + cdata->hmac_tmpl, &mac, NULL); + + if (rv != CRYPTO_SUCCESS) { + cmn_err(CE_WARN, "crypto_mac failed: %0x", rv); + return (rv); + } + + rv = crypto_encrypt(&encr_mech, &dd, &cdata->d_encr_key, + cdata->enc_tmpl, NULL, NULL); + if (rv != CRYPTO_SUCCESS) { + cmn_err(CE_WARN, "crypto_encrypt failed: %0x", rv); + } + + return (rv); +} + +/* + * kef_crypt + * + * Use the Kernel encryption framework to provide the + * crypto operations for the indicated data. + */ +static int +kef_crypt(struct cipher_data_t *cdata, + void *indata, crypto_data_format_t fmt, + size_t length, int mode) +{ + int rv = CRYPTO_FAILED; + + crypto_mechanism_t mech; + crypto_key_t crkey; + iovec_t v1; + crypto_data_t d1; + + ASSERT(cdata != NULL); + ASSERT(indata != NULL); + ASSERT(fmt == CRYPTO_DATA_RAW || fmt == CRYPTO_DATA_MBLK); + + bzero(&crkey, sizeof (crkey)); + bzero(&d1, sizeof (d1)); + + crkey.ck_format = CRYPTO_KEY_RAW; + crkey.ck_data = cdata->key; + + /* keys are measured in bits, not bytes, so multiply by 8 */ + crkey.ck_length = cdata->keylen * 8; + + if (fmt == CRYPTO_DATA_RAW) { + v1.iov_base = (char *)indata; + v1.iov_len = length; + } + + d1.cd_format = fmt; + d1.cd_offset = 0; + d1.cd_length = length; + if (fmt == CRYPTO_DATA_RAW) + d1.cd_raw = v1; + else if (fmt == CRYPTO_DATA_MBLK) + d1.cd_mp = (mblk_t *)indata; + + mech.cm_type = cdata->mech_type; + mech.cm_param = cdata->block; + /* + * cdata->block holds the IVEC + */ + if (cdata->block != NULL) + mech.cm_param_len = cdata->blocklen; + else + mech.cm_param_len = 0; + + /* + * encrypt and decrypt in-place + */ + if (mode == CRYPT_ENCRYPT) + rv = crypto_encrypt(&mech, &d1, &crkey, NULL, NULL, NULL); + else + rv = crypto_decrypt(&mech, &d1, &crkey, NULL, NULL, NULL); + + if (rv != CRYPTO_SUCCESS) { + cmn_err(CE_WARN, "%s returned error %08x", + (mode == CRYPT_ENCRYPT ? "crypto_encrypt" : + "crypto_decrypt"), rv); + return (CRYPTO_FAILED); + } + + return (rv); +} + +static int +do_hmac(crypto_mech_type_t mech, + crypto_key_t *key, + char *data, int datalen, + char *hmac, int hmaclen) +{ + int rv = 0; + crypto_mechanism_t mac_mech; + crypto_data_t dd; + crypto_data_t mac; + iovec_t vdata, vmac; + + mac_mech.cm_type = mech; + mac_mech.cm_param = NULL; + mac_mech.cm_param_len = 0; + + vdata.iov_base = data; + vdata.iov_len = datalen; + + bzero(&dd, sizeof (dd)); + dd.cd_format = CRYPTO_DATA_RAW; + dd.cd_offset = 0; + dd.cd_length = datalen; + dd.cd_raw = vdata; + + vmac.iov_base = hmac; + vmac.iov_len = hmaclen; + + mac.cd_format = CRYPTO_DATA_RAW; + mac.cd_offset = 0; + mac.cd_length = hmaclen; + mac.cd_raw = vmac; + + /* + * Compute MAC of the plaintext decrypted above. + */ + rv = crypto_mac(&mac_mech, &dd, key, NULL, &mac, NULL); + + if (rv != CRYPTO_SUCCESS) { + cmn_err(CE_WARN, "crypto_mac failed: %0x", rv); + } + + return (rv); +} + +#define XOR_BLOCK(src, dst) \ + (dst)[0] ^= (src)[0]; \ + (dst)[1] ^= (src)[1]; \ + (dst)[2] ^= (src)[2]; \ + (dst)[3] ^= (src)[3]; \ + (dst)[4] ^= (src)[4]; \ + (dst)[5] ^= (src)[5]; \ + (dst)[6] ^= (src)[6]; \ + (dst)[7] ^= (src)[7]; \ + (dst)[8] ^= (src)[8]; \ + (dst)[9] ^= (src)[9]; \ + (dst)[10] ^= (src)[10]; \ + (dst)[11] ^= (src)[11]; \ + (dst)[12] ^= (src)[12]; \ + (dst)[13] ^= (src)[13]; \ + (dst)[14] ^= (src)[14]; \ + (dst)[15] ^= (src)[15] + +#define xorblock(x, y) XOR_BLOCK(y, x) + +static int +aes_cbc_cts_encrypt(struct tmodinfo *tmi, uchar_t *plain, size_t length) +{ + int result = CRYPTO_SUCCESS; + unsigned char tmp[DEFAULT_AES_BLOCKLEN]; + unsigned char tmp2[DEFAULT_AES_BLOCKLEN]; + unsigned char tmp3[DEFAULT_AES_BLOCKLEN]; + int nblocks = 0, blockno; + crypto_data_t ct, pt; + crypto_mechanism_t mech; + + mech.cm_type = tmi->enc_data.mech_type; + if (tmi->enc_data.ivlen > 0 && tmi->enc_data.ivec != NULL) { + bcopy(tmi->enc_data.ivec, tmp, DEFAULT_AES_BLOCKLEN); + mech.cm_param = tmi->enc_data.ivec; + mech.cm_param_len = tmi->enc_data.ivlen; + } else { + bzero(tmp, sizeof (tmp)); + mech.cm_param = NULL; + mech.cm_param_len = 0; + } + + nblocks = (length + DEFAULT_AES_BLOCKLEN - 1) / DEFAULT_AES_BLOCKLEN; + + bzero(&ct, sizeof (crypto_data_t)); + bzero(&pt, sizeof (crypto_data_t)); + + if (nblocks == 1) { + pt.cd_format = CRYPTO_DATA_RAW; + pt.cd_length = length; + pt.cd_raw.iov_base = (char *)plain; + pt.cd_raw.iov_len = length; + + result = crypto_encrypt(&mech, &pt, + &tmi->enc_data.d_encr_key, NULL, NULL, NULL); + + if (result != CRYPTO_SUCCESS) { + cmn_err(CE_WARN, "aes_cbc_cts_encrypt: " + "crypto_encrypt failed: %0x", result); + } + } else { + size_t nleft; + + ct.cd_format = CRYPTO_DATA_RAW; + ct.cd_offset = 0; + ct.cd_length = DEFAULT_AES_BLOCKLEN; + + pt.cd_format = CRYPTO_DATA_RAW; + pt.cd_offset = 0; + pt.cd_length = DEFAULT_AES_BLOCKLEN; + + result = crypto_encrypt_init(&mech, + &tmi->enc_data.d_encr_key, + tmi->enc_data.enc_tmpl, + &tmi->enc_data.ctx, NULL); + + if (result != CRYPTO_SUCCESS) { + cmn_err(CE_WARN, "aes_cbc_cts_encrypt: " + "crypto_encrypt_init failed: %0x", result); + goto cleanup; + } + + for (blockno = 0; blockno < nblocks - 2; blockno++) { + xorblock(tmp, plain + blockno * DEFAULT_AES_BLOCKLEN); + + pt.cd_raw.iov_base = (char *)tmp; + pt.cd_raw.iov_len = DEFAULT_AES_BLOCKLEN; + + ct.cd_raw.iov_base = (char *)plain + + blockno * DEFAULT_AES_BLOCKLEN; + ct.cd_raw.iov_len = DEFAULT_AES_BLOCKLEN; + + result = crypto_encrypt_update(tmi->enc_data.ctx, + &pt, &ct, NULL); + + if (result != CRYPTO_SUCCESS) { + cmn_err(CE_WARN, "aes_cbc_cts_encrypt: " + "crypto_encrypt_update failed: %0x", + result); + goto cleanup; + } + /* copy result over original bytes */ + /* make another copy for the next XOR step */ + bcopy(plain + blockno * DEFAULT_AES_BLOCKLEN, + tmp, DEFAULT_AES_BLOCKLEN); + } + /* XOR cipher text from n-3 with plain text from n-2 */ + xorblock(tmp, plain + (nblocks - 2) * DEFAULT_AES_BLOCKLEN); + + pt.cd_raw.iov_base = (char *)tmp; + pt.cd_raw.iov_len = DEFAULT_AES_BLOCKLEN; + + ct.cd_raw.iov_base = (char *)tmp2; + ct.cd_raw.iov_len = DEFAULT_AES_BLOCKLEN; + + /* encrypt XOR-ed block N-2 */ + result = crypto_encrypt_update(tmi->enc_data.ctx, + &pt, &ct, NULL); + if (result != CRYPTO_SUCCESS) { + cmn_err(CE_WARN, "aes_cbc_cts_encrypt: " + "crypto_encrypt_update(2) failed: %0x", + result); + goto cleanup; + } + nleft = length - (nblocks - 1) * DEFAULT_AES_BLOCKLEN; + + bzero(tmp3, sizeof (tmp3)); + /* Save final plaintext bytes from n-1 */ + bcopy(plain + (nblocks - 1) * DEFAULT_AES_BLOCKLEN, tmp3, + nleft); + + /* Overwrite n-1 with cipher text from n-2 */ + bcopy(tmp2, plain + (nblocks - 1) * DEFAULT_AES_BLOCKLEN, + nleft); + + bcopy(tmp2, tmp, DEFAULT_AES_BLOCKLEN); + /* XOR cipher text from n-1 with plain text from n-1 */ + xorblock(tmp, tmp3); + + pt.cd_raw.iov_base = (char *)tmp; + pt.cd_raw.iov_len = DEFAULT_AES_BLOCKLEN; + + ct.cd_raw.iov_base = (char *)tmp2; + ct.cd_raw.iov_len = DEFAULT_AES_BLOCKLEN; + + /* encrypt block N-2 */ + result = crypto_encrypt_update(tmi->enc_data.ctx, + &pt, &ct, NULL); + + if (result != CRYPTO_SUCCESS) { + cmn_err(CE_WARN, "aes_cbc_cts_encrypt: " + "crypto_encrypt_update(3) failed: %0x", + result); + goto cleanup; + } + + bcopy(tmp2, plain + (nblocks - 2) * DEFAULT_AES_BLOCKLEN, + DEFAULT_AES_BLOCKLEN); + + + ct.cd_raw.iov_base = (char *)tmp2; + ct.cd_raw.iov_len = DEFAULT_AES_BLOCKLEN; + + /* + * Ignore the output on the final step. + */ + result = crypto_encrypt_final(tmi->enc_data.ctx, &ct, NULL); + if (result != CRYPTO_SUCCESS) { + cmn_err(CE_WARN, "aes_cbc_cts_encrypt: " + "crypto_encrypt_final(3) failed: %0x", + result); + } + tmi->enc_data.ctx = NULL; + } +cleanup: + bzero(tmp, sizeof (tmp)); + bzero(tmp2, sizeof (tmp)); + bzero(tmp3, sizeof (tmp)); + bzero(tmi->enc_data.block, tmi->enc_data.blocklen); + return (result); +} + +static int +aes_cbc_cts_decrypt(struct tmodinfo *tmi, uchar_t *buff, size_t length) +{ + int result = CRYPTO_SUCCESS; + unsigned char tmp[DEFAULT_AES_BLOCKLEN]; + unsigned char tmp2[DEFAULT_AES_BLOCKLEN]; + unsigned char tmp3[DEFAULT_AES_BLOCKLEN]; + int nblocks = 0, blockno; + crypto_data_t ct, pt; + crypto_mechanism_t mech; + + mech.cm_type = tmi->enc_data.mech_type; + + if (tmi->dec_data.ivec_usage != IVEC_NEVER && + tmi->dec_data.ivlen > 0 && tmi->dec_data.ivec != NULL) { + bcopy(tmi->dec_data.ivec, tmp, DEFAULT_AES_BLOCKLEN); + mech.cm_param = tmi->dec_data.ivec; + mech.cm_param_len = tmi->dec_data.ivlen; + } else { + bzero(tmp, sizeof (tmp)); + mech.cm_param_len = 0; + mech.cm_param = NULL; + } + nblocks = (length + DEFAULT_AES_BLOCKLEN - 1) / DEFAULT_AES_BLOCKLEN; + + bzero(&pt, sizeof (pt)); + bzero(&ct, sizeof (ct)); + + if (nblocks == 1) { + ct.cd_format = CRYPTO_DATA_RAW; + ct.cd_length = length; + ct.cd_raw.iov_base = (char *)buff; + ct.cd_raw.iov_len = length; + + result = crypto_decrypt(&mech, &ct, + &tmi->dec_data.d_encr_key, NULL, NULL, NULL); + + if (result != CRYPTO_SUCCESS) { + cmn_err(CE_WARN, "aes_cbc_cts_decrypt: " + "crypto_decrypt failed: %0x", result); + goto cleanup; + } + } else { + ct.cd_format = CRYPTO_DATA_RAW; + ct.cd_offset = 0; + ct.cd_length = DEFAULT_AES_BLOCKLEN; + + pt.cd_format = CRYPTO_DATA_RAW; + pt.cd_offset = 0; + pt.cd_length = DEFAULT_AES_BLOCKLEN; + + result = crypto_encrypt_init(&mech, + &tmi->dec_data.d_encr_key, + tmi->dec_data.enc_tmpl, + &tmi->dec_data.ctx, NULL); + + if (result != CRYPTO_SUCCESS) { + cmn_err(CE_WARN, "aes_cbc_cts_decrypt: " + "crypto_decrypt_init failed: %0x", result); + goto cleanup; + } + for (blockno = 0; blockno < nblocks - 2; blockno++) { + ct.cd_raw.iov_base = (char *)buff + + (blockno * DEFAULT_AES_BLOCKLEN); + ct.cd_raw.iov_len = DEFAULT_AES_BLOCKLEN; + + pt.cd_raw.iov_base = (char *)tmp2; + pt.cd_raw.iov_len = DEFAULT_AES_BLOCKLEN; + + /* + * Save the input to the decrypt so it can + * be used later for an XOR operation + */ + bcopy(buff + (blockno * DEFAULT_AES_BLOCKLEN), + tmi->dec_data.block, DEFAULT_AES_BLOCKLEN); + + result = crypto_decrypt_update(&tmi->dec_data.ctx, + &ct, &pt, NULL); + if (result != CRYPTO_SUCCESS) { + cmn_err(CE_WARN, "aes_cbc_cts_decrypt: " + "crypto_decrypt_update(1) error - " + "result = 0x%08x", result); + goto cleanup; + } + xorblock(tmp2, tmp); + bcopy(tmp2, buff + blockno * DEFAULT_AES_BLOCKLEN, + DEFAULT_AES_BLOCKLEN); + /* + * The original cipher text is used as the xor + * for the next block, save it here. + */ + bcopy(tmi->dec_data.block, tmp, DEFAULT_AES_BLOCKLEN); + } + ct.cd_raw.iov_base = (char *)buff + + ((nblocks - 2) * DEFAULT_AES_BLOCKLEN); + ct.cd_raw.iov_len = DEFAULT_AES_BLOCKLEN; + pt.cd_raw.iov_base = (char *)tmp2; + pt.cd_raw.iov_len = DEFAULT_AES_BLOCKLEN; + + result = crypto_decrypt_update(tmi->dec_data.ctx, + &ct, &pt, NULL); + if (result != CRYPTO_SUCCESS) { + cmn_err(CE_WARN, + "aes_cbc_cts_decrypt: " + "crypto_decrypt_update(2) error -" + " result = 0x%08x", result); + goto cleanup; + } + bzero(tmp3, sizeof (tmp3)); + bcopy(buff + (nblocks - 1) * DEFAULT_AES_BLOCKLEN, tmp3, + length - ((nblocks - 1) * DEFAULT_AES_BLOCKLEN)); + + xorblock(tmp2, tmp3); + bcopy(tmp2, buff + (nblocks - 1) * DEFAULT_AES_BLOCKLEN, + length - ((nblocks - 1) * DEFAULT_AES_BLOCKLEN)); + + /* 2nd to last block ... */ + bcopy(tmp3, tmp2, + length - ((nblocks - 1) * DEFAULT_AES_BLOCKLEN)); + + ct.cd_raw.iov_base = (char *)tmp2; + ct.cd_raw.iov_len = DEFAULT_AES_BLOCKLEN; + pt.cd_raw.iov_base = (char *)tmp3; + pt.cd_raw.iov_len = DEFAULT_AES_BLOCKLEN; + + result = crypto_decrypt_update(tmi->dec_data.ctx, + &ct, &pt, NULL); + if (result != CRYPTO_SUCCESS) { + cmn_err(CE_WARN, + "aes_cbc_cts_decrypt: " + "crypto_decrypt_update(3) error - " + "result = 0x%08x", result); + goto cleanup; + } + xorblock(tmp3, tmp); + + + /* Finally, update the 2nd to last block and we are done. */ + bcopy(tmp3, buff + (nblocks - 2) * DEFAULT_AES_BLOCKLEN, + DEFAULT_AES_BLOCKLEN); + + /* Do Final step, but ignore output */ + pt.cd_raw.iov_base = (char *)tmp2; + pt.cd_raw.iov_len = DEFAULT_AES_BLOCKLEN; + result = crypto_decrypt_final(tmi->dec_data.ctx, &pt, NULL); + if (result != CRYPTO_SUCCESS) { + cmn_err(CE_WARN, "aes_cbc_cts_decrypt: " + "crypto_decrypt_final error - " + "result = 0x%0x", result); + } + tmi->dec_data.ctx = NULL; + } + +cleanup: + bzero(tmp, sizeof (tmp)); + bzero(tmp2, sizeof (tmp)); + bzero(tmp3, sizeof (tmp)); + bzero(tmi->dec_data.block, tmi->dec_data.blocklen); + return (result); +} + +/* + * AES decrypt + * + * format of ciphertext when using AES + * +-------------+------------+------------+ + * | confounder | msg-data | hmac | + * +-------------+------------+------------+ + */ +static mblk_t * +aes_decrypt(queue_t *q, struct tmodinfo *tmi, mblk_t *mp, + hash_info_t *hash) +{ + int result; + size_t enclen; + size_t inlen; + uchar_t hmacbuff[64]; + uchar_t tmpiv[DEFAULT_AES_BLOCKLEN]; + + inlen = (size_t)MBLKL(mp); + + enclen = inlen - AES_TRUNCATED_HMAC_LEN; + if (tmi->dec_data.ivec_usage != IVEC_NEVER && + tmi->dec_data.ivec != NULL && tmi->dec_data.ivlen > 0) { + int nblocks = (enclen + DEFAULT_AES_BLOCKLEN - 1) / + DEFAULT_AES_BLOCKLEN; + bcopy(mp->b_rptr + DEFAULT_AES_BLOCKLEN * (nblocks - 2), + tmpiv, DEFAULT_AES_BLOCKLEN); + } + + /* AES Decrypt */ + result = aes_cbc_cts_decrypt(tmi, mp->b_rptr, enclen); + + if (result != CRYPTO_SUCCESS) { + cmn_err(CE_WARN, + "aes_decrypt: aes_cbc_cts_decrypt " + "failed - error %0x", result); + goto cleanup; + } + + /* Verify the HMAC */ + result = do_hmac(sha1_hmac_mech, + &tmi->dec_data.d_hmac_key, + (char *)mp->b_rptr, enclen, + (char *)hmacbuff, hash->hash_len); + + if (result != CRYPTO_SUCCESS) { + cmn_err(CE_WARN, + "aes_decrypt: do_hmac failed - error %0x", result); + goto cleanup; + } + + if (bcmp(hmacbuff, mp->b_rptr + enclen, + AES_TRUNCATED_HMAC_LEN) != 0) { + result = -1; + cmn_err(CE_WARN, "aes_decrypt: checksum verification failed"); + goto cleanup; + } + + /* truncate the mblk at the end of the decrypted text */ + mp->b_wptr = mp->b_rptr + enclen; + + /* Adjust the beginning of the buffer to skip the confounder */ + mp->b_rptr += DEFAULT_AES_BLOCKLEN; + + if (tmi->dec_data.ivec_usage != IVEC_NEVER && + tmi->dec_data.ivec != NULL && tmi->dec_data.ivlen > 0) + bcopy(tmpiv, tmi->dec_data.ivec, DEFAULT_AES_BLOCKLEN); + +cleanup: + if (result != CRYPTO_SUCCESS) { + mp->b_datap->db_type = M_ERROR; + mp->b_rptr = mp->b_datap->db_base; + *mp->b_rptr = EIO; + mp->b_wptr = mp->b_rptr + sizeof (char); + freemsg(mp->b_cont); + mp->b_cont = NULL; + qreply(WR(q), mp); + return (NULL); + } + return (mp); +} + +/* + * AES encrypt + * + * format of ciphertext when using AES + * +-------------+------------+------------+ + * | confounder | msg-data | hmac | + * +-------------+------------+------------+ + */ +static mblk_t * +aes_encrypt(queue_t *q, struct tmodinfo *tmi, mblk_t *mp, + hash_info_t *hash) +{ + int result; + size_t cipherlen; + size_t inlen; + uchar_t hmacbuff[64]; + + inlen = (size_t)MBLKL(mp); + + cipherlen = encrypt_size(&tmi->enc_data, inlen); + + ASSERT(MBLKSIZE(mp) >= cipherlen); + + /* + * Shift the rptr back enough to insert the confounder. + */ + mp->b_rptr -= DEFAULT_AES_BLOCKLEN; + + /* Get random data for confounder */ + (void) random_get_pseudo_bytes((uint8_t *)mp->b_rptr, + DEFAULT_AES_BLOCKLEN); + + /* + * Because we encrypt in-place, we need to calculate + * the HMAC of the plaintext now, then stick it on + * the end of the ciphertext down below. + */ + result = do_hmac(sha1_hmac_mech, + &tmi->enc_data.d_hmac_key, + (char *)mp->b_rptr, DEFAULT_AES_BLOCKLEN + inlen, + (char *)hmacbuff, hash->hash_len); + + if (result != CRYPTO_SUCCESS) { + cmn_err(CE_WARN, "aes_encrypt: do_hmac failed - error %0x", + result); + goto cleanup; + } + /* Encrypt using AES-CBC-CTS */ + result = aes_cbc_cts_encrypt(tmi, mp->b_rptr, + inlen + DEFAULT_AES_BLOCKLEN); + + if (result != CRYPTO_SUCCESS) { + cmn_err(CE_WARN, "aes_encrypt: aes_cbc_cts_encrypt " + "failed - error %0x", result); + goto cleanup; + } + + /* copy the truncated HMAC to the end of the mblk */ + bcopy(hmacbuff, mp->b_rptr + DEFAULT_AES_BLOCKLEN + inlen, + AES_TRUNCATED_HMAC_LEN); + + mp->b_wptr = mp->b_rptr + cipherlen; + + /* + * The final block of cipher text (not the HMAC) is used + * as the next IV. + */ + if (tmi->enc_data.ivec_usage != IVEC_NEVER && + tmi->enc_data.ivec != NULL) { + int nblocks = (inlen + 2 * DEFAULT_AES_BLOCKLEN - 1) / + DEFAULT_AES_BLOCKLEN; + + bcopy(mp->b_rptr + (nblocks - 2) * DEFAULT_AES_BLOCKLEN, + tmi->enc_data.ivec, DEFAULT_AES_BLOCKLEN); + } + +cleanup: + if (result != CRYPTO_SUCCESS) { + mp->b_datap->db_type = M_ERROR; + mp->b_rptr = mp->b_datap->db_base; + *mp->b_rptr = EIO; + mp->b_wptr = mp->b_rptr + sizeof (char); + freemsg(mp->b_cont); + mp->b_cont = NULL; + qreply(WR(q), mp); + return (NULL); + } + return (mp); +} + +/* + * ARCFOUR-HMAC-MD5 decrypt + * + * format of ciphertext when using ARCFOUR-HMAC-MD5 + * +-----------+------------+------------+ + * | hmac | confounder | msg-data | + * +-----------+------------+------------+ + * + */ +static mblk_t * +arcfour_hmac_md5_decrypt(queue_t *q, struct tmodinfo *tmi, mblk_t *mp, + hash_info_t *hash) +{ + int result; + size_t cipherlen; + size_t inlen; + size_t saltlen; + crypto_key_t k1, k2; + crypto_data_t indata; + iovec_t v1; + uchar_t ms_exp[9] = {0xab, 0xab, 0xab, 0xab, 0xab, + 0xab, 0xab, 0xab, 0xab }; + uchar_t k1data[CRYPT_ARCFOUR_KEYBYTES]; + uchar_t k2data[CRYPT_ARCFOUR_KEYBYTES]; + uchar_t cksum[MD5_HASHSIZE]; + uchar_t saltdata[CRYPT_ARCFOUR_KEYBYTES]; + crypto_mechanism_t mech; + int usage; + + /* The usage constant is 1026 for all "old" rcmd mode operations */ + if (tmi->dec_data.option_mask & CRYPTOPT_RCMD_MODE_V1) + usage = RCMDV1_USAGE; + else + usage = ARCFOUR_DECRYPT_USAGE; + + /* + * The size at this point should be the size of + * all the plaintext plus the optional plaintext length + * needed for RCMD V2 mode. There should also be room + * at the head of the mblk for the confounder and hash info. + */ + inlen = (size_t)MBLKL(mp); + + /* + * The cipherlen does not include the HMAC at the + * head of the buffer. + */ + cipherlen = inlen - hash->hash_len; + + ASSERT(MBLKSIZE(mp) >= cipherlen); + if (tmi->dec_data.method == CRYPT_METHOD_ARCFOUR_HMAC_MD5_EXP) { + bcopy(ARCFOUR_EXP_SALT, saltdata, strlen(ARCFOUR_EXP_SALT)); + saltdata[9] = 0; + saltdata[10] = usage & 0xff; + saltdata[11] = (usage >> 8) & 0xff; + saltdata[12] = (usage >> 16) & 0xff; + saltdata[13] = (usage >> 24) & 0xff; + saltlen = 14; + } else { + saltdata[0] = usage & 0xff; + saltdata[1] = (usage >> 8) & 0xff; + saltdata[2] = (usage >> 16) & 0xff; + saltdata[3] = (usage >> 24) & 0xff; + saltlen = 4; + } + /* + * Use the salt value to create a key to be used + * for subsequent HMAC operations. + */ + result = do_hmac(md5_hmac_mech, + tmi->dec_data.ckey, + (char *)saltdata, saltlen, + (char *)k1data, sizeof (k1data)); + if (result != CRYPTO_SUCCESS) { + cmn_err(CE_WARN, + "arcfour_hmac_md5_decrypt: do_hmac(k1)" + "failed - error %0x", result); + goto cleanup; + } + bcopy(k1data, k2data, sizeof (k1data)); + + /* + * For the neutered MS RC4 encryption type, + * set the trailing 9 bytes to 0xab per the + * RC4-HMAC spec. + */ + if (tmi->dec_data.method == CRYPT_METHOD_ARCFOUR_HMAC_MD5_EXP) { + bcopy((void *)&k1data[7], ms_exp, sizeof (ms_exp)); + } + + mech.cm_type = tmi->dec_data.mech_type; + mech.cm_param = NULL; + mech.cm_param_len = 0; + + /* + * If we have not yet initialized the decryption key, + * context, and template, do it now. + */ + if (tmi->dec_data.ctx == NULL || + (tmi->dec_data.option_mask & CRYPTOPT_RCMD_MODE_V1)) { + k1.ck_format = CRYPTO_KEY_RAW; + k1.ck_length = CRYPT_ARCFOUR_KEYBYTES * 8; + k1.ck_data = k1data; + + tmi->dec_data.d_encr_key.ck_format = CRYPTO_KEY_RAW; + tmi->dec_data.d_encr_key.ck_length = k1.ck_length; + if (tmi->dec_data.d_encr_key.ck_data == NULL) + tmi->dec_data.d_encr_key.ck_data = kmem_zalloc( + CRYPT_ARCFOUR_KEYBYTES, KM_SLEEP); + + /* + * HMAC operation creates the encryption + * key to be used for the decrypt operations. + */ + result = do_hmac(md5_hmac_mech, &k1, + (char *)mp->b_rptr, hash->hash_len, + (char *)tmi->dec_data.d_encr_key.ck_data, + CRYPT_ARCFOUR_KEYBYTES); + + + if (result != CRYPTO_SUCCESS) { + cmn_err(CE_WARN, + "arcfour_hmac_md5_decrypt: do_hmac(k3)" + "failed - error %0x", result); + goto cleanup; + } + } + + tmi->dec_data.enc_tmpl = NULL; + + if (tmi->dec_data.ctx == NULL && + (tmi->dec_data.option_mask & CRYPTOPT_RCMD_MODE_V2)) { + /* + * Only create a template if we are doing + * chaining from block to block. + */ + result = crypto_create_ctx_template(&mech, + &tmi->dec_data.d_encr_key, + &tmi->dec_data.enc_tmpl, + KM_SLEEP); + if (result == CRYPTO_NOT_SUPPORTED) { + tmi->dec_data.enc_tmpl = NULL; + } else if (result != CRYPTO_SUCCESS) { + cmn_err(CE_WARN, + "arcfour_hmac_md5_decrypt: " + "failed to create dec template " + "for RC4 encrypt: %0x", result); + goto cleanup; + } + + result = crypto_decrypt_init(&mech, + &tmi->dec_data.d_encr_key, + tmi->dec_data.enc_tmpl, + &tmi->dec_data.ctx, NULL); + + if (result != CRYPTO_SUCCESS) { + cmn_err(CE_WARN, "crypto_decrypt_init failed:" + " %0x", result); + goto cleanup; + } + } + + /* adjust the rptr so we don't decrypt the original hmac field */ + + v1.iov_base = (char *)mp->b_rptr + hash->hash_len; + v1.iov_len = cipherlen; + + indata.cd_format = CRYPTO_DATA_RAW; + indata.cd_offset = 0; + indata.cd_length = cipherlen; + indata.cd_raw = v1; + + if (tmi->dec_data.option_mask & CRYPTOPT_RCMD_MODE_V2) + result = crypto_decrypt_update(tmi->dec_data.ctx, + &indata, NULL, NULL); + else + result = crypto_decrypt(&mech, &indata, + &tmi->dec_data.d_encr_key, NULL, NULL, NULL); + + if (result != CRYPTO_SUCCESS) { + cmn_err(CE_WARN, "crypto_decrypt_update failed:" + " %0x", result); + goto cleanup; + } + + k2.ck_format = CRYPTO_KEY_RAW; + k2.ck_length = sizeof (k2data) * 8; + k2.ck_data = k2data; + + result = do_hmac(md5_hmac_mech, + &k2, + (char *)mp->b_rptr + hash->hash_len, cipherlen, + (char *)cksum, hash->hash_len); + + if (result != CRYPTO_SUCCESS) { + cmn_err(CE_WARN, + "arcfour_hmac_md5_decrypt: do_hmac(k2)" + "failed - error %0x", result); + goto cleanup; + } + + if (bcmp(cksum, mp->b_rptr, hash->hash_len) != 0) { + cmn_err(CE_WARN, "arcfour_decrypt HMAC comparison failed"); + result = -1; + goto cleanup; + } + + /* + * adjust the start of the mblk to skip over the + * hash and confounder. + */ + mp->b_rptr += hash->hash_len + hash->confound_len; + +cleanup: + bzero(k1data, sizeof (k1data)); + bzero(k2data, sizeof (k2data)); + bzero(cksum, sizeof (cksum)); + bzero(saltdata, sizeof (saltdata)); + if (result != CRYPTO_SUCCESS) { + mp->b_datap->db_type = M_ERROR; + mp->b_rptr = mp->b_datap->db_base; + *mp->b_rptr = EIO; + mp->b_wptr = mp->b_rptr + sizeof (char); + freemsg(mp->b_cont); + mp->b_cont = NULL; + qreply(WR(q), mp); + return (NULL); + } + return (mp); +} + +/* + * ARCFOUR-HMAC-MD5 encrypt + * + * format of ciphertext when using ARCFOUR-HMAC-MD5 + * +-----------+------------+------------+ + * | hmac | confounder | msg-data | + * +-----------+------------+------------+ + * + */ +static mblk_t * +arcfour_hmac_md5_encrypt(queue_t *q, struct tmodinfo *tmi, mblk_t *mp, + hash_info_t *hash) +{ + int result; + size_t cipherlen; + size_t inlen; + size_t saltlen; + crypto_key_t k1, k2; + crypto_data_t indata; + iovec_t v1; + uchar_t ms_exp[9] = {0xab, 0xab, 0xab, 0xab, 0xab, + 0xab, 0xab, 0xab, 0xab }; + uchar_t k1data[CRYPT_ARCFOUR_KEYBYTES]; + uchar_t k2data[CRYPT_ARCFOUR_KEYBYTES]; + uchar_t saltdata[CRYPT_ARCFOUR_KEYBYTES]; + crypto_mechanism_t mech; + int usage; + + /* The usage constant is 1026 for all "old" rcmd mode operations */ + if (tmi->enc_data.option_mask & CRYPTOPT_RCMD_MODE_V1) + usage = RCMDV1_USAGE; + else + usage = ARCFOUR_ENCRYPT_USAGE; + + mech.cm_type = tmi->enc_data.mech_type; + mech.cm_param = NULL; + mech.cm_param_len = 0; + + /* + * The size at this point should be the size of + * all the plaintext plus the optional plaintext length + * needed for RCMD V2 mode. There should also be room + * at the head of the mblk for the confounder and hash info. + */ + inlen = (size_t)MBLKL(mp); + + cipherlen = encrypt_size(&tmi->enc_data, inlen); + + ASSERT(MBLKSIZE(mp) >= cipherlen); + + /* + * Shift the rptr back enough to insert + * the confounder and hash. + */ + mp->b_rptr -= (hash->confound_len + hash->hash_len); + + /* zero out the hash area */ + bzero(mp->b_rptr, (size_t)hash->hash_len); + + if (cipherlen > inlen) { + bzero(mp->b_wptr, MBLKTAIL(mp)); + } + + if (tmi->enc_data.method == CRYPT_METHOD_ARCFOUR_HMAC_MD5_EXP) { + bcopy(ARCFOUR_EXP_SALT, saltdata, strlen(ARCFOUR_EXP_SALT)); + saltdata[9] = 0; + saltdata[10] = usage & 0xff; + saltdata[11] = (usage >> 8) & 0xff; + saltdata[12] = (usage >> 16) & 0xff; + saltdata[13] = (usage >> 24) & 0xff; + saltlen = 14; + } else { + saltdata[0] = usage & 0xff; + saltdata[1] = (usage >> 8) & 0xff; + saltdata[2] = (usage >> 16) & 0xff; + saltdata[3] = (usage >> 24) & 0xff; + saltlen = 4; + } + /* + * Use the salt value to create a key to be used + * for subsequent HMAC operations. + */ + result = do_hmac(md5_hmac_mech, + tmi->enc_data.ckey, + (char *)saltdata, saltlen, + (char *)k1data, sizeof (k1data)); + if (result != CRYPTO_SUCCESS) { + cmn_err(CE_WARN, + "arcfour_hmac_md5_encrypt: do_hmac(k1)" + "failed - error %0x", result); + goto cleanup; + } + + bcopy(k1data, k2data, sizeof (k2data)); + + /* + * For the neutered MS RC4 encryption type, + * set the trailing 9 bytes to 0xab per the + * RC4-HMAC spec. + */ + if (tmi->enc_data.method == CRYPT_METHOD_ARCFOUR_HMAC_MD5_EXP) { + bcopy((void *)&k1data[7], ms_exp, sizeof (ms_exp)); + } + + /* + * Get the confounder bytes. + */ + (void) random_get_pseudo_bytes( + (uint8_t *)(mp->b_rptr + hash->hash_len), + (size_t)hash->confound_len); + + k2.ck_data = k2data; + k2.ck_format = CRYPTO_KEY_RAW; + k2.ck_length = sizeof (k2data) * 8; + + /* + * This writes the HMAC to the hash area in the + * mblk. The key used is the one just created by + * the previous HMAC operation. + * The data being processed is the confounder bytes + * PLUS the input plaintext. + */ + result = do_hmac(md5_hmac_mech, &k2, + (char *)mp->b_rptr + hash->hash_len, + hash->confound_len + inlen, + (char *)mp->b_rptr, hash->hash_len); + if (result != CRYPTO_SUCCESS) { + cmn_err(CE_WARN, + "arcfour_hmac_md5_encrypt: do_hmac(k2)" + "failed - error %0x", result); + goto cleanup; + } + /* + * Because of the odd way that MIT uses RC4 keys + * on the rlogin stream, we only need to create + * this key once. + * However, if using "old" rcmd mode, we need to do + * it every time. + */ + if (tmi->enc_data.ctx == NULL || + (tmi->enc_data.option_mask & CRYPTOPT_RCMD_MODE_V1)) { + crypto_key_t *key = &tmi->enc_data.d_encr_key; + + k1.ck_data = k1data; + k1.ck_format = CRYPTO_KEY_RAW; + k1.ck_length = sizeof (k1data) * 8; + + key->ck_format = CRYPTO_KEY_RAW; + key->ck_length = k1.ck_length; + if (key->ck_data == NULL) + key->ck_data = kmem_zalloc( + CRYPT_ARCFOUR_KEYBYTES, KM_SLEEP); + + /* + * The final HMAC operation creates the encryption + * key to be used for the encrypt operation. + */ + result = do_hmac(md5_hmac_mech, &k1, + (char *)mp->b_rptr, hash->hash_len, + (char *)key->ck_data, CRYPT_ARCFOUR_KEYBYTES); + + if (result != CRYPTO_SUCCESS) { + cmn_err(CE_WARN, + "arcfour_hmac_md5_encrypt: do_hmac(k3)" + "failed - error %0x", result); + goto cleanup; + } + } + + /* + * If the context has not been initialized, do it now. + */ + if (tmi->enc_data.ctx == NULL && + (tmi->enc_data.option_mask & CRYPTOPT_RCMD_MODE_V2)) { + /* + * Only create a template if we are doing + * chaining from block to block. + */ + result = crypto_create_ctx_template(&mech, + &tmi->enc_data.d_encr_key, + &tmi->enc_data.enc_tmpl, + KM_SLEEP); + if (result == CRYPTO_NOT_SUPPORTED) { + tmi->enc_data.enc_tmpl = NULL; + } else if (result != CRYPTO_SUCCESS) { + cmn_err(CE_WARN, "failed to create enc template " + "for RC4 encrypt: %0x", result); + goto cleanup; + } + + result = crypto_encrypt_init(&mech, + &tmi->enc_data.d_encr_key, + tmi->enc_data.enc_tmpl, + &tmi->enc_data.ctx, NULL); + if (result != CRYPTO_SUCCESS) { + cmn_err(CE_WARN, "crypto_encrypt_init failed:" + " %0x", result); + goto cleanup; + } + } + v1.iov_base = (char *)mp->b_rptr + hash->hash_len; + v1.iov_len = hash->confound_len + inlen; + + indata.cd_format = CRYPTO_DATA_RAW; + indata.cd_offset = 0; + indata.cd_length = hash->confound_len + inlen; + indata.cd_raw = v1; + + if (tmi->enc_data.option_mask & CRYPTOPT_RCMD_MODE_V2) + result = crypto_encrypt_update(tmi->enc_data.ctx, + &indata, NULL, NULL); + else + result = crypto_encrypt(&mech, &indata, + &tmi->enc_data.d_encr_key, NULL, + NULL, NULL); + + if (result != CRYPTO_SUCCESS) { + cmn_err(CE_WARN, "crypto_encrypt_update failed: 0x%0x", + result); + } + +cleanup: + bzero(k1data, sizeof (k1data)); + bzero(k2data, sizeof (k2data)); + bzero(saltdata, sizeof (saltdata)); + if (result != CRYPTO_SUCCESS) { + mp->b_datap->db_type = M_ERROR; + mp->b_rptr = mp->b_datap->db_base; + *mp->b_rptr = EIO; + mp->b_wptr = mp->b_rptr + sizeof (char); + freemsg(mp->b_cont); + mp->b_cont = NULL; + qreply(WR(q), mp); + return (NULL); + } + return (mp); +} + +/* + * DES-CBC-[HASH] encrypt + * + * Needed to support userland apps that must support Kerberos V5 + * encryption DES-CBC encryption modes. + * + * The HASH values supported are RAW(NULL), MD5, CRC32, and SHA1 + * + * format of ciphertext for DES-CBC functions, per RFC1510 is: + * +-----------+----------+-------------+-----+ + * |confounder | cksum | msg-data | pad | + * +-----------+----------+-------------+-----+ + * + * format of ciphertext when using DES3-SHA1-HMAC + * +-----------+----------+-------------+-----+ + * |confounder | msg-data | hmac | pad | + * +-----------+----------+-------------+-----+ + * + * The confounder is 8 bytes of random data. + * The cksum depends on the hash being used. + * 4 bytes for CRC32 + * 16 bytes for MD5 + * 20 bytes for SHA1 + * 0 bytes for RAW + * + */ +static mblk_t * +des_cbc_encrypt(queue_t *q, struct tmodinfo *tmi, mblk_t *mp, hash_info_t *hash) +{ + int result; + size_t cipherlen; + size_t inlen; + size_t plainlen; + + /* + * The size at this point should be the size of + * all the plaintext plus the optional plaintext length + * needed for RCMD V2 mode. There should also be room + * at the head of the mblk for the confounder and hash info. + */ + inlen = (size_t)MBLKL(mp); + + /* + * The output size will be a multiple of 8 because this algorithm + * only works on 8 byte chunks. + */ + cipherlen = encrypt_size(&tmi->enc_data, inlen); + + ASSERT(MBLKSIZE(mp) >= cipherlen); + + if (cipherlen > inlen) { + bzero(mp->b_wptr, MBLKTAIL(mp)); + } + + /* + * Shift the rptr back enough to insert + * the confounder and hash. + */ + if (tmi->enc_data.method == CRYPT_METHOD_DES3_CBC_SHA1) { + mp->b_rptr -= hash->confound_len; + } else { + mp->b_rptr -= (hash->confound_len + hash->hash_len); + + /* zero out the hash area */ + bzero(mp->b_rptr + hash->confound_len, (size_t)hash->hash_len); + } + + /* get random confounder from our friend, the 'random' module */ + if (hash->confound_len > 0) { + (void) random_get_pseudo_bytes((uint8_t *)mp->b_rptr, + (size_t)hash->confound_len); + } + + /* + * For 3DES we calculate an HMAC later. + */ + if (tmi->enc_data.method != CRYPT_METHOD_DES3_CBC_SHA1) { + /* calculate chksum of confounder + input */ + if (hash->hash_len > 0 && hash->hashfunc != NULL) { + uchar_t cksum[MAX_CKSUM_LEN]; + + result = hash->hashfunc(cksum, mp->b_rptr, + cipherlen); + if (result != CRYPTO_SUCCESS) { + goto failure; + } + + /* put hash in place right after the confounder */ + bcopy(cksum, (mp->b_rptr + hash->confound_len), + (size_t)hash->hash_len); + } + } + /* + * In order to support the "old" Kerberos RCMD protocol, + * we must use the IVEC 3 different ways: + * IVEC_REUSE = keep using the same IV each time, this is + * ugly and insecure, but necessary for + * backwards compatibility with existing MIT code. + * IVEC_ONETIME = Use the ivec as initialized when the crypto + * was setup (see setup_crypto routine). + * IVEC_NEVER = never use an IVEC, use a bunch of 0's as the IV (yuk). + */ + if (tmi->enc_data.ivec_usage == IVEC_NEVER) { + bzero(tmi->enc_data.block, tmi->enc_data.blocklen); + } else if (tmi->enc_data.ivec_usage == IVEC_REUSE) { + bcopy(tmi->enc_data.ivec, tmi->enc_data.block, + tmi->enc_data.blocklen); + } + + if (tmi->enc_data.method == CRYPT_METHOD_DES3_CBC_SHA1) { + /* + * The input length already included the hash size, + * don't include this in the plaintext length + * calculations. + */ + plainlen = cipherlen - hash->hash_len; + + mp->b_wptr = mp->b_rptr + plainlen; + + result = kef_encr_hmac(&tmi->enc_data, + (void *)mp, (size_t)plainlen, + (char *)(mp->b_rptr + plainlen), + hash->hash_len); + } else { + ASSERT(mp->b_rptr + cipherlen <= DB_LIM(mp)); + mp->b_wptr = mp->b_rptr + cipherlen; + result = kef_crypt(&tmi->enc_data, (void *)mp, + CRYPTO_DATA_MBLK, (size_t)cipherlen, + CRYPT_ENCRYPT); + } +failure: + if (result != CRYPTO_SUCCESS) { +#ifdef DEBUG + cmn_err(CE_WARN, + "des_cbc_encrypt: kef_crypt encrypt " + "failed (len: %ld) - error %0x", + cipherlen, result); +#endif + mp->b_datap->db_type = M_ERROR; + mp->b_rptr = mp->b_datap->db_base; + *mp->b_rptr = EIO; + mp->b_wptr = mp->b_rptr + sizeof (char); + freemsg(mp->b_cont); + mp->b_cont = NULL; + qreply(WR(q), mp); + return (NULL); + } else if (tmi->enc_data.ivec_usage == IVEC_ONETIME) { + /* + * Because we are using KEF, we must manually + * update our IV. + */ + bcopy(mp->b_wptr - tmi->enc_data.ivlen, + tmi->enc_data.block, tmi->enc_data.ivlen); + } + if (tmi->enc_data.method == CRYPT_METHOD_DES3_CBC_SHA1) { + mp->b_wptr = mp->b_rptr + cipherlen; + } + + return (mp); +} + +/* + * des_cbc_decrypt + * + * + * Needed to support userland apps that must support Kerberos V5 + * encryption DES-CBC decryption modes. + * + * The HASH values supported are RAW(NULL), MD5, CRC32, and SHA1 + * + * format of ciphertext for DES-CBC functions, per RFC1510 is: + * +-----------+----------+-------------+-----+ + * |confounder | cksum | msg-data | pad | + * +-----------+----------+-------------+-----+ + * + * format of ciphertext when using DES3-SHA1-HMAC + * +-----------+----------+-------------+-----+ + * |confounder | msg-data | hmac | pad | + * +-----------+----------+-------------+-----+ + * + * The confounder is 8 bytes of random data. + * The cksum depends on the hash being used. + * 4 bytes for CRC32 + * 16 bytes for MD5 + * 20 bytes for SHA1 + * 0 bytes for RAW + * + */ +static mblk_t * +des_cbc_decrypt(queue_t *q, struct tmodinfo *tmi, mblk_t *mp, hash_info_t *hash) +{ + uint_t inlen, datalen; + int result = 0; + uchar_t *optr = NULL; + uchar_t cksum[MAX_CKSUM_LEN], newcksum[MAX_CKSUM_LEN]; + uchar_t nextiv[DEFAULT_DES_BLOCKLEN]; + + /* Compute adjusted size */ + inlen = MBLKL(mp); + + optr = mp->b_rptr; + + /* + * In order to support the "old" Kerberos RCMD protocol, + * we must use the IVEC 3 different ways: + * IVEC_REUSE = keep using the same IV each time, this is + * ugly and insecure, but necessary for + * backwards compatibility with existing MIT code. + * IVEC_ONETIME = Use the ivec as initialized when the crypto + * was setup (see setup_crypto routine). + * IVEC_NEVER = never use an IVEC, use a bunch of 0's as the IV (yuk). + */ + if (tmi->dec_data.ivec_usage == IVEC_NEVER) + bzero(tmi->dec_data.block, tmi->dec_data.blocklen); + else if (tmi->dec_data.ivec_usage == IVEC_REUSE) + bcopy(tmi->dec_data.ivec, tmi->dec_data.block, + tmi->dec_data.blocklen); + + if (tmi->dec_data.method == CRYPT_METHOD_DES3_CBC_SHA1) { + /* + * Do not decrypt the HMAC at the end + */ + int decrypt_len = inlen - hash->hash_len; + + /* + * Move the wptr so the mblk appears to end + * BEFORE the HMAC section. + */ + mp->b_wptr = mp->b_rptr + decrypt_len; + + /* + * Because we are using KEF, we must manually update our + * IV. + */ + if (tmi->dec_data.ivec_usage == IVEC_ONETIME) { + bcopy(mp->b_rptr + decrypt_len - tmi->dec_data.ivlen, + nextiv, tmi->dec_data.ivlen); + } + + result = kef_decr_hmac(&tmi->dec_data, mp, decrypt_len, + (char *)newcksum, hash->hash_len); + } else { + /* + * Because we are using KEF, we must manually update our + * IV. + */ + if (tmi->dec_data.ivec_usage == IVEC_ONETIME) { + bcopy(mp->b_wptr - tmi->enc_data.ivlen, nextiv, + tmi->dec_data.ivlen); + } + result = kef_crypt(&tmi->dec_data, (void *)mp, + CRYPTO_DATA_MBLK, (size_t)inlen, CRYPT_DECRYPT); + } + if (result != CRYPTO_SUCCESS) { +#ifdef DEBUG + cmn_err(CE_WARN, + "des_cbc_decrypt: kef_crypt decrypt " + "failed - error %0x", result); +#endif + mp->b_datap->db_type = M_ERROR; + mp->b_rptr = mp->b_datap->db_base; + *mp->b_rptr = EIO; + mp->b_wptr = mp->b_rptr + sizeof (char); + freemsg(mp->b_cont); + mp->b_cont = NULL; + qreply(WR(q), mp); + return (NULL); + } + + /* + * Manually update the IV, KEF does not track this for us. + */ + if (tmi->dec_data.ivec_usage == IVEC_ONETIME) { + bcopy(nextiv, tmi->dec_data.block, tmi->dec_data.ivlen); + } + + /* Verify the checksum(if necessary) */ + if (hash->hash_len > 0) { + if (tmi->dec_data.method == CRYPT_METHOD_DES3_CBC_SHA1) { + bcopy(mp->b_rptr + inlen - hash->hash_len, cksum, + hash->hash_len); + } else { + bcopy(optr + hash->confound_len, cksum, hash->hash_len); + + /* zero the cksum in the buffer */ + ASSERT(optr + hash->confound_len + hash->hash_len <= + DB_LIM(mp)); + bzero(optr + hash->confound_len, hash->hash_len); + + /* calculate MD5 chksum of confounder + input */ + if (hash->hashfunc) { + (void) hash->hashfunc(newcksum, optr, inlen); + } + } + + if (bcmp(cksum, newcksum, hash->hash_len)) { +#ifdef DEBUG + cmn_err(CE_WARN, "des_cbc_decrypt: checksum " + "verification failed"); +#endif + mp->b_datap->db_type = M_ERROR; + mp->b_rptr = mp->b_datap->db_base; + *mp->b_rptr = EIO; + mp->b_wptr = mp->b_rptr + sizeof (char); + freemsg(mp->b_cont); + mp->b_cont = NULL; + qreply(WR(q), mp); + return (NULL); + } + } + + datalen = inlen - hash->confound_len - hash->hash_len; + + /* Move just the decrypted input into place if necessary */ + if (hash->confound_len > 0 || hash->hash_len > 0) { + if (tmi->dec_data.method == CRYPT_METHOD_DES3_CBC_SHA1) + mp->b_rptr += hash->confound_len; + else + mp->b_rptr += hash->confound_len + hash->hash_len; + } + + ASSERT(mp->b_rptr + datalen <= DB_LIM(mp)); + mp->b_wptr = mp->b_rptr + datalen; + + return (mp); +} + +static mblk_t * +do_decrypt(queue_t *q, mblk_t *mp) +{ + struct tmodinfo *tmi = (struct tmodinfo *)q->q_ptr; + mblk_t *outmp; + + switch (tmi->dec_data.method) { + case CRYPT_METHOD_DES_CFB: + outmp = des_cfb_decrypt(q, tmi, mp); + break; + case CRYPT_METHOD_NONE: + outmp = mp; + break; + case CRYPT_METHOD_DES_CBC_NULL: + outmp = des_cbc_decrypt(q, tmi, mp, &null_hash); + break; + case CRYPT_METHOD_DES_CBC_MD5: + outmp = des_cbc_decrypt(q, tmi, mp, &md5_hash); + break; + case CRYPT_METHOD_DES_CBC_CRC: + outmp = des_cbc_decrypt(q, tmi, mp, &crc32_hash); + break; + case CRYPT_METHOD_DES3_CBC_SHA1: + outmp = des_cbc_decrypt(q, tmi, mp, &sha1_hash); + break; + case CRYPT_METHOD_ARCFOUR_HMAC_MD5: + case CRYPT_METHOD_ARCFOUR_HMAC_MD5_EXP: + outmp = arcfour_hmac_md5_decrypt(q, tmi, mp, &md5_hash); + break; + case CRYPT_METHOD_AES128: + case CRYPT_METHOD_AES256: + outmp = aes_decrypt(q, tmi, mp, &sha1_hash); + break; + } + return (outmp); +} + +/* + * do_encrypt + * + * Generic encryption routine for a single message block. + * The input mblk may be replaced by some encrypt routines + * because they add extra data in some cases that may exceed + * the input mblk_t size limit. + */ +static mblk_t * +do_encrypt(queue_t *q, mblk_t *mp) +{ + struct tmodinfo *tmi = (struct tmodinfo *)q->q_ptr; + mblk_t *outmp; + + switch (tmi->enc_data.method) { + case CRYPT_METHOD_DES_CFB: + outmp = des_cfb_encrypt(q, tmi, mp); + break; + case CRYPT_METHOD_DES_CBC_NULL: + outmp = des_cbc_encrypt(q, tmi, mp, &null_hash); + break; + case CRYPT_METHOD_DES_CBC_MD5: + outmp = des_cbc_encrypt(q, tmi, mp, &md5_hash); + break; + case CRYPT_METHOD_DES_CBC_CRC: + outmp = des_cbc_encrypt(q, tmi, mp, &crc32_hash); + break; + case CRYPT_METHOD_DES3_CBC_SHA1: + outmp = des_cbc_encrypt(q, tmi, mp, &sha1_hash); + break; + case CRYPT_METHOD_ARCFOUR_HMAC_MD5: + case CRYPT_METHOD_ARCFOUR_HMAC_MD5_EXP: + outmp = arcfour_hmac_md5_encrypt(q, tmi, mp, &md5_hash); + break; + case CRYPT_METHOD_AES128: + case CRYPT_METHOD_AES256: + outmp = aes_encrypt(q, tmi, mp, &sha1_hash); + break; + case CRYPT_METHOD_NONE: + outmp = mp; + break; + } + return (outmp); +} + +/* + * setup_crypto + * + * This takes the data from the CRYPTIOCSETUP ioctl + * and sets up a cipher_data_t structure for either + * encryption or decryption. This is where the + * key and initialization vector data get stored + * prior to beginning any crypto functions. + * + * Special note: + * Some applications(e.g. telnetd) have ability to switch + * crypto on/off periodically. Thus, the application may call + * the CRYPTIOCSETUP ioctl many times for the same stream. + * If the CRYPTIOCSETUP is called with 0 length key or ivec fields + * assume that the key, block, and saveblock fields that are already + * set from a previous CRIOCSETUP call are still valid. This helps avoid + * a rekeying error that could occur if we overwrite these fields + * with each CRYPTIOCSETUP call. + * In short, sometimes, CRYPTIOCSETUP is used to simply toggle on/off + * without resetting the original crypto parameters. + * + */ +static int +setup_crypto(struct cr_info_t *ci, struct cipher_data_t *cd, int encrypt) +{ + uint_t newblocklen; + uint32_t enc_usage = 0, dec_usage = 0; + int rv; + + /* + * Initial sanity checks + */ + if (!CR_METHOD_OK(ci->crypto_method)) { + cmn_err(CE_WARN, "Illegal crypto method (%d)", + ci->crypto_method); + return (EINVAL); + } + if (!CR_OPTIONS_OK(ci->option_mask)) { + cmn_err(CE_WARN, "Illegal crypto options (%d)", + ci->option_mask); + return (EINVAL); + } + if (!CR_IVUSAGE_OK(ci->ivec_usage)) { + cmn_err(CE_WARN, "Illegal ivec usage value (%d)", + ci->ivec_usage); + return (EINVAL); + } + + cd->method = ci->crypto_method; + cd->bytes = 0; + + if (ci->keylen > 0) { + if (cd->key != NULL) { + kmem_free(cd->key, cd->keylen); + cd->key = NULL; + cd->keylen = 0; + } + /* + * cd->key holds the copy of the raw key bytes passed in + * from the userland app. + */ + cd->key = (char *)kmem_alloc((size_t)ci->keylen, KM_SLEEP); + + cd->keylen = ci->keylen; + bcopy(ci->key, cd->key, (size_t)ci->keylen); + } + + /* + * Configure the block size based on the type of cipher. + */ + switch (cd->method) { + case CRYPT_METHOD_NONE: + newblocklen = 0; + break; + case CRYPT_METHOD_DES_CFB: + newblocklen = DEFAULT_DES_BLOCKLEN; + cd->mech_type = crypto_mech2id(SUN_CKM_DES_ECB); + break; + case CRYPT_METHOD_DES_CBC_NULL: + case CRYPT_METHOD_DES_CBC_MD5: + case CRYPT_METHOD_DES_CBC_CRC: + newblocklen = DEFAULT_DES_BLOCKLEN; + cd->mech_type = crypto_mech2id(SUN_CKM_DES_CBC); + break; + case CRYPT_METHOD_DES3_CBC_SHA1: + newblocklen = DEFAULT_DES_BLOCKLEN; + cd->mech_type = crypto_mech2id(SUN_CKM_DES3_CBC); + /* 3DES always uses the old usage constant */ + enc_usage = RCMDV1_USAGE; + dec_usage = RCMDV1_USAGE; + break; + case CRYPT_METHOD_ARCFOUR_HMAC_MD5: + case CRYPT_METHOD_ARCFOUR_HMAC_MD5_EXP: + newblocklen = 0; + cd->mech_type = crypto_mech2id(SUN_CKM_RC4); + break; + case CRYPT_METHOD_AES128: + case CRYPT_METHOD_AES256: + newblocklen = DEFAULT_AES_BLOCKLEN; + cd->mech_type = crypto_mech2id(SUN_CKM_AES_ECB); + enc_usage = AES_ENCRYPT_USAGE; + dec_usage = AES_DECRYPT_USAGE; + break; + } + if (cd->mech_type == CRYPTO_MECH_INVALID) { + return (CRYPTO_FAILED); + } + + /* + * If RC4, initialize the master crypto key used by + * the RC4 algorithm to derive the final encrypt and decrypt keys. + */ + if (cd->keylen > 0 && IS_RC4_METHOD(cd->method)) { + /* + * cd->ckey is a kernel crypto key structure used as the + * master key in the RC4-HMAC crypto operations. + */ + if (cd->ckey == NULL) { + cd->ckey = (crypto_key_t *)kmem_zalloc( + sizeof (crypto_key_t), KM_SLEEP); + } + + cd->ckey->ck_format = CRYPTO_KEY_RAW; + cd->ckey->ck_data = cd->key; + + /* key length for EF is measured in bits */ + cd->ckey->ck_length = cd->keylen * 8; + } + + /* + * cd->block and cd->saveblock are used as temporary storage for + * data that must be carried over between encrypt/decrypt operations + * in some of the "feedback" modes. + */ + if (newblocklen != cd->blocklen) { + if (cd->block != NULL) { + kmem_free(cd->block, cd->blocklen); + cd->block = NULL; + } + + if (cd->saveblock != NULL) { + kmem_free(cd->saveblock, cd->blocklen); + cd->saveblock = NULL; + } + + cd->blocklen = newblocklen; + if (cd->blocklen) { + cd->block = (char *)kmem_zalloc((size_t)cd->blocklen, + KM_SLEEP); + } + + if (cd->method == CRYPT_METHOD_DES_CFB) + cd->saveblock = (char *)kmem_zalloc(cd->blocklen, + KM_SLEEP); + else + cd->saveblock = NULL; + } + + if (ci->iveclen != cd->ivlen) { + if (cd->ivec != NULL) { + kmem_free(cd->ivec, cd->ivlen); + cd->ivec = NULL; + } + if (ci->ivec_usage != IVEC_NEVER && ci->iveclen > 0) { + cd->ivec = (char *)kmem_zalloc((size_t)ci->iveclen, + KM_SLEEP); + cd->ivlen = ci->iveclen; + } else { + cd->ivlen = 0; + cd->ivec = NULL; + } + } + cd->option_mask = ci->option_mask; + + /* + * Old protocol requires a static 'usage' value for + * deriving keys. Yuk. + */ + if (cd->option_mask & CRYPTOPT_RCMD_MODE_V1) { + enc_usage = dec_usage = RCMDV1_USAGE; + } + + if (cd->ivlen > cd->blocklen) { + cmn_err(CE_WARN, "setup_crypto: IV longer than block size"); + return (EINVAL); + } + + /* + * If we are using an IVEC "correctly" (i.e. set it once) + * copy it here. + */ + if (ci->ivec_usage == IVEC_ONETIME && cd->block != NULL) + bcopy(ci->ivec, cd->block, (size_t)cd->ivlen); + + cd->ivec_usage = ci->ivec_usage; + if (cd->ivec != NULL) { + /* Save the original IVEC in case we need it later */ + bcopy(ci->ivec, cd->ivec, (size_t)cd->ivlen); + } + /* + * Special handling for 3DES-SHA1-HMAC and AES crypto: + * generate derived keys and context templates + * for better performance. + */ + if (cd->method == CRYPT_METHOD_DES3_CBC_SHA1 || + IS_AES_METHOD(cd->method)) { + crypto_mechanism_t enc_mech; + crypto_mechanism_t hmac_mech; + + if (cd->d_encr_key.ck_data != NULL) { + bzero(cd->d_encr_key.ck_data, cd->keylen); + kmem_free(cd->d_encr_key.ck_data, cd->keylen); + } + + if (cd->d_hmac_key.ck_data != NULL) { + bzero(cd->d_hmac_key.ck_data, cd->keylen); + kmem_free(cd->d_hmac_key.ck_data, cd->keylen); + } + + if (cd->enc_tmpl != NULL) + (void) crypto_destroy_ctx_template(cd->enc_tmpl); + + if (cd->hmac_tmpl != NULL) + (void) crypto_destroy_ctx_template(cd->hmac_tmpl); + + enc_mech.cm_type = cd->mech_type; + enc_mech.cm_param = cd->ivec; + enc_mech.cm_param_len = cd->ivlen; + + hmac_mech.cm_type = sha1_hmac_mech; + hmac_mech.cm_param = NULL; + hmac_mech.cm_param_len = 0; + + /* + * Create the derived keys. + */ + rv = create_derived_keys(cd, + (encrypt ? enc_usage : dec_usage), + &cd->d_encr_key, &cd->d_hmac_key); + + if (rv != CRYPTO_SUCCESS) { + cmn_err(CE_WARN, "failed to create derived " + "keys: %0x", rv); + return (CRYPTO_FAILED); + } + + rv = crypto_create_ctx_template(&enc_mech, + &cd->d_encr_key, + &cd->enc_tmpl, KM_SLEEP); + if (rv == CRYPTO_MECH_NOT_SUPPORTED) { + cd->enc_tmpl = NULL; + } else if (rv != CRYPTO_SUCCESS) { + cmn_err(CE_WARN, "failed to create enc template " + "for d_encr_key: %0x", rv); + return (CRYPTO_FAILED); + } + + rv = crypto_create_ctx_template(&hmac_mech, + &cd->d_hmac_key, + &cd->hmac_tmpl, KM_SLEEP); + if (rv == CRYPTO_MECH_NOT_SUPPORTED) { + cd->hmac_tmpl = NULL; + } else if (rv != CRYPTO_SUCCESS) { + cmn_err(CE_WARN, "failed to create hmac template:" + " %0x", rv); + return (CRYPTO_FAILED); + } + } else if (IS_RC4_METHOD(cd->method)) { + bzero(&cd->d_encr_key, sizeof (crypto_key_t)); + bzero(&cd->d_hmac_key, sizeof (crypto_key_t)); + cd->ctx = NULL; + cd->enc_tmpl = NULL; + cd->hmac_tmpl = NULL; + } + + /* Final sanity checks, make sure no fields are NULL */ + if (cd->method != CRYPT_METHOD_NONE) { + if (cd->block == NULL && cd->blocklen > 0) { +#ifdef DEBUG + cmn_err(CE_WARN, + "setup_crypto: IV block not allocated"); +#endif + return (ENOMEM); + } + if (cd->key == NULL && cd->keylen > 0) { +#ifdef DEBUG + cmn_err(CE_WARN, + "setup_crypto: key block not allocated"); +#endif + return (ENOMEM); + } + if (cd->method == CRYPT_METHOD_DES_CFB && + cd->saveblock == NULL && cd->blocklen > 0) { +#ifdef DEBUG + cmn_err(CE_WARN, + "setup_crypto: save block not allocated"); +#endif + return (ENOMEM); + } + if (cd->ivec == NULL && cd->ivlen > 0) { +#ifdef DEBUG + cmn_err(CE_WARN, + "setup_crypto: IV not allocated"); +#endif + return (ENOMEM); + } + } + return (0); +} + +/* + * RCMDS require a 4 byte, clear text + * length field before each message. + * Add it now. + */ +static mblk_t * +mklenmp(mblk_t *bp, uint32_t len) +{ + mblk_t *lenmp; + uchar_t *ucp; + + if (bp->b_rptr - 4 < DB_BASE(bp) || DB_REF(bp) > 1) { + lenmp = allocb(4, BPRI_MED); + if (lenmp != NULL) { + lenmp->b_rptr = lenmp->b_wptr = DB_LIM(lenmp); + linkb(lenmp, bp); + bp = lenmp; + } + } + ucp = bp->b_rptr; + *--ucp = len; + *--ucp = len >> 8; + *--ucp = len >> 16; + *--ucp = len >> 24; + + bp->b_rptr = ucp; + + return (bp); +} + +/* + * encrypt_msgb + * + * encrypt a single message. This routine adds the + * RCMD overhead bytes when necessary. + */ +static mblk_t * +encrypt_msgb(queue_t *q, struct tmodinfo *tmi, mblk_t *mp) +{ + mblk_t *newmp; + size_t plainlen; + size_t headspace; + + if (tmi->enc_data.method == CRYPT_METHOD_NONE) { + return (mp); + } + + /* + * process message + */ + newmp = NULL; + if ((plainlen = MBLKL(mp)) > 0) { + mblk_t *cbp; + size_t cipherlen; + size_t extra = 0; + uint32_t ptlen = (uint32_t)plainlen; + + /* + * If we are using the "NEW" RCMD mode, + * add 4 bytes to the plaintext for the + * plaintext length that gets prepended + * before encrypting. + */ + if (tmi->enc_data.option_mask & CRYPTOPT_RCMD_MODE_V2) + ptlen += 4; + + cipherlen = encrypt_size(&tmi->enc_data, (size_t)ptlen); + + /* + * if we must allocb, then make sure its enough + * to hold the length field so we dont have to allocb + * again down below in 'mklenmp' + */ + if (ANY_RCMD_MODE(tmi->enc_data.option_mask)) { + extra = sizeof (uint32_t); + } + + /* + * Calculate how much space is needed in front of + * the data. + */ + headspace = plaintext_offset(&tmi->enc_data); + + /* + * If the current block is too small, reallocate + * one large enough to hold the hdr, tail, and + * ciphertext. + */ + if ((cipherlen + extra >= MBLKSIZE(mp)) || DB_REF(mp) > 1) { + int sz = P2ROUNDUP(cipherlen+extra, 8); + + cbp = allocb_tmpl(sz, mp); + if (cbp == NULL) { + cmn_err(CE_WARN, + "allocb (%d bytes) failed", sz); + return (NULL); + } + + cbp->b_cont = mp->b_cont; + + /* + * headspace includes the length fields needed + * for the RCMD modes (v1 == 4 bytes, V2 = 8) + */ + cbp->b_rptr = DB_BASE(cbp) + headspace; + + ASSERT(cbp->b_rptr + P2ROUNDUP(plainlen, 8) + <= DB_LIM(cbp)); + + bcopy(mp->b_rptr, cbp->b_rptr, plainlen); + cbp->b_wptr = cbp->b_rptr + plainlen; + + freeb(mp); + } else { + size_t extra = 0; + cbp = mp; + + /* + * Some ciphers add HMAC after the final block + * of the ciphertext, not at the beginning like the + * 1-DES ciphers. + */ + if (tmi->enc_data.method == + CRYPT_METHOD_DES3_CBC_SHA1 || + IS_AES_METHOD(tmi->enc_data.method)) { + extra = sha1_hash.hash_len; + } + + /* + * Make sure the rptr is positioned correctly so that + * routines later do not have to shift this data around + */ + if ((cbp->b_rptr + P2ROUNDUP(plainlen + extra, 8) > + DB_LIM(cbp)) || + (cbp->b_rptr - headspace < DB_BASE(cbp))) { + ovbcopy(cbp->b_rptr, DB_BASE(cbp) + headspace, + plainlen); + cbp->b_rptr = DB_BASE(cbp) + headspace; + cbp->b_wptr = cbp->b_rptr + plainlen; + } + } + + ASSERT(cbp->b_rptr - headspace >= DB_BASE(cbp)); + ASSERT(cbp->b_wptr <= DB_LIM(cbp)); + + /* + * If using RCMD_MODE_V2 (new rcmd mode), prepend + * the plaintext length before the actual plaintext. + */ + if (tmi->enc_data.option_mask & CRYPTOPT_RCMD_MODE_V2) { + cbp->b_rptr -= RCMD_LEN_SZ; + + /* put plaintext length at head of buffer */ + *(cbp->b_rptr + 3) = (uchar_t)(plainlen & 0xff); + *(cbp->b_rptr + 2) = (uchar_t)((plainlen >> 8) & 0xff); + *(cbp->b_rptr + 1) = (uchar_t)((plainlen >> 16) & 0xff); + *(cbp->b_rptr) = (uchar_t)((plainlen >> 24) & 0xff); + } + + newmp = do_encrypt(q, cbp); + + if (newmp != NULL && + (tmi->enc_data.option_mask & + (CRYPTOPT_RCMD_MODE_V1 | CRYPTOPT_RCMD_MODE_V2))) { + mblk_t *lp; + /* + * Add length field, required when this is + * used to encrypt "r*" commands(rlogin, rsh) + * with Kerberos. + */ + lp = mklenmp(newmp, plainlen); + + if (lp == NULL) { + freeb(newmp); + return (NULL); + } else { + newmp = lp; + } + } + } else { + freeb(mp); + } + + return (newmp); +} + +/* + * cryptmodwsrv + * + * Service routine for the write queue. + * + * Because data may be placed in the queue to hold between + * the CRYPTIOCSTOP and CRYPTIOCSTART ioctls, the service routine is needed. + */ +static int +cryptmodwsrv(queue_t *q) +{ + mblk_t *mp; + struct tmodinfo *tmi = (struct tmodinfo *)q->q_ptr; + + while ((mp = getq(q)) != NULL) { + switch (mp->b_datap->db_type) { + default: + /* + * wput does not queue anything > QPCTL + */ + if (!canputnext(q) || + !(tmi->ready & CRYPT_WRITE_READY)) { + if (!putbq(q, mp)) { + freemsg(mp); + } + return (0); + } + putnext(q, mp); + break; + case M_DATA: + if (canputnext(q) && (tmi->ready & CRYPT_WRITE_READY)) { + mblk_t *bp; + mblk_t *newmsg = NULL; + + /* + * If multiple msgs, concat into 1 + * to minimize crypto operations later. + */ + if (mp->b_cont != NULL) { + bp = msgpullup(mp, -1); + if (bp != NULL) { + freemsg(mp); + mp = bp; + } + } + newmsg = encrypt_msgb(q, tmi, mp); + if (newmsg != NULL) + putnext(q, newmsg); + } else { + if (!putbq(q, mp)) { + freemsg(mp); + } + return (0); + } + break; + } + } + return (0); +} + +static void +start_stream(queue_t *wq, mblk_t *mp, uchar_t dir) +{ + mblk_t *newmp = NULL; + struct tmodinfo *tmi = (struct tmodinfo *)wq->q_ptr; + + if (dir == CRYPT_ENCRYPT) { + tmi->ready |= CRYPT_WRITE_READY; + (void) (STRLOG(CRYPTMOD_ID, 0, 5, SL_TRACE|SL_NOTE, + "start_stream: restart ENCRYPT/WRITE q")); + + enableok(wq); + qenable(wq); + } else if (dir == CRYPT_DECRYPT) { + /* + * put any extra data in the RD + * queue to be processed and + * sent back up. + */ + newmp = mp->b_cont; + mp->b_cont = NULL; + + tmi->ready |= CRYPT_READ_READY; + (void) (STRLOG(CRYPTMOD_ID, 0, 5, + SL_TRACE|SL_NOTE, + "start_stream: restart " + "DECRYPT/READ q")); + + if (newmp != NULL) + if (!putbq(RD(wq), newmp)) + freemsg(newmp); + + enableok(RD(wq)); + qenable(RD(wq)); + } + + miocack(wq, mp, 0, 0); +} + +/* + * Write-side put procedure. Its main task is to detect ioctls and + * FLUSH operations. Other message types are passed on through. + */ +static void +cryptmodwput(queue_t *wq, mblk_t *mp) +{ + struct iocblk *iocp; + struct tmodinfo *tmi = (struct tmodinfo *)wq->q_ptr; + int ret, err; + + switch (mp->b_datap->db_type) { + case M_DATA: + if (wq->q_first == NULL && canputnext(wq) && + (tmi->ready & CRYPT_WRITE_READY) && + tmi->enc_data.method == CRYPT_METHOD_NONE) { + putnext(wq, mp); + return; + } + /* else, put it in the service queue */ + if (!putq(wq, mp)) { + freemsg(mp); + } + break; + case M_FLUSH: + if (*mp->b_rptr & FLUSHW) { + flushq(wq, FLUSHDATA); + } + putnext(wq, mp); + break; + case M_IOCTL: + iocp = (struct iocblk *)mp->b_rptr; + switch (iocp->ioc_cmd) { + case CRYPTIOCSETUP: + ret = 0; + (void) (STRLOG(CRYPTMOD_ID, 0, 5, + SL_TRACE | SL_NOTE, + "wput: got CRYPTIOCSETUP " + "ioctl(%d)", iocp->ioc_cmd)); + + if ((err = miocpullup(mp, + sizeof (struct cr_info_t))) != 0) { + cmn_err(CE_WARN, + "wput: miocpullup failed for cr_info_t"); + miocnak(wq, mp, 0, err); + } else { + struct cr_info_t *ci; + ci = (struct cr_info_t *)mp->b_cont->b_rptr; + + if (ci->direction_mask & CRYPT_ENCRYPT) { + ret = setup_crypto(ci, &tmi->enc_data, 1); + } + + if (ret == 0 && + (ci->direction_mask & CRYPT_DECRYPT)) { + ret = setup_crypto(ci, &tmi->dec_data, 0); + } + if (ret == 0 && + (ci->direction_mask & CRYPT_DECRYPT) && + ANY_RCMD_MODE(tmi->dec_data.option_mask)) { + bzero(&tmi->rcmd_state, + sizeof (tmi->rcmd_state)); + } + if (ret == 0) { + miocack(wq, mp, 0, 0); + } else { + cmn_err(CE_WARN, + "wput: setup_crypto failed"); + miocnak(wq, mp, 0, ret); + } + (void) (STRLOG(CRYPTMOD_ID, 0, 5, + SL_TRACE|SL_NOTE, + "wput: done with SETUP " + "ioctl")); + } + break; + case CRYPTIOCSTOP: + (void) (STRLOG(CRYPTMOD_ID, 0, 5, + SL_TRACE|SL_NOTE, + "wput: got CRYPTIOCSTOP " + "ioctl(%d)", iocp->ioc_cmd)); + + if ((err = miocpullup(mp, sizeof (uint32_t))) != 0) { + cmn_err(CE_WARN, + "wput: CRYPTIOCSTOP ioctl wrong " + "size (%d should be %d)", + (int)iocp->ioc_count, + (int)sizeof (uint32_t)); + miocnak(wq, mp, 0, err); + } else { + uint32_t *stopdir; + + stopdir = (uint32_t *)mp->b_cont->b_rptr; + if (!CR_DIRECTION_OK(*stopdir)) { + miocnak(wq, mp, 0, EINVAL); + return; + } + + /* disable the queues until further notice */ + if (*stopdir & CRYPT_ENCRYPT) { + noenable(wq); + tmi->ready &= ~CRYPT_WRITE_READY; + } + if (*stopdir & CRYPT_DECRYPT) { + noenable(RD(wq)); + tmi->ready &= ~CRYPT_READ_READY; + } + + miocack(wq, mp, 0, 0); + } + break; + case CRYPTIOCSTARTDEC: + (void) (STRLOG(CRYPTMOD_ID, 0, 5, + SL_TRACE|SL_NOTE, + "wput: got CRYPTIOCSTARTDEC " + "ioctl(%d)", iocp->ioc_cmd)); + + start_stream(wq, mp, CRYPT_DECRYPT); + break; + case CRYPTIOCSTARTENC: + (void) (STRLOG(CRYPTMOD_ID, 0, 5, + SL_TRACE|SL_NOTE, + "wput: got CRYPTIOCSTARTENC " + "ioctl(%d)", iocp->ioc_cmd)); + + start_stream(wq, mp, CRYPT_ENCRYPT); + break; + default: + putnext(wq, mp); + break; + } + break; + default: + if (queclass(mp) < QPCTL) { + if (wq->q_first != NULL || !canputnext(wq)) { + if (!putq(wq, mp)) + freemsg(mp); + return; + } + } + putnext(wq, mp); + break; + } +} + +/* + * decrypt_rcmd_mblks + * + * Because kerberized r* commands(rsh, rlogin, etc) + * use a 4 byte length field to indicate the # of + * PLAINTEXT bytes that are encrypted in the field + * that follows, we must parse out each message and + * break out the length fields prior to sending them + * upstream to our Solaris r* clients/servers which do + * NOT understand this format. + * + * Kerberized/encrypted message format: + * ------------------------------- + * | XXXX | N bytes of ciphertext| + * ------------------------------- + * + * Where: XXXX = number of plaintext bytes that were encrypted in + * to make the ciphertext field. This is done + * because we are using a cipher that pads out to + * an 8 byte boundary. We only want the application + * layer to see the correct number of plain text bytes, + * not plaintext + pad. So, after we decrypt, we + * must trim the output block down to the intended + * plaintext length and eliminate the pad bytes. + * + * This routine takes the entire input message, breaks it into + * a new message that does not contain these length fields and + * returns a message consisting of mblks filled with just ciphertext. + * + */ +static mblk_t * +decrypt_rcmd_mblks(queue_t *q, mblk_t *mp) +{ + mblk_t *newmp = NULL; + size_t msglen; + struct tmodinfo *tmi = (struct tmodinfo *)q->q_ptr; + + msglen = msgsize(mp); + + /* + * If we need the length field, get it here. + * Test the "plaintext length" indicator. + */ + if (tmi->rcmd_state.pt_len == 0) { + uint32_t elen; + int tocopy; + mblk_t *nextp; + + /* + * Make sure we have recieved all 4 bytes of the + * length field. + */ + while (mp != NULL) { + ASSERT(tmi->rcmd_state.cd_len < sizeof (uint32_t)); + + tocopy = sizeof (uint32_t) - + tmi->rcmd_state.cd_len; + if (tocopy > msglen) + tocopy = msglen; + + ASSERT(mp->b_rptr + tocopy <= DB_LIM(mp)); + bcopy(mp->b_rptr, + (char *)(&tmi->rcmd_state.next_len + + tmi->rcmd_state.cd_len), tocopy); + + tmi->rcmd_state.cd_len += tocopy; + + if (tmi->rcmd_state.cd_len >= sizeof (uint32_t)) { + tmi->rcmd_state.next_len = + ntohl(tmi->rcmd_state.next_len); + break; + } + + nextp = mp->b_cont; + mp->b_cont = NULL; + freeb(mp); + mp = nextp; + } + + if (mp == NULL) { + return (NULL); + } + /* + * recalculate the msglen now that we've read the + * length and adjusted the bufptr (b_rptr). + */ + msglen -= tocopy; + mp->b_rptr += tocopy; + + tmi->rcmd_state.pt_len = tmi->rcmd_state.next_len; + + if (tmi->rcmd_state.pt_len <= 0) { + /* + * Return an IO error to break the connection. there + * is no way to recover from this. Usually it means + * the app has incorrectly requested decryption on + * a non-encrypted stream, thus the "pt_len" field + * is negative. + */ + mp->b_datap->db_type = M_ERROR; + mp->b_rptr = mp->b_datap->db_base; + *mp->b_rptr = EIO; + mp->b_wptr = mp->b_rptr + sizeof (char); + + freemsg(mp->b_cont); + mp->b_cont = NULL; + qreply(WR(q), mp); + tmi->rcmd_state.cd_len = tmi->rcmd_state.pt_len = 0; + return (NULL); + } + + /* + * If this is V2 mode, then the encrypted data is actually + * 4 bytes bigger than the indicated len because the plaintext + * length is encrypted for an additional security check, but + * its not counted as part of the overall length we just read. + * Strange and confusing, but true. + */ + + if (tmi->dec_data.option_mask & CRYPTOPT_RCMD_MODE_V2) + elen = tmi->rcmd_state.pt_len + 4; + else + elen = tmi->rcmd_state.pt_len; + + tmi->rcmd_state.cd_len = encrypt_size(&tmi->dec_data, elen); + + /* + * Allocate an mblk to hold the cipher text until it is + * all ready to be processed. + */ + tmi->rcmd_state.c_msg = allocb(tmi->rcmd_state.cd_len, + BPRI_HI); + if (tmi->rcmd_state.c_msg == NULL) { +#ifdef DEBUG + cmn_err(CE_WARN, "decrypt_rcmd_msgb: allocb failed " + "for %d bytes", + (int)tmi->rcmd_state.cd_len); +#endif + /* + * Return an IO error to break the connection. + */ + mp->b_datap->db_type = M_ERROR; + mp->b_rptr = mp->b_datap->db_base; + *mp->b_rptr = EIO; + mp->b_wptr = mp->b_rptr + sizeof (char); + freemsg(mp->b_cont); + mp->b_cont = NULL; + tmi->rcmd_state.cd_len = tmi->rcmd_state.pt_len = 0; + qreply(WR(q), mp); + return (NULL); + } + } + + /* + * If this entire message was just the length field, + * free and return. The actual data will probably be next. + */ + if (msglen == 0) { + freemsg(mp); + return (NULL); + } + + /* + * Copy as much of the cipher text as possible into + * the new msgb (c_msg). + * + * Logic: if we got some bytes (msglen) and we still + * "need" some bytes (len-rcvd), get them here. + */ + ASSERT(tmi->rcmd_state.c_msg != NULL); + if (msglen > 0 && + (tmi->rcmd_state.cd_len > MBLKL(tmi->rcmd_state.c_msg))) { + mblk_t *bp, *nextp; + size_t n; + + /* + * Walk the mblks and copy just as many bytes as we need + * for this particular block of cipher text. + */ + bp = mp; + while (bp != NULL) { + size_t needed; + size_t tocopy; + n = MBLKL(bp); + + needed = tmi->rcmd_state.cd_len - + MBLKL(tmi->rcmd_state.c_msg); + + tocopy = (needed >= n ? n : needed); + + ASSERT(bp->b_rptr + tocopy <= DB_LIM(bp)); + ASSERT(tmi->rcmd_state.c_msg->b_wptr + tocopy <= + DB_LIM(tmi->rcmd_state.c_msg)); + + /* Copy to end of new mblk */ + bcopy(bp->b_rptr, tmi->rcmd_state.c_msg->b_wptr, + tocopy); + + tmi->rcmd_state.c_msg->b_wptr += tocopy; + + bp->b_rptr += tocopy; + + nextp = bp->b_cont; + + /* + * If we used this whole block, free it and + * move on. + */ + if (!MBLKL(bp)) { + freeb(bp); + bp = NULL; + } + + /* If we got what we needed, stop the loop */ + if (MBLKL(tmi->rcmd_state.c_msg) == + tmi->rcmd_state.cd_len) { + /* + * If there is more data in the message, + * its for another block of cipher text, + * put it back in the queue for next time. + */ + if (bp) { + if (!putbq(q, bp)) + freemsg(bp); + } else if (nextp != NULL) { + /* + * If there is more, put it back in the + * queue for another pass thru. + */ + if (!putbq(q, nextp)) + freemsg(nextp); + } + break; + } + bp = nextp; + } + } + /* + * Finally, if we received all the cipher text data for + * this message, decrypt it into a new msg and send it up + * to the app. + */ + if (tmi->rcmd_state.pt_len > 0 && + MBLKL(tmi->rcmd_state.c_msg) == tmi->rcmd_state.cd_len) { + mblk_t *bp; + mblk_t *newbp; + + /* + * Now we can use our msg that we created when the + * initial message boundary was detected. + */ + bp = tmi->rcmd_state.c_msg; + tmi->rcmd_state.c_msg = NULL; + + newbp = do_decrypt(q, bp); + if (newbp != NULL) { + bp = newbp; + /* + * If using RCMD_MODE_V2 ("new" mode), + * look at the 4 byte plaintext length that + * was just decrypted and compare with the + * original pt_len value that was received. + */ + if (tmi->dec_data.option_mask & + CRYPTOPT_RCMD_MODE_V2) { + uint32_t pt_len2; + + pt_len2 = *(uint32_t *)bp->b_rptr; + pt_len2 = ntohl(pt_len2); + /* + * Make sure the 2 pt len fields agree. + */ + if (pt_len2 != tmi->rcmd_state.pt_len) { + cmn_err(CE_WARN, + "Inconsistent length fields" + " received %d != %d", + (int)tmi->rcmd_state.pt_len, + (int)pt_len2); + bp->b_datap->db_type = M_ERROR; + bp->b_rptr = bp->b_datap->db_base; + *bp->b_rptr = EIO; + bp->b_wptr = bp->b_rptr + sizeof (char); + freemsg(bp->b_cont); + bp->b_cont = NULL; + tmi->rcmd_state.cd_len = 0; + qreply(WR(q), bp); + return (NULL); + } + bp->b_rptr += sizeof (uint32_t); + } + + /* + * Trim the decrypted block the length originally + * indicated by the sender. This is to remove any + * padding bytes that the sender added to satisfy + * requirements of the crypto algorithm. + */ + bp->b_wptr = bp->b_rptr + tmi->rcmd_state.pt_len; + + newmp = bp; + + /* + * Reset our state to indicate we are ready + * for a new message. + */ + tmi->rcmd_state.pt_len = 0; + tmi->rcmd_state.cd_len = 0; + } else { +#ifdef DEBUG + cmn_err(CE_WARN, + "decrypt_rcmd: do_decrypt on %d bytes failed", + (int)tmi->rcmd_state.cd_len); +#endif + /* + * do_decrypt already handled failures, just + * return NULL. + */ + tmi->rcmd_state.pt_len = 0; + tmi->rcmd_state.cd_len = 0; + return (NULL); + } + } + + /* + * return the new message with the 'length' fields removed + */ + return (newmp); +} + +/* + * cryptmodrsrv + * + * Read queue service routine + * Necessary because if the ready flag is not set + * (via CRYPTIOCSTOP/CRYPTIOCSTART ioctls) then the data + * must remain on queue and not be passed along. + */ +static int +cryptmodrsrv(queue_t *q) +{ + mblk_t *mp, *bp; + struct tmodinfo *tmi = (struct tmodinfo *)q->q_ptr; + + while ((mp = getq(q)) != NULL) { + switch (mp->b_datap->db_type) { + case M_DATA: + if (canputnext(q) && tmi->ready & CRYPT_READ_READY) { + /* + * Process "rcmd" messages differently because + * they contain a 4 byte plaintext length + * id that needs to be removed. + */ + if (tmi->dec_data.method != CRYPT_METHOD_NONE && + (tmi->dec_data.option_mask & + (CRYPTOPT_RCMD_MODE_V1 | + CRYPTOPT_RCMD_MODE_V2))) { + mp = decrypt_rcmd_mblks(q, mp); + if (mp) + putnext(q, mp); + continue; + } + if ((bp = msgpullup(mp, -1)) != NULL) { + freemsg(mp); + if (MBLKL(bp) > 0) { + mp = do_decrypt(q, bp); + if (mp != NULL) + putnext(q, mp); + } + } + } else { + if (!putbq(q, mp)) { + freemsg(mp); + } + return (0); + } + break; + default: + /* + * rput does not queue anything > QPCTL, so we don't + * need to check for it here. + */ + if (!canputnext(q)) { + if (!putbq(q, mp)) + freemsg(mp); + return (0); + } + putnext(q, mp); + break; + } + } + return (0); +} + + +/* + * Read-side put procedure. + */ +static void +cryptmodrput(queue_t *rq, mblk_t *mp) +{ + switch (mp->b_datap->db_type) { + case M_DATA: + if (!putq(rq, mp)) { + freemsg(mp); + } + break; + case M_FLUSH: + if (*mp->b_rptr & FLUSHR) { + flushq(rq, FLUSHALL); + } + putnext(rq, mp); + break; + default: + if (queclass(mp) < QPCTL) { + if (rq->q_first != NULL || !canputnext(rq)) { + if (!putq(rq, mp)) + freemsg(mp); + return; + } + } + putnext(rq, mp); + break; + } +} |
