diff options
author | Richard Lowe <richlowe@richlowe.net> | 2021-06-04 15:15:12 -0500 |
---|---|---|
committer | Richard Lowe <richlowe@richlowe.net> | 2021-08-16 12:46:39 -0500 |
commit | f0089e391b2bc4be2755f1a1b51fb4cd9b8f3988 (patch) | |
tree | c4ac2f5e703ed459d50bcee7ddb38a993d961520 /usr/src/uts/intel/ia32/os | |
parent | d083fed0c91296a88878f7a468910ad5b5c888ea (diff) | |
download | illumos-joyent-f0089e391b2bc4be2755f1a1b51fb4cd9b8f3988.tar.gz |
13941 intel code and headers should not look ia32 specific
Reviewed by: Hans Rosenfeld <rosenfeld@grumpf.hope-2000.org>
Reviewed by: Toomas Soome <tsoome@me.com>
Reviewed by: Patrick Mooney <pmooney@pfmooney.com>
Approved by: Garret D'Amore <garrett@damore.org>
Diffstat (limited to 'usr/src/uts/intel/ia32/os')
-rw-r--r-- | usr/src/uts/intel/ia32/os/archdep.c | 1240 | ||||
-rw-r--r-- | usr/src/uts/intel/ia32/os/bootdev.c | 100 | ||||
-rw-r--r-- | usr/src/uts/intel/ia32/os/comm_page_util.c | 62 | ||||
-rw-r--r-- | usr/src/uts/intel/ia32/os/copy_subr.c | 104 | ||||
-rw-r--r-- | usr/src/uts/intel/ia32/os/cpc_subr.c | 274 | ||||
-rw-r--r-- | usr/src/uts/intel/ia32/os/ddi_i86.c | 1903 | ||||
-rw-r--r-- | usr/src/uts/intel/ia32/os/desctbls.c | 1218 | ||||
-rw-r--r-- | usr/src/uts/intel/ia32/os/fpu.c | 1506 | ||||
-rw-r--r-- | usr/src/uts/intel/ia32/os/sendsig.c | 589 | ||||
-rw-r--r-- | usr/src/uts/intel/ia32/os/sundep.c | 1012 | ||||
-rw-r--r-- | usr/src/uts/intel/ia32/os/syscall.c | 1397 | ||||
-rw-r--r-- | usr/src/uts/intel/ia32/os/sysi86.c | 850 |
12 files changed, 0 insertions, 10255 deletions
diff --git a/usr/src/uts/intel/ia32/os/archdep.c b/usr/src/uts/intel/ia32/os/archdep.c deleted file mode 100644 index 14d20bb487..0000000000 --- a/usr/src/uts/intel/ia32/os/archdep.c +++ /dev/null @@ -1,1240 +0,0 @@ -/* - * CDDL HEADER START - * - * The contents of this file are subject to the terms of the - * Common Development and Distribution License (the "License"). - * You may not use this file except in compliance with the License. - * - * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE - * or http://www.opensolaris.org/os/licensing. - * See the License for the specific language governing permissions - * and limitations under the License. - * - * When distributing Covered Code, include this CDDL HEADER in each - * file and include the License file at usr/src/OPENSOLARIS.LICENSE. - * If applicable, add the following below this CDDL HEADER, with the - * fields enclosed by brackets "[]" replaced with your own identifying - * information: Portions Copyright [yyyy] [name of copyright owner] - * - * CDDL HEADER END - */ -/* - * Copyright (c) 1992, 2010, Oracle and/or its affiliates. All rights reserved. - */ - -/* Copyright (c) 1984, 1986, 1987, 1988, 1989 AT&T */ -/* All Rights Reserved */ -/* - * Copyright (c) 2018, Joyent, Inc. - * Copyright 2012 Nexenta Systems, Inc. All rights reserved. - */ - -#include <sys/param.h> -#include <sys/types.h> -#include <sys/vmparam.h> -#include <sys/systm.h> -#include <sys/signal.h> -#include <sys/stack.h> -#include <sys/regset.h> -#include <sys/privregs.h> -#include <sys/frame.h> -#include <sys/proc.h> -#include <sys/psw.h> -#include <sys/siginfo.h> -#include <sys/cpuvar.h> -#include <sys/asm_linkage.h> -#include <sys/kmem.h> -#include <sys/errno.h> -#include <sys/bootconf.h> -#include <sys/archsystm.h> -#include <sys/debug.h> -#include <sys/elf.h> -#include <sys/spl.h> -#include <sys/time.h> -#include <sys/atomic.h> -#include <sys/sysmacros.h> -#include <sys/cmn_err.h> -#include <sys/modctl.h> -#include <sys/kobj.h> -#include <sys/panic.h> -#include <sys/reboot.h> -#include <sys/time.h> -#include <sys/fp.h> -#include <sys/x86_archext.h> -#include <sys/auxv.h> -#include <sys/auxv_386.h> -#include <sys/dtrace.h> -#include <sys/brand.h> -#include <sys/machbrand.h> -#include <sys/cmn_err.h> - -/* - * Map an fnsave-formatted save area into an fxsave-formatted save area. - * - * Most fields are the same width, content and semantics. However - * the tag word is compressed. - */ -static void -fnsave_to_fxsave(const struct fnsave_state *fn, struct fxsave_state *fx) -{ - uint_t i, tagbits; - - fx->fx_fcw = fn->f_fcw; - fx->fx_fsw = fn->f_fsw; - - /* - * copy element by element (because of holes) - */ - for (i = 0; i < 8; i++) - bcopy(&fn->f_st[i].fpr_16[0], &fx->fx_st[i].fpr_16[0], - sizeof (fn->f_st[0].fpr_16)); /* 80-bit x87-style floats */ - - /* - * synthesize compressed tag bits - */ - fx->fx_fctw = 0; - for (tagbits = fn->f_ftw, i = 0; i < 8; i++, tagbits >>= 2) - if ((tagbits & 3) != 3) - fx->fx_fctw |= (1 << i); - - fx->fx_fop = fn->f_fop; - - fx->fx_rip = (uint64_t)fn->f_eip; - fx->fx_rdp = (uint64_t)fn->f_dp; -} - -/* - * Map from an fxsave-format save area to an fnsave-format save area. - */ -static void -fxsave_to_fnsave(const struct fxsave_state *fx, struct fnsave_state *fn) -{ - uint_t i, top, tagbits; - - fn->f_fcw = fx->fx_fcw; - fn->__f_ign0 = 0; - fn->f_fsw = fx->fx_fsw; - fn->__f_ign1 = 0; - - top = (fx->fx_fsw & FPS_TOP) >> 11; - - /* - * copy element by element (because of holes) - */ - for (i = 0; i < 8; i++) - bcopy(&fx->fx_st[i].fpr_16[0], &fn->f_st[i].fpr_16[0], - sizeof (fn->f_st[0].fpr_16)); /* 80-bit x87-style floats */ - - /* - * synthesize uncompressed tag bits - */ - fn->f_ftw = 0; - for (tagbits = fx->fx_fctw, i = 0; i < 8; i++, tagbits >>= 1) { - uint_t ibit, expo; - const uint16_t *fpp; - static const uint16_t zero[5] = { 0, 0, 0, 0, 0 }; - - if ((tagbits & 1) == 0) { - fn->f_ftw |= 3 << (i << 1); /* empty */ - continue; - } - - /* - * (tags refer to *physical* registers) - */ - fpp = &fx->fx_st[(i - top + 8) & 7].fpr_16[0]; - ibit = fpp[3] >> 15; - expo = fpp[4] & 0x7fff; - - if (ibit && expo != 0 && expo != 0x7fff) - continue; /* valid fp number */ - - if (bcmp(fpp, &zero, sizeof (zero))) - fn->f_ftw |= 2 << (i << 1); /* NaN */ - else - fn->f_ftw |= 1 << (i << 1); /* fp zero */ - } - - fn->f_fop = fx->fx_fop; - - fn->__f_ign2 = 0; - fn->f_eip = (uint32_t)fx->fx_rip; - fn->f_cs = U32CS_SEL; - fn->f_dp = (uint32_t)fx->fx_rdp; - fn->f_ds = UDS_SEL; - fn->__f_ign3 = 0; -} - -/* - * Map from an fpregset_t into an fxsave-format save area - */ -static void -fpregset_to_fxsave(const fpregset_t *fp, struct fxsave_state *fx) -{ - bcopy(fp, fx, sizeof (*fx)); - /* - * avoid useless #gp exceptions - mask reserved bits - */ - fx->fx_mxcsr &= sse_mxcsr_mask; -} - -/* - * Map from an fxsave-format save area into a fpregset_t - */ -static void -fxsave_to_fpregset(const struct fxsave_state *fx, fpregset_t *fp) -{ - bcopy(fx, fp, sizeof (*fx)); -} - -#if defined(_SYSCALL32_IMPL) -static void -fpregset32_to_fxsave(const fpregset32_t *fp, struct fxsave_state *fx) -{ - const struct fpchip32_state *fc = &fp->fp_reg_set.fpchip_state; - - fnsave_to_fxsave((const struct fnsave_state *)fc, fx); - /* - * avoid useless #gp exceptions - mask reserved bits - */ - fx->fx_mxcsr = sse_mxcsr_mask & fc->mxcsr; - bcopy(&fc->xmm[0], &fx->fx_xmm[0], sizeof (fc->xmm)); -} - -static void -fxsave_to_fpregset32(const struct fxsave_state *fx, fpregset32_t *fp) -{ - struct fpchip32_state *fc = &fp->fp_reg_set.fpchip_state; - - fxsave_to_fnsave(fx, (struct fnsave_state *)fc); - fc->mxcsr = fx->fx_mxcsr; - bcopy(&fx->fx_xmm[0], &fc->xmm[0], sizeof (fc->xmm)); -} - -static void -fpregset_nto32(const fpregset_t *src, fpregset32_t *dst) -{ - fxsave_to_fpregset32((struct fxsave_state *)src, dst); - dst->fp_reg_set.fpchip_state.status = - src->fp_reg_set.fpchip_state.status; - dst->fp_reg_set.fpchip_state.xstatus = - src->fp_reg_set.fpchip_state.xstatus; -} - -static void -fpregset_32ton(const fpregset32_t *src, fpregset_t *dst) -{ - fpregset32_to_fxsave(src, (struct fxsave_state *)dst); - dst->fp_reg_set.fpchip_state.status = - src->fp_reg_set.fpchip_state.status; - dst->fp_reg_set.fpchip_state.xstatus = - src->fp_reg_set.fpchip_state.xstatus; -} -#endif - -/* - * Set floating-point registers from a native fpregset_t. - */ -void -setfpregs(klwp_t *lwp, fpregset_t *fp) -{ - struct fpu_ctx *fpu = &lwp->lwp_pcb.pcb_fpu; - - if (fpu->fpu_flags & FPU_EN) { - if (!(fpu->fpu_flags & FPU_VALID)) { - /* - * FPU context is still active, release the - * ownership. - */ - fp_free(fpu, 0); - } - } - /* - * Else: if we are trying to change the FPU state of a thread which - * hasn't yet initialized floating point, store the state in - * the pcb and indicate that the state is valid. When the - * thread enables floating point, it will use this state instead - * of the default state. - */ - - switch (fp_save_mech) { - case FP_FXSAVE: - fpregset_to_fxsave(fp, fpu->fpu_regs.kfpu_u.kfpu_fx); - fpu->fpu_regs.kfpu_xstatus = - fp->fp_reg_set.fpchip_state.xstatus; - break; - - case FP_XSAVE: - fpregset_to_fxsave(fp, - &fpu->fpu_regs.kfpu_u.kfpu_xs->xs_fxsave); - fpu->fpu_regs.kfpu_xstatus = - fp->fp_reg_set.fpchip_state.xstatus; - fpu->fpu_regs.kfpu_u.kfpu_xs->xs_xstate_bv |= - (XFEATURE_LEGACY_FP | XFEATURE_SSE); - break; - default: - panic("Invalid fp_save_mech"); - /*NOTREACHED*/ - } - - fpu->fpu_regs.kfpu_status = fp->fp_reg_set.fpchip_state.status; - fpu->fpu_flags |= FPU_VALID; - PCB_SET_UPDATE_FPU(&lwp->lwp_pcb); -} - -/* - * Get floating-point registers into a native fpregset_t. - */ -void -getfpregs(klwp_t *lwp, fpregset_t *fp) -{ - struct fpu_ctx *fpu = &lwp->lwp_pcb.pcb_fpu; - - kpreempt_disable(); - if (fpu->fpu_flags & FPU_EN) { - /* - * If we have FPU hw and the thread's pcb doesn't have - * a valid FPU state then get the state from the hw. - */ - if (fpu_exists && ttolwp(curthread) == lwp && - !(fpu->fpu_flags & FPU_VALID)) - fp_save(fpu); /* get the current FPU state */ - } - - /* - * There are 3 possible cases we have to be aware of here: - * - * 1. FPU is enabled. FPU state is stored in the current LWP. - * - * 2. FPU is not enabled, and there have been no intervening /proc - * modifications. Return initial FPU state. - * - * 3. FPU is not enabled, but a /proc consumer has modified FPU state. - * FPU state is stored in the current LWP. - */ - if ((fpu->fpu_flags & FPU_EN) || (fpu->fpu_flags & FPU_VALID)) { - /* - * Cases 1 and 3. - */ - switch (fp_save_mech) { - case FP_FXSAVE: - fxsave_to_fpregset(fpu->fpu_regs.kfpu_u.kfpu_fx, fp); - fp->fp_reg_set.fpchip_state.xstatus = - fpu->fpu_regs.kfpu_xstatus; - break; - case FP_XSAVE: - fxsave_to_fpregset( - &fpu->fpu_regs.kfpu_u.kfpu_xs->xs_fxsave, fp); - fp->fp_reg_set.fpchip_state.xstatus = - fpu->fpu_regs.kfpu_xstatus; - break; - default: - panic("Invalid fp_save_mech"); - /*NOTREACHED*/ - } - fp->fp_reg_set.fpchip_state.status = fpu->fpu_regs.kfpu_status; - } else { - /* - * Case 2. - */ - switch (fp_save_mech) { - case FP_FXSAVE: - case FP_XSAVE: - /* - * For now, we don't have any AVX specific field in ABI. - * If we add any in the future, we need to initial them - * as well. - */ - fxsave_to_fpregset(&sse_initial, fp); - fp->fp_reg_set.fpchip_state.xstatus = - fpu->fpu_regs.kfpu_xstatus; - break; - default: - panic("Invalid fp_save_mech"); - /*NOTREACHED*/ - } - fp->fp_reg_set.fpchip_state.status = fpu->fpu_regs.kfpu_status; - } - kpreempt_enable(); -} - -#if defined(_SYSCALL32_IMPL) - -/* - * Set floating-point registers from an fpregset32_t. - */ -void -setfpregs32(klwp_t *lwp, fpregset32_t *fp) -{ - fpregset_t fpregs; - - fpregset_32ton(fp, &fpregs); - setfpregs(lwp, &fpregs); -} - -/* - * Get floating-point registers into an fpregset32_t. - */ -void -getfpregs32(klwp_t *lwp, fpregset32_t *fp) -{ - fpregset_t fpregs; - - getfpregs(lwp, &fpregs); - fpregset_nto32(&fpregs, fp); -} - -#endif /* _SYSCALL32_IMPL */ - -/* - * Return the general registers - */ -void -getgregs(klwp_t *lwp, gregset_t grp) -{ - struct regs *rp = lwptoregs(lwp); - struct pcb *pcb = &lwp->lwp_pcb; - int thisthread = lwptot(lwp) == curthread; - - grp[REG_RDI] = rp->r_rdi; - grp[REG_RSI] = rp->r_rsi; - grp[REG_RDX] = rp->r_rdx; - grp[REG_RCX] = rp->r_rcx; - grp[REG_R8] = rp->r_r8; - grp[REG_R9] = rp->r_r9; - grp[REG_RAX] = rp->r_rax; - grp[REG_RBX] = rp->r_rbx; - grp[REG_RBP] = rp->r_rbp; - grp[REG_R10] = rp->r_r10; - grp[REG_R11] = rp->r_r11; - grp[REG_R12] = rp->r_r12; - grp[REG_R13] = rp->r_r13; - grp[REG_R14] = rp->r_r14; - grp[REG_R15] = rp->r_r15; - grp[REG_FSBASE] = pcb->pcb_fsbase; - grp[REG_GSBASE] = pcb->pcb_gsbase; - if (thisthread) - kpreempt_disable(); - if (PCB_NEED_UPDATE_SEGS(pcb)) { - grp[REG_DS] = pcb->pcb_ds; - grp[REG_ES] = pcb->pcb_es; - grp[REG_FS] = pcb->pcb_fs; - grp[REG_GS] = pcb->pcb_gs; - } else { - grp[REG_DS] = rp->r_ds; - grp[REG_ES] = rp->r_es; - grp[REG_FS] = rp->r_fs; - grp[REG_GS] = rp->r_gs; - } - if (thisthread) - kpreempt_enable(); - grp[REG_TRAPNO] = rp->r_trapno; - grp[REG_ERR] = rp->r_err; - grp[REG_RIP] = rp->r_rip; - grp[REG_CS] = rp->r_cs; - grp[REG_SS] = rp->r_ss; - grp[REG_RFL] = rp->r_rfl; - grp[REG_RSP] = rp->r_rsp; -} - -#if defined(_SYSCALL32_IMPL) - -void -getgregs32(klwp_t *lwp, gregset32_t grp) -{ - struct regs *rp = lwptoregs(lwp); - struct pcb *pcb = &lwp->lwp_pcb; - int thisthread = lwptot(lwp) == curthread; - - if (thisthread) - kpreempt_disable(); - if (PCB_NEED_UPDATE_SEGS(pcb)) { - grp[GS] = (uint16_t)pcb->pcb_gs; - grp[FS] = (uint16_t)pcb->pcb_fs; - grp[DS] = (uint16_t)pcb->pcb_ds; - grp[ES] = (uint16_t)pcb->pcb_es; - } else { - grp[GS] = (uint16_t)rp->r_gs; - grp[FS] = (uint16_t)rp->r_fs; - grp[DS] = (uint16_t)rp->r_ds; - grp[ES] = (uint16_t)rp->r_es; - } - if (thisthread) - kpreempt_enable(); - grp[EDI] = (greg32_t)rp->r_rdi; - grp[ESI] = (greg32_t)rp->r_rsi; - grp[EBP] = (greg32_t)rp->r_rbp; - grp[ESP] = 0; - grp[EBX] = (greg32_t)rp->r_rbx; - grp[EDX] = (greg32_t)rp->r_rdx; - grp[ECX] = (greg32_t)rp->r_rcx; - grp[EAX] = (greg32_t)rp->r_rax; - grp[TRAPNO] = (greg32_t)rp->r_trapno; - grp[ERR] = (greg32_t)rp->r_err; - grp[EIP] = (greg32_t)rp->r_rip; - grp[CS] = (uint16_t)rp->r_cs; - grp[EFL] = (greg32_t)rp->r_rfl; - grp[UESP] = (greg32_t)rp->r_rsp; - grp[SS] = (uint16_t)rp->r_ss; -} - -void -ucontext_32ton(const ucontext32_t *src, ucontext_t *dst) -{ - mcontext_t *dmc = &dst->uc_mcontext; - const mcontext32_t *smc = &src->uc_mcontext; - - bzero(dst, sizeof (*dst)); - dst->uc_flags = src->uc_flags; - dst->uc_link = (ucontext_t *)(uintptr_t)src->uc_link; - - bcopy(&src->uc_sigmask, &dst->uc_sigmask, sizeof (dst->uc_sigmask)); - - dst->uc_stack.ss_sp = (void *)(uintptr_t)src->uc_stack.ss_sp; - dst->uc_stack.ss_size = (size_t)src->uc_stack.ss_size; - dst->uc_stack.ss_flags = src->uc_stack.ss_flags; - - dmc->gregs[REG_GS] = (greg_t)(uint32_t)smc->gregs[GS]; - dmc->gregs[REG_FS] = (greg_t)(uint32_t)smc->gregs[FS]; - dmc->gregs[REG_ES] = (greg_t)(uint32_t)smc->gregs[ES]; - dmc->gregs[REG_DS] = (greg_t)(uint32_t)smc->gregs[DS]; - dmc->gregs[REG_RDI] = (greg_t)(uint32_t)smc->gregs[EDI]; - dmc->gregs[REG_RSI] = (greg_t)(uint32_t)smc->gregs[ESI]; - dmc->gregs[REG_RBP] = (greg_t)(uint32_t)smc->gregs[EBP]; - dmc->gregs[REG_RBX] = (greg_t)(uint32_t)smc->gregs[EBX]; - dmc->gregs[REG_RDX] = (greg_t)(uint32_t)smc->gregs[EDX]; - dmc->gregs[REG_RCX] = (greg_t)(uint32_t)smc->gregs[ECX]; - dmc->gregs[REG_RAX] = (greg_t)(uint32_t)smc->gregs[EAX]; - dmc->gregs[REG_TRAPNO] = (greg_t)(uint32_t)smc->gregs[TRAPNO]; - dmc->gregs[REG_ERR] = (greg_t)(uint32_t)smc->gregs[ERR]; - dmc->gregs[REG_RIP] = (greg_t)(uint32_t)smc->gregs[EIP]; - dmc->gregs[REG_CS] = (greg_t)(uint32_t)smc->gregs[CS]; - dmc->gregs[REG_RFL] = (greg_t)(uint32_t)smc->gregs[EFL]; - dmc->gregs[REG_RSP] = (greg_t)(uint32_t)smc->gregs[UESP]; - dmc->gregs[REG_SS] = (greg_t)(uint32_t)smc->gregs[SS]; - - /* - * A valid fpregs is only copied in if uc.uc_flags has UC_FPU set - * otherwise there is no guarantee that anything in fpregs is valid. - */ - if (src->uc_flags & UC_FPU) - fpregset_32ton(&src->uc_mcontext.fpregs, - &dst->uc_mcontext.fpregs); -} - -#endif /* _SYSCALL32_IMPL */ - -/* - * Return the user-level PC. - * If in a system call, return the address of the syscall trap. - */ -greg_t -getuserpc() -{ - greg_t upc = lwptoregs(ttolwp(curthread))->r_pc; - uint32_t insn; - - if (curthread->t_sysnum == 0) - return (upc); - - /* - * We might've gotten here from sysenter (0xf 0x34), - * syscall (0xf 0x5) or lcall (0x9a 0 0 0 0 0x27 0). - * - * Go peek at the binary to figure it out.. - */ - if (fuword32((void *)(upc - 2), &insn) != -1 && - (insn & 0xffff) == 0x340f || (insn & 0xffff) == 0x050f) - return (upc - 2); - return (upc - 7); -} - -/* - * Protect segment registers from non-user privilege levels and GDT selectors - * other than USER_CS, USER_DS and lwp FS and GS values. If the segment - * selector is non-null and not USER_CS/USER_DS, we make sure that the - * TI bit is set to point into the LDT and that the RPL is set to 3. - * - * Since struct regs stores each 16-bit segment register as a 32-bit greg_t, we - * also explicitly zero the top 16 bits since they may be coming from the - * user's address space via setcontext(2) or /proc. - * - * Note about null selector. When running on the hypervisor if we allow a - * process to set its %cs to null selector with RPL of 0 the hypervisor will - * crash the domain. If running on bare metal we would get a #gp fault and - * be able to kill the process and continue on. Therefore we make sure to - * force RPL to SEL_UPL even for null selector when setting %cs. - */ - -#if defined(IS_CS) || defined(IS_NOT_CS) -#error "IS_CS and IS_NOT_CS already defined" -#endif - -#define IS_CS 1 -#define IS_NOT_CS 0 - -/*ARGSUSED*/ -static greg_t -fix_segreg(greg_t sr, int iscs, model_t datamodel) -{ - switch (sr &= 0xffff) { - - case 0: - if (iscs == IS_CS) - return (0 | SEL_UPL); - else - return (0); - - /* - * If lwp attempts to switch data model then force their - * code selector to be null selector. - */ - case U32CS_SEL: - if (datamodel == DATAMODEL_NATIVE) - return (0 | SEL_UPL); - else - return (sr); - - case UCS_SEL: - if (datamodel == DATAMODEL_ILP32) - return (0 | SEL_UPL); - /*FALLTHROUGH*/ - case UDS_SEL: - case LWPFS_SEL: - case LWPGS_SEL: - case SEL_UPL: - return (sr); - default: - break; - } - - /* - * Force it into the LDT in ring 3 for 32-bit processes, which by - * default do not have an LDT, so that any attempt to use an invalid - * selector will reference the (non-existant) LDT, and cause a #gp - * fault for the process. - * - * 64-bit processes get the null gdt selector since they - * are not allowed to have a private LDT. - */ - if (datamodel == DATAMODEL_ILP32) { - return (sr | SEL_TI_LDT | SEL_UPL); - } else { - if (iscs == IS_CS) - return (0 | SEL_UPL); - else - return (0); - } - -} - -/* - * Set general registers. - */ -void -setgregs(klwp_t *lwp, gregset_t grp) -{ - struct regs *rp = lwptoregs(lwp); - model_t datamodel = lwp_getdatamodel(lwp); - - struct pcb *pcb = &lwp->lwp_pcb; - int thisthread = lwptot(lwp) == curthread; - - if (datamodel == DATAMODEL_NATIVE) { - if (thisthread) - (void) save_syscall_args(); /* copy the args */ - - rp->r_rdi = grp[REG_RDI]; - rp->r_rsi = grp[REG_RSI]; - rp->r_rdx = grp[REG_RDX]; - rp->r_rcx = grp[REG_RCX]; - rp->r_r8 = grp[REG_R8]; - rp->r_r9 = grp[REG_R9]; - rp->r_rax = grp[REG_RAX]; - rp->r_rbx = grp[REG_RBX]; - rp->r_rbp = grp[REG_RBP]; - rp->r_r10 = grp[REG_R10]; - rp->r_r11 = grp[REG_R11]; - rp->r_r12 = grp[REG_R12]; - rp->r_r13 = grp[REG_R13]; - rp->r_r14 = grp[REG_R14]; - rp->r_r15 = grp[REG_R15]; - rp->r_trapno = grp[REG_TRAPNO]; - rp->r_err = grp[REG_ERR]; - rp->r_rip = grp[REG_RIP]; - /* - * Setting %cs or %ss to anything else is quietly but - * quite definitely forbidden! - */ - rp->r_cs = UCS_SEL; - rp->r_ss = UDS_SEL; - rp->r_rsp = grp[REG_RSP]; - - if (thisthread) - kpreempt_disable(); - - pcb->pcb_ds = UDS_SEL; - pcb->pcb_es = UDS_SEL; - - /* - * 64-bit processes -are- allowed to set their fsbase/gsbase - * values directly, but only if they're using the segment - * selectors that allow that semantic. - * - * (32-bit processes must use lwp_set_private().) - */ - pcb->pcb_fsbase = grp[REG_FSBASE]; - pcb->pcb_gsbase = grp[REG_GSBASE]; - pcb->pcb_fs = fix_segreg(grp[REG_FS], IS_NOT_CS, datamodel); - pcb->pcb_gs = fix_segreg(grp[REG_GS], IS_NOT_CS, datamodel); - - /* - * Ensure that we go out via update_sregs - */ - PCB_SET_UPDATE_SEGS(pcb); - lwptot(lwp)->t_post_sys = 1; - if (thisthread) - kpreempt_enable(); -#if defined(_SYSCALL32_IMPL) - } else { - rp->r_rdi = (uint32_t)grp[REG_RDI]; - rp->r_rsi = (uint32_t)grp[REG_RSI]; - rp->r_rdx = (uint32_t)grp[REG_RDX]; - rp->r_rcx = (uint32_t)grp[REG_RCX]; - rp->r_rax = (uint32_t)grp[REG_RAX]; - rp->r_rbx = (uint32_t)grp[REG_RBX]; - rp->r_rbp = (uint32_t)grp[REG_RBP]; - rp->r_trapno = (uint32_t)grp[REG_TRAPNO]; - rp->r_err = (uint32_t)grp[REG_ERR]; - rp->r_rip = (uint32_t)grp[REG_RIP]; - - rp->r_cs = fix_segreg(grp[REG_CS], IS_CS, datamodel); - rp->r_ss = fix_segreg(grp[REG_DS], IS_NOT_CS, datamodel); - - rp->r_rsp = (uint32_t)grp[REG_RSP]; - - if (thisthread) - kpreempt_disable(); - - pcb->pcb_ds = fix_segreg(grp[REG_DS], IS_NOT_CS, datamodel); - pcb->pcb_es = fix_segreg(grp[REG_ES], IS_NOT_CS, datamodel); - - /* - * (See fsbase/gsbase commentary above) - */ - pcb->pcb_fs = fix_segreg(grp[REG_FS], IS_NOT_CS, datamodel); - pcb->pcb_gs = fix_segreg(grp[REG_GS], IS_NOT_CS, datamodel); - - /* - * Ensure that we go out via update_sregs - */ - PCB_SET_UPDATE_SEGS(pcb); - lwptot(lwp)->t_post_sys = 1; - if (thisthread) - kpreempt_enable(); -#endif - } - - /* - * Only certain bits of the flags register can be modified. - */ - rp->r_rfl = (rp->r_rfl & ~PSL_USERMASK) | - (grp[REG_RFL] & PSL_USERMASK); -} - -/* - * Determine whether eip is likely to have an interrupt frame - * on the stack. We do this by comparing the address to the - * range of addresses spanned by several well-known routines. - */ -extern void _interrupt(); -extern void _allsyscalls(); -extern void _cmntrap(); -extern void fakesoftint(); - -extern size_t _interrupt_size; -extern size_t _allsyscalls_size; -extern size_t _cmntrap_size; -extern size_t _fakesoftint_size; - -/* - * Get a pc-only stacktrace. Used for kmem_alloc() buffer ownership tracking. - * Returns MIN(current stack depth, pcstack_limit). - */ -int -getpcstack(pc_t *pcstack, int pcstack_limit) -{ - struct frame *fp = (struct frame *)getfp(); - struct frame *nextfp, *minfp, *stacktop; - int depth = 0; - int on_intr; - uintptr_t pc; - - if ((on_intr = CPU_ON_INTR(CPU)) != 0) - stacktop = (struct frame *)(CPU->cpu_intr_stack + SA(MINFRAME)); - else - stacktop = (struct frame *)curthread->t_stk; - minfp = fp; - - pc = ((struct regs *)fp)->r_pc; - - while (depth < pcstack_limit) { - nextfp = (struct frame *)fp->fr_savfp; - pc = fp->fr_savpc; - if (nextfp <= minfp || nextfp >= stacktop) { - if (on_intr) { - /* - * Hop from interrupt stack to thread stack. - */ - stacktop = (struct frame *)curthread->t_stk; - minfp = (struct frame *)curthread->t_stkbase; - on_intr = 0; - continue; - } - break; - } - pcstack[depth++] = (pc_t)pc; - fp = nextfp; - minfp = fp; - } - return (depth); -} - -/* - * The following ELF header fields are defined as processor-specific - * in the V8 ABI: - * - * e_ident[EI_DATA] encoding of the processor-specific - * data in the object file - * e_machine processor identification - * e_flags processor-specific flags associated - * with the file - */ - -/* - * The value of at_flags reflects a platform's cpu module support. - * at_flags is used to check for allowing a binary to execute and - * is passed as the value of the AT_FLAGS auxiliary vector. - */ -int at_flags = 0; - -/* - * Check the processor-specific fields of an ELF header. - * - * returns 1 if the fields are valid, 0 otherwise - */ -/*ARGSUSED2*/ -int -elfheadcheck( - unsigned char e_data, - Elf32_Half e_machine, - Elf32_Word e_flags) -{ - if (e_data != ELFDATA2LSB) - return (0); - if (e_machine == EM_AMD64) - return (1); - return (e_machine == EM_386); -} - -uint_t auxv_hwcap_include = 0; /* patch to enable unrecognized features */ -uint_t auxv_hwcap_include_2 = 0; /* second word */ -uint_t auxv_hwcap_exclude = 0; /* patch for broken cpus, debugging */ -uint_t auxv_hwcap_exclude_2 = 0; /* second word */ -#if defined(_SYSCALL32_IMPL) -uint_t auxv_hwcap32_include = 0; /* ditto for 32-bit apps */ -uint_t auxv_hwcap32_include_2 = 0; /* ditto for 32-bit apps */ -uint_t auxv_hwcap32_exclude = 0; /* ditto for 32-bit apps */ -uint_t auxv_hwcap32_exclude_2 = 0; /* ditto for 32-bit apps */ -#endif - -/* - * Gather information about the processor and place it into auxv_hwcap - * so that it can be exported to the linker via the aux vector. - * - * We use this seemingly complicated mechanism so that we can ensure - * that /etc/system can be used to override what the system can or - * cannot discover for itself. - */ -void -bind_hwcap(void) -{ - uint_t cpu_hwcap_flags[2]; - cpuid_pass4(NULL, cpu_hwcap_flags); - - auxv_hwcap = (auxv_hwcap_include | cpu_hwcap_flags[0]) & - ~auxv_hwcap_exclude; - auxv_hwcap_2 = (auxv_hwcap_include_2 | cpu_hwcap_flags[1]) & - ~auxv_hwcap_exclude_2; - - /* - * On AMD processors, sysenter just doesn't work at all - * when the kernel is in long mode. On IA-32e processors - * it does, but there's no real point in all the alternate - * mechanism when syscall works on both. - * - * Besides, the kernel's sysenter handler is expecting a - * 32-bit lwp ... - */ - auxv_hwcap &= ~AV_386_SEP; - - if (auxv_hwcap_include || auxv_hwcap_exclude || auxv_hwcap_include_2 || - auxv_hwcap_exclude_2) { - /* - * The below assignment is regrettably required to get lint - * to accept the validity of our format string. The format - * string is in fact valid, but whatever intelligence in lint - * understands the cmn_err()-specific %b appears to have an - * off-by-one error: it (mistakenly) complains about bit - * number 32 (even though this is explicitly permitted). - * Normally, one would will away such warnings with a "LINTED" - * directive, but for reasons unclear and unknown, lint - * refuses to be assuaged in this case. Fortunately, lint - * doesn't pretend to have solved the Halting Problem -- - * and as soon as the format string is programmatic, it - * knows enough to shut up. - */ - char *fmt = "?user ABI extensions: %b\n"; - cmn_err(CE_CONT, fmt, auxv_hwcap, FMT_AV_386); - fmt = "?user ABI extensions (word 2): %b\n"; - cmn_err(CE_CONT, fmt, auxv_hwcap_2, FMT_AV_386_2); - } - -#if defined(_SYSCALL32_IMPL) - auxv_hwcap32 = (auxv_hwcap32_include | cpu_hwcap_flags[0]) & - ~auxv_hwcap32_exclude; - auxv_hwcap32_2 = (auxv_hwcap32_include_2 | cpu_hwcap_flags[1]) & - ~auxv_hwcap32_exclude_2; - - /* - * If this is an amd64 architecture machine from Intel, then - * syscall -doesn't- work in compatibility mode, only sysenter does. - * - * Sigh. - */ - if (!cpuid_syscall32_insn(NULL)) - auxv_hwcap32 &= ~AV_386_AMD_SYSC; - - /* - * 32-bit processes can -always- use the lahf/sahf instructions - */ - auxv_hwcap32 |= AV_386_AHF; - - /* - * 32-bit processes can -never- use fsgsbase instructions. - */ - auxv_hwcap32_2 &= ~AV_386_2_FSGSBASE; - - if (auxv_hwcap32_include || auxv_hwcap32_exclude || - auxv_hwcap32_include_2 || auxv_hwcap32_exclude_2) { - /* - * See the block comment in the cmn_err() of auxv_hwcap, above. - */ - char *fmt = "?32-bit user ABI extensions: %b\n"; - cmn_err(CE_CONT, fmt, auxv_hwcap32, FMT_AV_386); - fmt = "?32-bit user ABI extensions (word 2): %b\n"; - cmn_err(CE_CONT, fmt, auxv_hwcap32_2, FMT_AV_386_2); - } -#endif -} - -/* - * sync_icache() - this is called - * in proc/fs/prusrio.c. x86 has an unified cache and therefore - * this is a nop. - */ -/* ARGSUSED */ -void -sync_icache(caddr_t addr, uint_t len) -{ - /* Do nothing for now */ -} - -/*ARGSUSED*/ -void -sync_data_memory(caddr_t va, size_t len) -{ - /* Not implemented for this platform */ -} - -int -__ipltospl(int ipl) -{ - return (ipltospl(ipl)); -} - -/* - * The panic code invokes panic_saveregs() to record the contents of a - * regs structure into the specified panic_data structure for debuggers. - */ -void -panic_saveregs(panic_data_t *pdp, struct regs *rp) -{ - panic_nv_t *pnv = PANICNVGET(pdp); - - struct cregs creg; - - getcregs(&creg); - - PANICNVADD(pnv, "rdi", rp->r_rdi); - PANICNVADD(pnv, "rsi", rp->r_rsi); - PANICNVADD(pnv, "rdx", rp->r_rdx); - PANICNVADD(pnv, "rcx", rp->r_rcx); - PANICNVADD(pnv, "r8", rp->r_r8); - PANICNVADD(pnv, "r9", rp->r_r9); - PANICNVADD(pnv, "rax", rp->r_rax); - PANICNVADD(pnv, "rbx", rp->r_rbx); - PANICNVADD(pnv, "rbp", rp->r_rbp); - PANICNVADD(pnv, "r10", rp->r_r10); - PANICNVADD(pnv, "r11", rp->r_r11); - PANICNVADD(pnv, "r12", rp->r_r12); - PANICNVADD(pnv, "r13", rp->r_r13); - PANICNVADD(pnv, "r14", rp->r_r14); - PANICNVADD(pnv, "r15", rp->r_r15); - PANICNVADD(pnv, "fsbase", rdmsr(MSR_AMD_FSBASE)); - PANICNVADD(pnv, "gsbase", rdmsr(MSR_AMD_GSBASE)); - PANICNVADD(pnv, "ds", rp->r_ds); - PANICNVADD(pnv, "es", rp->r_es); - PANICNVADD(pnv, "fs", rp->r_fs); - PANICNVADD(pnv, "gs", rp->r_gs); - PANICNVADD(pnv, "trapno", rp->r_trapno); - PANICNVADD(pnv, "err", rp->r_err); - PANICNVADD(pnv, "rip", rp->r_rip); - PANICNVADD(pnv, "cs", rp->r_cs); - PANICNVADD(pnv, "rflags", rp->r_rfl); - PANICNVADD(pnv, "rsp", rp->r_rsp); - PANICNVADD(pnv, "ss", rp->r_ss); - PANICNVADD(pnv, "gdt_hi", (uint64_t)(creg.cr_gdt._l[3])); - PANICNVADD(pnv, "gdt_lo", (uint64_t)(creg.cr_gdt._l[0])); - PANICNVADD(pnv, "idt_hi", (uint64_t)(creg.cr_idt._l[3])); - PANICNVADD(pnv, "idt_lo", (uint64_t)(creg.cr_idt._l[0])); - - PANICNVADD(pnv, "ldt", creg.cr_ldt); - PANICNVADD(pnv, "task", creg.cr_task); - PANICNVADD(pnv, "cr0", creg.cr_cr0); - PANICNVADD(pnv, "cr2", creg.cr_cr2); - PANICNVADD(pnv, "cr3", creg.cr_cr3); - if (creg.cr_cr4) - PANICNVADD(pnv, "cr4", creg.cr_cr4); - - PANICNVSET(pdp, pnv); -} - -#define TR_ARG_MAX 6 /* Max args to print, same as SPARC */ - - -/* - * Print a stack backtrace using the specified frame pointer. We delay two - * seconds before continuing, unless this is the panic traceback. - * If we are in the process of panicking, we also attempt to write the - * stack backtrace to a staticly assigned buffer, to allow the panic - * code to find it and write it in to uncompressed pages within the - * system crash dump. - * Note that the frame for the starting stack pointer value is omitted because - * the corresponding %eip is not known. - */ - -extern char *dump_stack_scratch; - - -void -traceback(caddr_t fpreg) -{ - struct frame *fp = (struct frame *)fpreg; - struct frame *nextfp; - uintptr_t pc, nextpc; - ulong_t off; - char args[TR_ARG_MAX * 2 + 16], *sym; - uint_t offset = 0; - uint_t next_offset = 0; - char stack_buffer[1024]; - - if (!panicstr) - printf("traceback: %%fp = %p\n", (void *)fp); - - if (panicstr && !dump_stack_scratch) { - printf("Warning - stack not written to the dump buffer\n"); - } - - fp = (struct frame *)plat_traceback(fpreg); - if ((uintptr_t)fp < KERNELBASE) - goto out; - - pc = fp->fr_savpc; - fp = (struct frame *)fp->fr_savfp; - - while ((uintptr_t)fp >= KERNELBASE) { - /* - * XX64 Until port is complete tolerate 8-byte aligned - * frame pointers but flag with a warning so they can - * be fixed. - */ - if (((uintptr_t)fp & (STACK_ALIGN - 1)) != 0) { - if (((uintptr_t)fp & (8 - 1)) == 0) { - printf(" >> warning! 8-byte" - " aligned %%fp = %p\n", (void *)fp); - } else { - printf( - " >> mis-aligned %%fp = %p\n", (void *)fp); - break; - } - } - - args[0] = '\0'; - nextpc = (uintptr_t)fp->fr_savpc; - nextfp = (struct frame *)fp->fr_savfp; - if ((sym = kobj_getsymname(pc, &off)) != NULL) { - printf("%016lx %s:%s+%lx (%s)\n", (uintptr_t)fp, - mod_containing_pc((caddr_t)pc), sym, off, args); - (void) snprintf(stack_buffer, sizeof (stack_buffer), - "%s:%s+%lx (%s) | ", - mod_containing_pc((caddr_t)pc), sym, off, args); - } else { - printf("%016lx %lx (%s)\n", - (uintptr_t)fp, pc, args); - (void) snprintf(stack_buffer, sizeof (stack_buffer), - "%lx (%s) | ", pc, args); - } - - if (panicstr && dump_stack_scratch) { - next_offset = offset + strlen(stack_buffer); - if (next_offset < STACK_BUF_SIZE) { - bcopy(stack_buffer, dump_stack_scratch + offset, - strlen(stack_buffer)); - offset = next_offset; - } else { - /* - * In attempting to save the panic stack - * to the dumpbuf we have overflowed that area. - * Print a warning and continue to printf the - * stack to the msgbuf - */ - printf("Warning: stack in the dump buffer" - " may be incomplete\n"); - offset = next_offset; - } - } - - pc = nextpc; - fp = nextfp; - } -out: - if (!panicstr) { - printf("end of traceback\n"); - DELAY(2 * MICROSEC); - } else if (dump_stack_scratch) { - dump_stack_scratch[offset] = '\0'; - } -} - - -/* - * Generate a stack backtrace from a saved register set. - */ -void -traceregs(struct regs *rp) -{ - traceback((caddr_t)rp->r_fp); -} - -void -exec_set_sp(size_t stksize) -{ - klwp_t *lwp = ttolwp(curthread); - - lwptoregs(lwp)->r_sp = (uintptr_t)curproc->p_usrstack - stksize; -} - -hrtime_t -gethrtime_waitfree(void) -{ - return (dtrace_gethrtime()); -} - -hrtime_t -gethrtime(void) -{ - return (gethrtimef()); -} - -hrtime_t -gethrtime_unscaled(void) -{ - return (gethrtimeunscaledf()); -} - -void -scalehrtime(hrtime_t *hrt) -{ - scalehrtimef(hrt); -} - -uint64_t -unscalehrtime(hrtime_t nsecs) -{ - return (unscalehrtimef(nsecs)); -} - -void -gethrestime(timespec_t *tp) -{ - gethrestimef(tp); -} - -/* - * Part of the implementation of hres_tick(); this routine is - * easier in C than assembler .. called with the hres_lock held. - * - * XX64 Many of these timekeeping variables need to be extern'ed in a header - */ - -#include <sys/time.h> -#include <sys/machlock.h> - -extern int one_sec; -extern int max_hres_adj; - -void -__adj_hrestime(void) -{ - long long adj; - - if (hrestime_adj == 0) - adj = 0; - else if (hrestime_adj > 0) { - if (hrestime_adj < max_hres_adj) - adj = hrestime_adj; - else - adj = max_hres_adj; - } else { - if (hrestime_adj < -max_hres_adj) - adj = -max_hres_adj; - else - adj = hrestime_adj; - } - - timedelta -= adj; - hrestime_adj = timedelta; - hrestime.tv_nsec += adj; - - while (hrestime.tv_nsec >= NANOSEC) { - one_sec++; - hrestime.tv_sec++; - hrestime.tv_nsec -= NANOSEC; - } -} - -/* - * Wrapper functions to maintain backwards compability - */ -int -xcopyin(const void *uaddr, void *kaddr, size_t count) -{ - return (xcopyin_nta(uaddr, kaddr, count, UIO_COPY_CACHED)); -} - -int -xcopyout(const void *kaddr, void *uaddr, size_t count) -{ - return (xcopyout_nta(kaddr, uaddr, count, UIO_COPY_CACHED)); -} diff --git a/usr/src/uts/intel/ia32/os/bootdev.c b/usr/src/uts/intel/ia32/os/bootdev.c deleted file mode 100644 index 02f31efd56..0000000000 --- a/usr/src/uts/intel/ia32/os/bootdev.c +++ /dev/null @@ -1,100 +0,0 @@ -/* - * CDDL HEADER START - * - * The contents of this file are subject to the terms of the - * Common Development and Distribution License, Version 1.0 only - * (the "License"). You may not use this file except in compliance - * with the License. - * - * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE - * or http://www.opensolaris.org/os/licensing. - * See the License for the specific language governing permissions - * and limitations under the License. - * - * When distributing Covered Code, include this CDDL HEADER in each - * file and include the License file at usr/src/OPENSOLARIS.LICENSE. - * If applicable, add the following below this CDDL HEADER, with the - * fields enclosed by brackets "[]" replaced with your own identifying - * information: Portions Copyright [yyyy] [name of copyright owner] - * - * CDDL HEADER END - */ -/* - * Copyright 2008 Sun Microsystems, Inc. All rights reserved. - * Use is subject to license terms. - */ - -#include <sys/modctl.h> -#include <sys/sunddi.h> - -/* internal global data */ -static struct modlmisc modlmisc = { - &mod_miscops, "bootdev misc module" -}; - -static struct modlinkage modlinkage = { - MODREV_1, (void *)&modlmisc, NULL -}; - -int -_init() -{ - return (mod_install(&modlinkage)); -} - -int -_fini() -{ - return (mod_remove(&modlinkage)); -} - -int -_info(struct modinfo *modinfop) -{ - return (mod_info(&modlinkage, modinfop)); -} - -/* - * convert a prom device path to an equivalent path in /devices - * Does not deal with aliases. Does deal with pathnames which - * are not fully qualified. This routine is generalized - * to work across several flavors of OBP - */ -int -i_promname_to_devname(char *prom_name, char *ret_buf) -{ - if (prom_name == NULL || ret_buf == NULL || - (strlen(prom_name) >= MAXPATHLEN)) { - return (EINVAL); - } - if (i_ddi_prompath_to_devfspath(prom_name, ret_buf) != DDI_SUCCESS) - return (EINVAL); - - return (0); -} - -/* - * If bootstring contains a device path, we need to convert to a format - * the prom will understand. To do so, we convert the existing path to - * a prom-compatible path and return the value of new_path. If the - * caller specifies new_path as NULL, we allocate an appropriately - * sized new_path on behalf of the caller. If the caller invokes this - * function with new_path = NULL, they must do so from a context in - * which it is safe to perform a sleeping memory allocation. - * - * NOTE: Intel does not have a real PROM, so the implementation - * simply returns a copy of the string passed in. - */ -char * -i_convert_boot_device_name(char *cur_path, char *new_path, size_t *len) -{ - if (new_path != NULL) { - (void) snprintf(new_path, *len, "%s", cur_path); - return (new_path); - } else { - *len = strlen(cur_path) + 1; - new_path = kmem_alloc(*len, KM_SLEEP); - (void) snprintf(new_path, *len, "%s", cur_path); - return (new_path); - } -} diff --git a/usr/src/uts/intel/ia32/os/comm_page_util.c b/usr/src/uts/intel/ia32/os/comm_page_util.c deleted file mode 100644 index f286bee7f6..0000000000 --- a/usr/src/uts/intel/ia32/os/comm_page_util.c +++ /dev/null @@ -1,62 +0,0 @@ -/* - * This file and its contents are supplied under the terms of the - * Common Development and Distribution License ("CDDL"), version 1.0. - * You may only use this file in accordance with the terms of version - * 1.0 of the CDDL. - * - * A full copy of the text of the CDDL should have accompanied this - * source. A copy of the CDDL is also available via the Internet at - * http://www.illumos.org/license/CDDL. - */ - -/* - * Copyright 2016 Joyent, Inc. - */ - - -#include <sys/types.h> -#include <sys/thread.h> -#include <sys/proc.h> -#include <sys/mman.h> -#include <sys/vmsystm.h> -#include <vm/as.h> -#include <vm/seg_umap.h> - -#if !defined(__xpv) -#include <sys/comm_page.h> -#endif /* !defined(__xpv) */ - -/* - * Map in the comm page. - * - * The contents of the comm page are only defined on non-xpv x86 at this time. - * Furthermore, the data is only valid in userspace (32-bit or 64-bit) when - * mapped from a 64-bit kernel. - * See: "uts/i86pc/sys/comm_page.h" - */ -caddr_t -comm_page_mapin() -{ -#if !defined(__xpv) - proc_t *p = curproc; - caddr_t addr = NULL; - size_t len = COMM_PAGE_SIZE; - uint_t prot = PROT_USER | PROT_READ; - segumap_crargs_t suarg; - - map_addr(&addr, len, (offset_t)0, 1, 0); - if (addr == NULL || valid_usr_range(addr, len, prot, p->p_as, - p->p_as->a_userlimit) != RANGE_OKAY) { - return (NULL); - } - - suarg.kaddr = (caddr_t)&comm_page; - suarg.prot = suarg.maxprot = prot; - if (as_map(p->p_as, addr, len, segumap_create, &suarg) != 0) { - return (NULL); - } - return (addr); -#else /* !defined(__xpv) */ - return (NULL); -#endif /* !defined(__xpv) */ -} diff --git a/usr/src/uts/intel/ia32/os/copy_subr.c b/usr/src/uts/intel/ia32/os/copy_subr.c deleted file mode 100644 index 0df1086260..0000000000 --- a/usr/src/uts/intel/ia32/os/copy_subr.c +++ /dev/null @@ -1,104 +0,0 @@ -/* - * CDDL HEADER START - * - * The contents of this file are subject to the terms of the - * Common Development and Distribution License, Version 1.0 only - * (the "License"). You may not use this file except in compliance - * with the License. - * - * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE - * or http://www.opensolaris.org/os/licensing. - * See the License for the specific language governing permissions - * and limitations under the License. - * - * When distributing Covered Code, include this CDDL HEADER in each - * file and include the License file at usr/src/OPENSOLARIS.LICENSE. - * If applicable, add the following below this CDDL HEADER, with the - * fields enclosed by brackets "[]" replaced with your own identifying - * information: Portions Copyright [yyyy] [name of copyright owner] - * - * CDDL HEADER END - */ -/* - * Copyright 2004 Sun Microsystems, Inc. All rights reserved. - * Use is subject to license terms. - */ - -#pragma ident "%Z%%M% %I% %E% SMI" - -/* - * Miscellaneous C routines for copying data around without - * descending into assembler. Compilers are pretty good at - * scheduling instructions, and humans are pretty hopeless at - * writing correct assembler. - */ - -#include <sys/types.h> -#include <sys/systm.h> -#include <sys/errno.h> -#include <sys/param.h> - -/* - * copyinstr_noerr and copyoutstr_noerr can be implemented completely - * in C on machines with shared user and kernel context. - */ -static int -copystr_nofault(const char *src, char *dst, size_t maxlength, - size_t *lencopied) -{ - int error = 0; - size_t leftover; - - if ((leftover = maxlength) == 0) - error = ENAMETOOLONG; - else - do { - leftover--; - if ((*dst++ = *src++) == '\0') - break; - if (leftover == 0) { - error = ENAMETOOLONG; - break; - } - /*CONSTCOND*/ - } while (1); - - if (lencopied) - *lencopied = maxlength - leftover; - return (error); -} - - -int -copyinstr_noerr(const char *uaddr, char *kaddr, size_t maxlength, - size_t *lencopied) -{ - char *ua = (char *)uaddr; - - ASSERT((uintptr_t)kaddr > kernelbase); - - if ((uintptr_t)ua > kernelbase) { - /* - * force fault at kernelbase - */ - ua = (char *)kernelbase; - } - return (copystr_nofault(ua, kaddr, maxlength, lencopied)); -} - -int -copyoutstr_noerr(const char *kaddr, char *uaddr, size_t maxlength, - size_t *lencopied) -{ - char *ua = (char *)uaddr; - - ASSERT((uintptr_t)kaddr > kernelbase); - - if ((uintptr_t)ua > kernelbase) { - /* - * force fault at kernelbase - */ - ua = (char *)kernelbase; - } - return (copystr_nofault(kaddr, ua, maxlength, lencopied)); -} diff --git a/usr/src/uts/intel/ia32/os/cpc_subr.c b/usr/src/uts/intel/ia32/os/cpc_subr.c deleted file mode 100644 index 71e1ebaeee..0000000000 --- a/usr/src/uts/intel/ia32/os/cpc_subr.c +++ /dev/null @@ -1,274 +0,0 @@ -/* - * CDDL HEADER START - * - * The contents of this file are subject to the terms of the - * Common Development and Distribution License (the "License"). - * You may not use this file except in compliance with the License. - * - * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE - * or http://www.opensolaris.org/os/licensing. - * See the License for the specific language governing permissions - * and limitations under the License. - * - * When distributing Covered Code, include this CDDL HEADER in each - * file and include the License file at usr/src/OPENSOLARIS.LICENSE. - * If applicable, add the following below this CDDL HEADER, with the - * fields enclosed by brackets "[]" replaced with your own identifying - * information: Portions Copyright [yyyy] [name of copyright owner] - * - * CDDL HEADER END - */ -/* - * Copyright (c) 1999, 2010, Oracle and/or its affiliates. All rights reserved. - * Copyright 2021 Joyent, Inc. - */ - -/* - * x86-specific routines used by the CPU Performance counter driver. - */ - -#include <sys/types.h> -#include <sys/time.h> -#include <sys/atomic.h> -#include <sys/regset.h> -#include <sys/privregs.h> -#include <sys/x86_archext.h> -#include <sys/cpuvar.h> -#include <sys/machcpuvar.h> -#include <sys/archsystm.h> -#include <sys/cpc_pcbe.h> -#include <sys/cpc_impl.h> -#include <sys/x_call.h> -#include <sys/cmn_err.h> -#include <sys/cmt.h> -#include <sys/spl.h> -#include <sys/apic.h> - -static const uint64_t allstopped = 0; -static kcpc_ctx_t *(*overflow_intr_handler)(caddr_t); - -/* Do threads share performance monitoring hardware? */ -static int strands_perfmon_shared = 0; - -int kcpc_hw_overflow_intr_installed; /* set by APIC code */ -extern kcpc_ctx_t *kcpc_overflow_intr(caddr_t arg, uint64_t bitmap); - -extern int kcpc_counts_include_idle; /* Project Private /etc/system variable */ - -void (*kcpc_hw_enable_cpc_intr)(void); /* set by APIC code */ - -int -kcpc_hw_add_ovf_intr(kcpc_ctx_t *(*handler)(caddr_t)) -{ - if (x86_type != X86_TYPE_P6) - return (0); - overflow_intr_handler = handler; - return (ipltospl(APIC_PCINT_IPL)); -} - -void -kcpc_hw_rem_ovf_intr(void) -{ - overflow_intr_handler = NULL; -} - -/* - * Hook used on P4 systems to catch online/offline events. - */ -/*ARGSUSED*/ -static int -kcpc_cpu_setup(cpu_setup_t what, int cpuid, void *arg) -{ - pg_cmt_t *chip_pg; - int active_cpus_cnt; - - if (what != CPU_ON) - return (0); - - /* - * If any CPU-bound contexts exist, we don't need to invalidate - * anything, as no per-LWP contexts can coexist. - */ - if (kcpc_cpuctx || dtrace_cpc_in_use) - return (0); - - /* - * If this chip now has more than 1 active cpu, we must invalidate all - * contexts in the system. - */ - chip_pg = (pg_cmt_t *)pghw_find_pg(cpu[cpuid], PGHW_CHIP); - if (chip_pg != NULL) { - active_cpus_cnt = GROUP_SIZE(&chip_pg->cmt_cpus_actv); - if (active_cpus_cnt > 1) - kcpc_invalidate_all(); - } - - return (0); -} - -static kmutex_t cpu_setup_lock; /* protects setup_registered */ -static int setup_registered; - - -void -kcpc_hw_init(cpu_t *cp) -{ - kthread_t *t = cp->cpu_idle_thread; - uint32_t versionid; - struct cpuid_regs cpuid; - - strands_perfmon_shared = 0; - if (is_x86_feature(x86_featureset, X86FSET_HTT)) { - if (cpuid_getvendor(cpu[0]) == X86_VENDOR_Intel) { - /* - * Intel processors that support Architectural - * Performance Monitoring Version 3 have per strand - * performance monitoring hardware. - * Hence we can allow use of performance counters on - * multiple strands on the same core simultaneously. - */ - cpuid.cp_eax = 0x0; - (void) __cpuid_insn(&cpuid); - if (cpuid.cp_eax < 0xa) { - strands_perfmon_shared = 1; - } else { - cpuid.cp_eax = 0xa; - (void) __cpuid_insn(&cpuid); - - versionid = cpuid.cp_eax & 0xFF; - if (versionid < 3) { - strands_perfmon_shared = 1; - } - } - } else if (cpuid_getvendor(cpu[0]) == X86_VENDOR_AMD || - cpuid_getvendor(cpu[0]) == X86_VENDOR_HYGON) { - /* - * On AMD systems with HT, all of the performance - * monitors exist on a per-logical CPU basis. - */ - strands_perfmon_shared = 0; - } else { - strands_perfmon_shared = 1; - } - } - - if (strands_perfmon_shared) { - mutex_enter(&cpu_setup_lock); - if (setup_registered == 0) { - mutex_enter(&cpu_lock); - register_cpu_setup_func(kcpc_cpu_setup, NULL); - mutex_exit(&cpu_lock); - setup_registered = 1; - } - mutex_exit(&cpu_setup_lock); - } - - mutex_init(&cp->cpu_cpc_ctxlock, "cpu_cpc_ctxlock", MUTEX_DEFAULT, 0); - - if (kcpc_counts_include_idle) - return; - - installctx(t, cp, kcpc_idle_save, kcpc_idle_restore, - NULL, NULL, NULL, NULL, NULL); -} - -void -kcpc_hw_fini(cpu_t *cp) -{ - ASSERT(cp->cpu_idle_thread == NULL); - - mutex_destroy(&cp->cpu_cpc_ctxlock); -} - -#define BITS(v, u, l) \ - (((v) >> (l)) & ((1 << (1 + (u) - (l))) - 1)) - -#define PCBE_NAMELEN 30 /* Enough Room for pcbe.manuf.model.family.stepping */ - -/* - * Examine the processor and load an appropriate PCBE. - */ -int -kcpc_hw_load_pcbe(void) -{ - return (kcpc_pcbe_tryload(cpuid_getvendorstr(CPU), cpuid_getfamily(CPU), - cpuid_getmodel(CPU), cpuid_getstep(CPU))); -} - -/* - * Called by the generic framework to check if it's OK to bind a set to a CPU. - */ -int -kcpc_hw_cpu_hook(processorid_t cpuid, ulong_t *kcpc_cpumap) -{ - cpu_t *cpu, *p; - pg_t *chip_pg; - pg_cpu_itr_t itr; - - if (!strands_perfmon_shared) - return (0); - - /* - * Only one logical CPU on each Pentium 4 HT CPU may be bound to at - * once. - * - * This loop is protected by holding cpu_lock, in order to properly - * access the cpu_t of the desired cpu. - */ - mutex_enter(&cpu_lock); - if ((cpu = cpu_get(cpuid)) == NULL) { - mutex_exit(&cpu_lock); - return (-1); - } - - chip_pg = (pg_t *)pghw_find_pg(cpu, PGHW_CHIP); - - PG_CPU_ITR_INIT(chip_pg, itr); - while ((p = pg_cpu_next(&itr)) != NULL) { - if (p == cpu) - continue; - if (BT_TEST(kcpc_cpumap, p->cpu_id)) { - mutex_exit(&cpu_lock); - return (-1); - } - } - - mutex_exit(&cpu_lock); - return (0); -} - -/* - * Called by the generic framework to check if it's OK to bind a set to an LWP. - */ -int -kcpc_hw_lwp_hook(void) -{ - pg_cmt_t *chip; - group_t *chips; - group_iter_t i; - - if (!strands_perfmon_shared) - return (0); - - /* - * Only one CPU per chip may be online. - */ - mutex_enter(&cpu_lock); - - chips = pghw_set_lookup(PGHW_CHIP); - if (chips == NULL) { - mutex_exit(&cpu_lock); - return (0); - } - - group_iter_init(&i); - while ((chip = group_iterate(chips, &i)) != NULL) { - if (GROUP_SIZE(&chip->cmt_cpus_actv) > 1) { - mutex_exit(&cpu_lock); - return (-1); - } - } - - mutex_exit(&cpu_lock); - return (0); -} diff --git a/usr/src/uts/intel/ia32/os/ddi_i86.c b/usr/src/uts/intel/ia32/os/ddi_i86.c deleted file mode 100644 index f135d0673c..0000000000 --- a/usr/src/uts/intel/ia32/os/ddi_i86.c +++ /dev/null @@ -1,1903 +0,0 @@ -/* - * CDDL HEADER START - * - * The contents of this file are subject to the terms of the - * Common Development and Distribution License (the "License"). - * You may not use this file except in compliance with the License. - * - * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE - * or http://www.opensolaris.org/os/licensing. - * See the License for the specific language governing permissions - * and limitations under the License. - * - * When distributing Covered Code, include this CDDL HEADER in each - * file and include the License file at usr/src/OPENSOLARIS.LICENSE. - * If applicable, add the following below this CDDL HEADER, with the - * fields enclosed by brackets "[]" replaced with your own identifying - * information: Portions Copyright [yyyy] [name of copyright owner] - * - * CDDL HEADER END - */ - -/* - * Copyright 2009 Sun Microsystems, Inc. All rights reserved. - * Use is subject to license terms. - */ -/* - * Copyright 2014 Garrett D'Amore <garrett@damore.org> - */ - -#include <sys/conf.h> -#include <sys/kmem.h> -#include <sys/ddi_impldefs.h> -#include <sys/ddi.h> -#include <sys/sunddi.h> -#include <sys/ddifm.h> -#include <sys/fm/io/ddi.h> -#include <sys/fm/protocol.h> -#include <sys/ontrap.h> - - -/* - * DDI DMA Engine functions for x86. - * These functions are more naturally generic, but do not apply to SPARC. - */ - -int -ddi_dmae_alloc(dev_info_t *dip, int chnl, int (*dmae_waitfp)(), caddr_t arg) -{ - return (ddi_dma_mctl(dip, dip, 0, DDI_DMA_E_ACQUIRE, - (off_t *)dmae_waitfp, (size_t *)arg, - (caddr_t *)(uintptr_t)chnl, 0)); -} - -int -ddi_dmae_release(dev_info_t *dip, int chnl) -{ - return (ddi_dma_mctl(dip, dip, 0, DDI_DMA_E_FREE, 0, 0, - (caddr_t *)(uintptr_t)chnl, 0)); -} - -int -ddi_dmae_getattr(dev_info_t *dip, ddi_dma_attr_t *attrp) -{ - return (ddi_dma_mctl(dip, dip, 0, DDI_DMA_E_GETATTR, 0, 0, - (caddr_t *)attrp, 0)); -} - -int -ddi_dmae_1stparty(dev_info_t *dip, int chnl) -{ - return (ddi_dma_mctl(dip, dip, 0, DDI_DMA_E_1STPTY, 0, 0, - (caddr_t *)(uintptr_t)chnl, 0)); -} - -int -ddi_dmae_prog(dev_info_t *dip, struct ddi_dmae_req *dmaereqp, - ddi_dma_cookie_t *cookiep, int chnl) -{ - return (ddi_dma_mctl(dip, dip, 0, DDI_DMA_E_PROG, (off_t *)dmaereqp, - (size_t *)cookiep, (caddr_t *)(uintptr_t)chnl, 0)); -} - -int -ddi_dmae_swsetup(dev_info_t *dip, struct ddi_dmae_req *dmaereqp, - ddi_dma_cookie_t *cookiep, int chnl) -{ - return (ddi_dma_mctl(dip, dip, 0, DDI_DMA_E_SWSETUP, (off_t *)dmaereqp, - (size_t *)cookiep, (caddr_t *)(uintptr_t)chnl, 0)); -} - -int -ddi_dmae_swstart(dev_info_t *dip, int chnl) -{ - return (ddi_dma_mctl(dip, dip, 0, DDI_DMA_E_SWSTART, 0, 0, - (caddr_t *)(uintptr_t)chnl, 0)); -} - -int -ddi_dmae_stop(dev_info_t *dip, int chnl) -{ - return (ddi_dma_mctl(dip, dip, 0, DDI_DMA_E_STOP, 0, 0, - (caddr_t *)(uintptr_t)chnl, 0)); -} - -int -ddi_dmae_enable(dev_info_t *dip, int chnl) -{ - return (ddi_dma_mctl(dip, dip, 0, DDI_DMA_E_ENABLE, 0, 0, - (caddr_t *)(uintptr_t)chnl, 0)); -} - -int -ddi_dmae_disable(dev_info_t *dip, int chnl) -{ - return (ddi_dma_mctl(dip, dip, 0, DDI_DMA_E_DISABLE, 0, 0, - (caddr_t *)(uintptr_t)chnl, 0)); -} - -int -ddi_dmae_getcnt(dev_info_t *dip, int chnl, int *countp) -{ - return (ddi_dma_mctl(dip, dip, 0, DDI_DMA_E_GETCNT, 0, (size_t *)countp, - (caddr_t *)(uintptr_t)chnl, 0)); -} - -/* - * implementation specific access handle and routines: - */ - -static uintptr_t impl_acc_hdl_id = 0; - -/* - * access handle allocator - */ -ddi_acc_hdl_t * -impl_acc_hdl_get(ddi_acc_handle_t hdl) -{ - /* - * recast to ddi_acc_hdl_t instead of - * casting to ddi_acc_impl_t and then return the ah_platform_private - * - * this optimization based on the ddi_acc_hdl_t is the - * first member of the ddi_acc_impl_t. - */ - return ((ddi_acc_hdl_t *)hdl); -} - -ddi_acc_handle_t -impl_acc_hdl_alloc(int (*waitfp)(caddr_t), caddr_t arg) -{ - ddi_acc_impl_t *hp; - on_trap_data_t *otp; - int sleepflag; - - sleepflag = ((waitfp == (int (*)())KM_SLEEP) ? KM_SLEEP : KM_NOSLEEP); - /* - * Allocate and initialize the data access handle and error status. - */ - if ((hp = kmem_zalloc(sizeof (ddi_acc_impl_t), sleepflag)) == NULL) - goto fail; - if ((hp->ahi_err = (ndi_err_t *)kmem_zalloc( - sizeof (ndi_err_t), sleepflag)) == NULL) { - kmem_free(hp, sizeof (ddi_acc_impl_t)); - goto fail; - } - if ((otp = (on_trap_data_t *)kmem_zalloc( - sizeof (on_trap_data_t), sleepflag)) == NULL) { - kmem_free(hp->ahi_err, sizeof (ndi_err_t)); - kmem_free(hp, sizeof (ddi_acc_impl_t)); - goto fail; - } - hp->ahi_err->err_ontrap = otp; - hp->ahi_common.ah_platform_private = (void *)hp; - - return ((ddi_acc_handle_t)hp); -fail: - if ((waitfp != (int (*)())KM_SLEEP) && - (waitfp != (int (*)())KM_NOSLEEP)) - ddi_set_callback(waitfp, arg, &impl_acc_hdl_id); - return (NULL); -} - -void -impl_acc_hdl_free(ddi_acc_handle_t handle) -{ - ddi_acc_impl_t *hp; - - /* - * The supplied (ddi_acc_handle_t) is actually a (ddi_acc_impl_t *), - * because that's what we allocated in impl_acc_hdl_alloc() above. - */ - hp = (ddi_acc_impl_t *)handle; - if (hp) { - kmem_free(hp->ahi_err->err_ontrap, sizeof (on_trap_data_t)); - kmem_free(hp->ahi_err, sizeof (ndi_err_t)); - kmem_free(hp, sizeof (ddi_acc_impl_t)); - if (impl_acc_hdl_id) - ddi_run_callback(&impl_acc_hdl_id); - } -} - -/* - * Function used to check if a given access handle owns the failing address. - * Called by ndi_fmc_error, when we detect a PIO error. - */ -/* ARGSUSED */ -static int -impl_acc_check(dev_info_t *dip, const void *handle, const void *addr, - const void *not_used) -{ - pfn_t pfn, fault_pfn; - ddi_acc_hdl_t *hp; - - hp = impl_acc_hdl_get((ddi_acc_handle_t)handle); - - ASSERT(hp); - - if (addr != NULL) { - pfn = hp->ah_pfn; - fault_pfn = mmu_btop(*(uint64_t *)addr); - if (fault_pfn >= pfn && fault_pfn < (pfn + hp->ah_pnum)) - return (DDI_FM_NONFATAL); - } - return (DDI_FM_UNKNOWN); -} - -void -impl_acc_err_init(ddi_acc_hdl_t *handlep) -{ - int fmcap; - ndi_err_t *errp; - on_trap_data_t *otp; - ddi_acc_impl_t *hp = (ddi_acc_impl_t *)handlep; - - fmcap = ddi_fm_capable(handlep->ah_dip); - - if (handlep->ah_acc.devacc_attr_version < DDI_DEVICE_ATTR_V1 || - !DDI_FM_ACC_ERR_CAP(fmcap)) { - handlep->ah_acc.devacc_attr_access = DDI_DEFAULT_ACC; - } else if (handlep->ah_acc.devacc_attr_access == DDI_FLAGERR_ACC && - hp->ahi_scan == NULL) { - handlep->ah_acc.devacc_attr_access = DDI_DEFAULT_ACC; - } else if (DDI_FM_ACC_ERR_CAP(fmcap)) { - if (handlep->ah_acc.devacc_attr_access == DDI_DEFAULT_ACC) { - if (handlep->ah_xfermodes) - return; - i_ddi_drv_ereport_post(handlep->ah_dip, DVR_EFMCAP, - NULL, DDI_NOSLEEP); - } else { - errp = hp->ahi_err; - otp = (on_trap_data_t *)errp->err_ontrap; - otp->ot_handle = (void *)(hp); - otp->ot_prot = OT_DATA_ACCESS; - errp->err_status = DDI_FM_OK; - errp->err_expected = DDI_FM_ERR_UNEXPECTED; - errp->err_cf = impl_acc_check; - } - } -} - -/* ARGSUSED */ -int -impl_dma_check(dev_info_t *dip, const void *handle, const void *pci_hdl, - const void *not_used) -{ - return (DDI_FM_UNKNOWN); -} - -void -impl_acc_hdl_init(ddi_acc_hdl_t *handlep) -{ - ddi_acc_impl_t *hp; - int fmcap; - int devacc_attr_access; - - if (!handlep) - return; - fmcap = ddi_fm_capable(handlep->ah_dip); - if (handlep->ah_acc.devacc_attr_version < DDI_DEVICE_ATTR_V1 || - !DDI_FM_ACC_ERR_CAP(fmcap)) - devacc_attr_access = DDI_DEFAULT_ACC; - else - devacc_attr_access = handlep->ah_acc.devacc_attr_access; - - hp = (ddi_acc_impl_t *)handlep->ah_platform_private; - - /* - * Can only do FLAGERR if scan callback is set up. This should - * also guarantee that the peekpoke_mutex and err_mutex are defined. - */ - if (devacc_attr_access == DDI_FLAGERR_ACC && hp->ahi_scan == NULL) - devacc_attr_access = DDI_DEFAULT_ACC; - - switch (devacc_attr_access) { - case DDI_CAUTIOUS_ACC: - hp->ahi_get8 = i_ddi_caut_get8; - hp->ahi_put8 = i_ddi_caut_put8; - hp->ahi_rep_get8 = i_ddi_caut_rep_get8; - hp->ahi_rep_put8 = i_ddi_caut_rep_put8; - hp->ahi_get16 = i_ddi_caut_get16; - hp->ahi_get32 = i_ddi_caut_get32; - hp->ahi_put16 = i_ddi_caut_put16; - hp->ahi_put32 = i_ddi_caut_put32; - hp->ahi_rep_get16 = i_ddi_caut_rep_get16; - hp->ahi_rep_get32 = i_ddi_caut_rep_get32; - hp->ahi_rep_put16 = i_ddi_caut_rep_put16; - hp->ahi_rep_put32 = i_ddi_caut_rep_put32; - hp->ahi_get64 = i_ddi_caut_get64; - hp->ahi_put64 = i_ddi_caut_put64; - hp->ahi_rep_get64 = i_ddi_caut_rep_get64; - hp->ahi_rep_put64 = i_ddi_caut_rep_put64; - break; - case DDI_FLAGERR_ACC: - if (hp->ahi_acc_attr & DDI_ACCATTR_IO_SPACE) { - hp->ahi_get8 = i_ddi_prot_io_get8; - hp->ahi_put8 = i_ddi_prot_io_put8; - hp->ahi_rep_get8 = i_ddi_prot_io_rep_get8; - hp->ahi_rep_put8 = i_ddi_prot_io_rep_put8; - - /* temporary set these 64 functions to no-ops */ - hp->ahi_get64 = i_ddi_io_get64; - hp->ahi_put64 = i_ddi_io_put64; - hp->ahi_rep_get64 = i_ddi_io_rep_get64; - hp->ahi_rep_put64 = i_ddi_io_rep_put64; - - /* - * check for BIG endian access - */ - if (handlep->ah_acc.devacc_attr_endian_flags == - DDI_STRUCTURE_BE_ACC) { - hp->ahi_get16 = i_ddi_prot_io_swap_get16; - hp->ahi_get32 = i_ddi_prot_io_swap_get32; - hp->ahi_put16 = i_ddi_prot_io_swap_put16; - hp->ahi_put32 = i_ddi_prot_io_swap_put32; - hp->ahi_rep_get16 = - i_ddi_prot_io_swap_rep_get16; - hp->ahi_rep_get32 = - i_ddi_prot_io_swap_rep_get32; - hp->ahi_rep_put16 = - i_ddi_prot_io_swap_rep_put16; - hp->ahi_rep_put32 = - i_ddi_prot_io_swap_rep_put32; - } else { - hp->ahi_acc_attr |= DDI_ACCATTR_DIRECT; - hp->ahi_get16 = i_ddi_prot_io_get16; - hp->ahi_get32 = i_ddi_prot_io_get32; - hp->ahi_put16 = i_ddi_prot_io_put16; - hp->ahi_put32 = i_ddi_prot_io_put32; - hp->ahi_rep_get16 = i_ddi_prot_io_rep_get16; - hp->ahi_rep_get32 = i_ddi_prot_io_rep_get32; - hp->ahi_rep_put16 = i_ddi_prot_io_rep_put16; - hp->ahi_rep_put32 = i_ddi_prot_io_rep_put32; - } - - } else if (hp->ahi_acc_attr & DDI_ACCATTR_CPU_VADDR) { - - hp->ahi_get8 = i_ddi_prot_vaddr_get8; - hp->ahi_put8 = i_ddi_prot_vaddr_put8; - hp->ahi_rep_get8 = i_ddi_prot_vaddr_rep_get8; - hp->ahi_rep_put8 = i_ddi_prot_vaddr_rep_put8; - - /* - * check for BIG endian access - */ - if (handlep->ah_acc.devacc_attr_endian_flags == - DDI_STRUCTURE_BE_ACC) { - - hp->ahi_get16 = i_ddi_prot_vaddr_swap_get16; - hp->ahi_get32 = i_ddi_prot_vaddr_swap_get32; - hp->ahi_get64 = i_ddi_prot_vaddr_swap_get64; - hp->ahi_put16 = i_ddi_prot_vaddr_swap_put16; - hp->ahi_put32 = i_ddi_prot_vaddr_swap_put32; - hp->ahi_put64 = i_ddi_prot_vaddr_swap_put64; - hp->ahi_rep_get16 = - i_ddi_prot_vaddr_swap_rep_get16; - hp->ahi_rep_get32 = - i_ddi_prot_vaddr_swap_rep_get32; - hp->ahi_rep_get64 = - i_ddi_prot_vaddr_swap_rep_get64; - hp->ahi_rep_put16 = - i_ddi_prot_vaddr_swap_rep_put16; - hp->ahi_rep_put32 = - i_ddi_prot_vaddr_swap_rep_put32; - hp->ahi_rep_put64 = - i_ddi_prot_vaddr_swap_rep_put64; - } else { - hp->ahi_acc_attr |= DDI_ACCATTR_DIRECT; - hp->ahi_get16 = i_ddi_prot_vaddr_get16; - hp->ahi_get32 = i_ddi_prot_vaddr_get32; - hp->ahi_get64 = i_ddi_prot_vaddr_get64; - hp->ahi_put16 = i_ddi_prot_vaddr_put16; - hp->ahi_put32 = i_ddi_prot_vaddr_put32; - hp->ahi_put64 = i_ddi_prot_vaddr_put64; - hp->ahi_rep_get16 = i_ddi_prot_vaddr_rep_get16; - hp->ahi_rep_get32 = i_ddi_prot_vaddr_rep_get32; - hp->ahi_rep_get64 = i_ddi_prot_vaddr_rep_get64; - hp->ahi_rep_put16 = i_ddi_prot_vaddr_rep_put16; - hp->ahi_rep_put32 = i_ddi_prot_vaddr_rep_put32; - hp->ahi_rep_put64 = i_ddi_prot_vaddr_rep_put64; - } - } - break; - case DDI_DEFAULT_ACC: - if (hp->ahi_acc_attr & DDI_ACCATTR_IO_SPACE) { - hp->ahi_get8 = i_ddi_io_get8; - hp->ahi_put8 = i_ddi_io_put8; - hp->ahi_rep_get8 = i_ddi_io_rep_get8; - hp->ahi_rep_put8 = i_ddi_io_rep_put8; - - /* temporary set these 64 functions to no-ops */ - hp->ahi_get64 = i_ddi_io_get64; - hp->ahi_put64 = i_ddi_io_put64; - hp->ahi_rep_get64 = i_ddi_io_rep_get64; - hp->ahi_rep_put64 = i_ddi_io_rep_put64; - - /* - * check for BIG endian access - */ - if (handlep->ah_acc.devacc_attr_endian_flags == - DDI_STRUCTURE_BE_ACC) { - hp->ahi_get16 = i_ddi_io_swap_get16; - hp->ahi_get32 = i_ddi_io_swap_get32; - hp->ahi_put16 = i_ddi_io_swap_put16; - hp->ahi_put32 = i_ddi_io_swap_put32; - hp->ahi_rep_get16 = i_ddi_io_swap_rep_get16; - hp->ahi_rep_get32 = i_ddi_io_swap_rep_get32; - hp->ahi_rep_put16 = i_ddi_io_swap_rep_put16; - hp->ahi_rep_put32 = i_ddi_io_swap_rep_put32; - } else { - hp->ahi_acc_attr |= DDI_ACCATTR_DIRECT; - hp->ahi_get16 = i_ddi_io_get16; - hp->ahi_get32 = i_ddi_io_get32; - hp->ahi_put16 = i_ddi_io_put16; - hp->ahi_put32 = i_ddi_io_put32; - hp->ahi_rep_get16 = i_ddi_io_rep_get16; - hp->ahi_rep_get32 = i_ddi_io_rep_get32; - hp->ahi_rep_put16 = i_ddi_io_rep_put16; - hp->ahi_rep_put32 = i_ddi_io_rep_put32; - } - - } else if (hp->ahi_acc_attr & DDI_ACCATTR_CPU_VADDR) { - - hp->ahi_get8 = i_ddi_vaddr_get8; - hp->ahi_put8 = i_ddi_vaddr_put8; - hp->ahi_rep_get8 = i_ddi_vaddr_rep_get8; - hp->ahi_rep_put8 = i_ddi_vaddr_rep_put8; - - /* - * check for BIG endian access - */ - if (handlep->ah_acc.devacc_attr_endian_flags == - DDI_STRUCTURE_BE_ACC) { - - hp->ahi_get16 = i_ddi_vaddr_swap_get16; - hp->ahi_get32 = i_ddi_vaddr_swap_get32; - hp->ahi_get64 = i_ddi_vaddr_swap_get64; - hp->ahi_put16 = i_ddi_vaddr_swap_put16; - hp->ahi_put32 = i_ddi_vaddr_swap_put32; - hp->ahi_put64 = i_ddi_vaddr_swap_put64; - hp->ahi_rep_get16 = i_ddi_vaddr_swap_rep_get16; - hp->ahi_rep_get32 = i_ddi_vaddr_swap_rep_get32; - hp->ahi_rep_get64 = i_ddi_vaddr_swap_rep_get64; - hp->ahi_rep_put16 = i_ddi_vaddr_swap_rep_put16; - hp->ahi_rep_put32 = i_ddi_vaddr_swap_rep_put32; - hp->ahi_rep_put64 = i_ddi_vaddr_swap_rep_put64; - } else { - hp->ahi_acc_attr |= DDI_ACCATTR_DIRECT; - hp->ahi_get16 = i_ddi_vaddr_get16; - hp->ahi_get32 = i_ddi_vaddr_get32; - hp->ahi_get64 = i_ddi_vaddr_get64; - hp->ahi_put16 = i_ddi_vaddr_put16; - hp->ahi_put32 = i_ddi_vaddr_put32; - hp->ahi_put64 = i_ddi_vaddr_put64; - hp->ahi_rep_get16 = i_ddi_vaddr_rep_get16; - hp->ahi_rep_get32 = i_ddi_vaddr_rep_get32; - hp->ahi_rep_get64 = i_ddi_vaddr_rep_get64; - hp->ahi_rep_put16 = i_ddi_vaddr_rep_put16; - hp->ahi_rep_put32 = i_ddi_vaddr_rep_put32; - hp->ahi_rep_put64 = i_ddi_vaddr_rep_put64; - } - } - break; - } - hp->ahi_fault_check = i_ddi_acc_fault_check; - hp->ahi_fault_notify = i_ddi_acc_fault_notify; - hp->ahi_fault = 0; - impl_acc_err_init(handlep); -} - -/* - * The followings are low-level routines for data access. - * - * All of these routines should be implemented in assembly. Those - * that have been rewritten be found in ~ml/ddi_i86_asm.s - */ - -/*ARGSUSED*/ -uint16_t -i_ddi_vaddr_swap_get16(ddi_acc_impl_t *hdlp, uint16_t *addr) -{ - return (ddi_swap16(*addr)); -} - -/*ARGSUSED*/ -uint16_t -i_ddi_io_swap_get16(ddi_acc_impl_t *hdlp, uint16_t *addr) -{ - return (ddi_swap16(inw((uintptr_t)addr))); -} - -/*ARGSUSED*/ -uint32_t -i_ddi_vaddr_swap_get32(ddi_acc_impl_t *hdlp, uint32_t *addr) -{ - return (ddi_swap32(*addr)); -} - -/*ARGSUSED*/ -uint32_t -i_ddi_io_swap_get32(ddi_acc_impl_t *hdlp, uint32_t *addr) -{ - return (ddi_swap32(inl((uintptr_t)addr))); -} - -/*ARGSUSED*/ -uint64_t -i_ddi_vaddr_swap_get64(ddi_acc_impl_t *hdlp, uint64_t *addr) -{ - return (ddi_swap64(*addr)); -} - -/*ARGSUSED*/ -void -i_ddi_vaddr_swap_put16(ddi_acc_impl_t *hdlp, uint16_t *addr, uint16_t value) -{ - *addr = ddi_swap16(value); -} - -/*ARGSUSED*/ -void -i_ddi_io_swap_put16(ddi_acc_impl_t *hdlp, uint16_t *addr, uint16_t value) -{ - outw((uintptr_t)addr, ddi_swap16(value)); -} - -/*ARGSUSED*/ -void -i_ddi_vaddr_swap_put32(ddi_acc_impl_t *hdlp, uint32_t *addr, uint32_t value) -{ - *addr = ddi_swap32(value); -} - -/*ARGSUSED*/ -void -i_ddi_io_swap_put32(ddi_acc_impl_t *hdlp, uint32_t *addr, uint32_t value) -{ - outl((uintptr_t)addr, ddi_swap32(value)); -} - -/*ARGSUSED*/ -void -i_ddi_vaddr_swap_put64(ddi_acc_impl_t *hdlp, uint64_t *addr, uint64_t value) -{ - *addr = ddi_swap64(value); -} - -/*ARGSUSED*/ -void -i_ddi_vaddr_rep_get8(ddi_acc_impl_t *hdlp, uint8_t *host_addr, - uint8_t *dev_addr, size_t repcount, uint_t flags) -{ - uint8_t *h, *d; - - h = host_addr; - d = dev_addr; - - if (flags == DDI_DEV_AUTOINCR) - for (; repcount; repcount--) - *h++ = *d++; - else - for (; repcount; repcount--) - *h++ = *d; -} - -/*ARGSUSED*/ -void -i_ddi_vaddr_rep_get16(ddi_acc_impl_t *hdlp, uint16_t *host_addr, - uint16_t *dev_addr, size_t repcount, uint_t flags) -{ - uint16_t *h, *d; - - h = host_addr; - d = dev_addr; - - if (flags == DDI_DEV_AUTOINCR) - for (; repcount; repcount--) - *h++ = *d++; - else - for (; repcount; repcount--) - *h++ = *d; -} - -/*ARGSUSED*/ -void -i_ddi_vaddr_swap_rep_get16(ddi_acc_impl_t *hdlp, uint16_t *host_addr, - uint16_t *dev_addr, size_t repcount, uint_t flags) -{ - uint16_t *h, *d; - - h = host_addr; - d = dev_addr; - - if (flags == DDI_DEV_AUTOINCR) - for (; repcount; repcount--) - *h++ = ddi_swap16(*d++); - else - for (; repcount; repcount--) - *h++ = ddi_swap16(*d); -} - -/*ARGSUSED*/ -void -i_ddi_io_swap_rep_get16(ddi_acc_impl_t *hdlp, uint16_t *host_addr, - uint16_t *dev_addr, size_t repcount, uint_t flags) -{ - uint16_t *h; - uintptr_t port; - - h = host_addr; - port = (uintptr_t)dev_addr; - - if (flags == DDI_DEV_AUTOINCR) - for (; repcount; repcount--, port += 2) - *h++ = ddi_swap16(inw(port)); - else - for (; repcount; repcount--) - *h++ = ddi_swap16(inw(port)); -} - -/*ARGSUSED*/ -void -i_ddi_vaddr_rep_get32(ddi_acc_impl_t *hdlp, uint32_t *host_addr, - uint32_t *dev_addr, size_t repcount, uint_t flags) -{ - uint32_t *h, *d; - - h = host_addr; - d = dev_addr; - - if (flags == DDI_DEV_AUTOINCR) - for (; repcount; repcount--) - *h++ = *d++; - else - for (; repcount; repcount--) - *h++ = *d; -} - -/*ARGSUSED*/ -void -i_ddi_vaddr_swap_rep_get32(ddi_acc_impl_t *hdlp, uint32_t *host_addr, - uint32_t *dev_addr, size_t repcount, uint_t flags) -{ - uint32_t *h, *d; - - h = host_addr; - d = dev_addr; - - if (flags == DDI_DEV_AUTOINCR) - for (; repcount; repcount--) - *h++ = ddi_swap32(*d++); - else - for (; repcount; repcount--) - *h++ = ddi_swap32(*d); -} - -/*ARGSUSED*/ -void -i_ddi_io_swap_rep_get32(ddi_acc_impl_t *hdlp, uint32_t *host_addr, - uint32_t *dev_addr, size_t repcount, uint_t flags) -{ - uint32_t *h; - uintptr_t port; - - h = host_addr; - port = (uintptr_t)dev_addr; - - if (flags == DDI_DEV_AUTOINCR) - for (; repcount; repcount--, port += 4) - *h++ = ddi_swap32(inl(port)); - else - for (; repcount; repcount--) - *h++ = ddi_swap32(inl(port)); -} - -/*ARGSUSED*/ -void -i_ddi_vaddr_rep_get64(ddi_acc_impl_t *hdlp, uint64_t *host_addr, - uint64_t *dev_addr, size_t repcount, uint_t flags) -{ - uint64_t *h, *d; - - h = host_addr; - d = dev_addr; - - if (flags == DDI_DEV_AUTOINCR) - for (; repcount; repcount--) - *h++ = *d++; - else - for (; repcount; repcount--) - *h++ = *d; -} - -/*ARGSUSED*/ -void -i_ddi_vaddr_swap_rep_get64(ddi_acc_impl_t *hdlp, uint64_t *host_addr, - uint64_t *dev_addr, size_t repcount, uint_t flags) -{ - uint64_t *h, *d; - - h = host_addr; - d = dev_addr; - - if (flags == DDI_DEV_AUTOINCR) - for (; repcount; repcount--) - *h++ = ddi_swap64(*d++); - else - for (; repcount; repcount--) - *h++ = ddi_swap64(*d); -} - -/*ARGSUSED*/ -void -i_ddi_vaddr_rep_put8(ddi_acc_impl_t *hdlp, uint8_t *host_addr, - uint8_t *dev_addr, size_t repcount, uint_t flags) -{ - uint8_t *h, *d; - - h = host_addr; - d = dev_addr; - - if (flags == DDI_DEV_AUTOINCR) - for (; repcount; repcount--) - *d++ = *h++; - else - for (; repcount; repcount--) - *d = *h++; -} - -/*ARGSUSED*/ -void -i_ddi_vaddr_rep_put16(ddi_acc_impl_t *hdlp, uint16_t *host_addr, - uint16_t *dev_addr, size_t repcount, uint_t flags) -{ - uint16_t *h, *d; - - h = host_addr; - d = dev_addr; - - if (flags == DDI_DEV_AUTOINCR) - for (; repcount; repcount--) - *d++ = *h++; - else - for (; repcount; repcount--) - *d = *h++; -} - -/*ARGSUSED*/ -void -i_ddi_vaddr_swap_rep_put16(ddi_acc_impl_t *hdlp, uint16_t *host_addr, - uint16_t *dev_addr, size_t repcount, uint_t flags) -{ - uint16_t *h, *d; - - h = host_addr; - d = dev_addr; - - if (flags == DDI_DEV_AUTOINCR) - for (; repcount; repcount--) - *d++ = ddi_swap16(*h++); - else - for (; repcount; repcount--) - *d = ddi_swap16(*h++); -} - -/*ARGSUSED*/ -void -i_ddi_io_swap_rep_put16(ddi_acc_impl_t *hdlp, uint16_t *host_addr, - uint16_t *dev_addr, size_t repcount, uint_t flags) -{ - uint16_t *h; - uintptr_t port; - - h = host_addr; - port = (uintptr_t)dev_addr; - - if (flags == DDI_DEV_AUTOINCR) - for (; repcount; repcount--, port += 2) - outw(port, ddi_swap16(*h++)); - else - for (; repcount; repcount--) - outw(port, ddi_swap16(*h++)); -} - -/*ARGSUSED*/ -void -i_ddi_vaddr_rep_put32(ddi_acc_impl_t *hdlp, uint32_t *host_addr, - uint32_t *dev_addr, size_t repcount, uint_t flags) -{ - uint32_t *h, *d; - - h = host_addr; - d = dev_addr; - - if (flags == DDI_DEV_AUTOINCR) - for (; repcount; repcount--) - *d++ = *h++; - else - for (; repcount; repcount--) - *d = *h++; -} - -/*ARGSUSED*/ -void -i_ddi_vaddr_swap_rep_put32(ddi_acc_impl_t *hdlp, uint32_t *host_addr, - uint32_t *dev_addr, size_t repcount, uint_t flags) -{ - uint32_t *h, *d; - - h = host_addr; - d = dev_addr; - - if (flags == DDI_DEV_AUTOINCR) - for (; repcount; repcount--) - *d++ = ddi_swap32(*h++); - else - for (; repcount; repcount--) - *d = ddi_swap32(*h++); -} - -/*ARGSUSED*/ -void -i_ddi_io_swap_rep_put32(ddi_acc_impl_t *hdlp, uint32_t *host_addr, - uint32_t *dev_addr, size_t repcount, uint_t flags) -{ - uint32_t *h; - uintptr_t port; - - h = host_addr; - port = (uintptr_t)dev_addr; - - if (flags == DDI_DEV_AUTOINCR) - for (; repcount; repcount--, port += 4) - outl(port, ddi_swap32(*h++)); - else - for (; repcount; repcount--) - outl(port, ddi_swap32(*h++)); -} - -/*ARGSUSED*/ -void -i_ddi_vaddr_rep_put64(ddi_acc_impl_t *hdlp, uint64_t *host_addr, - uint64_t *dev_addr, size_t repcount, uint_t flags) -{ - uint64_t *h, *d; - - h = host_addr; - d = dev_addr; - - if (flags == DDI_DEV_AUTOINCR) - for (; repcount; repcount--) - *d++ = *h++; - else - for (; repcount; repcount--) - *d = *h++; -} - -/*ARGSUSED*/ -void -i_ddi_vaddr_swap_rep_put64(ddi_acc_impl_t *hdlp, uint64_t *host_addr, - uint64_t *dev_addr, size_t repcount, uint_t flags) -{ - uint64_t *h, *d; - - h = host_addr; - d = dev_addr; - - if (flags == DDI_DEV_AUTOINCR) - for (; repcount; repcount--) - *d++ = ddi_swap64(*h++); - else - for (; repcount; repcount--) - *d = ddi_swap64(*h++); -} - -/*ARGSUSED*/ -uint64_t -i_ddi_io_get64(ddi_acc_impl_t *hdlp, uint64_t *addr) -{ - panic("ddi_get64 from i/o space"); - /*NOTREACHED*/ - return (0); -} - -/*ARGSUSED*/ -void -i_ddi_io_put64(ddi_acc_impl_t *hdlp, uint64_t *host_addr, uint64_t value) -{ - panic("ddi_put64 to i/o space"); - /*NOTREACHED*/ -} - -void -do_scan(ddi_acc_impl_t *hdlp) -{ - ddi_fm_error_t de; - ndi_err_t *errp = (ndi_err_t *)hdlp->ahi_err; - - bzero(&de, sizeof (ddi_fm_error_t)); - de.fme_version = DDI_FME_VERSION; - de.fme_ena = fm_ena_generate(0, FM_ENA_FMT1); - de.fme_flag = DDI_FM_ERR_UNEXPECTED; - - mutex_enter(hdlp->ahi_err_mutexp); - hdlp->ahi_scan(hdlp->ahi_scan_dip, &de); - if (de.fme_status != DDI_FM_OK) { - errp->err_ena = de.fme_ena; - errp->err_expected = de.fme_flag; - errp->err_status = DDI_FM_NONFATAL; - } - mutex_exit(hdlp->ahi_err_mutexp); -} - -/*ARGSUSED*/ -uint8_t -i_ddi_prot_vaddr_get8(ddi_acc_impl_t *hdlp, uint8_t *addr) -{ - uint8_t val; - - mutex_enter(hdlp->ahi_peekpoke_mutexp); - val = *addr; - if (val == 0xff) - do_scan(hdlp); - mutex_exit(hdlp->ahi_peekpoke_mutexp); - - return (val); -} - -/*ARGSUSED*/ -uint16_t -i_ddi_prot_vaddr_get16(ddi_acc_impl_t *hdlp, uint16_t *addr) -{ - uint16_t val; - - mutex_enter(hdlp->ahi_peekpoke_mutexp); - val = *addr; - if (val == 0xffff) - do_scan(hdlp); - mutex_exit(hdlp->ahi_peekpoke_mutexp); - - return (val); -} - -/*ARGSUSED*/ -uint32_t -i_ddi_prot_vaddr_get32(ddi_acc_impl_t *hdlp, uint32_t *addr) -{ - uint32_t val; - - mutex_enter(hdlp->ahi_peekpoke_mutexp); - val = *addr; - if (val == 0xffffffff) - do_scan(hdlp); - mutex_exit(hdlp->ahi_peekpoke_mutexp); - - return (val); -} - -/*ARGSUSED*/ -uint64_t -i_ddi_prot_vaddr_get64(ddi_acc_impl_t *hdlp, uint64_t *addr) -{ - uint64_t val; - - mutex_enter(hdlp->ahi_peekpoke_mutexp); - val = *addr; - if (val == 0xffffffffffffffff) - do_scan(hdlp); - mutex_exit(hdlp->ahi_peekpoke_mutexp); - - return (val); -} - -/*ARGSUSED*/ -uint8_t -i_ddi_prot_io_get8(ddi_acc_impl_t *hdlp, uint8_t *addr) -{ - uint8_t val; - - mutex_enter(hdlp->ahi_peekpoke_mutexp); - val = inb((uintptr_t)addr); - if (val == 0xff) - do_scan(hdlp); - mutex_exit(hdlp->ahi_peekpoke_mutexp); - - return (val); -} - -/*ARGSUSED*/ -uint16_t -i_ddi_prot_io_get16(ddi_acc_impl_t *hdlp, uint16_t *addr) -{ - uint16_t val; - - mutex_enter(hdlp->ahi_peekpoke_mutexp); - val = inw((uintptr_t)addr); - if (val == 0xffff) - do_scan(hdlp); - mutex_exit(hdlp->ahi_peekpoke_mutexp); - - return (val); -} - -/*ARGSUSED*/ -uint32_t -i_ddi_prot_io_get32(ddi_acc_impl_t *hdlp, uint32_t *addr) -{ - uint32_t val; - - mutex_enter(hdlp->ahi_peekpoke_mutexp); - val = inl((uintptr_t)addr); - if (val == 0xffffffff) - do_scan(hdlp); - mutex_exit(hdlp->ahi_peekpoke_mutexp); - - return (val); -} - -/*ARGSUSED*/ -uint16_t -i_ddi_prot_vaddr_swap_get16(ddi_acc_impl_t *hdlp, uint16_t *addr) -{ - uint16_t val; - - mutex_enter(hdlp->ahi_peekpoke_mutexp); - val = ddi_swap16(*addr); - if (val == 0xffff) - do_scan(hdlp); - mutex_exit(hdlp->ahi_peekpoke_mutexp); - - return (val); -} - -/*ARGSUSED*/ -uint16_t -i_ddi_prot_io_swap_get16(ddi_acc_impl_t *hdlp, uint16_t *addr) -{ - uint16_t val; - - mutex_enter(hdlp->ahi_peekpoke_mutexp); - val = ddi_swap16(inw((uintptr_t)addr)); - if (val == 0xffff) - do_scan(hdlp); - mutex_exit(hdlp->ahi_peekpoke_mutexp); - - return (val); -} - -/*ARGSUSED*/ -uint32_t -i_ddi_prot_vaddr_swap_get32(ddi_acc_impl_t *hdlp, uint32_t *addr) -{ - uint32_t val; - - mutex_enter(hdlp->ahi_peekpoke_mutexp); - val = ddi_swap32(*addr); - if (val == 0xffffffff) - do_scan(hdlp); - mutex_exit(hdlp->ahi_peekpoke_mutexp); - - return (val); -} - -/*ARGSUSED*/ -uint32_t -i_ddi_prot_io_swap_get32(ddi_acc_impl_t *hdlp, uint32_t *addr) -{ - uint32_t val; - - mutex_enter(hdlp->ahi_peekpoke_mutexp); - val = ddi_swap32(inl((uintptr_t)addr)); - if (val == 0xffffffff) - do_scan(hdlp); - mutex_exit(hdlp->ahi_peekpoke_mutexp); - - return (val); -} - -/*ARGSUSED*/ -uint64_t -i_ddi_prot_vaddr_swap_get64(ddi_acc_impl_t *hdlp, uint64_t *addr) -{ - uint64_t val; - - mutex_enter(hdlp->ahi_peekpoke_mutexp); - val = ddi_swap64(*addr); - if (val == 0xffffffffffffffff) - do_scan(hdlp); - mutex_exit(hdlp->ahi_peekpoke_mutexp); - - return (val); -} - -/*ARGSUSED*/ -void -i_ddi_prot_vaddr_put8(ddi_acc_impl_t *hdlp, uint8_t *addr, uint8_t value) -{ - mutex_enter(hdlp->ahi_peekpoke_mutexp); - *addr = value; - mutex_exit(hdlp->ahi_peekpoke_mutexp); -} - -/*ARGSUSED*/ -void -i_ddi_prot_io_put8(ddi_acc_impl_t *hdlp, uint8_t *addr, uint8_t value) -{ - mutex_enter(hdlp->ahi_peekpoke_mutexp); - outb((uintptr_t)addr, value); - mutex_exit(hdlp->ahi_peekpoke_mutexp); -} - -/*ARGSUSED*/ -void -i_ddi_prot_vaddr_put16(ddi_acc_impl_t *hdlp, uint16_t *addr, uint16_t value) -{ - mutex_enter(hdlp->ahi_peekpoke_mutexp); - *addr = value; - mutex_exit(hdlp->ahi_peekpoke_mutexp); -} - -/*ARGSUSED*/ -void -i_ddi_prot_io_put16(ddi_acc_impl_t *hdlp, uint16_t *addr, uint16_t value) -{ - mutex_enter(hdlp->ahi_peekpoke_mutexp); - outw((uintptr_t)addr, value); - mutex_exit(hdlp->ahi_peekpoke_mutexp); -} - -/*ARGSUSED*/ -void -i_ddi_prot_vaddr_put32(ddi_acc_impl_t *hdlp, uint32_t *addr, - uint32_t value) -{ - mutex_enter(hdlp->ahi_peekpoke_mutexp); - *addr = value; - mutex_exit(hdlp->ahi_peekpoke_mutexp); -} - -/*ARGSUSED*/ -void -i_ddi_prot_io_put32(ddi_acc_impl_t *hdlp, uint32_t *addr, uint32_t value) -{ - mutex_enter(hdlp->ahi_peekpoke_mutexp); - outl((uintptr_t)addr, value); - mutex_exit(hdlp->ahi_peekpoke_mutexp); -} - -/*ARGSUSED*/ -void -i_ddi_prot_vaddr_put64(ddi_acc_impl_t *hdlp, uint64_t *addr, - uint64_t value) -{ - mutex_enter(hdlp->ahi_peekpoke_mutexp); - *addr = value; - mutex_exit(hdlp->ahi_peekpoke_mutexp); -} - -/*ARGSUSED*/ -void -i_ddi_prot_vaddr_swap_put16(ddi_acc_impl_t *hdlp, uint16_t *addr, - uint16_t value) -{ - mutex_enter(hdlp->ahi_peekpoke_mutexp); - *addr = ddi_swap16(value); - mutex_exit(hdlp->ahi_peekpoke_mutexp); -} - -/*ARGSUSED*/ -void -i_ddi_prot_io_swap_put16(ddi_acc_impl_t *hdlp, uint16_t *addr, uint16_t value) -{ - mutex_enter(hdlp->ahi_peekpoke_mutexp); - outw((uintptr_t)addr, ddi_swap16(value)); - mutex_exit(hdlp->ahi_peekpoke_mutexp); -} - -/*ARGSUSED*/ -void -i_ddi_prot_vaddr_swap_put32(ddi_acc_impl_t *hdlp, uint32_t *addr, - uint32_t value) -{ - mutex_enter(hdlp->ahi_peekpoke_mutexp); - *addr = ddi_swap32(value); - mutex_exit(hdlp->ahi_peekpoke_mutexp); -} - -/*ARGSUSED*/ -void -i_ddi_prot_io_swap_put32(ddi_acc_impl_t *hdlp, uint32_t *addr, uint32_t value) -{ - mutex_enter(hdlp->ahi_peekpoke_mutexp); - outl((uintptr_t)addr, ddi_swap32(value)); - mutex_exit(hdlp->ahi_peekpoke_mutexp); -} - -/*ARGSUSED*/ -void -i_ddi_prot_vaddr_swap_put64(ddi_acc_impl_t *hdlp, uint64_t *addr, - uint64_t value) -{ - mutex_enter(hdlp->ahi_peekpoke_mutexp); - *addr = ddi_swap64(value); - mutex_exit(hdlp->ahi_peekpoke_mutexp); -} - -/*ARGSUSED*/ -void -i_ddi_prot_io_rep_get8(ddi_acc_impl_t *hdlp, uint8_t *host_addr, - uint8_t *dev_addr, size_t repcount, uint_t flags) -{ - int fail = 0; - uint8_t *h; - uintptr_t port; - - h = host_addr; - port = (uintptr_t)dev_addr; - - mutex_enter(hdlp->ahi_peekpoke_mutexp); - if (flags == DDI_DEV_AUTOINCR) { - for (; repcount; repcount--, port++) - if ((*h++ = inb(port)) == 0xff) - fail = 1; - } else { - for (; repcount; repcount--) - if ((*h++ = inb(port)) == 0xff) - fail = 1; - } - if (fail == 1) - do_scan(hdlp); - mutex_exit(hdlp->ahi_peekpoke_mutexp); -} - -/*ARGSUSED*/ -void -i_ddi_prot_io_rep_get16(ddi_acc_impl_t *hdlp, uint16_t *host_addr, - uint16_t *dev_addr, size_t repcount, uint_t flags) -{ - int fail = 0; - uint16_t *h; - uintptr_t port; - - h = host_addr; - port = (uintptr_t)dev_addr; - - mutex_enter(hdlp->ahi_peekpoke_mutexp); - if (flags == DDI_DEV_AUTOINCR) { - for (; repcount; repcount--, port += 2) - if ((*h++ = inw(port)) == 0xffff) - fail = 1; - } else { - for (; repcount; repcount--) - if ((*h++ = inw(port)) == 0xffff) - fail = 1; - } - if (fail == 1) - do_scan(hdlp); - mutex_exit(hdlp->ahi_peekpoke_mutexp); -} - -/*ARGSUSED*/ -void -i_ddi_prot_io_rep_get32(ddi_acc_impl_t *hdlp, uint32_t *host_addr, - uint32_t *dev_addr, size_t repcount, uint_t flags) -{ - int fail = 0; - uint32_t *h; - uintptr_t port; - - h = host_addr; - port = (uintptr_t)dev_addr; - - mutex_enter(hdlp->ahi_peekpoke_mutexp); - if (flags == DDI_DEV_AUTOINCR) { - for (; repcount; repcount--, port += 4) - if ((*h++ = inl(port)) == 0xffffffff) - fail = 1; - } else { - for (; repcount; repcount--) - if ((*h++ = inl(port)) == 0xffffffff) - fail = 1; - } - if (fail == 1) - do_scan(hdlp); - mutex_exit(hdlp->ahi_peekpoke_mutexp); -} - -/*ARGSUSED*/ -void -i_ddi_prot_vaddr_rep_get8(ddi_acc_impl_t *hdlp, uint8_t *host_addr, - uint8_t *dev_addr, size_t repcount, uint_t flags) -{ - int fail = 0; - uint8_t *h, *d; - - h = host_addr; - d = dev_addr; - - mutex_enter(hdlp->ahi_peekpoke_mutexp); - if (flags == DDI_DEV_AUTOINCR) { - for (; repcount; repcount--) - if ((*h++ = *d++) == 0xff) - fail = 1; - } else { - for (; repcount; repcount--) - if ((*h++ = *d) == 0xff) - fail = 1; - } - if (fail == 1) - do_scan(hdlp); - mutex_exit(hdlp->ahi_peekpoke_mutexp); -} - -/*ARGSUSED*/ -void -i_ddi_prot_vaddr_rep_get16(ddi_acc_impl_t *hdlp, uint16_t *host_addr, - uint16_t *dev_addr, size_t repcount, uint_t flags) -{ - int fail = 0; - uint16_t *h, *d; - - h = host_addr; - d = dev_addr; - - mutex_enter(hdlp->ahi_peekpoke_mutexp); - if (flags == DDI_DEV_AUTOINCR) { - for (; repcount; repcount--) - if ((*h++ = *d++) == 0xffff) - fail = 1; - } else { - for (; repcount; repcount--) - if ((*h++ = *d) == 0xffff) - fail = 1; - } - if (fail == 1) - do_scan(hdlp); - mutex_exit(hdlp->ahi_peekpoke_mutexp); -} - -/*ARGSUSED*/ -void -i_ddi_prot_vaddr_swap_rep_get16(ddi_acc_impl_t *hdlp, uint16_t *host_addr, - uint16_t *dev_addr, size_t repcount, uint_t flags) -{ - int fail = 0; - uint16_t *h, *d; - - h = host_addr; - d = dev_addr; - - mutex_enter(hdlp->ahi_peekpoke_mutexp); - if (flags == DDI_DEV_AUTOINCR) { - for (; repcount; repcount--) - if ((*h++ = ddi_swap16(*d++)) == 0xffff) - fail = 1; - } else { - for (; repcount; repcount--) - if ((*h++ = ddi_swap16(*d)) == 0xffff) - fail = 1; - } - if (fail == 1) - do_scan(hdlp); - mutex_exit(hdlp->ahi_peekpoke_mutexp); -} - -/*ARGSUSED*/ -void -i_ddi_prot_io_swap_rep_get16(ddi_acc_impl_t *hdlp, uint16_t *host_addr, - uint16_t *dev_addr, size_t repcount, uint_t flags) -{ - int fail = 0; - uint16_t *h; - uintptr_t port; - - h = host_addr; - port = (uintptr_t)dev_addr; - - mutex_enter(hdlp->ahi_peekpoke_mutexp); - if (flags == DDI_DEV_AUTOINCR) { - for (; repcount; repcount--, port += 2) - if ((*h++ = ddi_swap16(inw(port))) == 0xffff) - fail = 1; - } else { - for (; repcount; repcount--) - if ((*h++ = ddi_swap16(inw(port))) == 0xffff) - fail = 1; - } - if (fail == 1) - do_scan(hdlp); - mutex_exit(hdlp->ahi_peekpoke_mutexp); -} - -/*ARGSUSED*/ -void -i_ddi_prot_vaddr_rep_get32(ddi_acc_impl_t *hdlp, uint32_t *host_addr, - uint32_t *dev_addr, size_t repcount, uint_t flags) -{ - int fail = 0; - uint32_t *h, *d; - - h = host_addr; - d = dev_addr; - - mutex_enter(hdlp->ahi_peekpoke_mutexp); - if (flags == DDI_DEV_AUTOINCR) { - for (; repcount; repcount--) - if ((*h++ = *d++) == 0xffffffff) - fail = 1; - } else { - for (; repcount; repcount--) - if ((*h++ = *d) == 0xffffffff) - fail = 1; - } - if (fail == 1) - do_scan(hdlp); - mutex_exit(hdlp->ahi_peekpoke_mutexp); -} - -/*ARGSUSED*/ -void -i_ddi_prot_vaddr_swap_rep_get32(ddi_acc_impl_t *hdlp, uint32_t *host_addr, - uint32_t *dev_addr, size_t repcount, uint_t flags) -{ - int fail = 0; - uint32_t *h, *d; - - h = host_addr; - d = dev_addr; - - mutex_enter(hdlp->ahi_peekpoke_mutexp); - if (flags == DDI_DEV_AUTOINCR) { - for (; repcount; repcount--) - if ((*h++ = ddi_swap32(*d++)) == 0xffffffff) - fail = 1; - } else { - for (; repcount; repcount--) - if ((*h++ = ddi_swap32(*d)) == 0xffffffff) - fail = 1; - } - if (fail == 1) - do_scan(hdlp); - mutex_exit(hdlp->ahi_peekpoke_mutexp); -} - -/*ARGSUSED*/ -void -i_ddi_prot_io_swap_rep_get32(ddi_acc_impl_t *hdlp, uint32_t *host_addr, - uint32_t *dev_addr, size_t repcount, uint_t flags) -{ - int fail = 0; - uint32_t *h; - uintptr_t port; - - h = host_addr; - port = (uintptr_t)dev_addr; - - mutex_enter(hdlp->ahi_peekpoke_mutexp); - if (flags == DDI_DEV_AUTOINCR) { - for (; repcount; repcount--, port += 4) - if ((*h++ = ddi_swap32(inl(port))) == 0xffffffff) - fail = 1; - } else { - for (; repcount; repcount--) - if ((*h++ = ddi_swap32(inl(port))) == 0xffffffff) - fail = 1; - } - if (fail == 1) - do_scan(hdlp); - mutex_exit(hdlp->ahi_peekpoke_mutexp); -} - -/*ARGSUSED*/ -void -i_ddi_prot_vaddr_rep_get64(ddi_acc_impl_t *hdlp, uint64_t *host_addr, - uint64_t *dev_addr, size_t repcount, uint_t flags) -{ - int fail = 0; - uint64_t *h, *d; - - h = host_addr; - d = dev_addr; - - mutex_enter(hdlp->ahi_peekpoke_mutexp); - if (flags == DDI_DEV_AUTOINCR) { - for (; repcount; repcount--) - if ((*h++ = *d++) == 0xffffffffffffffff) - fail = 1; - } else { - for (; repcount; repcount--) - if ((*h++ = *d) == 0xffffffffffffffff) - fail = 1; - } - if (fail == 1) - do_scan(hdlp); - mutex_exit(hdlp->ahi_peekpoke_mutexp); -} - -/*ARGSUSED*/ -void -i_ddi_prot_vaddr_swap_rep_get64(ddi_acc_impl_t *hdlp, uint64_t *host_addr, - uint64_t *dev_addr, size_t repcount, uint_t flags) -{ - int fail = 0; - uint64_t *h, *d; - - h = host_addr; - d = dev_addr; - - mutex_enter(hdlp->ahi_peekpoke_mutexp); - if (flags == DDI_DEV_AUTOINCR) { - for (; repcount; repcount--) - if ((*h++ = ddi_swap64(*d++)) == 0xffffffffffffffff) - fail = 1; - } else { - for (; repcount; repcount--) - if ((*h++ = ddi_swap64(*d)) == 0xffffffffffffffff) - fail = 1; - } - if (fail == 1) - do_scan(hdlp); - mutex_exit(hdlp->ahi_peekpoke_mutexp); -} - -/*ARGSUSED*/ -void -i_ddi_prot_vaddr_rep_put8(ddi_acc_impl_t *hdlp, uint8_t *host_addr, - uint8_t *dev_addr, size_t repcount, uint_t flags) -{ - uint8_t *h, *d; - - h = host_addr; - d = dev_addr; - - mutex_enter(hdlp->ahi_peekpoke_mutexp); - if (flags == DDI_DEV_AUTOINCR) - for (; repcount; repcount--) - *d++ = *h++; - else - for (; repcount; repcount--) - *d = *h++; - mutex_exit(hdlp->ahi_peekpoke_mutexp); -} - -/*ARGSUSED*/ -void -i_ddi_prot_io_rep_put8(ddi_acc_impl_t *hdlp, uint8_t *host_addr, - uint8_t *dev_addr, size_t repcount, uint_t flags) -{ - uint8_t *h; - uintptr_t port; - - h = host_addr; - port = (uintptr_t)dev_addr; - - mutex_enter(hdlp->ahi_peekpoke_mutexp); - if (flags == DDI_DEV_AUTOINCR) - for (; repcount; repcount--, port++) - outb(port, *h++); - else - for (; repcount; repcount--) - outb(port, *h++); - mutex_exit(hdlp->ahi_peekpoke_mutexp); -} - -/*ARGSUSED*/ -void -i_ddi_prot_vaddr_rep_put16(ddi_acc_impl_t *hdlp, uint16_t *host_addr, - uint16_t *dev_addr, size_t repcount, uint_t flags) -{ - uint16_t *h, *d; - - h = host_addr; - d = dev_addr; - - mutex_enter(hdlp->ahi_peekpoke_mutexp); - if (flags == DDI_DEV_AUTOINCR) - for (; repcount; repcount--) - *d++ = *h++; - else - for (; repcount; repcount--) - *d = *h++; - mutex_exit(hdlp->ahi_peekpoke_mutexp); -} - -/*ARGSUSED*/ -void -i_ddi_prot_io_rep_put16(ddi_acc_impl_t *hdlp, uint16_t *host_addr, - uint16_t *dev_addr, size_t repcount, uint_t flags) -{ - uint16_t *h; - uintptr_t port; - - h = host_addr; - port = (uintptr_t)dev_addr; - - mutex_enter(hdlp->ahi_peekpoke_mutexp); - if (flags == DDI_DEV_AUTOINCR) - for (; repcount; repcount--, port += 2) - outw(port, *h++); - else - for (; repcount; repcount--) - outw(port, *h++); - mutex_exit(hdlp->ahi_peekpoke_mutexp); -} - -/*ARGSUSED*/ -void -i_ddi_prot_vaddr_swap_rep_put16(ddi_acc_impl_t *hdlp, uint16_t *host_addr, - uint16_t *dev_addr, size_t repcount, uint_t flags) -{ - uint16_t *h, *d; - - h = host_addr; - d = dev_addr; - - mutex_enter(hdlp->ahi_peekpoke_mutexp); - if (flags == DDI_DEV_AUTOINCR) - for (; repcount; repcount--) - *d++ = ddi_swap16(*h++); - else - for (; repcount; repcount--) - *d = ddi_swap16(*h++); - mutex_exit(hdlp->ahi_peekpoke_mutexp); -} - -/*ARGSUSED*/ -void -i_ddi_prot_io_swap_rep_put16(ddi_acc_impl_t *hdlp, uint16_t *host_addr, - uint16_t *dev_addr, size_t repcount, uint_t flags) -{ - uint16_t *h; - uintptr_t port; - - h = host_addr; - port = (uintptr_t)dev_addr; - - mutex_enter(hdlp->ahi_peekpoke_mutexp); - if (flags == DDI_DEV_AUTOINCR) - for (; repcount; repcount--, port += 2) - outw(port, ddi_swap16(*h++)); - else - for (; repcount; repcount--) - outw(port, ddi_swap16(*h++)); - mutex_exit(hdlp->ahi_peekpoke_mutexp); -} - -/*ARGSUSED*/ -void -i_ddi_prot_vaddr_rep_put32(ddi_acc_impl_t *hdlp, uint32_t *host_addr, - uint32_t *dev_addr, size_t repcount, uint_t flags) -{ - uint32_t *h, *d; - - h = host_addr; - d = dev_addr; - - mutex_enter(hdlp->ahi_peekpoke_mutexp); - if (flags == DDI_DEV_AUTOINCR) - for (; repcount; repcount--) - *d++ = *h++; - else - for (; repcount; repcount--) - *d = *h++; - mutex_exit(hdlp->ahi_peekpoke_mutexp); -} - -/*ARGSUSED*/ -void -i_ddi_prot_io_rep_put32(ddi_acc_impl_t *hdlp, uint32_t *host_addr, - uint32_t *dev_addr, size_t repcount, uint_t flags) -{ - uint32_t *h; - uintptr_t port; - - h = host_addr; - port = (uintptr_t)dev_addr; - - mutex_enter(hdlp->ahi_peekpoke_mutexp); - if (flags == DDI_DEV_AUTOINCR) - for (; repcount; repcount--, port += 4) - outl(port, *h++); - else - for (; repcount; repcount--) - outl(port, *h++); - mutex_exit(hdlp->ahi_peekpoke_mutexp); -} - -/*ARGSUSED*/ -void -i_ddi_prot_vaddr_swap_rep_put32(ddi_acc_impl_t *hdlp, uint32_t *host_addr, - uint32_t *dev_addr, size_t repcount, uint_t flags) -{ - uint32_t *h, *d; - - h = host_addr; - d = dev_addr; - - mutex_enter(hdlp->ahi_peekpoke_mutexp); - if (flags == DDI_DEV_AUTOINCR) - for (; repcount; repcount--) - *d++ = ddi_swap32(*h++); - else - for (; repcount; repcount--) - *d = ddi_swap32(*h++); - mutex_exit(hdlp->ahi_peekpoke_mutexp); -} - -/*ARGSUSED*/ -void -i_ddi_prot_io_swap_rep_put32(ddi_acc_impl_t *hdlp, uint32_t *host_addr, - uint32_t *dev_addr, size_t repcount, uint_t flags) -{ - uint32_t *h; - uintptr_t port; - - h = host_addr; - port = (uintptr_t)dev_addr; - - mutex_enter(hdlp->ahi_peekpoke_mutexp); - if (flags == DDI_DEV_AUTOINCR) - for (; repcount; repcount--, port += 4) - outl(port, ddi_swap32(*h++)); - else - for (; repcount; repcount--) - outl(port, ddi_swap32(*h++)); - mutex_exit(hdlp->ahi_peekpoke_mutexp); -} - -/*ARGSUSED*/ -void -i_ddi_prot_vaddr_rep_put64(ddi_acc_impl_t *hdlp, uint64_t *host_addr, - uint64_t *dev_addr, size_t repcount, uint_t flags) -{ - uint64_t *h, *d; - - h = host_addr; - d = dev_addr; - - mutex_enter(hdlp->ahi_peekpoke_mutexp); - if (flags == DDI_DEV_AUTOINCR) - for (; repcount; repcount--) - *d++ = *h++; - else - for (; repcount; repcount--) - *d = *h++; - mutex_exit(hdlp->ahi_peekpoke_mutexp); -} - -/*ARGSUSED*/ -void -i_ddi_prot_vaddr_swap_rep_put64(ddi_acc_impl_t *hdlp, uint64_t *host_addr, - uint64_t *dev_addr, size_t repcount, uint_t flags) -{ - uint64_t *h, *d; - - h = host_addr; - d = dev_addr; - - mutex_enter(hdlp->ahi_peekpoke_mutexp); - if (flags == DDI_DEV_AUTOINCR) - for (; repcount; repcount--) - *d++ = ddi_swap64(*h++); - else - for (; repcount; repcount--) - *d = ddi_swap64(*h++); - mutex_exit(hdlp->ahi_peekpoke_mutexp); -} - -void -ddi_io_rep_get8(ddi_acc_handle_t handle, - uint8_t *host_addr, uint8_t *dev_addr, size_t repcount) -{ - (((ddi_acc_impl_t *)handle)->ahi_rep_get8) - ((ddi_acc_impl_t *)handle, host_addr, dev_addr, - repcount, DDI_DEV_NO_AUTOINCR); -} - -void -ddi_io_rep_get16(ddi_acc_handle_t handle, - uint16_t *host_addr, uint16_t *dev_addr, size_t repcount) -{ - (((ddi_acc_impl_t *)handle)->ahi_rep_get16) - ((ddi_acc_impl_t *)handle, host_addr, dev_addr, - repcount, DDI_DEV_NO_AUTOINCR); -} - -void -ddi_io_rep_get32(ddi_acc_handle_t handle, - uint32_t *host_addr, uint32_t *dev_addr, size_t repcount) -{ - (((ddi_acc_impl_t *)handle)->ahi_rep_get32) - ((ddi_acc_impl_t *)handle, host_addr, dev_addr, - repcount, DDI_DEV_NO_AUTOINCR); -} - -/*ARGSUSED*/ -void -i_ddi_io_rep_get64(ddi_acc_impl_t *hdlp, uint64_t *host_addr, - uint64_t *dev_addr, size_t repcount, uint_t flags) -{ - cmn_err(CE_PANIC, "ddi_rep_get64 from i/o space"); -} - -void -ddi_io_rep_put8(ddi_acc_handle_t handle, - uint8_t *host_addr, uint8_t *dev_addr, size_t repcount) -{ - (((ddi_acc_impl_t *)handle)->ahi_rep_put8) - ((ddi_acc_impl_t *)handle, host_addr, dev_addr, - repcount, DDI_DEV_NO_AUTOINCR); -} - -void -ddi_io_rep_put16(ddi_acc_handle_t handle, - uint16_t *host_addr, uint16_t *dev_addr, size_t repcount) -{ - (((ddi_acc_impl_t *)handle)->ahi_rep_put16) - ((ddi_acc_impl_t *)handle, host_addr, dev_addr, - repcount, DDI_DEV_NO_AUTOINCR); -} - -void -ddi_io_rep_put32(ddi_acc_handle_t handle, - uint32_t *host_addr, uint32_t *dev_addr, size_t repcount) -{ - (((ddi_acc_impl_t *)handle)->ahi_rep_put32) - ((ddi_acc_impl_t *)handle, host_addr, dev_addr, - repcount, DDI_DEV_NO_AUTOINCR); -} - -/*ARGSUSED*/ -void -i_ddi_io_rep_put64(ddi_acc_impl_t *hdlp, uint64_t *host_addr, - uint64_t *dev_addr, size_t repcount, uint_t flags) -{ - cmn_err(CE_PANIC, "ddi_rep_put64 to i/o space"); -} - -/* - * These next two functions could be translated into assembler someday - */ -int -ddi_check_acc_handle(ddi_acc_handle_t handle) -{ - ddi_acc_impl_t *hdlp = (ddi_acc_impl_t *)handle; - return (((*hdlp->ahi_fault_check)(hdlp) == DDI_SUCCESS) ? DDI_SUCCESS : - DDI_FAILURE); -} - -int -i_ddi_acc_fault_check(ddi_acc_impl_t *hdlp) -{ - /* Default version, just returns flag value */ - return (hdlp->ahi_fault); -} - -/*ARGSUSED*/ -void -i_ddi_acc_fault_notify(ddi_acc_impl_t *hdlp) -{ - /* Default version, does nothing for now */ -} - -void -i_ddi_acc_set_fault(ddi_acc_handle_t handle) -{ - ddi_acc_impl_t *hdlp = (ddi_acc_impl_t *)handle; - - if (!hdlp->ahi_fault) { - hdlp->ahi_fault = 1; - (*hdlp->ahi_fault_notify)(hdlp); - } -} - -void -i_ddi_acc_clr_fault(ddi_acc_handle_t handle) -{ - ddi_acc_impl_t *hdlp = (ddi_acc_impl_t *)handle; - - if (hdlp->ahi_fault) { - hdlp->ahi_fault = 0; - (*hdlp->ahi_fault_notify)(hdlp); - } -} diff --git a/usr/src/uts/intel/ia32/os/desctbls.c b/usr/src/uts/intel/ia32/os/desctbls.c deleted file mode 100644 index 35345c3fe8..0000000000 --- a/usr/src/uts/intel/ia32/os/desctbls.c +++ /dev/null @@ -1,1218 +0,0 @@ -/* - * CDDL HEADER START - * - * The contents of this file are subject to the terms of the - * Common Development and Distribution License (the "License"). - * You may not use this file except in compliance with the License. - * - * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE - * or http://www.opensolaris.org/os/licensing. - * See the License for the specific language governing permissions - * and limitations under the License. - * - * When distributing Covered Code, include this CDDL HEADER in each - * file and include the License file at usr/src/OPENSOLARIS.LICENSE. - * If applicable, add the following below this CDDL HEADER, with the - * fields enclosed by brackets "[]" replaced with your own identifying - * information: Portions Copyright [yyyy] [name of copyright owner] - * - * CDDL HEADER END - */ - -/* - * Copyright (c) 2004, 2010, Oracle and/or its affiliates. All rights reserved. - */ - -/* - * Copyright 2018 Joyent, Inc. All rights reserved. - */ - -/* - * Copyright (c) 1992 Terrence R. Lambert. - * Copyright (c) 1990 The Regents of the University of California. - * All rights reserved. - * - * This code is derived from software contributed to Berkeley by - * William Jolitz. - * - * Redistribution and use in source and binary forms, with or without - * modification, are permitted provided that the following conditions - * are met: - * 1. Redistributions of source code must retain the above copyright - * notice, this list of conditions and the following disclaimer. - * 2. Redistributions in binary form must reproduce the above copyright - * notice, this list of conditions and the following disclaimer in the - * documentation and/or other materials provided with the distribution. - * 3. All advertising materials mentioning features or use of this software - * must display the following acknowledgement: - * This product includes software developed by the University of - * California, Berkeley and its contributors. - * 4. Neither the name of the University nor the names of its contributors - * may be used to endorse or promote products derived from this software - * without specific prior written permission. - * - * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND - * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE - * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE - * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE - * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL - * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS - * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) - * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT - * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY - * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF - * SUCH DAMAGE. - * - * from: @(#)machdep.c 7.4 (Berkeley) 6/3/91 - */ - -#include <sys/types.h> -#include <sys/sysmacros.h> -#include <sys/tss.h> -#include <sys/segments.h> -#include <sys/trap.h> -#include <sys/cpuvar.h> -#include <sys/bootconf.h> -#include <sys/x86_archext.h> -#include <sys/controlregs.h> -#include <sys/archsystm.h> -#include <sys/machsystm.h> -#include <sys/kobj.h> -#include <sys/cmn_err.h> -#include <sys/reboot.h> -#include <sys/kdi.h> -#include <sys/mach_mmu.h> -#include <sys/systm.h> -#include <sys/note.h> - -#ifdef __xpv -#include <sys/hypervisor.h> -#include <vm/as.h> -#endif - -#include <sys/promif.h> -#include <sys/bootinfo.h> -#include <vm/kboot_mmu.h> -#include <vm/hat_pte.h> - -/* - * cpu0 and default tables and structures. - */ -user_desc_t *gdt0; -#if !defined(__xpv) -desctbr_t gdt0_default_r; -#endif - -gate_desc_t *idt0; /* interrupt descriptor table */ - -tss_t *ktss0; /* kernel task state structure */ - - -user_desc_t zero_udesc; /* base zero user desc native procs */ -user_desc_t null_udesc; /* null user descriptor */ -system_desc_t null_sdesc; /* null system descriptor */ - -user_desc_t zero_u32desc; /* 32-bit compatibility procs */ - -user_desc_t ucs_on; -user_desc_t ucs_off; -user_desc_t ucs32_on; -user_desc_t ucs32_off; - -/* - * If the size of this is changed, you must update hat_pcp_setup() and the - * definitions in exception.s - */ -extern char dblfault_stack0[DEFAULTSTKSZ]; -extern char nmi_stack0[DEFAULTSTKSZ]; -extern char mce_stack0[DEFAULTSTKSZ]; - -extern void fast_null(void); -extern hrtime_t get_hrtime(void); -extern hrtime_t gethrvtime(void); -extern hrtime_t get_hrestime(void); -extern uint64_t getlgrp(void); - -void (*(fasttable[]))(void) = { - fast_null, /* T_FNULL routine */ - fast_null, /* T_FGETFP routine (initially null) */ - fast_null, /* T_FSETFP routine (initially null) */ - (void (*)())(uintptr_t)get_hrtime, /* T_GETHRTIME */ - (void (*)())(uintptr_t)gethrvtime, /* T_GETHRVTIME */ - (void (*)())(uintptr_t)get_hrestime, /* T_GETHRESTIME */ - (void (*)())(uintptr_t)getlgrp /* T_GETLGRP */ -}; - -/* - * Structure containing pre-computed descriptors to allow us to temporarily - * interpose on a standard handler. - */ -struct interposing_handler { - int ih_inum; - gate_desc_t ih_interp_desc; - gate_desc_t ih_default_desc; -}; - -/* - * The brand infrastructure interposes on two handlers, and we use one as a - * NULL signpost. - */ -static struct interposing_handler brand_tbl[2]; - -/* - * software prototypes for default local descriptor table - */ - -/* - * Routines for loading segment descriptors in format the hardware - * can understand. - */ - -/* - * In long mode we have the new L or long mode attribute bit - * for code segments. Only the conforming bit in type is used along - * with descriptor priority and present bits. Default operand size must - * be zero when in long mode. In 32-bit compatibility mode all fields - * are treated as in legacy mode. For data segments while in long mode - * only the present bit is loaded. - */ -void -set_usegd(user_desc_t *dp, uint_t lmode, void *base, size_t size, - uint_t type, uint_t dpl, uint_t gran, uint_t defopsz) -{ - ASSERT(lmode == SDP_SHORT || lmode == SDP_LONG); - /* This should never be a "system" segment. */ - ASSERT3U(type & SDT_S, !=, 0); - - /* - * 64-bit long mode. - */ - if (lmode == SDP_LONG) - dp->usd_def32 = 0; /* 32-bit operands only */ - else - /* - * 32-bit compatibility mode. - */ - dp->usd_def32 = defopsz; /* 0 = 16, 1 = 32-bit ops */ - - /* - * We should always set the "accessed" bit (SDT_A), otherwise the CPU - * will write to the GDT whenever we change segment registers around. - * With KPTI on, the GDT is read-only in the user page table, which - * causes crashes if we don't set this. - */ - ASSERT3U(type & SDT_A, !=, 0); - - dp->usd_long = lmode; /* 64-bit mode */ - dp->usd_type = type; - dp->usd_dpl = dpl; - dp->usd_p = 1; - dp->usd_gran = gran; /* 0 = bytes, 1 = pages */ - - dp->usd_lobase = (uintptr_t)base; - dp->usd_midbase = (uintptr_t)base >> 16; - dp->usd_hibase = (uintptr_t)base >> (16 + 8); - dp->usd_lolimit = size; - dp->usd_hilimit = (uintptr_t)size >> 16; -} - -/* - * Install system segment descriptor for LDT and TSS segments. - */ - -void -set_syssegd(system_desc_t *dp, void *base, size_t size, uint_t type, - uint_t dpl) -{ - dp->ssd_lolimit = size; - dp->ssd_hilimit = (uintptr_t)size >> 16; - - dp->ssd_lobase = (uintptr_t)base; - dp->ssd_midbase = (uintptr_t)base >> 16; - dp->ssd_hibase = (uintptr_t)base >> (16 + 8); - dp->ssd_hi64base = (uintptr_t)base >> (16 + 8 + 8); - - dp->ssd_type = type; - dp->ssd_zero1 = 0; /* must be zero */ - dp->ssd_zero2 = 0; - dp->ssd_dpl = dpl; - dp->ssd_p = 1; - dp->ssd_gran = 0; /* force byte units */ -} - -void * -get_ssd_base(system_desc_t *dp) -{ - uintptr_t base; - - base = (uintptr_t)dp->ssd_lobase | - (uintptr_t)dp->ssd_midbase << 16 | - (uintptr_t)dp->ssd_hibase << (16 + 8) | - (uintptr_t)dp->ssd_hi64base << (16 + 8 + 8); - return ((void *)base); -} - -/* - * Install gate segment descriptor for interrupt, trap, call and task gates. - * - * For 64 bit native if we have KPTI enabled, we use the IST stack mechanism on - * all interrupts. We have different ISTs for each class of exceptions that are - * most likely to occur while handling an existing exception; while many of - * these are just going to panic, it's nice not to trample on the existing - * exception state for debugging purposes. - * - * Normal interrupts are all redirected unconditionally to the KPTI trampoline - * stack space. This unifies the trampoline handling between user and kernel - * space (and avoids the need to touch %gs). - * - * The KDI IDT *all* uses the DBG IST: consider single stepping tr_pftrap, when - * we do a read from KMDB that cause another #PF. Without its own IST, this - * would stomp on the kernel's mcpu_kpti_flt frame. - */ -uint_t -idt_vector_to_ist(uint_t vector) -{ -#if defined(__xpv) - _NOTE(ARGUNUSED(vector)); - return (IST_NONE); -#else - switch (vector) { - /* These should always use IST even without KPTI enabled. */ - case T_DBLFLT: - return (IST_DF); - case T_NMIFLT: - return (IST_NMI); - case T_MCE: - return (IST_MCE); - - case T_BPTFLT: - case T_SGLSTP: - if (kpti_enable == 1) { - return (IST_DBG); - } - return (IST_NONE); - case T_STKFLT: - case T_GPFLT: - case T_PGFLT: - if (kpti_enable == 1) { - return (IST_NESTABLE); - } - return (IST_NONE); - default: - if (kpti_enable == 1) { - return (IST_DEFAULT); - } - return (IST_NONE); - } -#endif -} - -void -set_gatesegd(gate_desc_t *dp, void (*func)(void), selector_t sel, - uint_t type, uint_t dpl, uint_t ist) -{ - dp->sgd_looffset = (uintptr_t)func; - dp->sgd_hioffset = (uintptr_t)func >> 16; - dp->sgd_hi64offset = (uintptr_t)func >> (16 + 16); - dp->sgd_selector = (uint16_t)sel; - dp->sgd_ist = ist; - dp->sgd_type = type; - dp->sgd_dpl = dpl; - dp->sgd_p = 1; -} - -/* - * Updates a single user descriptor in the the GDT of the current cpu. - * Caller is responsible for preventing cpu migration. - */ - -void -gdt_update_usegd(uint_t sidx, user_desc_t *udp) -{ -#if defined(DEBUG) - /* This should never be a "system" segment, but it might be null. */ - if (udp->usd_p != 0 || udp->usd_type != 0) { - ASSERT3U(udp->usd_type & SDT_S, !=, 0); - } - /* - * We should always set the "accessed" bit (SDT_A), otherwise the CPU - * will write to the GDT whenever we change segment registers around. - * With KPTI on, the GDT is read-only in the user page table, which - * causes crashes if we don't set this. - */ - if (udp->usd_p != 0 || udp->usd_type != 0) { - ASSERT3U(udp->usd_type & SDT_A, !=, 0); - } -#endif - -#if defined(__xpv) - uint64_t dpa = CPU->cpu_m.mcpu_gdtpa + sizeof (*udp) * sidx; - - if (HYPERVISOR_update_descriptor(pa_to_ma(dpa), *(uint64_t *)udp)) - panic("gdt_update_usegd: HYPERVISOR_update_descriptor"); - -#else /* __xpv */ - CPU->cpu_gdt[sidx] = *udp; -#endif /* __xpv */ -} - -/* - * Writes single descriptor pointed to by udp into a processes - * LDT entry pointed to by ldp. - */ -int -ldt_update_segd(user_desc_t *ldp, user_desc_t *udp) -{ -#if defined(DEBUG) - /* This should never be a "system" segment, but it might be null. */ - if (udp->usd_p != 0 || udp->usd_type != 0) { - ASSERT3U(udp->usd_type & SDT_S, !=, 0); - } - /* - * We should always set the "accessed" bit (SDT_A), otherwise the CPU - * will write to the LDT whenever we change segment registers around. - * With KPTI on, the LDT is read-only in the user page table, which - * causes crashes if we don't set this. - */ - if (udp->usd_p != 0 || udp->usd_type != 0) { - ASSERT3U(udp->usd_type & SDT_A, !=, 0); - } -#endif - -#if defined(__xpv) - uint64_t dpa; - - dpa = mmu_ptob(hat_getpfnum(kas.a_hat, (caddr_t)ldp)) | - ((uintptr_t)ldp & PAGEOFFSET); - - /* - * The hypervisor is a little more restrictive about what it - * supports in the LDT. - */ - if (HYPERVISOR_update_descriptor(pa_to_ma(dpa), *(uint64_t *)udp) != 0) - return (EINVAL); - -#else /* __xpv */ - *ldp = *udp; - -#endif /* __xpv */ - return (0); -} - -#if defined(__xpv) - -/* - * Converts hw format gate descriptor into pseudo-IDT format for the hypervisor. - * Returns true if a valid entry was written. - */ -int -xen_idt_to_trap_info(uint_t vec, gate_desc_t *sgd, void *ti_arg) -{ - trap_info_t *ti = ti_arg; /* XXPV Aargh - segments.h comment */ - - /* - * skip holes in the IDT - */ - if (GATESEG_GETOFFSET(sgd) == 0) - return (0); - - ASSERT(sgd->sgd_type == SDT_SYSIGT); - ti->vector = vec; - TI_SET_DPL(ti, sgd->sgd_dpl); - - /* - * Is this an interrupt gate? - */ - if (sgd->sgd_type == SDT_SYSIGT) { - /* LINTED */ - TI_SET_IF(ti, 1); - } - ti->cs = sgd->sgd_selector; - ti->cs |= SEL_KPL; /* force into ring 3. see KCS_SEL */ - ti->address = GATESEG_GETOFFSET(sgd); - return (1); -} - -/* - * Convert a single hw format gate descriptor and write it into our virtual IDT. - */ -void -xen_idt_write(gate_desc_t *sgd, uint_t vec) -{ - trap_info_t trapinfo[2]; - - bzero(trapinfo, sizeof (trapinfo)); - if (xen_idt_to_trap_info(vec, sgd, &trapinfo[0]) == 0) - return; - if (xen_set_trap_table(trapinfo) != 0) - panic("xen_idt_write: xen_set_trap_table() failed"); -} - -#endif /* __xpv */ - - -/* - * Build kernel GDT. - */ - -static void -init_gdt_common(user_desc_t *gdt) -{ - int i; - - /* - * 64-bit kernel code segment. - */ - set_usegd(&gdt[GDT_KCODE], SDP_LONG, NULL, 0, SDT_MEMERA, SEL_KPL, - SDP_PAGES, SDP_OP32); - - /* - * 64-bit kernel data segment. The limit attribute is ignored in 64-bit - * mode, but we set it here to 0xFFFF so that we can use the SYSRET - * instruction to return from system calls back to 32-bit applications. - * SYSRET doesn't update the base, limit, or attributes of %ss or %ds - * descriptors. We therefore must ensure that the kernel uses something, - * though it will be ignored by hardware, that is compatible with 32-bit - * apps. For the same reason we must set the default op size of this - * descriptor to 32-bit operands. - */ - set_usegd(&gdt[GDT_KDATA], SDP_LONG, NULL, -1, SDT_MEMRWA, - SEL_KPL, SDP_PAGES, SDP_OP32); - gdt[GDT_KDATA].usd_def32 = 1; - - /* - * 64-bit user code segment. - */ - set_usegd(&gdt[GDT_UCODE], SDP_LONG, NULL, 0, SDT_MEMERA, SEL_UPL, - SDP_PAGES, SDP_OP32); - - /* - * 32-bit user code segment. - */ - set_usegd(&gdt[GDT_U32CODE], SDP_SHORT, NULL, -1, SDT_MEMERA, - SEL_UPL, SDP_PAGES, SDP_OP32); - - /* - * See gdt_ucode32() and gdt_ucode_native(). - */ - ucs_on = ucs_off = gdt[GDT_UCODE]; - ucs_off.usd_p = 0; /* forces #np fault */ - - ucs32_on = ucs32_off = gdt[GDT_U32CODE]; - ucs32_off.usd_p = 0; /* forces #np fault */ - - /* - * 32 and 64 bit data segments can actually share the same descriptor. - * In long mode only the present bit is checked but all other fields - * are loaded. But in compatibility mode all fields are interpreted - * as in legacy mode so they must be set correctly for a 32-bit data - * segment. - */ - set_usegd(&gdt[GDT_UDATA], SDP_SHORT, NULL, -1, SDT_MEMRWA, SEL_UPL, - SDP_PAGES, SDP_OP32); - -#if !defined(__xpv) - - /* - * The 64-bit kernel has no default LDT. By default, the LDT descriptor - * in the GDT is 0. - */ - - /* - * Kernel TSS - */ - set_syssegd((system_desc_t *)&gdt[GDT_KTSS], ktss0, - sizeof (*ktss0) - 1, SDT_SYSTSS, SEL_KPL); - -#endif /* !__xpv */ - - /* - * Initialize fs and gs descriptors for 32 bit processes. - * Only attributes and limits are initialized, the effective - * base address is programmed via fsbase/gsbase. - */ - set_usegd(&gdt[GDT_LWPFS], SDP_SHORT, NULL, -1, SDT_MEMRWA, - SEL_UPL, SDP_PAGES, SDP_OP32); - set_usegd(&gdt[GDT_LWPGS], SDP_SHORT, NULL, -1, SDT_MEMRWA, - SEL_UPL, SDP_PAGES, SDP_OP32); - - /* - * Initialize the descriptors set aside for brand usage. - * Only attributes and limits are initialized. - */ - for (i = GDT_BRANDMIN; i <= GDT_BRANDMAX; i++) - set_usegd(&gdt0[i], SDP_SHORT, NULL, -1, SDT_MEMRWA, - SEL_UPL, SDP_PAGES, SDP_OP32); - - /* - * Initialize convenient zero base user descriptors for clearing - * lwp private %fs and %gs descriptors in GDT. See setregs() for - * an example. - */ - set_usegd(&zero_udesc, SDP_LONG, 0, 0, SDT_MEMRWA, SEL_UPL, - SDP_BYTES, SDP_OP32); - set_usegd(&zero_u32desc, SDP_SHORT, 0, -1, SDT_MEMRWA, SEL_UPL, - SDP_PAGES, SDP_OP32); -} - -#if defined(__xpv) - -static user_desc_t * -init_gdt(void) -{ - uint64_t gdtpa; - ulong_t ma[1]; /* XXPV should be a memory_t */ - ulong_t addr; - -#if !defined(__lint) - /* - * Our gdt is never larger than a single page. - */ - ASSERT((sizeof (*gdt0) * NGDT) <= PAGESIZE); -#endif - gdt0 = (user_desc_t *)BOP_ALLOC(bootops, (caddr_t)GDT_VA, - PAGESIZE, PAGESIZE); - bzero(gdt0, PAGESIZE); - - init_gdt_common(gdt0); - - /* - * XXX Since we never invoke kmdb until after the kernel takes - * over the descriptor tables why not have it use the kernel's - * selectors? - */ - if (boothowto & RB_DEBUG) { - set_usegd(&gdt0[GDT_B32DATA], SDP_LONG, NULL, -1, SDT_MEMRWA, - SEL_KPL, SDP_PAGES, SDP_OP32); - set_usegd(&gdt0[GDT_B64CODE], SDP_LONG, NULL, -1, SDT_MEMERA, - SEL_KPL, SDP_PAGES, SDP_OP32); - } - - /* - * Clear write permission for page containing the gdt and install it. - */ - gdtpa = pfn_to_pa(va_to_pfn(gdt0)); - ma[0] = (ulong_t)(pa_to_ma(gdtpa) >> PAGESHIFT); - kbm_read_only((uintptr_t)gdt0, gdtpa); - xen_set_gdt(ma, NGDT); - - /* - * Reload the segment registers to use the new GDT. - * On 64-bit, fixup KCS_SEL to be in ring 3. - * See KCS_SEL in segments.h. - */ - load_segment_registers((KCS_SEL | SEL_KPL), KFS_SEL, KGS_SEL, KDS_SEL); - - /* - * setup %gs for kernel - */ - xen_set_segment_base(SEGBASE_GS_KERNEL, (ulong_t)&cpus[0]); - - /* - * XX64 We should never dereference off "other gsbase" or - * "fsbase". So, we should arrange to point FSBASE and - * KGSBASE somewhere truly awful e.g. point it at the last - * valid address below the hole so that any attempts to index - * off them cause an exception. - * - * For now, point it at 8G -- at least it should be unmapped - * until some 64-bit processes run. - */ - addr = 0x200000000ul; - xen_set_segment_base(SEGBASE_FS, addr); - xen_set_segment_base(SEGBASE_GS_USER, addr); - xen_set_segment_base(SEGBASE_GS_USER_SEL, 0); - - return (gdt0); -} - -#else /* __xpv */ - -static user_desc_t * -init_gdt(void) -{ - desctbr_t r_bgdt, r_gdt; - user_desc_t *bgdt; - -#if !defined(__lint) - /* - * Our gdt is never larger than a single page. - */ - ASSERT((sizeof (*gdt0) * NGDT) <= PAGESIZE); -#endif - gdt0 = (user_desc_t *)BOP_ALLOC(bootops, (caddr_t)GDT_VA, - PAGESIZE, PAGESIZE); - bzero(gdt0, PAGESIZE); - - init_gdt_common(gdt0); - - /* - * Copy in from boot's gdt to our gdt. - * Entry 0 is the null descriptor by definition. - */ - rd_gdtr(&r_bgdt); - bgdt = (user_desc_t *)r_bgdt.dtr_base; - if (bgdt == NULL) - panic("null boot gdt"); - - gdt0[GDT_B32DATA] = bgdt[GDT_B32DATA]; - gdt0[GDT_B32CODE] = bgdt[GDT_B32CODE]; - gdt0[GDT_B16CODE] = bgdt[GDT_B16CODE]; - gdt0[GDT_B16DATA] = bgdt[GDT_B16DATA]; - gdt0[GDT_B64CODE] = bgdt[GDT_B64CODE]; - - /* - * Install our new GDT - */ - r_gdt.dtr_limit = (sizeof (*gdt0) * NGDT) - 1; - r_gdt.dtr_base = (uintptr_t)gdt0; - wr_gdtr(&r_gdt); - - /* - * Reload the segment registers to use the new GDT - */ - load_segment_registers(KCS_SEL, KFS_SEL, KGS_SEL, KDS_SEL); - - /* - * setup %gs for kernel - */ - wrmsr(MSR_AMD_GSBASE, (uint64_t)&cpus[0]); - - /* - * XX64 We should never dereference off "other gsbase" or - * "fsbase". So, we should arrange to point FSBASE and - * KGSBASE somewhere truly awful e.g. point it at the last - * valid address below the hole so that any attempts to index - * off them cause an exception. - * - * For now, point it at 8G -- at least it should be unmapped - * until some 64-bit processes run. - */ - wrmsr(MSR_AMD_FSBASE, 0x200000000ul); - wrmsr(MSR_AMD_KGSBASE, 0x200000000ul); - return (gdt0); -} - -#endif /* __xpv */ - - -/* - * Build kernel IDT. - * - * Note that for amd64 we pretty much require every gate to be an interrupt - * gate which blocks interrupts atomically on entry; that's because of our - * dependency on using 'swapgs' every time we come into the kernel to find - * the cpu structure. If we get interrupted just before doing that, %cs could - * be in kernel mode (so that the trap prolog doesn't do a swapgs), but - * %gsbase is really still pointing at something in userland. Bad things will - * ensue. We also use interrupt gates for i386 as well even though this is not - * required for some traps. - * - * Perhaps they should have invented a trap gate that does an atomic swapgs? - */ -static void -init_idt_common(gate_desc_t *idt) -{ - set_gatesegd(&idt[T_ZERODIV], - (kpti_enable == 1) ? &tr_div0trap : &div0trap, - KCS_SEL, SDT_SYSIGT, TRP_KPL, idt_vector_to_ist(T_ZERODIV)); - set_gatesegd(&idt[T_SGLSTP], - (kpti_enable == 1) ? &tr_dbgtrap : &dbgtrap, - KCS_SEL, SDT_SYSIGT, TRP_KPL, idt_vector_to_ist(T_SGLSTP)); - set_gatesegd(&idt[T_NMIFLT], - (kpti_enable == 1) ? &tr_nmiint : &nmiint, - KCS_SEL, SDT_SYSIGT, TRP_KPL, idt_vector_to_ist(T_NMIFLT)); - set_gatesegd(&idt[T_BPTFLT], - (kpti_enable == 1) ? &tr_brktrap : &brktrap, - KCS_SEL, SDT_SYSIGT, TRP_UPL, idt_vector_to_ist(T_BPTFLT)); - set_gatesegd(&idt[T_OVFLW], - (kpti_enable == 1) ? &tr_ovflotrap : &ovflotrap, - KCS_SEL, SDT_SYSIGT, TRP_UPL, idt_vector_to_ist(T_OVFLW)); - set_gatesegd(&idt[T_BOUNDFLT], - (kpti_enable == 1) ? &tr_boundstrap : &boundstrap, - KCS_SEL, SDT_SYSIGT, TRP_KPL, idt_vector_to_ist(T_BOUNDFLT)); - set_gatesegd(&idt[T_ILLINST], - (kpti_enable == 1) ? &tr_invoptrap : &invoptrap, - KCS_SEL, SDT_SYSIGT, TRP_KPL, idt_vector_to_ist(T_ILLINST)); - set_gatesegd(&idt[T_NOEXTFLT], - (kpti_enable == 1) ? &tr_ndptrap : &ndptrap, - KCS_SEL, SDT_SYSIGT, TRP_KPL, idt_vector_to_ist(T_NOEXTFLT)); - - /* - * double fault handler. - * - * Note that on the hypervisor a guest does not receive #df faults. - * Instead a failsafe event is injected into the guest if its selectors - * and/or stack is in a broken state. See xen_failsafe_callback. - */ -#if !defined(__xpv) - set_gatesegd(&idt[T_DBLFLT], - (kpti_enable == 1) ? &tr_syserrtrap : &syserrtrap, - KCS_SEL, SDT_SYSIGT, TRP_KPL, idt_vector_to_ist(T_DBLFLT)); -#endif /* !__xpv */ - - /* - * T_EXTOVRFLT coprocessor-segment-overrun not supported. - */ - set_gatesegd(&idt[T_TSSFLT], - (kpti_enable == 1) ? &tr_invtsstrap : &invtsstrap, - KCS_SEL, SDT_SYSIGT, TRP_KPL, idt_vector_to_ist(T_TSSFLT)); - set_gatesegd(&idt[T_SEGFLT], - (kpti_enable == 1) ? &tr_segnptrap : &segnptrap, - KCS_SEL, SDT_SYSIGT, TRP_KPL, idt_vector_to_ist(T_SEGFLT)); - set_gatesegd(&idt[T_STKFLT], - (kpti_enable == 1) ? &tr_stktrap : &stktrap, - KCS_SEL, SDT_SYSIGT, TRP_KPL, idt_vector_to_ist(T_STKFLT)); - set_gatesegd(&idt[T_GPFLT], - (kpti_enable == 1) ? &tr_gptrap : &gptrap, - KCS_SEL, SDT_SYSIGT, TRP_KPL, idt_vector_to_ist(T_GPFLT)); - set_gatesegd(&idt[T_PGFLT], - (kpti_enable == 1) ? &tr_pftrap : &pftrap, - KCS_SEL, SDT_SYSIGT, TRP_KPL, idt_vector_to_ist(T_PGFLT)); - set_gatesegd(&idt[T_EXTERRFLT], - (kpti_enable == 1) ? &tr_ndperr : &ndperr, - KCS_SEL, SDT_SYSIGT, TRP_KPL, idt_vector_to_ist(T_EXTERRFLT)); - set_gatesegd(&idt[T_ALIGNMENT], - (kpti_enable == 1) ? &tr_achktrap : &achktrap, - KCS_SEL, SDT_SYSIGT, TRP_KPL, idt_vector_to_ist(T_ALIGNMENT)); - set_gatesegd(&idt[T_MCE], - (kpti_enable == 1) ? &tr_mcetrap : &mcetrap, - KCS_SEL, SDT_SYSIGT, TRP_KPL, idt_vector_to_ist(T_MCE)); - set_gatesegd(&idt[T_SIMDFPE], - (kpti_enable == 1) ? &tr_xmtrap : &xmtrap, - KCS_SEL, SDT_SYSIGT, TRP_KPL, idt_vector_to_ist(T_SIMDFPE)); - - /* - * install fast trap handler at 210. - */ - set_gatesegd(&idt[T_FASTTRAP], - (kpti_enable == 1) ? &tr_fasttrap : &fasttrap, - KCS_SEL, SDT_SYSIGT, TRP_UPL, idt_vector_to_ist(T_FASTTRAP)); - - /* - * System call handler. - */ - set_gatesegd(&idt[T_SYSCALLINT], - (kpti_enable == 1) ? &tr_sys_syscall_int : &sys_syscall_int, - KCS_SEL, SDT_SYSIGT, TRP_UPL, idt_vector_to_ist(T_SYSCALLINT)); - - /* - * Install the DTrace interrupt handler for the pid provider. - */ - set_gatesegd(&idt[T_DTRACE_RET], - (kpti_enable == 1) ? &tr_dtrace_ret : &dtrace_ret, - KCS_SEL, SDT_SYSIGT, TRP_UPL, idt_vector_to_ist(T_DTRACE_RET)); - - /* - * Prepare interposing descriptor for the syscall handler - * and cache copy of the default descriptor. - */ - brand_tbl[0].ih_inum = T_SYSCALLINT; - brand_tbl[0].ih_default_desc = idt0[T_SYSCALLINT]; - - set_gatesegd(&(brand_tbl[0].ih_interp_desc), - (kpti_enable == 1) ? &tr_brand_sys_syscall_int : - &brand_sys_syscall_int, KCS_SEL, SDT_SYSIGT, TRP_UPL, - idt_vector_to_ist(T_SYSCALLINT)); - - brand_tbl[1].ih_inum = 0; -} - -#if defined(__xpv) - -static void -init_idt(gate_desc_t *idt) -{ - init_idt_common(idt); -} - -#else /* __xpv */ - -static void -init_idt(gate_desc_t *idt) -{ - char ivctname[80]; - void (*ivctptr)(void); - int i; - - /* - * Initialize entire table with 'reserved' trap and then overwrite - * specific entries. T_EXTOVRFLT (9) is unsupported and reserved - * since it can only be generated on a 386 processor. 15 is also - * unsupported and reserved. - */ -#if !defined(__xpv) - for (i = 0; i < NIDT; i++) { - set_gatesegd(&idt[i], - (kpti_enable == 1) ? &tr_resvtrap : &resvtrap, - KCS_SEL, SDT_SYSIGT, TRP_KPL, - idt_vector_to_ist(T_RESVTRAP)); - } -#else - for (i = 0; i < NIDT; i++) { - set_gatesegd(&idt[i], &resvtrap, KCS_SEL, SDT_SYSIGT, TRP_KPL, - IST_NONE); - } -#endif - - /* - * 20-31 reserved - */ -#if !defined(__xpv) - for (i = 20; i < 32; i++) { - set_gatesegd(&idt[i], - (kpti_enable == 1) ? &tr_invaltrap : &invaltrap, - KCS_SEL, SDT_SYSIGT, TRP_KPL, - idt_vector_to_ist(T_INVALTRAP)); - } -#else - for (i = 20; i < 32; i++) { - set_gatesegd(&idt[i], &invaltrap, KCS_SEL, SDT_SYSIGT, TRP_KPL, - IST_NONE); - } -#endif - - /* - * interrupts 32 - 255 - */ - for (i = 32; i < 256; i++) { -#if !defined(__xpv) - (void) snprintf(ivctname, sizeof (ivctname), - (kpti_enable == 1) ? "tr_ivct%d" : "ivct%d", i); -#else - (void) snprintf(ivctname, sizeof (ivctname), "ivct%d", i); -#endif - ivctptr = (void (*)(void))kobj_getsymvalue(ivctname, 0); - if (ivctptr == NULL) - panic("kobj_getsymvalue(%s) failed", ivctname); - - set_gatesegd(&idt[i], ivctptr, KCS_SEL, SDT_SYSIGT, TRP_KPL, - idt_vector_to_ist(i)); - } - - /* - * Now install the common ones. Note that it will overlay some - * entries installed above like T_SYSCALLINT, T_FASTTRAP etc. - */ - init_idt_common(idt); -} - -#endif /* __xpv */ - -/* - * The kernel does not deal with LDTs unless a user explicitly creates - * one. Under normal circumstances, the LDTR contains 0. Any process attempting - * to reference the LDT will therefore cause a #gp. System calls made via the - * obsolete lcall mechanism are emulated by the #gp fault handler. - */ -static void -init_ldt(void) -{ -#if defined(__xpv) - xen_set_ldt(NULL, 0); -#else - wr_ldtr(0); -#endif -} - -#if !defined(__xpv) - -static void -init_tss(void) -{ - extern struct cpu cpus[]; - - /* - * tss_rsp0 is dynamically filled in by resume() (in swtch.s) on each - * context switch but it'll be overwritten with this same value anyway. - */ - if (kpti_enable == 1) { - ktss0->tss_rsp0 = (uint64_t)&cpus->cpu_m.mcpu_kpti.kf_tr_rsp; - } - - /* Set up the IST stacks for double fault, NMI, MCE. */ - ktss0->tss_ist1 = (uintptr_t)&dblfault_stack0[sizeof (dblfault_stack0)]; - ktss0->tss_ist2 = (uintptr_t)&nmi_stack0[sizeof (nmi_stack0)]; - ktss0->tss_ist3 = (uintptr_t)&mce_stack0[sizeof (mce_stack0)]; - - /* - * This IST stack is used for #DB,#BP (debug) interrupts (when KPTI is - * enabled), and also for KDI (always). - */ - ktss0->tss_ist4 = (uint64_t)&cpus->cpu_m.mcpu_kpti_dbg.kf_tr_rsp; - - if (kpti_enable == 1) { - /* This IST stack is used for #GP,#PF,#SS (fault) interrupts. */ - ktss0->tss_ist5 = - (uint64_t)&cpus->cpu_m.mcpu_kpti_flt.kf_tr_rsp; - - /* This IST stack is used for all other intrs (for KPTI). */ - ktss0->tss_ist6 = (uint64_t)&cpus->cpu_m.mcpu_kpti.kf_tr_rsp; - } - - /* - * Set I/O bit map offset equal to size of TSS segment limit - * for no I/O permission map. This will force all user I/O - * instructions to generate #gp fault. - */ - ktss0->tss_bitmapbase = sizeof (*ktss0); - - /* - * Point %tr to descriptor for ktss0 in gdt. - */ - wr_tsr(KTSS_SEL); -} - -#endif /* !__xpv */ - -#if defined(__xpv) - -void -init_desctbls(void) -{ - uint_t vec; - user_desc_t *gdt; - - /* - * Setup and install our GDT. - */ - gdt = init_gdt(); - - /* - * Store static pa of gdt to speed up pa_to_ma() translations - * on lwp context switches. - */ - ASSERT(IS_P2ALIGNED((uintptr_t)gdt, PAGESIZE)); - CPU->cpu_gdt = gdt; - CPU->cpu_m.mcpu_gdtpa = pfn_to_pa(va_to_pfn(gdt)); - - /* - * Setup and install our IDT. - */ -#if !defined(__lint) - ASSERT(NIDT * sizeof (*idt0) <= PAGESIZE); -#endif - idt0 = (gate_desc_t *)BOP_ALLOC(bootops, (caddr_t)IDT_VA, - PAGESIZE, PAGESIZE); - bzero(idt0, PAGESIZE); - init_idt(idt0); - for (vec = 0; vec < NIDT; vec++) - xen_idt_write(&idt0[vec], vec); - - CPU->cpu_idt = idt0; - - /* - * set default kernel stack - */ - xen_stack_switch(KDS_SEL, - (ulong_t)&dblfault_stack0[sizeof (dblfault_stack0)]); - - xen_init_callbacks(); - - init_ldt(); -} - -#else /* __xpv */ - -void -init_desctbls(void) -{ - user_desc_t *gdt; - desctbr_t idtr; - - /* - * Allocate IDT and TSS structures on unique pages for better - * performance in virtual machines. - */ -#if !defined(__lint) - ASSERT(NIDT * sizeof (*idt0) <= PAGESIZE); -#endif - idt0 = (gate_desc_t *)BOP_ALLOC(bootops, (caddr_t)IDT_VA, - PAGESIZE, PAGESIZE); - bzero(idt0, PAGESIZE); -#if !defined(__lint) - ASSERT(sizeof (*ktss0) <= PAGESIZE); -#endif - ktss0 = (tss_t *)BOP_ALLOC(bootops, (caddr_t)KTSS_VA, - PAGESIZE, PAGESIZE); - bzero(ktss0, PAGESIZE); - - - /* - * Setup and install our GDT. - */ - gdt = init_gdt(); - ASSERT(IS_P2ALIGNED((uintptr_t)gdt, PAGESIZE)); - CPU->cpu_gdt = gdt; - - /* - * Initialize this CPU's LDT. - */ - CPU->cpu_m.mcpu_ldt = BOP_ALLOC(bootops, (caddr_t)LDT_VA, - LDT_CPU_SIZE, PAGESIZE); - bzero(CPU->cpu_m.mcpu_ldt, LDT_CPU_SIZE); - CPU->cpu_m.mcpu_ldt_len = 0; - - /* - * Setup and install our IDT. - */ - init_idt(idt0); - - idtr.dtr_base = (uintptr_t)idt0; - idtr.dtr_limit = (NIDT * sizeof (*idt0)) - 1; - wr_idtr(&idtr); - CPU->cpu_idt = idt0; - - - init_tss(); - CPU->cpu_tss = ktss0; - init_ldt(); - - /* Stash this so that the NMI,MCE,#DF and KDI handlers can use it. */ - kpti_safe_cr3 = (uint64_t)getcr3(); -} - -#endif /* __xpv */ - -#ifndef __xpv -/* - * As per Intel Vol 3 27.5.2, the GDTR limit is reset to 64Kb on a VM exit, so - * we have to manually fix it up ourselves. - * - * The caller may still need to make sure that it can't go off-CPU with the - * incorrect limit, before calling this (such as disabling pre-emption). - */ -void -reset_gdtr_limit(void) -{ - ulong_t flags = intr_clear(); - desctbr_t gdtr; - - rd_gdtr(&gdtr); - gdtr.dtr_limit = (sizeof (user_desc_t) * NGDT) - 1; - wr_gdtr(&gdtr); - - intr_restore(flags); -} -#endif /* __xpv */ - -/* - * In the early kernel, we need to set up a simple GDT to run on. - * - * XXPV Can dboot use this too? See dboot_gdt.s - */ -void -init_boot_gdt(user_desc_t *bgdt) -{ - set_usegd(&bgdt[GDT_B32DATA], SDP_LONG, NULL, -1, SDT_MEMRWA, SEL_KPL, - SDP_PAGES, SDP_OP32); - set_usegd(&bgdt[GDT_B64CODE], SDP_LONG, NULL, -1, SDT_MEMERA, SEL_KPL, - SDP_PAGES, SDP_OP32); -} - -/* - * Enable interpositioning on the system call path by rewriting the - * sys{call|enter} MSRs and the syscall-related entries in the IDT to use - * the branded entry points. - */ -void -brand_interpositioning_enable(void) -{ - gate_desc_t *idt = CPU->cpu_idt; - int i; - - ASSERT(curthread->t_preempt != 0 || getpil() >= DISP_LEVEL); - - for (i = 0; brand_tbl[i].ih_inum; i++) { - idt[brand_tbl[i].ih_inum] = brand_tbl[i].ih_interp_desc; -#if defined(__xpv) - xen_idt_write(&idt[brand_tbl[i].ih_inum], - brand_tbl[i].ih_inum); -#endif - } - -#if defined(__xpv) - - /* - * Currently the hypervisor only supports 64-bit syscalls via - * syscall instruction. The 32-bit syscalls are handled by - * interrupt gate above. - */ - xen_set_callback(brand_sys_syscall, CALLBACKTYPE_syscall, - CALLBACKF_mask_events); - -#else - - if (is_x86_feature(x86_featureset, X86FSET_ASYSC)) { - if (kpti_enable == 1) { - wrmsr(MSR_AMD_LSTAR, (uintptr_t)tr_brand_sys_syscall); - wrmsr(MSR_AMD_CSTAR, (uintptr_t)tr_brand_sys_syscall32); - } else { - wrmsr(MSR_AMD_LSTAR, (uintptr_t)brand_sys_syscall); - wrmsr(MSR_AMD_CSTAR, (uintptr_t)brand_sys_syscall32); - } - } - -#endif - - if (is_x86_feature(x86_featureset, X86FSET_SEP)) { - if (kpti_enable == 1) { - wrmsr(MSR_INTC_SEP_EIP, - (uintptr_t)tr_brand_sys_sysenter); - } else { - wrmsr(MSR_INTC_SEP_EIP, (uintptr_t)brand_sys_sysenter); - } - } -} - -/* - * Disable interpositioning on the system call path by rewriting the - * sys{call|enter} MSRs and the syscall-related entries in the IDT to use - * the standard entry points, which bypass the interpositioning hooks. - */ -void -brand_interpositioning_disable(void) -{ - gate_desc_t *idt = CPU->cpu_idt; - int i; - - ASSERT(curthread->t_preempt != 0 || getpil() >= DISP_LEVEL); - - for (i = 0; brand_tbl[i].ih_inum; i++) { - idt[brand_tbl[i].ih_inum] = brand_tbl[i].ih_default_desc; -#if defined(__xpv) - xen_idt_write(&idt[brand_tbl[i].ih_inum], - brand_tbl[i].ih_inum); -#endif - } - -#if defined(__xpv) - - /* - * See comment above in brand_interpositioning_enable. - */ - xen_set_callback(sys_syscall, CALLBACKTYPE_syscall, - CALLBACKF_mask_events); - -#else - - if (is_x86_feature(x86_featureset, X86FSET_ASYSC)) { - if (kpti_enable == 1) { - wrmsr(MSR_AMD_LSTAR, (uintptr_t)tr_sys_syscall); - wrmsr(MSR_AMD_CSTAR, (uintptr_t)tr_sys_syscall32); - } else { - wrmsr(MSR_AMD_LSTAR, (uintptr_t)sys_syscall); - wrmsr(MSR_AMD_CSTAR, (uintptr_t)sys_syscall32); - } - } - -#endif - - if (is_x86_feature(x86_featureset, X86FSET_SEP)) { - if (kpti_enable == 1) { - wrmsr(MSR_INTC_SEP_EIP, (uintptr_t)tr_sys_sysenter); - } else { - wrmsr(MSR_INTC_SEP_EIP, (uintptr_t)sys_sysenter); - } - } -} diff --git a/usr/src/uts/intel/ia32/os/fpu.c b/usr/src/uts/intel/ia32/os/fpu.c deleted file mode 100644 index 0037f49f85..0000000000 --- a/usr/src/uts/intel/ia32/os/fpu.c +++ /dev/null @@ -1,1506 +0,0 @@ -/* - * CDDL HEADER START - * - * The contents of this file are subject to the terms of the - * Common Development and Distribution License (the "License"). - * You may not use this file except in compliance with the License. - * - * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE - * or http://www.opensolaris.org/os/licensing. - * See the License for the specific language governing permissions - * and limitations under the License. - * - * When distributing Covered Code, include this CDDL HEADER in each - * file and include the License file at usr/src/OPENSOLARIS.LICENSE. - * If applicable, add the following below this CDDL HEADER, with the - * fields enclosed by brackets "[]" replaced with your own identifying - * information: Portions Copyright [yyyy] [name of copyright owner] - * - * CDDL HEADER END - */ -/* - * Copyright (c) 1992, 2010, Oracle and/or its affiliates. All rights reserved. - * Copyright 2021 Joyent, Inc. - * Copyright 2021 RackTop Systems, Inc. - */ - -/* Copyright (c) 1990, 1991 UNIX System Laboratories, Inc. */ -/* Copyright (c) 1984, 1986, 1987, 1988, 1989, 1990 AT&T */ -/* All Rights Reserved */ - -/* Copyright (c) 1987, 1988 Microsoft Corporation */ -/* All Rights Reserved */ - -/* - * Copyright (c) 2009, Intel Corporation. - * All rights reserved. - */ - -#include <sys/types.h> -#include <sys/param.h> -#include <sys/signal.h> -#include <sys/regset.h> -#include <sys/privregs.h> -#include <sys/psw.h> -#include <sys/trap.h> -#include <sys/fault.h> -#include <sys/systm.h> -#include <sys/user.h> -#include <sys/file.h> -#include <sys/proc.h> -#include <sys/pcb.h> -#include <sys/lwp.h> -#include <sys/cpuvar.h> -#include <sys/thread.h> -#include <sys/disp.h> -#include <sys/fp.h> -#include <sys/siginfo.h> -#include <sys/archsystm.h> -#include <sys/kmem.h> -#include <sys/debug.h> -#include <sys/x86_archext.h> -#include <sys/sysmacros.h> -#include <sys/cmn_err.h> -#include <sys/kfpu.h> - -/* - * FPU Management Overview - * ----------------------- - * - * The x86 FPU has evolved substantially since its days as the x87 coprocessor; - * however, many aspects of its life as a coprocessor are still around in x86. - * - * Today, when we refer to the 'FPU', we don't just mean the original x87 FPU. - * While that state still exists, there is much more that is covered by the FPU. - * Today, this includes not just traditional FPU state, but also supervisor only - * state. The following state is currently managed and covered logically by the - * idea of the FPU registers: - * - * o Traditional x87 FPU - * o Vector Registers (%xmm, %ymm, %zmm) - * o Memory Protection Extensions (MPX) Bounds Registers - * o Protected Key Rights Registers (PKRU) - * o Processor Trace data - * - * The rest of this covers how the FPU is managed and controlled, how state is - * saved and restored between threads, interactions with hypervisors, and other - * information exported to user land through aux vectors. A lot of background - * information is here to synthesize major parts of the Intel SDM, but - * unfortunately, it is not a replacement for reading it. - * - * FPU Control Registers - * --------------------- - * - * Because the x87 FPU began its life as a co-processor and the FPU was - * optional there are several bits that show up in %cr0 that we have to - * manipulate when dealing with the FPU. These are: - * - * o CR0.ET The 'extension type' bit. This was used originally to indicate - * that the FPU co-processor was present. Now it is forced on for - * compatibility. This is often used to verify whether or not the - * FPU is present. - * - * o CR0.NE The 'native error' bit. Used to indicate that native error - * mode should be enabled. This indicates that we should take traps - * on FPU errors. The OS enables this early in boot. - * - * o CR0.MP The 'Monitor Coprocessor' bit. Used to control whether or not - * wait/fwait instructions generate a #NM if CR0.TS is set. - * - * o CR0.EM The 'Emulation' bit. This is used to cause floating point - * operations (x87 through SSE4) to trap with a #UD so they can be - * emulated. The system never sets this bit, but makes sure it is - * clear on processor start up. - * - * o CR0.TS The 'Task Switched' bit. When this is turned on, a floating - * point operation will generate a #NM. An fwait will as well, - * depending on the value in CR0.MP. - * - * Our general policy is that CR0.ET, CR0.NE, and CR0.MP are always set by - * the system. Similarly CR0.EM is always unset by the system. CR0.TS has a more - * complicated role. Historically it has been used to allow running systems to - * restore the FPU registers lazily. This will be discussed in greater depth - * later on. - * - * %cr4 is also used as part of the FPU control. Specifically we need to worry - * about the following bits in the system: - * - * o CR4.OSFXSR This bit is used to indicate that the OS understands and - * supports the execution of the fxsave and fxrstor - * instructions. This bit is required to be set to enable - * the use of the SSE->SSE4 instructions. - * - * o CR4.OSXMMEXCPT This bit is used to indicate that the OS can understand - * and take a SIMD floating point exception (#XM). This bit - * is always enabled by the system. - * - * o CR4.OSXSAVE This bit is used to indicate that the OS understands and - * supports the execution of the xsave and xrstor family of - * instructions. This bit is required to use any of the AVX - * and newer feature sets. - * - * Because all supported processors are 64-bit, they'll always support the XMM - * extensions and we will enable both CR4.OXFXSR and CR4.OSXMMEXCPT in boot. - * CR4.OSXSAVE will be enabled and used whenever xsave is reported in cpuid. - * - * %xcr0 is used to manage the behavior of the xsave feature set and is only - * present on the system if xsave is supported. %xcr0 is read and written to - * through by the xgetbv and xsetbv instructions. This register is present - * whenever the xsave feature set is supported. Each bit in %xcr0 refers to a - * different component of the xsave state and controls whether or not that - * information is saved and restored. For newer feature sets like AVX and MPX, - * it also controls whether or not the corresponding instructions can be - * executed (much like CR0.OSFXSR does for the SSE feature sets). - * - * Everything in %xcr0 is around features available to users. There is also the - * IA32_XSS MSR which is used to control supervisor-only features that are still - * part of the xsave state. Bits that can be set in %xcr0 are reserved in - * IA32_XSS and vice versa. This is an important property that is particularly - * relevant to how the xsave instructions operate. - * - * Save Mechanisms - * --------------- - * - * When switching between running threads the FPU state needs to be saved and - * restored by the OS. If this state was not saved, users would rightfully - * complain about corrupt state. There are three mechanisms that exist on the - * processor for saving and restoring these state images: - * - * o fsave - * o fxsave - * o xsave - * - * fsave saves and restores only the x87 FPU and is the oldest of these - * mechanisms. This mechanism is never used in the kernel today because we are - * always running on systems that support fxsave. - * - * The fxsave and fxrstor mechanism allows the x87 FPU and the SSE register - * state to be saved and restored to and from a struct fxsave_state. This is the - * default mechanism that is used to save and restore the FPU on amd64. An - * important aspect of fxsave that was different from the original i386 fsave - * mechanism is that the restoring of FPU state with pending exceptions will not - * generate an exception, it will be deferred to the next use of the FPU. - * - * The final and by far the most complex mechanism is that of the xsave set. - * xsave allows for saving and restoring all of the traditional x86 pieces (x87 - * and SSE), while allowing for extensions that will save the %ymm, %zmm, etc. - * registers. - * - * Data is saved and restored into and out of a struct xsave_state. The first - * part of the struct xsave_state is equivalent to the struct fxsave_state. - * After that, there is a header which is used to describe the remaining - * portions of the state. The header is a 64-byte value of which the first two - * uint64_t values are defined and the rest are reserved and must be zero. The - * first uint64_t is the xstate_bv member. This describes which values in the - * xsave_state are actually valid and present. This is updated on a save and - * used on restore. The second member is the xcomp_bv member. Its last bit - * determines whether or not a compressed version of the structure is used. - * - * When the uncompressed structure is used (currently the only format we - * support), then each state component is at a fixed offset in the structure, - * even if it is not being used. For example, if you only saved the AVX related - * state, but did not save the MPX related state, the offset would not change - * for any component. With the compressed format, components that aren't used - * are all elided (though the x87 and SSE state are always there). - * - * Unlike fxsave which saves all state, the xsave family does not always save - * and restore all the state that could be covered by the xsave_state. The - * instructions all take an argument which is a mask of what to consider. This - * is the same mask that will be used in the xstate_bv vector and it is also the - * same values that are present in %xcr0 and IA32_XSS. Though IA32_XSS is only - * considered with the xsaves and xrstors instructions. - * - * When a save or restore is requested, a bitwise and is performed between the - * requested bits and those that have been enabled in %xcr0. Only the bits that - * match that are then saved or restored. Others will be silently ignored by - * the processor. This idea is used often in the OS. We will always request that - * we save and restore all of the state, but only those portions that are - * actually enabled in %xcr0 will be touched. - * - * If a feature has been asked to be restored that is not set in the xstate_bv - * feature vector of the save state, then it will be set to its initial state by - * the processor (usually zeros). Also, when asked to save state, the processor - * may not write out data that is in its initial state as an optimization. This - * optimization only applies to saving data and not to restoring data. - * - * There are a few different variants of the xsave and xrstor instruction. They - * are: - * - * o xsave This is the original save instruction. It will save all of the - * requested data in the xsave state structure. It only saves data - * in the uncompressed (xcomp_bv[63] is zero) format. It may be - * executed at all privilege levels. - * - * o xrstor This is the original restore instruction. It will restore all of - * the requested data. The xrstor function can handle both the - * compressed and uncompressed formats. It may be executed at all - * privilege levels. - * - * o xsaveopt This is a variant of the xsave instruction that employs - * optimizations to try and only write out state that has been - * modified since the last time an xrstor instruction was called. - * The processor tracks a tuple of information about the last - * xrstor and tries to ensure that the same buffer is being used - * when this optimization is being used. However, because of the - * way that it tracks the xrstor buffer based on the address of it, - * it is not suitable for use if that buffer can be easily reused. - * The most common case is trying to save data to the stack in - * rtld. It may be executed at all privilege levels. - * - * o xsavec This is a variant of the xsave instruction that writes out the - * compressed form of the xsave_state. Otherwise it behaves as - * xsave. It may be executed at all privilege levels. - * - * o xsaves This is a variant of the xsave instruction. It is similar to - * xsavec in that it always writes the compressed form of the - * buffer. Unlike all the other forms, this instruction looks at - * both the user (%xcr0) and supervisor (IA32_XSS MSR) to determine - * what to save and restore. xsaves also implements the same - * optimization that xsaveopt does around modified pieces. User - * land may not execute the instruction. - * - * o xrstors This is a variant of the xrstor instruction. Similar to xsaves - * it can save and restore both the user and privileged states. - * Unlike xrstor it can only operate on the compressed form. - * User land may not execute the instruction. - * - * Based on all of these, the kernel has a precedence for what it will use. - * Basically, xsaves (not supported) is preferred to xsaveopt, which is - * preferred to xsave. A similar scheme is used when informing rtld (more later) - * about what it should use. xsavec is preferred to xsave. xsaveopt is not - * recommended due to the modified optimization not being appropriate for this - * use. - * - * Finally, there is one last gotcha with the xsave state. Importantly some AMD - * processors did not always save and restore some of the FPU exception state in - * some cases like Intel did. In those cases the OS will make up for this fact - * itself. - * - * FPU Initialization - * ------------------ - * - * One difference with the FPU registers is that not all threads have FPU state, - * only those that have an lwp. Generally this means kernel threads, which all - * share p0 and its lwp, do not have FPU state. Though there are definitely - * exceptions such as kcfpoold. In the rest of this discussion we'll use thread - * and lwp interchangeably, just think of thread meaning a thread that has a - * lwp. - * - * Each lwp has its FPU state allocated in its pcb (process control block). The - * actual storage comes from the fpsave_cachep kmem cache. This cache is sized - * dynamically at start up based on the save mechanism that we're using and the - * amount of memory required for it. This is dynamic because the xsave_state - * size varies based on the supported feature set. - * - * The hardware side of the FPU is initialized early in boot before we mount the - * root file system. This is effectively done in fpu_probe(). This is where we - * make the final decision about what the save and restore mechanisms we should - * use are, create the fpsave_cachep kmem cache, and initialize a number of - * function pointers that use save and restoring logic. - * - * The thread/lwp side is a a little more involved. There are two different - * things that we need to concern ourselves with. The first is how the FPU - * resources are allocated and the second is how the FPU state is initialized - * for a given lwp. - * - * We allocate the FPU save state from our kmem cache as part of lwp_fp_init(). - * This is always called unconditionally by the system as part of creating an - * LWP. - * - * There are three different initialization paths that we deal with. The first - * is when we are executing a new process. As part of exec all of the register - * state is reset. The exec case is particularly important because init is born - * like Athena, sprouting from the head of the kernel, without any true parent - * to fork from. The second is used whenever we fork or create a new lwp. The - * third is to deal with special lwps like the agent lwp. - * - * During exec, we will call fp_exec() which will initialize and set up the FPU - * state for the process. That will fill in the initial state for the FPU and - * also set that state in the FPU itself. As part of fp_exec() we also install a - * thread context operations vector that takes care of dealing with the saving - * and restoring of the FPU. These context handlers will also be called whenever - * an lwp is created or forked. In those cases, to initialize the FPU we will - * call fp_new_lwp(). Like fp_exec(), fp_new_lwp() will install a context - * operations vector for the new thread. - * - * Next we'll end up in the context operation fp_new_lwp(). This saves the - * current thread's state, initializes the new thread's state, and copies over - * the relevant parts of the originating thread's state. It's as this point that - * we also install the FPU context operations into the new thread, which ensures - * that all future threads that are descendants of the current one get the - * thread context operations (unless they call exec). - * - * To deal with some things like the agent lwp, we double check the state of the - * FPU in sys_rtt_common() to make sure that it has been enabled before - * returning to user land. In general, this path should be rare, but it's useful - * for the odd lwp here and there. - * - * The FPU state will remain valid most of the time. There are times that - * the state will be rewritten. For example in restorecontext, due to /proc, or - * the lwp calls exec(). Whether the context is being freed or we are resetting - * the state, we will call fp_free() to disable the FPU and our context. - * - * Finally, when the lwp is destroyed, it will actually destroy and free the FPU - * state by calling fp_lwp_cleanup(). - * - * Kernel FPU Multiplexing - * ----------------------- - * - * Just as the kernel has to maintain all of the general purpose registers when - * switching between scheduled threads, the same is true of the FPU registers. - * - * When a thread has FPU state, it also has a set of context operations - * installed. These context operations take care of making sure that the FPU is - * properly saved and restored during a context switch (fpsave_ctxt and - * fprestore_ctxt respectively). This means that the current implementation of - * the FPU is 'eager', when a thread is running the CPU will have its FPU state - * loaded. While this is always true when executing in userland, there are a few - * cases where this is not true in the kernel. - * - * This was not always the case. Traditionally on x86 a 'lazy' FPU restore was - * employed. This meant that the FPU would be saved on a context switch and the - * CR0.TS bit would be set. When a thread next tried to use the FPU, it would - * then take a #NM trap, at which point we would restore the FPU from the save - * area and return to user land. Given the frequency of use of the FPU alone by - * libc, there's no point returning to user land just to trap again. - * - * There are a few cases though where the FPU state may need to be changed for a - * thread on its behalf. The most notable cases are in the case of processes - * using /proc, restorecontext, forking, etc. In all of these cases the kernel - * will force a threads FPU state to be saved into the PCB through the fp_save() - * function. Whenever the FPU is saved, then the FPU_VALID flag is set on the - * pcb. This indicates that the save state holds currently valid data. As a side - * effect of this, CR0.TS will be set. To make sure that all of the state is - * updated before returning to user land, in these cases, we set a flag on the - * PCB that says the FPU needs to be updated. This will make sure that we take - * the slow path out of a system call to fix things up for the thread. Due to - * the fact that this is a rather rare case, effectively setting the equivalent - * of t_postsys is acceptable. - * - * CR0.TS will be set after a save occurs and cleared when a restore occurs. - * Generally this means it will be cleared immediately by the new thread that is - * running in a context switch. However, this isn't the case for kernel threads. - * They currently operate with CR0.TS set as no kernel state is restored for - * them. This means that using the FPU will cause a #NM and panic. - * - * The FPU_VALID flag on the currently executing thread's pcb is meant to track - * what the value of CR0.TS should be. If it is set, then CR0.TS will be set. - * However, because we eagerly restore, the only time that CR0.TS should be set - * for a non-kernel thread is during operations where it will be cleared before - * returning to user land and importantly, the only data that is in it is its - * own. - * - * Kernel FPU Usage - * ---------------- - * - * Traditionally the kernel never used the FPU since it had no need for - * floating point operations. However, modern FPU hardware supports a variety - * of SIMD extensions which can speed up code such as parity calculations or - * encryption. - * - * To allow the kernel to take advantage of these features, the - * kernel_fpu_begin() and kernel_fpu_end() functions should be wrapped - * around any usage of the FPU by the kernel to ensure that user-level context - * is properly saved/restored, as well as to properly setup the FPU for use by - * the kernel. There are a variety of ways this wrapping can be used, as - * discussed in this section below. - * - * When kernel_fpu_begin() and kernel_fpu_end() are used for extended - * operations, the kernel_fpu_alloc() function should be used to allocate a - * kfpu_state_t structure that is used to save/restore the thread's kernel FPU - * state. This structure is not tied to any thread. That is, different threads - * can reuse the same kfpu_state_t structure, although not concurrently. A - * kfpu_state_t structure is freed by the kernel_fpu_free() function. - * - * In some cases, the kernel may need to use the FPU for a short operation - * without the overhead to manage a kfpu_state_t structure and without - * allowing for a context switch off the FPU. In this case the KFPU_NO_STATE - * bit can be set in the kernel_fpu_begin() and kernel_fpu_end() flags - * parameter. This indicates that there is no kfpu_state_t. When used this way, - * kernel preemption should be disabled by the caller (kpreempt_disable) before - * calling kernel_fpu_begin(), and re-enabled after calling kernel_fpu_end(). - * For this usage, it is important to limit the kernel's FPU use to short - * operations. The tradeoff between using the FPU without a kfpu_state_t - * structure vs. the overhead of allowing a context switch while using the FPU - * should be carefully considered on a case by case basis. - * - * In other cases, kernel threads have an LWP, but never execute in user space. - * In this situation, the LWP's pcb_fpu area can be used to save/restore the - * kernel's FPU state if the thread is context switched, instead of having to - * allocate and manage a kfpu_state_t structure. The KFPU_USE_LWP bit in the - * kernel_fpu_begin() and kernel_fpu_end() flags parameter is used to - * enable this behavior. It is the caller's responsibility to ensure that this - * is only used for a kernel thread which never executes in user space. - * - * FPU Exceptions - * -------------- - * - * Certain operations can cause the kernel to take traps due to FPU activity. - * Generally these events will cause a user process to receive a SIGFPU and if - * the kernel receives it in kernel context, we will die. Traditionally the #NM - * (Device Not Available / No Math) exception generated by CR0.TS would have - * caused us to restore the FPU. Now it is a fatal event regardless of whether - * or not user land causes it. - * - * While there are some cases where the kernel uses the FPU, it is up to the - * kernel to use the FPU in a way such that it cannot receive a trap or to use - * the appropriate trap protection mechanisms. - * - * Hypervisors - * ----------- - * - * When providing support for hypervisors things are a little bit more - * complicated because the FPU is not virtualized at all. This means that they - * need to save and restore the FPU and %xcr0 across entry and exit to the - * guest. To facilitate this, we provide a series of APIs in <sys/hma.h>. These - * allow us to use the full native state to make sure that we are always saving - * and restoring the full FPU that the host sees, even when the guest is using a - * subset. - * - * One tricky aspect of this is that the guest may be using a subset of %xcr0 - * and therefore changing our %xcr0 on the fly. It is vital that when we're - * saving and restoring the FPU that we always use the largest %xcr0 contents - * otherwise we will end up leaving behind data in it. - * - * ELF PLT Support - * --------------- - * - * rtld has to preserve a subset of the FPU when it is saving and restoring - * registers due to the amd64 SYS V ABI. See cmd/sgs/rtld/amd64/boot_elf.s for - * more information. As a result, we set up an aux vector that contains - * information about what save and restore mechanisms it should be using and - * the sizing thereof based on what the kernel supports. This is passed down in - * a series of aux vectors SUN_AT_FPTYPE and SUN_AT_FPSIZE. This information is - * initialized in fpu_subr.c. - */ - -kmem_cache_t *fpsave_cachep; - -/* Legacy fxsave layout + xsave header + ymm */ -#define AVX_XSAVE_SIZE (512 + 64 + 256) - -/* - * Various sanity checks. - */ -CTASSERT(sizeof (struct fxsave_state) == 512); -CTASSERT(sizeof (struct fnsave_state) == 108); -CTASSERT((offsetof(struct fxsave_state, fx_xmm[0]) & 0xf) == 0); -CTASSERT(sizeof (struct xsave_state) >= AVX_XSAVE_SIZE); - -/* - * This structure is the x86 implementation of the kernel FPU that is defined in - * uts/common/sys/kfpu.h. - */ - -typedef enum kfpu_flags { - /* - * This indicates that the save state has initial FPU data. - */ - KFPU_F_INITIALIZED = 0x01 -} kfpu_flags_t; - -struct kfpu_state { - fpu_ctx_t kfpu_ctx; - kfpu_flags_t kfpu_flags; - kthread_t *kfpu_curthread; -}; - -/* - * Initial kfpu state for SSE/SSE2 used by fpinit() - */ -const struct fxsave_state sse_initial = { - FPU_CW_INIT, /* fx_fcw */ - 0, /* fx_fsw */ - 0, /* fx_fctw */ - 0, /* fx_fop */ - 0, /* fx_rip */ - 0, /* fx_rdp */ - SSE_MXCSR_INIT /* fx_mxcsr */ - /* rest of structure is zero */ -}; - -/* - * Initial kfpu state for AVX used by fpinit() - */ -const struct xsave_state avx_initial = { - /* - * The definition below needs to be identical with sse_initial - * defined above. - */ - { - FPU_CW_INIT, /* fx_fcw */ - 0, /* fx_fsw */ - 0, /* fx_fctw */ - 0, /* fx_fop */ - 0, /* fx_rip */ - 0, /* fx_rdp */ - SSE_MXCSR_INIT /* fx_mxcsr */ - /* rest of structure is zero */ - }, - /* - * bit0 = 1 for XSTATE_BV to indicate that legacy fields are valid, - * and CPU should initialize XMM/YMM. - */ - 1, - 0 /* xs_xcomp_bv */ - /* rest of structure is zero */ -}; - -/* - * mxcsr_mask value (possibly reset in fpu_probe); used to avoid - * the #gp exception caused by setting unsupported bits in the - * MXCSR register - */ -uint32_t sse_mxcsr_mask = SSE_MXCSR_MASK_DEFAULT; - -/* - * Initial kfpu state for x87 used by fpinit() - */ -const struct fnsave_state x87_initial = { - FPU_CW_INIT, /* f_fcw */ - 0, /* __f_ign0 */ - 0, /* f_fsw */ - 0, /* __f_ign1 */ - 0xffff, /* f_ftw */ - /* rest of structure is zero */ -}; - -/* - * This vector is patched to xsave_ctxt() or xsaveopt_ctxt() if we discover we - * have an XSAVE-capable chip in fpu_probe. - */ -void (*fpsave_ctxt)(void *) = fpxsave_ctxt; -void (*fprestore_ctxt)(void *) = fpxrestore_ctxt; - -/* - * This function pointer is changed to xsaveopt if the CPU is xsaveopt capable. - */ -void (*xsavep)(struct xsave_state *, uint64_t) = xsave; - -static int fpe_sicode(uint_t); -static int fpe_simd_sicode(uint_t); - -/* - * Copy the state of parent lwp's floating point context into the new lwp. - * Invoked for both fork() and lwp_create(). - * - * Note that we inherit -only- the control state (e.g. exception masks, - * rounding, precision control, etc.); the FPU registers are otherwise - * reset to their initial state. - */ -static void -fp_new_lwp(kthread_id_t t, kthread_id_t ct) -{ - struct fpu_ctx *fp; /* parent fpu context */ - struct fpu_ctx *cfp; /* new fpu context */ - struct fxsave_state *fx, *cfx; - struct xsave_state *cxs; - - ASSERT(fp_kind != FP_NO); - - fp = &t->t_lwp->lwp_pcb.pcb_fpu; - cfp = &ct->t_lwp->lwp_pcb.pcb_fpu; - - /* - * If the parent FPU state is still in the FPU hw then save it; - * conveniently, fp_save() already does this for us nicely. - */ - fp_save(fp); - - cfp->fpu_flags = FPU_EN | FPU_VALID; - cfp->fpu_regs.kfpu_status = 0; - cfp->fpu_regs.kfpu_xstatus = 0; - - /* - * Make sure that the child's FPU is cleaned up and made ready for user - * land. - */ - PCB_SET_UPDATE_FPU(&ct->t_lwp->lwp_pcb); - - switch (fp_save_mech) { - case FP_FXSAVE: - fx = fp->fpu_regs.kfpu_u.kfpu_fx; - cfx = cfp->fpu_regs.kfpu_u.kfpu_fx; - bcopy(&sse_initial, cfx, sizeof (*cfx)); - cfx->fx_mxcsr = fx->fx_mxcsr & ~SSE_MXCSR_EFLAGS; - cfx->fx_fcw = fx->fx_fcw; - break; - - case FP_XSAVE: - cfp->fpu_xsave_mask = fp->fpu_xsave_mask; - - VERIFY(fp->fpu_regs.kfpu_u.kfpu_xs != NULL); - - fx = &fp->fpu_regs.kfpu_u.kfpu_xs->xs_fxsave; - cxs = cfp->fpu_regs.kfpu_u.kfpu_xs; - cfx = &cxs->xs_fxsave; - - bcopy(&avx_initial, cxs, sizeof (*cxs)); - cfx->fx_mxcsr = fx->fx_mxcsr & ~SSE_MXCSR_EFLAGS; - cfx->fx_fcw = fx->fx_fcw; - cxs->xs_xstate_bv |= (get_xcr(XFEATURE_ENABLED_MASK) & - XFEATURE_FP_INITIAL); - break; - default: - panic("Invalid fp_save_mech"); - /*NOTREACHED*/ - } - - /* - * Mark that both the parent and child need to have the FPU cleaned up - * before returning to user land. - */ - - installctx(ct, cfp, fpsave_ctxt, fprestore_ctxt, fp_new_lwp, - fp_new_lwp, NULL, fp_free, NULL); -} - -/* - * Free any state associated with floating point context. - * Fp_free can be called in three cases: - * 1) from reaper -> thread_free -> freectx-> fp_free - * fp context belongs to a thread on deathrow - * nothing to do, thread will never be resumed - * thread calling ctxfree is reaper - * - * 2) from exec -> freectx -> fp_free - * fp context belongs to the current thread - * must disable fpu, thread calling ctxfree is curthread - * - * 3) from restorecontext -> setfpregs -> fp_free - * we have a modified context in the memory (lwp->pcb_fpu) - * disable fpu and release the fp context for the CPU - * - */ -/*ARGSUSED*/ -void -fp_free(struct fpu_ctx *fp, int isexec) -{ - ASSERT(fp_kind != FP_NO); - - if (fp->fpu_flags & FPU_VALID) - return; - - kpreempt_disable(); - /* - * We want to do fpsave rather than fpdisable so that we can - * keep the fpu_flags as FPU_VALID tracking the CR0_TS bit - */ - fp->fpu_flags |= FPU_VALID; - /* If for current thread disable FP to track FPU_VALID */ - if (curthread->t_lwp && fp == &curthread->t_lwp->lwp_pcb.pcb_fpu) { - /* Clear errors if any to prevent frstor from complaining */ - (void) fperr_reset(); - if (fp_kind & __FP_SSE) - (void) fpxerr_reset(); - fpdisable(); - } - kpreempt_enable(); -} - -/* - * Store the floating point state and disable the floating point unit. - */ -void -fp_save(struct fpu_ctx *fp) -{ - ASSERT(fp_kind != FP_NO); - - kpreempt_disable(); - if (!fp || fp->fpu_flags & FPU_VALID || - (fp->fpu_flags & FPU_EN) == 0) { - kpreempt_enable(); - return; - } - ASSERT(curthread->t_lwp && fp == &curthread->t_lwp->lwp_pcb.pcb_fpu); - - switch (fp_save_mech) { - case FP_FXSAVE: - fpxsave(fp->fpu_regs.kfpu_u.kfpu_fx); - break; - - case FP_XSAVE: - xsavep(fp->fpu_regs.kfpu_u.kfpu_xs, fp->fpu_xsave_mask); - break; - default: - panic("Invalid fp_save_mech"); - /*NOTREACHED*/ - } - - fp->fpu_flags |= FPU_VALID; - - /* - * We save the FPU as part of forking, execing, modifications via /proc, - * restorecontext, etc. As such, we need to make sure that we return to - * userland with valid state in the FPU. If we're context switched out - * before we hit sys_rtt_common() we'll end up having restored the FPU - * as part of the context ops operations. The restore logic always makes - * sure that FPU_VALID is set before doing a restore so we don't restore - * it a second time. - */ - PCB_SET_UPDATE_FPU(&curthread->t_lwp->lwp_pcb); - - kpreempt_enable(); -} - -/* - * Restore the FPU context for the thread: - * The possibilities are: - * 1. No active FPU context: Load the new context into the FPU hw - * and enable the FPU. - */ -void -fp_restore(struct fpu_ctx *fp) -{ - switch (fp_save_mech) { - case FP_FXSAVE: - fpxrestore(fp->fpu_regs.kfpu_u.kfpu_fx); - break; - - case FP_XSAVE: - xrestore(fp->fpu_regs.kfpu_u.kfpu_xs, fp->fpu_xsave_mask); - break; - default: - panic("Invalid fp_save_mech"); - /*NOTREACHED*/ - } - - fp->fpu_flags &= ~FPU_VALID; -} - -/* - * Reset the FPU such that it is in a valid state for a new thread that is - * coming out of exec. The FPU will be in a usable state at this point. At this - * point we know that the FPU state has already been allocated and if this - * wasn't an init process, then it will have had fp_free() previously called. - */ -void -fp_exec(void) -{ - struct fpu_ctx *fp = &ttolwp(curthread)->lwp_pcb.pcb_fpu; - struct ctxop *ctx = installctx_preallocate(); - - if (fp_save_mech == FP_XSAVE) { - fp->fpu_xsave_mask = XFEATURE_FP_ALL; - } - - /* - * Make sure that we're not preempted in the middle of initializing the - * FPU on CPU. - */ - kpreempt_disable(); - installctx(curthread, fp, fpsave_ctxt, fprestore_ctxt, fp_new_lwp, - fp_new_lwp, NULL, fp_free, ctx); - fpinit(); - fp->fpu_flags = FPU_EN; - kpreempt_enable(); -} - - -/* - * Seeds the initial state for the current thread. The possibilities are: - * 1. Another process has modified the FPU state before we have done any - * initialization: Load the FPU state from the LWP state. - * 2. The FPU state has not been externally modified: Load a clean state. - */ -void -fp_seed(void) -{ - struct fpu_ctx *fp = &ttolwp(curthread)->lwp_pcb.pcb_fpu; - - ASSERT(curthread->t_preempt >= 1); - ASSERT((fp->fpu_flags & FPU_EN) == 0); - - /* - * Always initialize a new context and initialize the hardware. - */ - if (fp_save_mech == FP_XSAVE) { - fp->fpu_xsave_mask = XFEATURE_FP_ALL; - } - - installctx(curthread, fp, fpsave_ctxt, fprestore_ctxt, fp_new_lwp, - fp_new_lwp, NULL, fp_free, NULL); - fpinit(); - - /* - * If FPU_VALID is set, it means someone has modified registers via - * /proc. In this case, restore the current lwp's state. - */ - if (fp->fpu_flags & FPU_VALID) - fp_restore(fp); - - ASSERT((fp->fpu_flags & FPU_VALID) == 0); - fp->fpu_flags = FPU_EN; -} - -/* - * When using xsave/xrstor, these three functions are used by the lwp code to - * manage the memory for the xsave area. - */ -void -fp_lwp_init(struct _klwp *lwp) -{ - struct fpu_ctx *fp = &lwp->lwp_pcb.pcb_fpu; - - /* - * We keep a copy of the pointer in lwp_fpu so that we can restore the - * value in forklwp() after we duplicate the parent's LWP state. - */ - lwp->lwp_fpu = fp->fpu_regs.kfpu_u.kfpu_generic = - kmem_cache_alloc(fpsave_cachep, KM_SLEEP); - - if (fp_save_mech == FP_XSAVE) { - /* - * - * We bzero since the fpinit() code path will only - * partially initialize the xsave area using avx_inital. - */ - ASSERT(cpuid_get_xsave_size() >= sizeof (struct xsave_state)); - bzero(fp->fpu_regs.kfpu_u.kfpu_xs, cpuid_get_xsave_size()); - } -} - -void -fp_lwp_cleanup(struct _klwp *lwp) -{ - struct fpu_ctx *fp = &lwp->lwp_pcb.pcb_fpu; - - if (fp->fpu_regs.kfpu_u.kfpu_generic != NULL) { - kmem_cache_free(fpsave_cachep, - fp->fpu_regs.kfpu_u.kfpu_generic); - lwp->lwp_fpu = fp->fpu_regs.kfpu_u.kfpu_generic = NULL; - } -} - -/* - * Called during the process of forklwp(). The kfpu_u pointer will have been - * overwritten while copying the parent's LWP structure. We have a valid copy - * stashed in the child's lwp_fpu which we use to restore the correct value. - */ -void -fp_lwp_dup(struct _klwp *lwp) -{ - void *xp = lwp->lwp_fpu; - size_t sz; - - switch (fp_save_mech) { - case FP_FXSAVE: - sz = sizeof (struct fxsave_state); - break; - case FP_XSAVE: - sz = cpuid_get_xsave_size(); - break; - default: - panic("Invalid fp_save_mech"); - /*NOTREACHED*/ - } - - /* copy the parent's values into the new lwp's struct */ - bcopy(lwp->lwp_pcb.pcb_fpu.fpu_regs.kfpu_u.kfpu_generic, xp, sz); - /* now restore the pointer */ - lwp->lwp_pcb.pcb_fpu.fpu_regs.kfpu_u.kfpu_generic = xp; -} - -/* - * Handle a processor extension error fault - * Returns non zero for error. - */ - -/*ARGSUSED*/ -int -fpexterrflt(struct regs *rp) -{ - uint32_t fpcw, fpsw; - fpu_ctx_t *fp = &ttolwp(curthread)->lwp_pcb.pcb_fpu; - - ASSERT(fp_kind != FP_NO); - - /* - * Now we can enable the interrupts. - * (NOTE: x87 fp exceptions come thru interrupt gate) - */ - sti(); - - if (!fpu_exists) - return (FPE_FLTINV); - - /* - * Do an unconditional save of the FP state. If it's dirty (TS=0), - * it'll be saved into the fpu context area passed in (that of the - * current thread). If it's not dirty (it may not be, due to - * an intervening save due to a context switch between the sti(), - * above and here, then it's safe to just use the stored values in - * the context save area to determine the cause of the fault. - */ - fp_save(fp); - - /* clear exception flags in saved state, as if by fnclex */ - switch (fp_save_mech) { - case FP_FXSAVE: - fpsw = fp->fpu_regs.kfpu_u.kfpu_fx->fx_fsw; - fpcw = fp->fpu_regs.kfpu_u.kfpu_fx->fx_fcw; - fp->fpu_regs.kfpu_u.kfpu_fx->fx_fsw &= ~FPS_SW_EFLAGS; - break; - - case FP_XSAVE: - fpsw = fp->fpu_regs.kfpu_u.kfpu_xs->xs_fxsave.fx_fsw; - fpcw = fp->fpu_regs.kfpu_u.kfpu_xs->xs_fxsave.fx_fcw; - fp->fpu_regs.kfpu_u.kfpu_xs->xs_fxsave.fx_fsw &= ~FPS_SW_EFLAGS; - /* - * Always set LEGACY_FP as it may have been cleared by XSAVE - * instruction - */ - fp->fpu_regs.kfpu_u.kfpu_xs->xs_xstate_bv |= XFEATURE_LEGACY_FP; - break; - default: - panic("Invalid fp_save_mech"); - /*NOTREACHED*/ - } - - fp->fpu_regs.kfpu_status = fpsw; - - if ((fpsw & FPS_ES) == 0) - return (0); /* No exception */ - - /* - * "and" the exception flags with the complement of the mask - * bits to determine which exception occurred - */ - return (fpe_sicode(fpsw & ~fpcw & 0x3f)); -} - -/* - * Handle an SSE/SSE2 precise exception. - * Returns a non-zero sicode for error. - */ -/*ARGSUSED*/ -int -fpsimderrflt(struct regs *rp) -{ - uint32_t mxcsr, xmask; - fpu_ctx_t *fp = &ttolwp(curthread)->lwp_pcb.pcb_fpu; - - ASSERT(fp_kind & __FP_SSE); - - /* - * NOTE: Interrupts are disabled during execution of this - * function. They are enabled by the caller in trap.c. - */ - - /* - * The only way we could have gotten here if there is no FP unit - * is via a user executing an INT $19 instruction, so there is - * no fault in that case. - */ - if (!fpu_exists) - return (0); - - /* - * Do an unconditional save of the FP state. If it's dirty (TS=0), - * it'll be saved into the fpu context area passed in (that of the - * current thread). If it's not dirty, then it's safe to just use - * the stored values in the context save area to determine the - * cause of the fault. - */ - fp_save(fp); /* save the FPU state */ - - if (fp_save_mech == FP_XSAVE) { - mxcsr = fp->fpu_regs.kfpu_u.kfpu_xs->xs_fxsave.fx_mxcsr; - fp->fpu_regs.kfpu_status = - fp->fpu_regs.kfpu_u.kfpu_xs->xs_fxsave.fx_fsw; - } else { - mxcsr = fp->fpu_regs.kfpu_u.kfpu_fx->fx_mxcsr; - fp->fpu_regs.kfpu_status = fp->fpu_regs.kfpu_u.kfpu_fx->fx_fsw; - } - fp->fpu_regs.kfpu_xstatus = mxcsr; - - /* - * compute the mask that determines which conditions can cause - * a #xm exception, and use this to clean the status bits so that - * we can identify the true cause of this one. - */ - xmask = (mxcsr >> 7) & SSE_MXCSR_EFLAGS; - return (fpe_simd_sicode((mxcsr & SSE_MXCSR_EFLAGS) & ~xmask)); -} - -/* - * In the unlikely event that someone is relying on this subcode being - * FPE_FLTILL for denormalize exceptions, it can always be patched back - * again to restore old behaviour. - */ -int fpe_fltden = FPE_FLTDEN; - -/* - * Map from the FPU status word to the FP exception si_code. - */ -static int -fpe_sicode(uint_t sw) -{ - if (sw & FPS_IE) - return (FPE_FLTINV); - if (sw & FPS_ZE) - return (FPE_FLTDIV); - if (sw & FPS_DE) - return (fpe_fltden); - if (sw & FPS_OE) - return (FPE_FLTOVF); - if (sw & FPS_UE) - return (FPE_FLTUND); - if (sw & FPS_PE) - return (FPE_FLTRES); - return (FPE_FLTINV); /* default si_code for other exceptions */ -} - -/* - * Map from the SSE status word to the FP exception si_code. - */ -static int -fpe_simd_sicode(uint_t sw) -{ - if (sw & SSE_IE) - return (FPE_FLTINV); - if (sw & SSE_ZE) - return (FPE_FLTDIV); - if (sw & SSE_DE) - return (FPE_FLTDEN); - if (sw & SSE_OE) - return (FPE_FLTOVF); - if (sw & SSE_UE) - return (FPE_FLTUND); - if (sw & SSE_PE) - return (FPE_FLTRES); - return (FPE_FLTINV); /* default si_code for other exceptions */ -} - -/* - * This routine is invoked as part of libc's __fpstart implementation - * via sysi86(2). - * - * It may be called -before- any context has been assigned in which case - * we try and avoid touching the hardware. Or it may be invoked well - * after the context has been assigned and fiddled with, in which case - * just tweak it directly. - */ -void -fpsetcw(uint16_t fcw, uint32_t mxcsr) -{ - struct fpu_ctx *fp = &curthread->t_lwp->lwp_pcb.pcb_fpu; - struct fxsave_state *fx; - - if (!fpu_exists || fp_kind == FP_NO) - return; - - if ((fp->fpu_flags & FPU_EN) == 0) { - if (fcw == FPU_CW_INIT && mxcsr == SSE_MXCSR_INIT) { - /* - * Common case. Floating point unit not yet - * enabled, and kernel already intends to initialize - * the hardware the way the caller wants. - */ - return; - } - /* - * Hmm. Userland wants a different default. - * Do a fake "first trap" to establish the context, then - * handle as if we already had a context before we came in. - */ - kpreempt_disable(); - fp_seed(); - kpreempt_enable(); - } - - /* - * Ensure that the current hardware state is flushed back to the - * pcb, then modify that copy. Next use of the fp will - * restore the context. - */ - fp_save(fp); - - switch (fp_save_mech) { - case FP_FXSAVE: - fx = fp->fpu_regs.kfpu_u.kfpu_fx; - fx->fx_fcw = fcw; - fx->fx_mxcsr = sse_mxcsr_mask & mxcsr; - break; - - case FP_XSAVE: - fx = &fp->fpu_regs.kfpu_u.kfpu_xs->xs_fxsave; - fx->fx_fcw = fcw; - fx->fx_mxcsr = sse_mxcsr_mask & mxcsr; - /* - * Always set LEGACY_FP as it may have been cleared by XSAVE - * instruction - */ - fp->fpu_regs.kfpu_u.kfpu_xs->xs_xstate_bv |= XFEATURE_LEGACY_FP; - break; - default: - panic("Invalid fp_save_mech"); - /*NOTREACHED*/ - } -} - -static void -kernel_fpu_fpstate_init(kfpu_state_t *kfpu) -{ - struct xsave_state *xs; - - switch (fp_save_mech) { - case FP_FXSAVE: - bcopy(&sse_initial, kfpu->kfpu_ctx.fpu_regs.kfpu_u.kfpu_fx, - sizeof (struct fxsave_state)); - kfpu->kfpu_ctx.fpu_xsave_mask = 0; - break; - case FP_XSAVE: - xs = kfpu->kfpu_ctx.fpu_regs.kfpu_u.kfpu_xs; - bzero(xs, cpuid_get_xsave_size()); - bcopy(&avx_initial, xs, sizeof (*xs)); - xs->xs_xstate_bv = XFEATURE_LEGACY_FP | XFEATURE_SSE; - kfpu->kfpu_ctx.fpu_xsave_mask = XFEATURE_FP_ALL; - break; - default: - panic("invalid fp_save_mech"); - } - - /* - * Set the corresponding flags that the system expects on the FPU state - * to indicate that this is our state. The FPU_EN flag is required to - * indicate that FPU usage is allowed. The FPU_KERN flag is explicitly - * not set below as it represents that this state is being suppressed - * by the kernel. - */ - kfpu->kfpu_ctx.fpu_flags = FPU_EN | FPU_VALID; - kfpu->kfpu_flags |= KFPU_F_INITIALIZED; -} - -kfpu_state_t * -kernel_fpu_alloc(int kmflags) -{ - kfpu_state_t *kfpu; - - if ((kfpu = kmem_zalloc(sizeof (kfpu_state_t), kmflags)) == NULL) { - return (NULL); - } - - kfpu->kfpu_ctx.fpu_regs.kfpu_u.kfpu_generic = - kmem_cache_alloc(fpsave_cachep, kmflags); - if (kfpu->kfpu_ctx.fpu_regs.kfpu_u.kfpu_generic == NULL) { - kmem_free(kfpu, sizeof (kfpu_state_t)); - return (NULL); - } - - kernel_fpu_fpstate_init(kfpu); - - return (kfpu); -} - -void -kernel_fpu_free(kfpu_state_t *kfpu) -{ - kmem_cache_free(fpsave_cachep, - kfpu->kfpu_ctx.fpu_regs.kfpu_u.kfpu_generic); - kmem_free(kfpu, sizeof (kfpu_state_t)); -} - -static void -kernel_fpu_ctx_save(void *arg) -{ - kfpu_state_t *kfpu = arg; - fpu_ctx_t *pf; - - if (kfpu == NULL) { - /* - * A NULL kfpu implies this is a kernel thread with an LWP and - * no user-level FPU usage. Use the lwp fpu save area. - */ - pf = &curthread->t_lwp->lwp_pcb.pcb_fpu; - - ASSERT(curthread->t_procp->p_flag & SSYS); - ASSERT3U(pf->fpu_flags & FPU_VALID, ==, 0); - - fp_save(pf); - } else { - pf = &kfpu->kfpu_ctx; - - ASSERT3P(kfpu->kfpu_curthread, ==, curthread); - ASSERT3U(pf->fpu_flags & FPU_VALID, ==, 0); - - /* - * Note, we can't use fp_save because it assumes that we're - * saving to the thread's PCB and not somewhere else. Because - * this is a different FPU context, we instead have to do this - * ourselves. - */ - switch (fp_save_mech) { - case FP_FXSAVE: - fpxsave(pf->fpu_regs.kfpu_u.kfpu_fx); - break; - case FP_XSAVE: - xsavep(pf->fpu_regs.kfpu_u.kfpu_xs, pf->fpu_xsave_mask); - break; - default: - panic("Invalid fp_save_mech"); - } - - /* - * Because we have saved context here, our save state is no - * longer valid and therefore needs to be reinitialized. - */ - kfpu->kfpu_flags &= ~KFPU_F_INITIALIZED; - } - - pf->fpu_flags |= FPU_VALID; - - /* - * Clear KFPU flag. This allows swtch to check for improper kernel - * usage of the FPU (i.e. switching to a new thread while the old - * thread was in the kernel and using the FPU, but did not perform a - * context save). - */ - curthread->t_flag &= ~T_KFPU; -} - -static void -kernel_fpu_ctx_restore(void *arg) -{ - kfpu_state_t *kfpu = arg; - fpu_ctx_t *pf; - - if (kfpu == NULL) { - /* - * A NULL kfpu implies this is a kernel thread with an LWP and - * no user-level FPU usage. Use the lwp fpu save area. - */ - pf = &curthread->t_lwp->lwp_pcb.pcb_fpu; - - ASSERT(curthread->t_procp->p_flag & SSYS); - ASSERT3U(pf->fpu_flags & FPU_VALID, !=, 0); - } else { - pf = &kfpu->kfpu_ctx; - - ASSERT3P(kfpu->kfpu_curthread, ==, curthread); - ASSERT3U(pf->fpu_flags & FPU_VALID, !=, 0); - } - - fp_restore(pf); - curthread->t_flag |= T_KFPU; -} - -/* - * Validate that the thread is not switching off-cpu while actively using the - * FPU within the kernel. - */ -void -kernel_fpu_no_swtch(void) -{ - if ((curthread->t_flag & T_KFPU) != 0) { - panic("curthread swtch-ing while the kernel is using the FPU"); - } -} - -void -kernel_fpu_begin(kfpu_state_t *kfpu, uint_t flags) -{ - klwp_t *pl = curthread->t_lwp; - struct ctxop *ctx; - - if ((curthread->t_flag & T_KFPU) != 0) { - panic("curthread attempting to nest kernel FPU states"); - } - - /* KFPU_USE_LWP and KFPU_NO_STATE are mutually exclusive. */ - ASSERT((flags & (KFPU_USE_LWP | KFPU_NO_STATE)) != - (KFPU_USE_LWP | KFPU_NO_STATE)); - - if ((flags & KFPU_NO_STATE) == KFPU_NO_STATE) { - /* - * Since we don't have a kfpu_state or usable lwp pcb_fpu to - * hold our kernel FPU context, we depend on the caller doing - * kpreempt_disable for the duration of our FPU usage. This - * should only be done for very short periods of time. - */ - ASSERT(curthread->t_preempt > 0); - ASSERT(kfpu == NULL); - - if (pl != NULL) { - /* - * We might have already saved once so FPU_VALID could - * be set. This is handled in fp_save. - */ - fp_save(&pl->lwp_pcb.pcb_fpu); - pl->lwp_pcb.pcb_fpu.fpu_flags |= FPU_KERNEL; - } - - curthread->t_flag |= T_KFPU; - - /* Always restore the fpu to the initial state. */ - fpinit(); - - return; - } - - /* - * We either have a kfpu, or are using the LWP pcb_fpu for context ops. - */ - - if ((flags & KFPU_USE_LWP) == 0) { - if (kfpu->kfpu_curthread != NULL) - panic("attempting to reuse kernel FPU state at %p when " - "another thread already is using", kfpu); - - if ((kfpu->kfpu_flags & KFPU_F_INITIALIZED) == 0) - kernel_fpu_fpstate_init(kfpu); - - kfpu->kfpu_curthread = curthread; - } - - /* - * Not all threads may have an active LWP. If they do and we're not - * going to re-use the LWP, then we should go ahead and save the state. - * We must also note that the fpu is now being used by the kernel and - * therefore we do not want to manage the fpu state via the user-level - * thread's context handlers. - * - * We might have already saved once (due to a prior use of the kernel - * FPU or another code path) so FPU_VALID could be set. This is handled - * by fp_save, as is the FPU_EN check. - */ - ctx = installctx_preallocate(); - kpreempt_disable(); - if (pl != NULL) { - if ((flags & KFPU_USE_LWP) == 0) - fp_save(&pl->lwp_pcb.pcb_fpu); - pl->lwp_pcb.pcb_fpu.fpu_flags |= FPU_KERNEL; - } - - /* - * Set the context operations for kernel FPU usage. Note that this is - * done with a preallocated buffer and under kpreempt_disable because - * without a preallocated buffer, installctx does a sleeping - * allocation. We haven't finished initializing our kernel FPU state - * yet, and in the rare case that we happen to save/restore just as - * installctx() exits its own kpreempt_enable() internal call, we - * guard against restoring an uninitialized buffer (0xbaddcafe). - */ - installctx(curthread, kfpu, kernel_fpu_ctx_save, kernel_fpu_ctx_restore, - NULL, NULL, NULL, NULL, ctx); - - curthread->t_flag |= T_KFPU; - - if ((flags & KFPU_USE_LWP) == KFPU_USE_LWP) { - /* - * For pure kernel threads with an LWP, we can use the LWP's - * pcb_fpu to save/restore context. - */ - fpu_ctx_t *pf = &pl->lwp_pcb.pcb_fpu; - - VERIFY(curthread->t_procp->p_flag & SSYS); - VERIFY(kfpu == NULL); - ASSERT((pf->fpu_flags & FPU_EN) == 0); - - /* Always restore the fpu to the initial state. */ - if (fp_save_mech == FP_XSAVE) - pf->fpu_xsave_mask = XFEATURE_FP_ALL; - fpinit(); - pf->fpu_flags = FPU_EN | FPU_KERNEL; - } else { - /* initialize the kfpu state */ - kernel_fpu_ctx_restore(kfpu); - } - kpreempt_enable(); -} - -void -kernel_fpu_end(kfpu_state_t *kfpu, uint_t flags) -{ - ulong_t iflags; - - if ((curthread->t_flag & T_KFPU) == 0) { - panic("curthread attempting to clear kernel FPU state " - "without using it"); - } - - /* - * General comments on why the rest of this function is structured the - * way it is. Be aware that there is a lot of subtlety here. - * - * If a user-level thread ever uses the fpu while in the kernel, then - * we cannot call fpdisable since that does STTS. That will set the - * ts bit in %cr0 which will cause an exception if anything touches the - * fpu. However, the user-level context switch handler (fpsave_ctxt) - * needs to access the fpu to save the registers into the pcb. - * fpsave_ctxt relies on CLTS having been done to clear the ts bit in - * fprestore_ctxt when the thread context switched onto the CPU. - * - * Calling fpdisable only effects the current CPU's %cr0 register. - * - * During removectx and kpreempt_enable, we can voluntarily context - * switch, so the CPU we were on when we entered this function might - * not be the same one we're on when we return from removectx or end - * the function. Note there can be user-level context switch handlers - * still installed if this is a user-level thread. - * - * We also must be careful in the unlikely chance we're running in an - * interrupt thread, since we can't leave the CPU's %cr0 TS state set - * incorrectly for the "real" thread to resume on this CPU. - */ - - if ((flags & KFPU_NO_STATE) == 0) { - kpreempt_disable(); - } else { - ASSERT(curthread->t_preempt > 0); - } - - curthread->t_flag &= ~T_KFPU; - - /* - * When we are ending things, we explicitly don't save the current - * kernel FPU state back to the temporary state. The kfpu API is not - * intended to be a permanent save location. - * - * If this is a user-level thread and we were to context switch - * before returning to user-land, fpsave_ctxt will be a no-op since we - * already saved the user-level FPU state the first time we run - * kernel_fpu_begin (i.e. we won't save the bad kernel fpu state over - * the user-level fpu state). The fpsave_ctxt functions only save if - * FPU_VALID is not already set. fp_save also set PCB_SET_UPDATE_FPU so - * fprestore_ctxt will be done in sys_rtt_common when the thread - * finally returns to user-land. - */ - - if ((curthread->t_procp->p_flag & SSYS) != 0 && - curthread->t_intr == NULL) { - /* - * A kernel thread which is not an interrupt thread, so we - * STTS now. - */ - fpdisable(); - } - - if ((flags & KFPU_NO_STATE) == 0) { - removectx(curthread, kfpu, kernel_fpu_ctx_save, - kernel_fpu_ctx_restore, NULL, NULL, NULL, NULL); - - if (kfpu != NULL) { - if (kfpu->kfpu_curthread != curthread) { - panic("attempting to end kernel FPU state " - "for %p, but active thread is not " - "curthread", kfpu); - } else { - kfpu->kfpu_curthread = NULL; - } - } - - kpreempt_enable(); - } - - if (curthread->t_lwp != NULL) { - uint_t f; - - if (flags & KFPU_USE_LWP) { - f = FPU_EN | FPU_KERNEL; - } else { - f = FPU_KERNEL; - } - curthread->t_lwp->lwp_pcb.pcb_fpu.fpu_flags &= ~f; - } -} diff --git a/usr/src/uts/intel/ia32/os/sendsig.c b/usr/src/uts/intel/ia32/os/sendsig.c deleted file mode 100644 index e3d60eb62b..0000000000 --- a/usr/src/uts/intel/ia32/os/sendsig.c +++ /dev/null @@ -1,589 +0,0 @@ -/* - * CDDL HEADER START - * - * The contents of this file are subject to the terms of the - * Common Development and Distribution License (the "License"). - * You may not use this file except in compliance with the License. - * - * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE - * or http://www.opensolaris.org/os/licensing. - * See the License for the specific language governing permissions - * and limitations under the License. - * - * When distributing Covered Code, include this CDDL HEADER in each - * file and include the License file at usr/src/OPENSOLARIS.LICENSE. - * If applicable, add the following below this CDDL HEADER, with the - * fields enclosed by brackets "[]" replaced with your own identifying - * information: Portions Copyright [yyyy] [name of copyright owner] - * - * CDDL HEADER END - */ - -/* - * Copyright 2010 Sun Microsystems, Inc. All rights reserved. - * Use is subject to license terms. - */ - -/* Copyright (c) 1990, 1991 UNIX System Laboratories, Inc. */ -/* Copyright (c) 1984, 1986, 1987, 1988, 1989, 1990 AT&T */ -/* All Rights Reserved */ - -#include <sys/types.h> -#include <sys/param.h> -#include <sys/sysmacros.h> -#include <sys/signal.h> -#include <sys/systm.h> -#include <sys/user.h> -#include <sys/mman.h> -#include <sys/class.h> -#include <sys/proc.h> -#include <sys/procfs.h> -#include <sys/buf.h> -#include <sys/kmem.h> -#include <sys/cred.h> -#include <sys/archsystm.h> -#include <sys/vmparam.h> -#include <sys/prsystm.h> -#include <sys/reboot.h> -#include <sys/uadmin.h> -#include <sys/vfs.h> -#include <sys/vnode.h> -#include <sys/file.h> -#include <sys/session.h> -#include <sys/ucontext.h> -#include <sys/dnlc.h> -#include <sys/var.h> -#include <sys/cmn_err.h> -#include <sys/debugreg.h> -#include <sys/thread.h> -#include <sys/vtrace.h> -#include <sys/consdev.h> -#include <sys/psw.h> -#include <sys/regset.h> - -#include <sys/privregs.h> - -#include <sys/stack.h> -#include <sys/swap.h> -#include <vm/hat.h> -#include <vm/anon.h> -#include <vm/as.h> -#include <vm/page.h> -#include <vm/seg.h> -#include <vm/seg_kmem.h> -#include <vm/seg_map.h> -#include <vm/seg_vn.h> -#include <sys/exec.h> -#include <sys/acct.h> -#include <sys/core.h> -#include <sys/corectl.h> -#include <sys/modctl.h> -#include <sys/tuneable.h> -#include <c2/audit.h> -#include <sys/bootconf.h> -#include <sys/dumphdr.h> -#include <sys/promif.h> -#include <sys/systeminfo.h> -#include <sys/kdi.h> -#include <sys/contract_impl.h> -#include <sys/x86_archext.h> - -/* - * Construct the execution environment for the user's signal - * handler and arrange for control to be given to it on return - * to userland. The library code now calls setcontext() to - * clean up after the signal handler, so sigret() is no longer - * needed. - * - * (The various 'volatile' declarations are need to ensure that values - * are correct on the error return from on_fault().) - */ - - -/* - * An amd64 signal frame looks like this on the stack: - * - * old %rsp: - * <128 bytes of untouched stack space> - * <a siginfo_t [optional]> - * <a ucontext_t> - * <siginfo_t *> - * <signal number> - * new %rsp: <return address (deliberately invalid)> - * - * The signal number and siginfo_t pointer are only pushed onto the stack in - * order to allow stack backtraces. The actual signal handling code expects the - * arguments in registers. - */ - -struct sigframe { - caddr_t retaddr; - long signo; - siginfo_t *sip; -}; - -int -sendsig(int sig, k_siginfo_t *sip, void (*hdlr)()) -{ - volatile int minstacksz; - int newstack; - label_t ljb; - volatile caddr_t sp; - caddr_t fp; - volatile struct regs *rp; - volatile greg_t upc; - volatile proc_t *p = ttoproc(curthread); - struct as *as = p->p_as; - klwp_t *lwp = ttolwp(curthread); - ucontext_t *volatile tuc = NULL; - ucontext_t *uc; - siginfo_t *sip_addr; - volatile int watched; - - /* - * This routine is utterly dependent upon STACK_ALIGN being - * 16 and STACK_ENTRY_ALIGN being 8. Let's just acknowledge - * that and require it. - */ - -#if STACK_ALIGN != 16 || STACK_ENTRY_ALIGN != 8 -#error "sendsig() amd64 did not find the expected stack alignments" -#endif - - rp = lwptoregs(lwp); - upc = rp->r_pc; - - /* - * Since we're setting up to run the signal handler we have to - * arrange that the stack at entry to the handler is (only) - * STACK_ENTRY_ALIGN (i.e. 8) byte aligned so that when the handler - * executes its push of %rbp, the stack realigns to STACK_ALIGN - * (i.e. 16) correctly. - * - * The new sp will point to the sigframe and the ucontext_t. The - * above means that sp (and thus sigframe) will be 8-byte aligned, - * but not 16-byte aligned. ucontext_t, however, contains %xmm regs - * which must be 16-byte aligned. Because of this, for correct - * alignment, sigframe must be a multiple of 8-bytes in length, but - * not 16-bytes. This will place ucontext_t at a nice 16-byte boundary. - */ - - /* LINTED: logical expression always true: op "||" */ - ASSERT((sizeof (struct sigframe) % 16) == 8); - - minstacksz = sizeof (struct sigframe) + SA(sizeof (*uc)); - if (sip != NULL) - minstacksz += SA(sizeof (siginfo_t)); - ASSERT((minstacksz & (STACK_ENTRY_ALIGN - 1ul)) == 0); - - /* - * Figure out whether we will be handling this signal on - * an alternate stack specified by the user. Then allocate - * and validate the stack requirements for the signal handler - * context. on_fault will catch any faults. - */ - newstack = sigismember(&PTOU(curproc)->u_sigonstack, sig) && - !(lwp->lwp_sigaltstack.ss_flags & (SS_ONSTACK|SS_DISABLE)); - - if (newstack) { - fp = (caddr_t)(SA((uintptr_t)lwp->lwp_sigaltstack.ss_sp) + - SA(lwp->lwp_sigaltstack.ss_size) - STACK_ALIGN); - } else { - /* - * Drop below the 128-byte reserved region of the stack frame - * we're interrupting. - */ - fp = (caddr_t)rp->r_sp - STACK_RESERVE; - } - - /* - * Force proper stack pointer alignment, even in the face of a - * misaligned stack pointer from user-level before the signal. - */ - fp = (caddr_t)((uintptr_t)fp & ~(STACK_ENTRY_ALIGN - 1ul)); - - /* - * Most of the time during normal execution, the stack pointer - * is aligned on a STACK_ALIGN (i.e. 16 byte) boundary. However, - * (for example) just after a call instruction (which pushes - * the return address), the callers stack misaligns until the - * 'push %rbp' happens in the callee prolog. So while we should - * expect the stack pointer to be always at least STACK_ENTRY_ALIGN - * aligned, we should -not- expect it to always be STACK_ALIGN aligned. - * We now adjust to ensure that the new sp is aligned to - * STACK_ENTRY_ALIGN but not to STACK_ALIGN. - */ - sp = fp - minstacksz; - if (((uintptr_t)sp & (STACK_ALIGN - 1ul)) == 0) { - sp -= STACK_ENTRY_ALIGN; - minstacksz = fp - sp; - } - - /* - * Now, make sure the resulting signal frame address is sane - */ - if (sp >= as->a_userlimit || fp >= as->a_userlimit) { -#ifdef DEBUG - printf("sendsig: bad signal stack cmd=%s, pid=%d, sig=%d\n", - PTOU(p)->u_comm, p->p_pid, sig); - printf("sigsp = 0x%p, action = 0x%p, upc = 0x%lx\n", - (void *)sp, (void *)hdlr, (uintptr_t)upc); - printf("sp above USERLIMIT\n"); -#endif - return (0); - } - - watched = watch_disable_addr((caddr_t)sp, minstacksz, S_WRITE); - - if (on_fault(&ljb)) - goto badstack; - - if (sip != NULL) { - zoneid_t zoneid; - - fp -= SA(sizeof (siginfo_t)); - uzero(fp, sizeof (siginfo_t)); - if (SI_FROMUSER(sip) && - (zoneid = p->p_zone->zone_id) != GLOBAL_ZONEID && - zoneid != sip->si_zoneid) { - k_siginfo_t sani_sip = *sip; - - sani_sip.si_pid = p->p_zone->zone_zsched->p_pid; - sani_sip.si_uid = 0; - sani_sip.si_ctid = -1; - sani_sip.si_zoneid = zoneid; - copyout_noerr(&sani_sip, fp, sizeof (sani_sip)); - } else - copyout_noerr(sip, fp, sizeof (*sip)); - sip_addr = (siginfo_t *)fp; - - if (sig == SIGPROF && - curthread->t_rprof != NULL && - curthread->t_rprof->rp_anystate) { - /* - * We stand on our head to deal with - * the real time profiling signal. - * Fill in the stuff that doesn't fit - * in a normal k_siginfo structure. - */ - int i = sip->si_nsysarg; - - while (--i >= 0) - sulword_noerr( - (ulong_t *)&(sip_addr->si_sysarg[i]), - (ulong_t)lwp->lwp_arg[i]); - copyout_noerr(curthread->t_rprof->rp_state, - sip_addr->si_mstate, - sizeof (curthread->t_rprof->rp_state)); - } - } else - sip_addr = NULL; - - /* - * save the current context on the user stack directly after the - * sigframe. Since sigframe is 8-byte-but-not-16-byte aligned, - * and since sizeof (struct sigframe) is 24, this guarantees - * 16-byte alignment for ucontext_t and its %xmm registers. - */ - uc = (ucontext_t *)(sp + sizeof (struct sigframe)); - tuc = kmem_alloc(sizeof (*tuc), KM_SLEEP); - no_fault(); - savecontext(tuc, &lwp->lwp_sigoldmask); - if (on_fault(&ljb)) - goto badstack; - copyout_noerr(tuc, uc, sizeof (*tuc)); - kmem_free(tuc, sizeof (*tuc)); - tuc = NULL; - - lwp->lwp_oldcontext = (uintptr_t)uc; - - if (newstack) { - lwp->lwp_sigaltstack.ss_flags |= SS_ONSTACK; - if (lwp->lwp_ustack) - copyout_noerr(&lwp->lwp_sigaltstack, - (stack_t *)lwp->lwp_ustack, sizeof (stack_t)); - } - - /* - * Set up signal handler return and stack linkage - */ - { - struct sigframe frame; - - /* - * ensure we never return "normally" - */ - frame.retaddr = (caddr_t)(uintptr_t)-1L; - frame.signo = sig; - frame.sip = sip_addr; - copyout_noerr(&frame, sp, sizeof (frame)); - } - - no_fault(); - if (watched) - watch_enable_addr((caddr_t)sp, minstacksz, S_WRITE); - - /* - * Set up user registers for execution of signal handler. - */ - rp->r_sp = (greg_t)sp; - rp->r_pc = (greg_t)hdlr; - rp->r_ps = PSL_USER | (rp->r_ps & PS_IOPL); - - rp->r_rdi = sig; - rp->r_rsi = (uintptr_t)sip_addr; - rp->r_rdx = (uintptr_t)uc; - - if ((rp->r_cs & 0xffff) != UCS_SEL || - (rp->r_ss & 0xffff) != UDS_SEL) { - /* - * Try our best to deliver the signal. - */ - rp->r_cs = UCS_SEL; - rp->r_ss = UDS_SEL; - } - - /* - * Don't set lwp_eosys here. sendsig() is called via psig() after - * lwp_eosys is handled, so setting it here would affect the next - * system call. - */ - return (1); - -badstack: - no_fault(); - if (watched) - watch_enable_addr((caddr_t)sp, minstacksz, S_WRITE); - if (tuc) - kmem_free(tuc, sizeof (*tuc)); -#ifdef DEBUG - printf("sendsig: bad signal stack cmd=%s, pid=%d, sig=%d\n", - PTOU(p)->u_comm, p->p_pid, sig); - printf("on fault, sigsp = 0x%p, action = 0x%p, upc = 0x%lx\n", - (void *)sp, (void *)hdlr, (uintptr_t)upc); -#endif - return (0); -} - -#ifdef _SYSCALL32_IMPL - -/* - * An i386 SVR4/ABI signal frame looks like this on the stack: - * - * old %esp: - * <a siginfo32_t [optional]> - * <a ucontext32_t> - * <pointer to that ucontext32_t> - * <pointer to that siginfo32_t> - * <signo> - * new %esp: <return address (deliberately invalid)> - */ -struct sigframe32 { - caddr32_t retaddr; - uint32_t signo; - caddr32_t sip; - caddr32_t ucp; -}; - -int -sendsig32(int sig, k_siginfo_t *sip, void (*hdlr)()) -{ - volatile int minstacksz; - int newstack; - label_t ljb; - volatile caddr_t sp; - caddr_t fp; - volatile struct regs *rp; - volatile greg_t upc; - volatile proc_t *p = ttoproc(curthread); - klwp_t *lwp = ttolwp(curthread); - ucontext32_t *volatile tuc = NULL; - ucontext32_t *uc; - siginfo32_t *sip_addr; - volatile int watched; - - rp = lwptoregs(lwp); - upc = rp->r_pc; - - minstacksz = SA32(sizeof (struct sigframe32)) + SA32(sizeof (*uc)); - if (sip != NULL) - minstacksz += SA32(sizeof (siginfo32_t)); - ASSERT((minstacksz & (STACK_ALIGN32 - 1)) == 0); - - /* - * Figure out whether we will be handling this signal on - * an alternate stack specified by the user. Then allocate - * and validate the stack requirements for the signal handler - * context. on_fault will catch any faults. - */ - newstack = sigismember(&PTOU(curproc)->u_sigonstack, sig) && - !(lwp->lwp_sigaltstack.ss_flags & (SS_ONSTACK|SS_DISABLE)); - - if (newstack) { - fp = (caddr_t)(SA32((uintptr_t)lwp->lwp_sigaltstack.ss_sp) + - SA32(lwp->lwp_sigaltstack.ss_size) - STACK_ALIGN32); - } else if ((rp->r_ss & 0xffff) != UDS_SEL) { - user_desc_t *ldt; - /* - * If the stack segment selector is -not- pointing at - * the UDS_SEL descriptor and we have an LDT entry for - * it instead, add the base address to find the effective va. - */ - if ((ldt = p->p_ldt) != NULL) - fp = (caddr_t)rp->r_sp + - USEGD_GETBASE(&ldt[SELTOIDX(rp->r_ss)]); - else - fp = (caddr_t)rp->r_sp; - } else - fp = (caddr_t)rp->r_sp; - - /* - * Force proper stack pointer alignment, even in the face of a - * misaligned stack pointer from user-level before the signal. - * Don't use the SA32() macro because that rounds up, not down. - */ - fp = (caddr_t)((uintptr_t)fp & ~(STACK_ALIGN32 - 1)); - sp = fp - minstacksz; - - /* - * Make sure lwp hasn't trashed its stack - */ - if (sp >= (caddr_t)(uintptr_t)USERLIMIT32 || - fp >= (caddr_t)(uintptr_t)USERLIMIT32) { -#ifdef DEBUG - printf("sendsig32: bad signal stack cmd=%s, pid=%d, sig=%d\n", - PTOU(p)->u_comm, p->p_pid, sig); - printf("sigsp = 0x%p, action = 0x%p, upc = 0x%lx\n", - (void *)sp, (void *)hdlr, (uintptr_t)upc); - printf("sp above USERLIMIT\n"); -#endif - return (0); - } - - watched = watch_disable_addr((caddr_t)sp, minstacksz, S_WRITE); - - if (on_fault(&ljb)) - goto badstack; - - if (sip != NULL) { - siginfo32_t si32; - zoneid_t zoneid; - - siginfo_kto32(sip, &si32); - if (SI_FROMUSER(sip) && - (zoneid = p->p_zone->zone_id) != GLOBAL_ZONEID && - zoneid != sip->si_zoneid) { - si32.si_pid = p->p_zone->zone_zsched->p_pid; - si32.si_uid = 0; - si32.si_ctid = -1; - si32.si_zoneid = zoneid; - } - fp -= SA32(sizeof (si32)); - uzero(fp, sizeof (si32)); - copyout_noerr(&si32, fp, sizeof (si32)); - sip_addr = (siginfo32_t *)fp; - - if (sig == SIGPROF && - curthread->t_rprof != NULL && - curthread->t_rprof->rp_anystate) { - /* - * We stand on our head to deal with - * the real-time profiling signal. - * Fill in the stuff that doesn't fit - * in a normal k_siginfo structure. - */ - int i = sip->si_nsysarg; - - while (--i >= 0) - suword32_noerr(&(sip_addr->si_sysarg[i]), - (uint32_t)lwp->lwp_arg[i]); - copyout_noerr(curthread->t_rprof->rp_state, - sip_addr->si_mstate, - sizeof (curthread->t_rprof->rp_state)); - } - } else - sip_addr = NULL; - - /* save the current context on the user stack */ - fp -= SA32(sizeof (*tuc)); - uc = (ucontext32_t *)fp; - tuc = kmem_alloc(sizeof (*tuc), KM_SLEEP); - no_fault(); - savecontext32(tuc, &lwp->lwp_sigoldmask); - if (on_fault(&ljb)) - goto badstack; - copyout_noerr(tuc, uc, sizeof (*tuc)); - kmem_free(tuc, sizeof (*tuc)); - tuc = NULL; - - lwp->lwp_oldcontext = (uintptr_t)uc; - - if (newstack) { - lwp->lwp_sigaltstack.ss_flags |= SS_ONSTACK; - if (lwp->lwp_ustack) { - stack32_t stk32; - - stk32.ss_sp = (caddr32_t)(uintptr_t) - lwp->lwp_sigaltstack.ss_sp; - stk32.ss_size = (size32_t) - lwp->lwp_sigaltstack.ss_size; - stk32.ss_flags = (int32_t) - lwp->lwp_sigaltstack.ss_flags; - copyout_noerr(&stk32, - (stack32_t *)lwp->lwp_ustack, sizeof (stk32)); - } - } - - /* - * Set up signal handler arguments - */ - { - struct sigframe32 frame32; - - frame32.sip = (caddr32_t)(uintptr_t)sip_addr; - frame32.ucp = (caddr32_t)(uintptr_t)uc; - frame32.signo = sig; - frame32.retaddr = 0xffffffff; /* never return! */ - copyout_noerr(&frame32, sp, sizeof (frame32)); - } - - no_fault(); - if (watched) - watch_enable_addr((caddr_t)sp, minstacksz, S_WRITE); - - rp->r_sp = (greg_t)(uintptr_t)sp; - rp->r_pc = (greg_t)(uintptr_t)hdlr; - rp->r_ps = PSL_USER | (rp->r_ps & PS_IOPL); - - if ((rp->r_cs & 0xffff) != U32CS_SEL || - (rp->r_ss & 0xffff) != UDS_SEL) { - /* - * Try our best to deliver the signal. - */ - rp->r_cs = U32CS_SEL; - rp->r_ss = UDS_SEL; - } - - /* - * Don't set lwp_eosys here. sendsig() is called via psig() after - * lwp_eosys is handled, so setting it here would affect the next - * system call. - */ - return (1); - -badstack: - no_fault(); - if (watched) - watch_enable_addr((caddr_t)sp, minstacksz, S_WRITE); - if (tuc) - kmem_free(tuc, sizeof (*tuc)); -#ifdef DEBUG - printf("sendsig32: bad signal stack cmd=%s pid=%d, sig=%d\n", - PTOU(p)->u_comm, p->p_pid, sig); - printf("on fault, sigsp = 0x%p, action = 0x%p, upc = 0x%lx\n", - (void *)sp, (void *)hdlr, (uintptr_t)upc); -#endif - return (0); -} - -#endif /* _SYSCALL32_IMPL */ diff --git a/usr/src/uts/intel/ia32/os/sundep.c b/usr/src/uts/intel/ia32/os/sundep.c deleted file mode 100644 index 80e149f01b..0000000000 --- a/usr/src/uts/intel/ia32/os/sundep.c +++ /dev/null @@ -1,1012 +0,0 @@ -/* - * CDDL HEADER START - * - * The contents of this file are subject to the terms of the - * Common Development and Distribution License (the "License"). - * You may not use this file except in compliance with the License. - * - * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE - * or http://www.opensolaris.org/os/licensing. - * See the License for the specific language governing permissions - * and limitations under the License. - * - * When distributing Covered Code, include this CDDL HEADER in each - * file and include the License file at usr/src/OPENSOLARIS.LICENSE. - * If applicable, add the following below this CDDL HEADER, with the - * fields enclosed by brackets "[]" replaced with your own identifying - * information: Portions Copyright [yyyy] [name of copyright owner] - * - * CDDL HEADER END - */ -/* - * Copyright (c) 1992, 2010, Oracle and/or its affiliates. All rights reserved. - * Copyright 2021 Joyent, Inc. - */ - -/* Copyright (c) 1990, 1991 UNIX System Laboratories, Inc. */ -/* Copyright (c) 1984, 1986, 1987, 1988, 1989, 1990 AT&T */ -/* All Rights Reserved */ - -#include <sys/types.h> -#include <sys/param.h> -#include <sys/sysmacros.h> -#include <sys/signal.h> -#include <sys/systm.h> -#include <sys/user.h> -#include <sys/mman.h> -#include <sys/class.h> -#include <sys/proc.h> -#include <sys/procfs.h> -#include <sys/buf.h> -#include <sys/kmem.h> -#include <sys/cred.h> -#include <sys/archsystm.h> -#include <sys/vmparam.h> -#include <sys/prsystm.h> -#include <sys/reboot.h> -#include <sys/uadmin.h> -#include <sys/vfs.h> -#include <sys/vnode.h> -#include <sys/file.h> -#include <sys/session.h> -#include <sys/ucontext.h> -#include <sys/dnlc.h> -#include <sys/var.h> -#include <sys/cmn_err.h> -#include <sys/debugreg.h> -#include <sys/thread.h> -#include <sys/vtrace.h> -#include <sys/consdev.h> -#include <sys/psw.h> -#include <sys/regset.h> -#include <sys/privregs.h> -#include <sys/cpu.h> -#include <sys/stack.h> -#include <sys/swap.h> -#include <vm/hat.h> -#include <vm/anon.h> -#include <vm/as.h> -#include <vm/page.h> -#include <vm/seg.h> -#include <vm/seg_kmem.h> -#include <vm/seg_map.h> -#include <vm/seg_vn.h> -#include <sys/exec.h> -#include <sys/acct.h> -#include <sys/core.h> -#include <sys/corectl.h> -#include <sys/modctl.h> -#include <sys/tuneable.h> -#include <c2/audit.h> -#include <sys/bootconf.h> -#include <sys/brand.h> -#include <sys/dumphdr.h> -#include <sys/promif.h> -#include <sys/systeminfo.h> -#include <sys/kdi.h> -#include <sys/contract_impl.h> -#include <sys/x86_archext.h> -#include <sys/segments.h> -#include <sys/ontrap.h> -#include <sys/cpu.h> -#ifdef __xpv -#include <sys/hypervisor.h> -#endif - -/* - * Compare the version of boot that boot says it is against - * the version of boot the kernel expects. - */ -int -check_boot_version(int boots_version) -{ - if (boots_version == BO_VERSION) - return (0); - - prom_printf("Wrong boot interface - kernel needs v%d found v%d\n", - BO_VERSION, boots_version); - prom_panic("halting"); - /*NOTREACHED*/ -} - -/* - * Process the physical installed list for boot. - * Finds: - * 1) the pfn of the highest installed physical page, - * 2) the number of pages installed - * 3) the number of distinct contiguous regions these pages fall into. - * 4) the number of contiguous memory ranges - */ -void -installed_top_size_ex( - struct memlist *list, /* pointer to start of installed list */ - pfn_t *high_pfn, /* return ptr for top value */ - pgcnt_t *pgcnt, /* return ptr for sum of installed pages */ - int *ranges) /* return ptr for the count of contig. ranges */ -{ - pfn_t top = 0; - pgcnt_t sumpages = 0; - pfn_t highp; /* high page in a chunk */ - int cnt = 0; - - for (; list; list = list->ml_next) { - ++cnt; - highp = (list->ml_address + list->ml_size - 1) >> PAGESHIFT; - if (top < highp) - top = highp; - sumpages += btop(list->ml_size); - } - - *high_pfn = top; - *pgcnt = sumpages; - *ranges = cnt; -} - -void -installed_top_size( - struct memlist *list, /* pointer to start of installed list */ - pfn_t *high_pfn, /* return ptr for top value */ - pgcnt_t *pgcnt) /* return ptr for sum of installed pages */ -{ - int ranges; - - installed_top_size_ex(list, high_pfn, pgcnt, &ranges); -} - -void -phys_install_has_changed(void) -{} - -/* - * Copy in a memory list from boot to kernel, with a filter function - * to remove pages. The filter function can increase the address and/or - * decrease the size to filter out pages. It will also align addresses and - * sizes to PAGESIZE. - */ -void -copy_memlist_filter( - struct memlist *src, - struct memlist **dstp, - void (*filter)(uint64_t *, uint64_t *)) -{ - struct memlist *dst, *prev; - uint64_t addr; - uint64_t size; - uint64_t eaddr; - - dst = *dstp; - prev = dst; - - /* - * Move through the memlist applying a filter against - * each range of memory. Note that we may apply the - * filter multiple times against each memlist entry. - */ - for (; src; src = src->ml_next) { - addr = P2ROUNDUP(src->ml_address, PAGESIZE); - eaddr = P2ALIGN(src->ml_address + src->ml_size, PAGESIZE); - while (addr < eaddr) { - size = eaddr - addr; - if (filter != NULL) - filter(&addr, &size); - if (size == 0) - break; - dst->ml_address = addr; - dst->ml_size = size; - dst->ml_next = 0; - if (prev == dst) { - dst->ml_prev = 0; - dst++; - } else { - dst->ml_prev = prev; - prev->ml_next = dst; - dst++; - prev++; - } - addr += size; - } - } - - *dstp = dst; -} - -/* - * Kernel setup code, called from startup(). - */ -void -kern_setup1(void) -{ - proc_t *pp; - - pp = &p0; - - proc_sched = pp; - - /* - * Initialize process 0 data structures - */ - pp->p_stat = SRUN; - pp->p_flag = SSYS; - - pp->p_pidp = &pid0; - pp->p_pgidp = &pid0; - pp->p_sessp = &session0; - pp->p_tlist = &t0; - pid0.pid_pglink = pp; - pid0.pid_pgtail = pp; - - /* - * XXX - we asssume that the u-area is zeroed out except for - * ttolwp(curthread)->lwp_regs. - */ - PTOU(curproc)->u_cmask = (mode_t)CMASK; - - thread_init(); /* init thread_free list */ - pid_init(); /* initialize pid (proc) table */ - contract_init(); /* initialize contracts */ - - init_pages_pp_maximum(); -} - -/* - * Load a procedure into a thread. - */ -void -thread_load(kthread_t *t, void (*start)(), caddr_t arg, size_t len) -{ - caddr_t sp; - size_t framesz; - caddr_t argp; - long *p; - extern void thread_start(); - - /* - * Push a "c" call frame onto the stack to represent - * the caller of "start". - */ - sp = t->t_stk; - ASSERT(((uintptr_t)t->t_stk & (STACK_ENTRY_ALIGN - 1)) == 0); - if (len != 0) { - /* - * the object that arg points at is copied into the - * caller's frame. - */ - framesz = SA(len); - sp -= framesz; - ASSERT(sp > t->t_stkbase); - argp = sp + SA(MINFRAME); - bcopy(arg, argp, len); - arg = argp; - } - /* - * Set up arguments (arg and len) on the caller's stack frame. - */ - p = (long *)sp; - - *--p = 0; /* fake call */ - *--p = 0; /* null frame pointer terminates stack trace */ - *--p = (long)len; - *--p = (intptr_t)arg; - *--p = (intptr_t)start; - - /* - * initialize thread to resume at thread_start() which will - * turn around and invoke (*start)(arg, len). - */ - t->t_pc = (uintptr_t)thread_start; - t->t_sp = (uintptr_t)p; - - ASSERT((t->t_sp & (STACK_ENTRY_ALIGN - 1)) == 0); -} - -/* - * load user registers into lwp. - */ -/*ARGSUSED2*/ -void -lwp_load(klwp_t *lwp, gregset_t grp, uintptr_t thrptr) -{ - struct regs *rp = lwptoregs(lwp); - - setgregs(lwp, grp); - rp->r_ps = PSL_USER; - - /* - * For 64-bit lwps, we allow one magic %fs selector value, and one - * magic %gs selector to point anywhere in the address space using - * %fsbase and %gsbase behind the scenes. libc uses %fs to point - * at the ulwp_t structure. - * - * For 32-bit lwps, libc wedges its lwp thread pointer into the - * ucontext ESP slot (which is otherwise irrelevant to setting a - * ucontext) and LWPGS_SEL value into gregs[REG_GS]. This is so - * syslwp_create() can atomically setup %gs. - * - * See setup_context() in libc. - */ -#ifdef _SYSCALL32_IMPL - if (lwp_getdatamodel(lwp) == DATAMODEL_ILP32) { - if (grp[REG_GS] == LWPGS_SEL) - (void) lwp_setprivate(lwp, _LWP_GSBASE, thrptr); - } else { - /* - * See lwp_setprivate in kernel and setup_context in libc. - * - * Currently libc constructs a ucontext from whole cloth for - * every new (not main) lwp created. For 64 bit processes - * %fsbase is directly set to point to current thread pointer. - * In the past (solaris 10) %fs was also set LWPFS_SEL to - * indicate %fsbase. Now we use the null GDT selector for - * this purpose. LWP[FS|GS]_SEL are only intended for 32 bit - * processes. To ease transition we support older libcs in - * the newer kernel by forcing %fs or %gs selector to null - * by calling lwp_setprivate if LWP[FS|GS]_SEL is passed in - * the ucontext. This is should be ripped out at some future - * date. Another fix would be for libc to do a getcontext - * and inherit the null %fs/%gs from the current context but - * that means an extra system call and could hurt performance. - */ - if (grp[REG_FS] == 0x1bb) /* hard code legacy LWPFS_SEL */ - (void) lwp_setprivate(lwp, _LWP_FSBASE, - (uintptr_t)grp[REG_FSBASE]); - - if (grp[REG_GS] == 0x1c3) /* hard code legacy LWPGS_SEL */ - (void) lwp_setprivate(lwp, _LWP_GSBASE, - (uintptr_t)grp[REG_GSBASE]); - } -#else - if (grp[GS] == LWPGS_SEL) - (void) lwp_setprivate(lwp, _LWP_GSBASE, thrptr); -#endif - - lwp->lwp_eosys = JUSTRETURN; - lwptot(lwp)->t_post_sys = 1; -} - -/* - * set syscall()'s return values for a lwp. - */ -void -lwp_setrval(klwp_t *lwp, int v1, int v2) -{ - lwptoregs(lwp)->r_ps &= ~PS_C; - lwptoregs(lwp)->r_r0 = v1; - lwptoregs(lwp)->r_r1 = v2; -} - -/* - * set syscall()'s return values for a lwp. - */ -void -lwp_setsp(klwp_t *lwp, caddr_t sp) -{ - lwptoregs(lwp)->r_sp = (intptr_t)sp; -} - -/* - * Copy regs from parent to child. - */ -void -lwp_forkregs(klwp_t *lwp, klwp_t *clwp) -{ - struct pcb *pcb = &clwp->lwp_pcb; - struct regs *rp = lwptoregs(lwp); - - if (!PCB_NEED_UPDATE_SEGS(pcb)) { - pcb->pcb_ds = rp->r_ds; - pcb->pcb_es = rp->r_es; - pcb->pcb_fs = rp->r_fs; - pcb->pcb_gs = rp->r_gs; - PCB_SET_UPDATE_SEGS(pcb); - lwptot(clwp)->t_post_sys = 1; - } - ASSERT(lwptot(clwp)->t_post_sys); - - fp_lwp_dup(clwp); - - bcopy(lwp->lwp_regs, clwp->lwp_regs, sizeof (struct regs)); -} - -/* - * This function is currently unused on x86. - */ -/*ARGSUSED*/ -void -lwp_freeregs(klwp_t *lwp, int isexec) -{} - -/* - * This function is currently unused on x86. - */ -void -lwp_pcb_exit(void) -{} - -/* - * Lwp context ops for segment registers. - */ - -/* - * Every time we come into the kernel (syscall, interrupt or trap - * but not fast-traps) we capture the current values of the user's - * segment registers into the lwp's reg structure. This includes - * lcall for i386 generic system call support since it is handled - * as a segment-not-present trap. - * - * Here we save the current values from the lwp regs into the pcb - * and or PCB_UPDATE_SEGS (1) in pcb->pcb_rupdate to tell the rest - * of the kernel that the pcb copy of the segment registers is the - * current one. This ensures the lwp's next trip to user land via - * update_sregs. Finally we set t_post_sys to ensure that no - * system call fast-path's its way out of the kernel via sysret. - * - * (This means that we need to have interrupts disabled when we - * test t->t_post_sys in the syscall handlers; if the test fails, - * we need to keep interrupts disabled until we return to userland - * so we can't be switched away.) - * - * As a result of all this, we don't really have to do a whole lot - * if the thread is just mucking about in the kernel, switching on - * and off the cpu for whatever reason it feels like. And yet we - * still preserve fast syscalls, cause if we -don't- get - * descheduled, we never come here either. - */ - -#define VALID_LWP_DESC(udp) ((udp)->usd_type == SDT_MEMRWA && \ - (udp)->usd_p == 1 && (udp)->usd_dpl == SEL_UPL) - -/*ARGSUSED*/ -void -lwp_segregs_save(klwp_t *lwp) -{ - pcb_t *pcb = &lwp->lwp_pcb; - struct regs *rp; - - ASSERT(VALID_LWP_DESC(&pcb->pcb_fsdesc)); - ASSERT(VALID_LWP_DESC(&pcb->pcb_gsdesc)); - - if (!PCB_NEED_UPDATE_SEGS(pcb)) { - rp = lwptoregs(lwp); - - /* - * If there's no update already pending, capture the current - * %ds/%es/%fs/%gs values from lwp's regs in case the user - * changed them; %fsbase and %gsbase are privileged so the - * kernel versions of these registers in pcb_fsbase and - * pcb_gsbase are always up-to-date. - */ - pcb->pcb_ds = rp->r_ds; - pcb->pcb_es = rp->r_es; - pcb->pcb_fs = rp->r_fs; - pcb->pcb_gs = rp->r_gs; - PCB_SET_UPDATE_SEGS(pcb); - lwp->lwp_thread->t_post_sys = 1; - } - -#if !defined(__xpv) /* XXPV not sure if we can re-read gdt? */ - ASSERT(bcmp(&CPU->cpu_gdt[GDT_LWPFS], &lwp->lwp_pcb.pcb_fsdesc, - sizeof (lwp->lwp_pcb.pcb_fsdesc)) == 0); - ASSERT(bcmp(&CPU->cpu_gdt[GDT_LWPGS], &lwp->lwp_pcb.pcb_gsdesc, - sizeof (lwp->lwp_pcb.pcb_gsdesc)) == 0); -#endif -} - -/* - * Update the segment registers with new values from the pcb. - * - * We have to do this carefully, and in the following order, - * in case any of the selectors points at a bogus descriptor. - * If they do, we'll catch trap with on_trap and return 1. - * returns 0 on success. - * - * This is particularly tricky for %gs. - * This routine must be executed under a cli. - */ -int -update_sregs(struct regs *rp, klwp_t *lwp) -{ - pcb_t *pcb = &lwp->lwp_pcb; - ulong_t kgsbase; - on_trap_data_t otd; - int rc = 0; - - if (!on_trap(&otd, OT_SEGMENT_ACCESS)) { - -#if defined(__xpv) - /* - * On the hyervisor this is easy. The hypercall below will - * swapgs and load %gs with the user selector. If the user - * selector is bad the hypervisor will catch the fault and - * load %gs with the null selector instead. Either way the - * kernel's gsbase is not damaged. - */ - kgsbase = (ulong_t)CPU; - if (HYPERVISOR_set_segment_base(SEGBASE_GS_USER_SEL, - pcb->pcb_gs) != 0) { - no_trap(); - return (1); - } - - rp->r_gs = pcb->pcb_gs; - ASSERT((cpu_t *)kgsbase == CPU); - -#else /* __xpv */ - - /* - * A little more complicated running native. - */ - kgsbase = (ulong_t)CPU; - __set_gs(pcb->pcb_gs); - - /* - * If __set_gs fails it's because the new %gs is a bad %gs, - * we'll be taking a trap but with the original %gs and %gsbase - * undamaged (i.e. pointing at curcpu). - * - * We've just mucked up the kernel's gsbase. Oops. In - * particular we can't take any traps at all. Make the newly - * computed gsbase be the hidden gs via swapgs, and fix - * the kernel's gsbase back again. Later, when we return to - * userland we'll swapgs again restoring gsbase just loaded - * above. - */ - __asm__ __volatile__("mfence; swapgs"); - - rp->r_gs = pcb->pcb_gs; - - /* - * Restore kernel's gsbase. Note that this also serializes any - * attempted speculation from loading the user-controlled - * %gsbase. - */ - wrmsr(MSR_AMD_GSBASE, kgsbase); - -#endif /* __xpv */ - - /* - * Only override the descriptor base address if - * r_gs == LWPGS_SEL or if r_gs == NULL. A note on - * NULL descriptors -- 32-bit programs take faults - * if they deference NULL descriptors; however, - * when 64-bit programs load them into %fs or %gs, - * they DONT fault -- only the base address remains - * whatever it was from the last load. Urk. - * - * XXX - note that lwp_setprivate now sets %fs/%gs to the - * null selector for 64 bit processes. Whereas before - * %fs/%gs were set to LWP(FS|GS)_SEL regardless of - * the process's data model. For now we check for both - * values so that the kernel can also support the older - * libc. This should be ripped out at some point in the - * future. - */ - if (pcb->pcb_gs == LWPGS_SEL || pcb->pcb_gs == 0) { -#if defined(__xpv) - if (HYPERVISOR_set_segment_base(SEGBASE_GS_USER, - pcb->pcb_gsbase)) { - no_trap(); - return (1); - } -#else - wrmsr(MSR_AMD_KGSBASE, pcb->pcb_gsbase); -#endif - } - - __set_ds(pcb->pcb_ds); - rp->r_ds = pcb->pcb_ds; - - __set_es(pcb->pcb_es); - rp->r_es = pcb->pcb_es; - - __set_fs(pcb->pcb_fs); - rp->r_fs = pcb->pcb_fs; - - /* - * Same as for %gs - */ - if (pcb->pcb_fs == LWPFS_SEL || pcb->pcb_fs == 0) { -#if defined(__xpv) - if (HYPERVISOR_set_segment_base(SEGBASE_FS, - pcb->pcb_fsbase)) { - no_trap(); - return (1); - } -#else - wrmsr(MSR_AMD_FSBASE, pcb->pcb_fsbase); -#endif - } - - } else { - cli(); - rc = 1; - } - no_trap(); - return (rc); -} - -/* - * Make sure any stale selectors are cleared from the segment registers - * by putting KDS_SEL (the kernel's default %ds gdt selector) into them. - * This is necessary because the kernel itself does not use %es, %fs, nor - * %ds. (%cs and %ss are necessary, and are set up by the kernel - along with - * %gs - to point to the current cpu struct.) If we enter kmdb while in the - * kernel and resume with a stale ldt or brandz selector sitting there in a - * segment register, kmdb will #gp fault if the stale selector points to, - * for example, an ldt in the context of another process. - * - * WARNING: Intel and AMD chips behave differently when storing - * the null selector into %fs and %gs while in long mode. On AMD - * chips fsbase and gsbase are not cleared. But on Intel chips, storing - * a null selector into %fs or %gs has the side effect of clearing - * fsbase or gsbase. For that reason we use KDS_SEL, which has - * consistent behavor between AMD and Intel. - * - * Caller responsible for preventing cpu migration. - */ -void -reset_sregs(void) -{ - ulong_t kgsbase = (ulong_t)CPU; - - ASSERT(curthread->t_preempt != 0 || getpil() >= DISP_LEVEL); - - cli(); - __set_gs(KGS_SEL); - - /* - * restore kernel gsbase - */ -#if defined(__xpv) - xen_set_segment_base(SEGBASE_GS_KERNEL, kgsbase); -#else - wrmsr(MSR_AMD_GSBASE, kgsbase); -#endif - - sti(); - - __set_ds(KDS_SEL); - __set_es(0 | SEL_KPL); /* selector RPL not ring 0 on hypervisor */ - __set_fs(KFS_SEL); -} - - -#ifdef _SYSCALL32_IMPL - -/* - * Make it impossible for a process to change its data model. - * We do this by toggling the present bits for the 32 and - * 64-bit user code descriptors. That way if a user lwp attempts - * to change its data model (by using the wrong code descriptor in - * %cs) it will fault immediately. This also allows us to simplify - * assertions and checks in the kernel. - */ - -static void -gdt_ucode_model(model_t model) -{ - kpreempt_disable(); - if (model == DATAMODEL_NATIVE) { - gdt_update_usegd(GDT_UCODE, &ucs_on); - gdt_update_usegd(GDT_U32CODE, &ucs32_off); - } else { - gdt_update_usegd(GDT_U32CODE, &ucs32_on); - gdt_update_usegd(GDT_UCODE, &ucs_off); - } - kpreempt_enable(); -} - -#endif /* _SYSCALL32_IMPL */ - -/* - * Restore lwp private fs and gs segment descriptors - * on current cpu's GDT. - */ -static void -lwp_segregs_restore(klwp_t *lwp) -{ - pcb_t *pcb = &lwp->lwp_pcb; - - ASSERT(VALID_LWP_DESC(&pcb->pcb_fsdesc)); - ASSERT(VALID_LWP_DESC(&pcb->pcb_gsdesc)); - -#ifdef _SYSCALL32_IMPL - gdt_ucode_model(DATAMODEL_NATIVE); -#endif - - gdt_update_usegd(GDT_LWPFS, &pcb->pcb_fsdesc); - gdt_update_usegd(GDT_LWPGS, &pcb->pcb_gsdesc); - -} - -#ifdef _SYSCALL32_IMPL - -static void -lwp_segregs_restore32(klwp_t *lwp) -{ - /*LINTED*/ - cpu_t *cpu = CPU; - pcb_t *pcb = &lwp->lwp_pcb; - - ASSERT(VALID_LWP_DESC(&lwp->lwp_pcb.pcb_fsdesc)); - ASSERT(VALID_LWP_DESC(&lwp->lwp_pcb.pcb_gsdesc)); - - gdt_ucode_model(DATAMODEL_ILP32); - gdt_update_usegd(GDT_LWPFS, &pcb->pcb_fsdesc); - gdt_update_usegd(GDT_LWPGS, &pcb->pcb_gsdesc); -} - -#endif /* _SYSCALL32_IMPL */ - -/* - * If this is a process in a branded zone, then we want it to use the brand - * syscall entry points instead of the standard Solaris entry points. This - * routine must be called when a new lwp is created within a branded zone - * or when an existing lwp moves into a branded zone via a zone_enter() - * operation. - */ -void -lwp_attach_brand_hdlrs(klwp_t *lwp) -{ - kthread_t *t = lwptot(lwp); - - ASSERT(PROC_IS_BRANDED(lwptoproc(lwp))); - - ASSERT(removectx(t, NULL, brand_interpositioning_disable, - brand_interpositioning_enable, NULL, NULL, - brand_interpositioning_disable, NULL) == 0); - installctx(t, NULL, brand_interpositioning_disable, - brand_interpositioning_enable, NULL, NULL, - brand_interpositioning_disable, NULL, NULL); - - if (t == curthread) { - kpreempt_disable(); - brand_interpositioning_enable(); - kpreempt_enable(); - } -} - -/* - * If this is a process in a branded zone, then we want it to disable the - * brand syscall entry points. This routine must be called when the last - * lwp in a process is exiting in proc_exit(). - */ -void -lwp_detach_brand_hdlrs(klwp_t *lwp) -{ - kthread_t *t = lwptot(lwp); - - ASSERT(PROC_IS_BRANDED(lwptoproc(lwp))); - if (t == curthread) - kpreempt_disable(); - - /* Remove the original context handlers */ - VERIFY(removectx(t, NULL, brand_interpositioning_disable, - brand_interpositioning_enable, NULL, NULL, - brand_interpositioning_disable, NULL) != 0); - - if (t == curthread) { - /* Cleanup our MSR and IDT entries. */ - brand_interpositioning_disable(); - kpreempt_enable(); - } -} - -/* - * Add any lwp-associated context handlers to the lwp at the beginning - * of the lwp's useful life. - * - * All paths which create lwp's invoke lwp_create(); lwp_create() - * invokes lwp_stk_init() which initializes the stack, sets up - * lwp_regs, and invokes this routine. - * - * All paths which destroy lwp's invoke lwp_exit() to rip the lwp - * apart and put it on 'lwp_deathrow'; if the lwp is destroyed it - * ends up in thread_free() which invokes freectx(t, 0) before - * invoking lwp_stk_fini(). When the lwp is recycled from death - * row, lwp_stk_fini() is invoked, then thread_free(), and thus - * freectx(t, 0) as before. - * - * In the case of exec, the surviving lwp is thoroughly scrubbed - * clean; exec invokes freectx(t, 1) to destroy associated contexts. - * On the way back to the new image, it invokes setregs() which - * in turn invokes this routine. - */ -void -lwp_installctx(klwp_t *lwp) -{ - kthread_t *t = lwptot(lwp); - int thisthread = t == curthread; -#ifdef _SYSCALL32_IMPL - void (*restop)(klwp_t *) = lwp_getdatamodel(lwp) == DATAMODEL_NATIVE ? - lwp_segregs_restore : lwp_segregs_restore32; -#else - void (*restop)(klwp_t *) = lwp_segregs_restore; -#endif - struct ctxop *ctx; - - /* - * Install the basic lwp context handlers on each lwp. - * - * On the amd64 kernel, the context handlers are responsible for - * virtualizing %ds, %es, %fs, and %gs to the lwp. The register - * values are only ever changed via sys_rtt when the - * PCB_UPDATE_SEGS bit (1) is set in pcb->pcb_rupdate. Only - * sys_rtt gets to clear the bit. - * - * On the i386 kernel, the context handlers are responsible for - * virtualizing %gs/%fs to the lwp by updating the per-cpu GDTs - */ - ASSERT(removectx(t, lwp, lwp_segregs_save, restop, - NULL, NULL, NULL, NULL) == 0); - if (thisthread) { - ctx = installctx_preallocate(); - kpreempt_disable(); - } else { - ctx = NULL; - } - installctx(t, lwp, lwp_segregs_save, restop, - NULL, NULL, NULL, NULL, ctx); - if (thisthread) { - /* - * Since we're the right thread, set the values in the GDT - */ - restop(lwp); - kpreempt_enable(); - } - - /* - * If we have sysenter/sysexit instructions enabled, we need - * to ensure that the hardware mechanism is kept up-to-date with the - * lwp's kernel stack pointer across context switches. - * - * sep_save zeros the sysenter stack pointer msr; sep_restore sets - * it to the lwp's kernel stack pointer (kstktop). - */ - if (is_x86_feature(x86_featureset, X86FSET_SEP)) { - caddr_t kstktop = (caddr_t)lwp->lwp_regs; - ASSERT(removectx(t, kstktop, - sep_save, sep_restore, NULL, NULL, NULL, NULL) == 0); - - if (thisthread) { - ctx = installctx_preallocate(); - kpreempt_disable(); - } else { - ctx = NULL; - } - installctx(t, kstktop, - sep_save, sep_restore, NULL, NULL, NULL, NULL, ctx); - if (thisthread) { - /* - * We're the right thread, so set the stack pointer - * for the first sysenter instruction to use - */ - sep_restore(kstktop); - kpreempt_enable(); - } - } - - if (PROC_IS_BRANDED(ttoproc(t))) - lwp_attach_brand_hdlrs(lwp); -} - -/* - * Clear registers on exec(2). - */ -void -setregs(uarg_t *args) -{ - struct regs *rp; - kthread_t *t = curthread; - klwp_t *lwp = ttolwp(t); - pcb_t *pcb = &lwp->lwp_pcb; - greg_t sp; - - /* - * Initialize user registers - */ - (void) save_syscall_args(); /* copy args from registers first */ - rp = lwptoregs(lwp); - sp = rp->r_sp; - bzero(rp, sizeof (*rp)); - - rp->r_ss = UDS_SEL; - rp->r_sp = sp; - rp->r_pc = args->entry; - rp->r_ps = PSL_USER; - - pcb->pcb_fs = pcb->pcb_gs = 0; - pcb->pcb_fsbase = pcb->pcb_gsbase = 0; - - if (ttoproc(t)->p_model == DATAMODEL_NATIVE) { - - rp->r_cs = UCS_SEL; - - /* - * Only allow 64-bit user code descriptor to be present. - */ - gdt_ucode_model(DATAMODEL_NATIVE); - - /* - * Arrange that the virtualized %fs and %gs GDT descriptors - * have a well-defined initial state (present, ring 3 - * and of type data). - */ - pcb->pcb_fsdesc = pcb->pcb_gsdesc = zero_udesc; - - /* - * thrptr is either NULL or a value used by DTrace. - * 64-bit processes use %fs as their "thread" register. - */ - if (args->thrptr) - (void) lwp_setprivate(lwp, _LWP_FSBASE, args->thrptr); - - } else { - - rp->r_cs = U32CS_SEL; - rp->r_ds = rp->r_es = UDS_SEL; - - /* - * only allow 32-bit user code selector to be present. - */ - gdt_ucode_model(DATAMODEL_ILP32); - - pcb->pcb_fsdesc = pcb->pcb_gsdesc = zero_u32desc; - - /* - * thrptr is either NULL or a value used by DTrace. - * 32-bit processes use %gs as their "thread" register. - */ - if (args->thrptr) - (void) lwp_setprivate(lwp, _LWP_GSBASE, args->thrptr); - - } - - pcb->pcb_ds = rp->r_ds; - pcb->pcb_es = rp->r_es; - PCB_SET_UPDATE_SEGS(pcb); - - lwp->lwp_eosys = JUSTRETURN; - t->t_post_sys = 1; - - /* - * Add the lwp context handlers that virtualize segment registers, - * and/or system call stacks etc. - */ - lwp_installctx(lwp); - - /* - * Reset the FPU flags and then initialize the FPU for this lwp. - */ - fp_exec(); -} - -user_desc_t * -cpu_get_gdt(void) -{ - return (CPU->cpu_gdt); -} - - -#if !defined(lwp_getdatamodel) - -/* - * Return the datamodel of the given lwp. - */ -/*ARGSUSED*/ -model_t -lwp_getdatamodel(klwp_t *lwp) -{ - return (lwp->lwp_procp->p_model); -} - -#endif /* !lwp_getdatamodel */ - -#if !defined(get_udatamodel) - -model_t -get_udatamodel(void) -{ - return (curproc->p_model); -} - -#endif /* !get_udatamodel */ diff --git a/usr/src/uts/intel/ia32/os/syscall.c b/usr/src/uts/intel/ia32/os/syscall.c deleted file mode 100644 index 6cf4293ff4..0000000000 --- a/usr/src/uts/intel/ia32/os/syscall.c +++ /dev/null @@ -1,1397 +0,0 @@ -/* - * CDDL HEADER START - * - * The contents of this file are subject to the terms of the - * Common Development and Distribution License (the "License"). - * You may not use this file except in compliance with the License. - * - * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE - * or http://www.opensolaris.org/os/licensing. - * See the License for the specific language governing permissions - * and limitations under the License. - * - * When distributing Covered Code, include this CDDL HEADER in each - * file and include the License file at usr/src/OPENSOLARIS.LICENSE. - * If applicable, add the following below this CDDL HEADER, with the - * fields enclosed by brackets "[]" replaced with your own identifying - * information: Portions Copyright [yyyy] [name of copyright owner] - * - * CDDL HEADER END - */ - -/* - * Copyright (c) 1992, 2010, Oracle and/or its affiliates. All rights reserved. - * Copyright 2019 Joyent, Inc. - */ - -#include <sys/param.h> -#include <sys/vmparam.h> -#include <sys/types.h> -#include <sys/sysmacros.h> -#include <sys/systm.h> -#include <sys/signal.h> -#include <sys/stack.h> -#include <sys/cred.h> -#include <sys/cmn_err.h> -#include <sys/user.h> -#include <sys/privregs.h> -#include <sys/psw.h> -#include <sys/debug.h> -#include <sys/errno.h> -#include <sys/proc.h> -#include <sys/modctl.h> -#include <sys/var.h> -#include <sys/inline.h> -#include <sys/syscall.h> -#include <sys/ucontext.h> -#include <sys/cpuvar.h> -#include <sys/siginfo.h> -#include <sys/trap.h> -#include <sys/vtrace.h> -#include <sys/sysinfo.h> -#include <sys/procfs.h> -#include <sys/prsystm.h> -#include <c2/audit.h> -#include <sys/modctl.h> -#include <sys/aio_impl.h> -#include <sys/tnf.h> -#include <sys/tnf_probe.h> -#include <sys/copyops.h> -#include <sys/priv.h> -#include <sys/msacct.h> - -int syscalltrace = 0; -#ifdef SYSCALLTRACE -static kmutex_t systrace_lock; /* syscall tracing lock */ -#else -#define syscalltrace 0 -#endif /* SYSCALLTRACE */ - -typedef int64_t (*llfcn_t)(); /* function returning long long */ - -int pre_syscall(void); -void post_syscall(long rval1, long rval2); -static krwlock_t *lock_syscall(struct sysent *, uint_t); -void deferred_singlestep_trap(caddr_t); - -#ifdef _SYSCALL32_IMPL -#define LWP_GETSYSENT(lwp) \ - (lwp_getdatamodel(lwp) == DATAMODEL_NATIVE ? sysent : sysent32) -#else -#define LWP_GETSYSENT(lwp) (sysent) -#endif - -/* - * If watchpoints are active, don't make copying in of - * system call arguments take a read watchpoint trap. - */ -static int -copyin_args(struct regs *rp, long *ap, uint_t nargs) -{ - greg_t *sp = 1 + (greg_t *)rp->r_sp; /* skip ret addr */ - - ASSERT(nargs <= MAXSYSARGS); - - return (copyin_nowatch(sp, ap, nargs * sizeof (*sp))); -} - -#if defined(_SYSCALL32_IMPL) -static int -copyin_args32(struct regs *rp, long *ap, uint_t nargs) -{ - greg32_t *sp = 1 + (greg32_t *)rp->r_sp; /* skip ret addr */ - uint32_t a32[MAXSYSARGS]; - int rc; - - ASSERT(nargs <= MAXSYSARGS); - - if ((rc = copyin_nowatch(sp, a32, nargs * sizeof (*sp))) == 0) { - uint32_t *a32p = &a32[0]; - - while (nargs--) - *ap++ = (ulong_t)*a32p++; - } - return (rc); -} -#define COPYIN_ARGS32 copyin_args32 -#else -#define COPYIN_ARGS32 copyin_args -#endif - -/* - * Error handler for system calls where arg copy gets fault. - */ -static longlong_t -syscall_err() -{ - return (0); -} - -/* - * Corresponding sysent entry to allow syscall_entry caller - * to invoke syscall_err. - */ -static struct sysent sysent_err = { - 0, SE_32RVAL1, NULL, NULL, (llfcn_t)syscall_err -}; - -/* - * Called from syscall() when a non-trivial 32-bit system call occurs. - * Sets up the args and returns a pointer to the handler. - */ -struct sysent * -syscall_entry(kthread_t *t, long *argp) -{ - klwp_t *lwp = ttolwp(t); - struct regs *rp = lwptoregs(lwp); - unsigned int code; - struct sysent *callp; - struct sysent *se = LWP_GETSYSENT(lwp); - int error = 0; - uint_t nargs; - - ASSERT(t == curthread && curthread->t_schedflag & TS_DONT_SWAP); - - lwp->lwp_ru.sysc++; - lwp->lwp_eosys = NORMALRETURN; /* assume this will be normal */ - - /* - * Set lwp_ap to point to the args, even if none are needed for this - * system call. This is for the loadable-syscall case where the - * number of args won't be known until the system call is loaded, and - * also maintains a non-NULL lwp_ap setup for get_syscall_args(). Note - * that lwp_ap MUST be set to a non-NULL value _BEFORE_ t_sysnum is - * set to non-zero; otherwise get_syscall_args(), seeing a non-zero - * t_sysnum for this thread, will charge ahead and dereference lwp_ap. - */ - lwp->lwp_ap = argp; /* for get_syscall_args */ - - code = rp->r_r0; - t->t_sysnum = (short)code; - callp = code >= NSYSCALL ? &nosys_ent : se + code; - - if ((t->t_pre_sys | syscalltrace) != 0) { - error = pre_syscall(); - - /* - * pre_syscall() has taken care so that lwp_ap is current; - * it either points to syscall-entry-saved amd64 regs, - * or it points to lwp_arg[], which has been re-copied from - * the ia32 ustack, but either way, it's a current copy after - * /proc has possibly mucked with the syscall args. - */ - - if (error) - return (&sysent_err); /* use dummy handler */ - } - - /* - * Fetch the system call arguments to the kernel stack copy used - * for syscall handling. - * Note: for loadable system calls the number of arguments required - * may not be known at this point, and will be zero if the system call - * was never loaded. Once the system call has been loaded, the number - * of args is not allowed to be changed. - */ - if ((nargs = (uint_t)callp->sy_narg) != 0 && - COPYIN_ARGS32(rp, argp, nargs)) { - (void) set_errno(EFAULT); - return (&sysent_err); /* use dummy handler */ - } - - return (callp); /* return sysent entry for caller */ -} - -void -syscall_exit(kthread_t *t, long rval1, long rval2) -{ - /* - * Handle signals and other post-call events if necessary. - */ - if ((t->t_post_sys_ast | syscalltrace) == 0) { - klwp_t *lwp = ttolwp(t); - struct regs *rp = lwptoregs(lwp); - - /* - * Normal return. - * Clear error indication and set return values. - */ - rp->r_ps &= ~PS_C; /* reset carry bit */ - rp->r_r0 = rval1; - rp->r_r1 = rval2; - lwp->lwp_state = LWP_USER; - } else { - post_syscall(rval1, rval2); - } - t->t_sysnum = 0; /* invalidate args */ -} - -/* - * Perform pre-system-call processing, including stopping for tracing, - * auditing, etc. - * - * This routine is called only if the t_pre_sys flag is set. Any condition - * requiring pre-syscall handling must set the t_pre_sys flag. If the - * condition is persistent, this routine will repost t_pre_sys. - */ -int -pre_syscall() -{ - kthread_t *t = curthread; - unsigned code = t->t_sysnum; - klwp_t *lwp = ttolwp(t); - proc_t *p = ttoproc(t); - int repost; - - t->t_pre_sys = repost = 0; /* clear pre-syscall processing flag */ - - ASSERT(t->t_schedflag & TS_DONT_SWAP); - -#if defined(DEBUG) - /* - * On the i386 kernel, lwp_ap points at the piece of the thread - * stack that we copy the users arguments into. - * - * On the amd64 kernel, the syscall arguments in the rdi..r9 - * registers should be pointed at by lwp_ap. If the args need to - * be copied so that those registers can be changed without losing - * the ability to get the args for /proc, they can be saved by - * save_syscall_args(), and lwp_ap will be restored by post_syscall(). - */ - if (lwp_getdatamodel(lwp) == DATAMODEL_NATIVE) { -#if defined(_LP64) - ASSERT(lwp->lwp_ap == (long *)&lwptoregs(lwp)->r_rdi); - } else { -#endif - ASSERT((caddr_t)lwp->lwp_ap > t->t_stkbase && - (caddr_t)lwp->lwp_ap < t->t_stk); - } -#endif /* DEBUG */ - - /* - * Make sure the thread is holding the latest credentials for the - * process. The credentials in the process right now apply to this - * thread for the entire system call. - */ - if (t->t_cred != p->p_cred) { - cred_t *oldcred = t->t_cred; - /* - * DTrace accesses t_cred in probe context. t_cred must - * always be either NULL, or point to a valid, allocated cred - * structure. - */ - t->t_cred = crgetcred(); - crfree(oldcred); - } - - /* - * From the proc(4) manual page: - * When entry to a system call is being traced, the traced process - * stops after having begun the call to the system but before the - * system call arguments have been fetched from the process. - */ - if (PTOU(p)->u_systrap) { - if (prismember(&PTOU(p)->u_entrymask, code)) { - mutex_enter(&p->p_lock); - /* - * Recheck stop condition, now that lock is held. - */ - if (PTOU(p)->u_systrap && - prismember(&PTOU(p)->u_entrymask, code)) { - stop(PR_SYSENTRY, code); - - /* - * /proc may have modified syscall args, - * either in regs for amd64 or on ustack - * for ia32. Either way, arrange to - * copy them again, both for the syscall - * handler and for other consumers in - * post_syscall (like audit). Here, we - * only do amd64, and just set lwp_ap - * back to the kernel-entry stack copy; - * the syscall ml code redoes - * move-from-regs to set up for the - * syscall handler after we return. For - * ia32, save_syscall_args() below makes - * an lwp_ap-accessible copy. - */ -#if defined(_LP64) - if (lwp_getdatamodel(lwp) == DATAMODEL_NATIVE) { - lwp->lwp_argsaved = 0; - lwp->lwp_ap = - (long *)&lwptoregs(lwp)->r_rdi; - } -#endif - } - mutex_exit(&p->p_lock); - } - repost = 1; - } - - /* - * ia32 kernel, or ia32 proc on amd64 kernel: keep args in - * lwp_arg for post-syscall processing, regardless of whether - * they might have been changed in /proc above. - */ -#if defined(_LP64) - if (lwp_getdatamodel(lwp) != DATAMODEL_NATIVE) -#endif - (void) save_syscall_args(); - - if (lwp->lwp_sysabort) { - /* - * lwp_sysabort may have been set via /proc while the process - * was stopped on PR_SYSENTRY. If so, abort the system call. - * Override any error from the copyin() of the arguments. - */ - lwp->lwp_sysabort = 0; - (void) set_errno(EINTR); /* forces post_sys */ - t->t_pre_sys = 1; /* repost anyway */ - return (1); /* don't do system call, return EINTR */ - } - - /* - * begin auditing for this syscall if the c2audit module is loaded - * and auditing is enabled - */ - if (audit_active == C2AUDIT_LOADED) { - uint32_t auditing = au_zone_getstate(NULL); - - if (auditing & AU_AUDIT_MASK) { - int error; - if (error = audit_start(T_SYSCALL, code, auditing, \ - 0, lwp)) { - t->t_pre_sys = 1; /* repost anyway */ - (void) set_errno(error); - return (1); - } - repost = 1; - } - } - -#ifndef NPROBE - /* Kernel probe */ - if (tnf_tracing_active) { - TNF_PROBE_1(syscall_start, "syscall thread", /* CSTYLED */, - tnf_sysnum, sysnum, t->t_sysnum); - t->t_post_sys = 1; /* make sure post_syscall runs */ - repost = 1; - } -#endif /* NPROBE */ - -#ifdef SYSCALLTRACE - if (syscalltrace) { - int i; - long *ap; - char *cp; - char *sysname; - struct sysent *callp; - - if (code >= NSYSCALL) - callp = &nosys_ent; /* nosys has no args */ - else - callp = LWP_GETSYSENT(lwp) + code; - (void) save_syscall_args(); - mutex_enter(&systrace_lock); - printf("%d: ", p->p_pid); - if (code >= NSYSCALL) { - printf("0x%x", code); - } else { - sysname = mod_getsysname(code); - printf("%s[0x%x/0x%p]", sysname == NULL ? "NULL" : - sysname, code, callp->sy_callc); - } - cp = "("; - for (i = 0, ap = lwp->lwp_ap; i < callp->sy_narg; i++, ap++) { - printf("%s%lx", cp, *ap); - cp = ", "; - } - if (i) - printf(")"); - printf(" %s id=0x%p\n", PTOU(p)->u_comm, curthread); - mutex_exit(&systrace_lock); - } -#endif /* SYSCALLTRACE */ - - /* - * If there was a continuing reason for pre-syscall processing, - * set the t_pre_sys flag for the next system call. - */ - if (repost) - t->t_pre_sys = 1; - lwp->lwp_error = 0; /* for old drivers */ - lwp->lwp_badpriv = PRIV_NONE; - return (0); -} - - -/* - * Post-syscall processing. Perform abnormal system call completion - * actions such as /proc tracing, profiling, signals, preemption, etc. - * - * This routine is called only if t_post_sys, t_sig_check, or t_astflag is set. - * Any condition requiring pre-syscall handling must set one of these. - * If the condition is persistent, this routine will repost t_post_sys. - */ -void -post_syscall(long rval1, long rval2) -{ - kthread_t *t = curthread; - klwp_t *lwp = ttolwp(t); - proc_t *p = ttoproc(t); - struct regs *rp = lwptoregs(lwp); - uint_t error; - uint_t code = t->t_sysnum; - int repost = 0; - int proc_stop = 0; /* non-zero if stopping */ - int sigprof = 0; /* non-zero if sending SIGPROF */ - - t->t_post_sys = 0; - - error = lwp->lwp_errno; - - /* - * Code can be zero if this is a new LWP returning after a forkall(), - * other than the one which matches the one in the parent which called - * forkall(). In these LWPs, skip most of post-syscall activity. - */ - if (code == 0) - goto sig_check; - /* - * If the trace flag is set, mark the lwp to take a single-step trap - * on return to user level (below). The x86 lcall interface and - * sysenter has already done this, and turned off the flag, but - * amd64 syscall interface has not. - */ - if (rp->r_ps & PS_T) { - lwp->lwp_pcb.pcb_flags |= DEBUG_PENDING; - rp->r_ps &= ~PS_T; - aston(curthread); - } - - /* put out audit record for this syscall */ - if (AU_AUDITING()) { - rval_t rval; - - /* XX64 -- truncation of 64-bit return values? */ - rval.r_val1 = (int)rval1; - rval.r_val2 = (int)rval2; - audit_finish(T_SYSCALL, code, error, &rval); - repost = 1; - } - - if (curthread->t_pdmsg != NULL) { - char *m = curthread->t_pdmsg; - - uprintf("%s", m); - kmem_free(m, strlen(m) + 1); - curthread->t_pdmsg = NULL; - } - - /* - * If we're going to stop for /proc tracing, set the flag and - * save the arguments so that the return values don't smash them. - */ - if (PTOU(p)->u_systrap) { - if (prismember(&PTOU(p)->u_exitmask, code)) { - if (lwp_getdatamodel(lwp) == DATAMODEL_LP64) - (void) save_syscall_args(); - proc_stop = 1; - } - repost = 1; - } - - /* - * Similarly check to see if SIGPROF might be sent. - */ - if (curthread->t_rprof != NULL && - curthread->t_rprof->rp_anystate != 0) { - if (lwp_getdatamodel(lwp) == DATAMODEL_LP64) - (void) save_syscall_args(); - sigprof = 1; - } - - if (lwp->lwp_eosys == NORMALRETURN) { - if (error == 0) { -#ifdef SYSCALLTRACE - if (syscalltrace) { - mutex_enter(&systrace_lock); - printf( - "%d: r_val1=0x%lx, r_val2=0x%lx, id 0x%p\n", - p->p_pid, rval1, rval2, curthread); - mutex_exit(&systrace_lock); - } -#endif /* SYSCALLTRACE */ - rp->r_ps &= ~PS_C; - rp->r_r0 = rval1; - rp->r_r1 = rval2; - } else { - int sig; -#ifdef SYSCALLTRACE - if (syscalltrace) { - mutex_enter(&systrace_lock); - printf("%d: error=%d, id 0x%p\n", - p->p_pid, error, curthread); - mutex_exit(&systrace_lock); - } -#endif /* SYSCALLTRACE */ - if (error == EINTR && t->t_activefd.a_stale) - error = EBADF; - if (error == EINTR && - (sig = lwp->lwp_cursig) != 0 && - sigismember(&PTOU(p)->u_sigrestart, sig) && - PTOU(p)->u_signal[sig - 1] != SIG_DFL && - PTOU(p)->u_signal[sig - 1] != SIG_IGN) - error = ERESTART; - rp->r_r0 = error; - rp->r_ps |= PS_C; - } - } - - /* - * From the proc(4) manual page: - * When exit from a system call is being traced, the traced process - * stops on completion of the system call just prior to checking for - * signals and returning to user level. At this point all return - * values have been stored into the traced process's saved registers. - */ - if (proc_stop) { - mutex_enter(&p->p_lock); - if (PTOU(p)->u_systrap && - prismember(&PTOU(p)->u_exitmask, code)) - stop(PR_SYSEXIT, code); - mutex_exit(&p->p_lock); - } - - /* - * If we are the parent returning from a successful - * vfork, wait for the child to exec or exit. - * This code must be here and not in the bowels of the system - * so that /proc can intercept exit from vfork in a timely way. - */ - if (t->t_flag & T_VFPARENT) { - ASSERT(code == SYS_vfork || code == SYS_forksys); - ASSERT(rp->r_r1 == 0 && error == 0); - vfwait((pid_t)rval1); - t->t_flag &= ~T_VFPARENT; - } - - /* - * If profiling is active, bill the current PC in user-land - * and keep reposting until profiling is disabled. - */ - if (p->p_prof.pr_scale) { - if (lwp->lwp_oweupc) - profil_tick(rp->r_pc); - repost = 1; - } - -sig_check: - /* - * Reset flag for next time. - * We must do this after stopping on PR_SYSEXIT - * because /proc uses the information in lwp_eosys. - */ - lwp->lwp_eosys = NORMALRETURN; - clear_stale_fd(); - t->t_flag &= ~T_FORKALL; - - if (t->t_astflag | t->t_sig_check) { - /* - * Turn off the AST flag before checking all the conditions that - * may have caused an AST. This flag is on whenever a signal or - * unusual condition should be handled after the next trap or - * syscall. - */ - astoff(t); - /* - * If a single-step trap occurred on a syscall (see trap()) - * recognize it now. Do this before checking for signals - * because deferred_singlestep_trap() may generate a SIGTRAP to - * the LWP or may otherwise mark the LWP to call issig(FORREAL). - */ - if (lwp->lwp_pcb.pcb_flags & DEBUG_PENDING) - deferred_singlestep_trap((caddr_t)rp->r_pc); - - t->t_sig_check = 0; - - /* - * The following check is legal for the following reasons: - * 1) The thread we are checking, is ourselves, so there is - * no way the proc can go away. - * 2) The only time we need to be protected by the - * lock is if the binding is changed. - * - * Note we will still take the lock and check the binding - * if the condition was true without the lock held. This - * prevents lock contention among threads owned by the - * same proc. - */ - - if (curthread->t_proc_flag & TP_CHANGEBIND) { - mutex_enter(&p->p_lock); - if (curthread->t_proc_flag & TP_CHANGEBIND) { - timer_lwpbind(); - curthread->t_proc_flag &= ~TP_CHANGEBIND; - } - mutex_exit(&p->p_lock); - } - - /* - * for kaio requests on the special kaio poll queue, - * copyout their results to user memory. - */ - if (p->p_aio) - aio_cleanup(0); - /* - * If this LWP was asked to hold, call holdlwp(), which will - * stop. holdlwps() sets this up and calls pokelwps() which - * sets the AST flag. - * - * Also check TP_EXITLWP, since this is used by fresh new LWPs - * through lwp_rtt(). That flag is set if the lwp_create(2) - * syscall failed after creating the LWP. - */ - if (ISHOLD(p) || (t->t_proc_flag & TP_EXITLWP)) - holdlwp(); - - /* - * All code that sets signals and makes ISSIG_PENDING - * evaluate true must set t_sig_check afterwards. - */ - if (ISSIG_PENDING(t, lwp, p)) { - if (issig(FORREAL)) - psig(); - t->t_sig_check = 1; /* recheck next time */ - } - - if (sigprof) { - int nargs = (code > 0 && code < NSYSCALL)? - LWP_GETSYSENT(lwp)[code].sy_narg : 0; - realsigprof(code, nargs, error); - t->t_sig_check = 1; /* recheck next time */ - } - - /* - * If a performance counter overflow interrupt was - * delivered *during* the syscall, then re-enable the - * AST so that we take a trip through trap() to cause - * the SIGEMT to be delivered. - */ - if (lwp->lwp_pcb.pcb_flags & CPC_OVERFLOW) - aston(t); - - /* - * /proc can't enable/disable the trace bit itself - * because that could race with the call gate used by - * system calls via "lcall". If that happened, an - * invalid EFLAGS would result. prstep()/prnostep() - * therefore schedule an AST for the purpose. - */ - if (lwp->lwp_pcb.pcb_flags & REQUEST_STEP) { - lwp->lwp_pcb.pcb_flags &= ~REQUEST_STEP; - rp->r_ps |= PS_T; - } - if (lwp->lwp_pcb.pcb_flags & REQUEST_NOSTEP) { - lwp->lwp_pcb.pcb_flags &= ~REQUEST_NOSTEP; - rp->r_ps &= ~PS_T; - } - } - - lwp->lwp_errno = 0; /* clear error for next time */ - -#ifndef NPROBE - /* Kernel probe */ - if (tnf_tracing_active) { - TNF_PROBE_3(syscall_end, "syscall thread", /* CSTYLED */, - tnf_long, rval1, rval1, - tnf_long, rval2, rval2, - tnf_long, errno, (long)error); - repost = 1; - } -#endif /* NPROBE */ - - /* - * Set state to LWP_USER here so preempt won't give us a kernel - * priority if it occurs after this point. Call CL_TRAPRET() to - * restore the user-level priority. - * - * It is important that no locks (other than spinlocks) be entered - * after this point before returning to user mode (unless lwp_state - * is set back to LWP_SYS). - * - * XXX Sampled times past this point are charged to the user. - */ - lwp->lwp_state = LWP_USER; - - if (t->t_trapret) { - t->t_trapret = 0; - thread_lock(t); - CL_TRAPRET(t); - thread_unlock(t); - } - if (CPU->cpu_runrun || t->t_schedflag & TS_ANYWAITQ) - preempt(); - prunstop(); - - lwp->lwp_errno = 0; /* clear error for next time */ - - /* - * The thread lock must be held in order to clear sysnum and reset - * lwp_ap atomically with respect to other threads in the system that - * may be looking at the args via lwp_ap from get_syscall_args(). - */ - - thread_lock(t); - t->t_sysnum = 0; /* no longer in a system call */ - - if (lwp_getdatamodel(lwp) == DATAMODEL_NATIVE) { -#if defined(_LP64) - /* - * In case the args were copied to the lwp, reset the - * pointer so the next syscall will have the right - * lwp_ap pointer. - */ - lwp->lwp_ap = (long *)&rp->r_rdi; - } else { -#endif - lwp->lwp_ap = NULL; /* reset on every syscall entry */ - } - thread_unlock(t); - - lwp->lwp_argsaved = 0; - - /* - * If there was a continuing reason for post-syscall processing, - * set the t_post_sys flag for the next system call. - */ - if (repost) - t->t_post_sys = 1; - - /* - * If there is a ustack registered for this lwp, and the stack rlimit - * has been altered, read in the ustack. If the saved stack rlimit - * matches the bounds of the ustack, update the ustack to reflect - * the new rlimit. If the new stack rlimit is RLIM_INFINITY, disable - * stack checking by setting the size to 0. - */ - if (lwp->lwp_ustack != 0 && lwp->lwp_old_stk_ctl != 0) { - rlim64_t new_size; - caddr_t top; - stack_t stk; - struct rlimit64 rl; - - mutex_enter(&p->p_lock); - new_size = p->p_stk_ctl; - top = p->p_usrstack; - (void) rctl_rlimit_get(rctlproc_legacy[RLIMIT_STACK], p, &rl); - mutex_exit(&p->p_lock); - - if (rl.rlim_cur == RLIM64_INFINITY) - new_size = 0; - - if (copyin((stack_t *)lwp->lwp_ustack, &stk, - sizeof (stack_t)) == 0 && - (stk.ss_size == lwp->lwp_old_stk_ctl || - stk.ss_size == 0) && - stk.ss_sp == top - stk.ss_size) { - stk.ss_sp = (void *)((uintptr_t)stk.ss_sp + - stk.ss_size - (uintptr_t)new_size); - stk.ss_size = new_size; - - (void) copyout(&stk, (stack_t *)lwp->lwp_ustack, - sizeof (stack_t)); - } - - lwp->lwp_old_stk_ctl = 0; - } -} - -/* - * Called from post_syscall() when a deferred singlestep is to be taken. - */ -void -deferred_singlestep_trap(caddr_t pc) -{ - proc_t *p = ttoproc(curthread); - klwp_t *lwp = ttolwp(curthread); - pcb_t *pcb = &lwp->lwp_pcb; - uint_t fault = 0; - k_siginfo_t siginfo; - - bzero(&siginfo, sizeof (siginfo)); - - /* - * If both NORMAL_STEP and WATCH_STEP are in - * effect, give precedence to WATCH_STEP. - * If neither is set, user must have set the - * PS_T bit in %efl; treat this as NORMAL_STEP. - */ - if ((fault = undo_watch_step(&siginfo)) == 0 && - ((pcb->pcb_flags & NORMAL_STEP) || - !(pcb->pcb_flags & WATCH_STEP))) { - siginfo.si_signo = SIGTRAP; - siginfo.si_code = TRAP_TRACE; - siginfo.si_addr = pc; - fault = FLTTRACE; - } - pcb->pcb_flags &= ~(DEBUG_PENDING|NORMAL_STEP|WATCH_STEP); - - if (fault) { - /* - * Remember the fault and fault adddress - * for real-time (SIGPROF) profiling. - */ - lwp->lwp_lastfault = fault; - lwp->lwp_lastfaddr = siginfo.si_addr; - /* - * If a debugger has declared this fault to be an - * event of interest, stop the lwp. Otherwise just - * deliver the associated signal. - */ - if (prismember(&p->p_fltmask, fault) && - stop_on_fault(fault, &siginfo) == 0) - siginfo.si_signo = 0; - } - - if (siginfo.si_signo) - trapsig(&siginfo, 1); -} - -/* - * nonexistent system call-- signal lwp (may want to handle it) - * flag error if lwp won't see signal immediately - */ -int64_t -nosys(void) -{ - tsignal(curthread, SIGSYS); - return (set_errno(ENOSYS)); -} - -int -nosys32(void) -{ - return (nosys()); -} - -/* - * Execute a 32-bit system call on behalf of the current thread. - */ -void -dosyscall(void) -{ - /* - * Need space on the stack to store syscall arguments. - */ - long syscall_args[MAXSYSARGS]; - struct sysent *se; - int64_t ret; - - syscall_mstate(LMS_TRAP, LMS_SYSTEM); - - ASSERT(curproc->p_model == DATAMODEL_ILP32); - - CPU_STATS_ENTER_K(); - CPU_STATS_ADDQ(CPU, sys, syscall, 1); - CPU_STATS_EXIT_K(); - - se = syscall_entry(curthread, syscall_args); - - /* - * syscall_entry() copied all 8 arguments into syscall_args. - */ - ret = se->sy_callc(syscall_args[0], syscall_args[1], syscall_args[2], - syscall_args[3], syscall_args[4], syscall_args[5], syscall_args[6], - syscall_args[7]); - - syscall_exit(curthread, (int)ret & 0xffffffffu, (int)(ret >> 32)); - syscall_mstate(LMS_SYSTEM, LMS_TRAP); -} - -/* - * Get the arguments to the current system call. See comment atop - * save_syscall_args() regarding lwp_ap usage. - */ - -uint_t -get_syscall_args(klwp_t *lwp, long *argp, int *nargsp) -{ - kthread_t *t = lwptot(lwp); - ulong_t mask = 0xfffffffful; - uint_t code; - long *ap; - int nargs; - -#if defined(_LP64) - if (lwp_getdatamodel(lwp) == DATAMODEL_LP64) - mask = 0xfffffffffffffffful; -#endif - - /* - * The thread lock must be held while looking at the arguments to ensure - * they don't go away via post_syscall(). - * get_syscall_args() is the only routine to read them which is callable - * outside the LWP in question and hence the only one that must be - * synchronized in this manner. - */ - thread_lock(t); - - code = t->t_sysnum; - ap = lwp->lwp_ap; - - thread_unlock(t); - - if (code != 0 && code < NSYSCALL) { - nargs = LWP_GETSYSENT(lwp)[code].sy_narg; - - ASSERT(nargs <= MAXSYSARGS); - - *nargsp = nargs; - while (nargs-- > 0) - *argp++ = *ap++ & mask; - } else { - *nargsp = 0; - } - - return (code); -} - -#ifdef _SYSCALL32_IMPL -/* - * Get the arguments to the current 32-bit system call. - */ -uint_t -get_syscall32_args(klwp_t *lwp, int *argp, int *nargsp) -{ - long args[MAXSYSARGS]; - uint_t i, code; - - code = get_syscall_args(lwp, args, nargsp); - - for (i = 0; i != *nargsp; i++) - *argp++ = (int)args[i]; - return (code); -} -#endif - -/* - * Save the system call arguments in a safe place. - * - * On the i386 kernel: - * - * Copy the users args prior to changing the stack or stack pointer. - * This is so /proc will be able to get a valid copy of the - * args from the user stack even after the user stack has been changed. - * Note that the kernel stack copy of the args may also have been - * changed by a system call handler which takes C-style arguments. - * - * Note that this may be called by stop() from trap(). In that case - * t_sysnum will be zero (syscall_exit clears it), so no args will be - * copied. - * - * On the amd64 kernel: - * - * For 64-bit applications, lwp->lwp_ap normally points to %rdi..%r9 - * in the reg structure. If the user is going to change the argument - * registers, rax, or the stack and might want to get the args (for - * /proc tracing), it must copy the args elsewhere via save_syscall_args(). - * - * For 32-bit applications, lwp->lwp_ap normally points to a copy of - * the system call arguments on the kernel stack made from the user - * stack. Copy the args prior to change the stack or stack pointer. - * This is so /proc will be able to get a valid copy of the args - * from the user stack even after that stack has been changed. - * - * This may be called from stop() even when we're not in a system call. - * Since there's no easy way to tell, this must be safe (not panic). - * If the copyins get data faults, return non-zero. - */ -int -save_syscall_args() -{ - kthread_t *t = curthread; - klwp_t *lwp = ttolwp(t); - uint_t code = t->t_sysnum; - uint_t nargs; - - if (lwp->lwp_argsaved || code == 0) - return (0); /* args already saved or not needed */ - - if (code >= NSYSCALL) { - nargs = 0; /* illegal syscall */ - } else { - struct sysent *se = LWP_GETSYSENT(lwp); - struct sysent *callp = se + code; - - nargs = callp->sy_narg; - if (LOADABLE_SYSCALL(callp) && nargs == 0) { - krwlock_t *module_lock; - - /* - * Find out how many arguments the system - * call uses. - * - * We have the property that loaded syscalls - * never change the number of arguments they - * use after they've been loaded once. This - * allows us to stop for /proc tracing without - * holding the module lock. - * /proc is assured that sy_narg is valid. - */ - module_lock = lock_syscall(se, code); - nargs = callp->sy_narg; - rw_exit(module_lock); - } - } - - /* - * Fetch the system call arguments. - */ - if (nargs == 0) - goto out; - - ASSERT(nargs <= MAXSYSARGS); - - if (lwp_getdatamodel(lwp) == DATAMODEL_NATIVE) { -#if defined(_LP64) - struct regs *rp = lwptoregs(lwp); - - lwp->lwp_arg[0] = rp->r_rdi; - lwp->lwp_arg[1] = rp->r_rsi; - lwp->lwp_arg[2] = rp->r_rdx; - lwp->lwp_arg[3] = rp->r_rcx; - lwp->lwp_arg[4] = rp->r_r8; - lwp->lwp_arg[5] = rp->r_r9; - if (nargs > 6 && copyin_args(rp, &lwp->lwp_arg[6], nargs - 6)) - return (-1); - } else { -#endif - if (COPYIN_ARGS32(lwptoregs(lwp), lwp->lwp_arg, nargs)) - return (-1); - } -out: - lwp->lwp_ap = lwp->lwp_arg; - lwp->lwp_argsaved = 1; - t->t_post_sys = 1; /* so lwp_ap will be reset */ - return (0); -} - -void -reset_syscall_args(void) -{ - ttolwp(curthread)->lwp_argsaved = 0; -} - -/* - * Call a system call which takes a pointer to the user args struct and - * a pointer to the return values. This is a bit slower than the standard - * C arg-passing method in some cases. - */ -int64_t -syscall_ap(void) -{ - uint_t error; - struct sysent *callp; - rval_t rval; - kthread_t *t = curthread; - klwp_t *lwp = ttolwp(t); - struct regs *rp = lwptoregs(lwp); - - callp = LWP_GETSYSENT(lwp) + t->t_sysnum; - - /* - * If the arguments don't fit in registers %rdi-%r9, make sure they - * have been copied to the lwp_arg array. - */ - if (callp->sy_narg > 6 && save_syscall_args()) - return ((int64_t)set_errno(EFAULT)); - - rval.r_val1 = 0; - rval.r_val2 = rp->r_r1; - lwp->lwp_error = 0; /* for old drivers */ - error = (*(callp->sy_call))(lwp->lwp_ap, &rval); - if (error) - return ((longlong_t)set_errno(error)); - return (rval.r_vals); -} - -/* - * Load system call module. - * Returns with pointer to held read lock for module. - */ -static krwlock_t * -lock_syscall(struct sysent *table, uint_t code) -{ - krwlock_t *module_lock; - struct modctl *modp; - int id; - struct sysent *callp; - - callp = table + code; - module_lock = callp->sy_lock; - - /* - * Optimization to only call modload if we don't have a loaded - * syscall. - */ - rw_enter(module_lock, RW_READER); - if (LOADED_SYSCALL(callp)) - return (module_lock); - rw_exit(module_lock); - - for (;;) { - if ((id = modload("sys", syscallnames[code])) == -1) - break; - - /* - * If we loaded successfully at least once, the modctl - * will still be valid, so we try to grab it by filename. - * If this call fails, it's because the mod_filename - * was changed after the call to modload() (mod_hold_by_name() - * is the likely culprit). We can safely just take - * another lap if this is the case; the modload() will - * change the mod_filename back to one by which we can - * find the modctl. - */ - modp = mod_find_by_filename("sys", syscallnames[code]); - - if (modp == NULL) - continue; - - mutex_enter(&mod_lock); - - if (!modp->mod_installed) { - mutex_exit(&mod_lock); - continue; - } - break; - } - rw_enter(module_lock, RW_READER); - - if (id != -1) - mutex_exit(&mod_lock); - - return (module_lock); -} - -/* - * Loadable syscall support. - * If needed, load the module, then reserve it by holding a read - * lock for the duration of the call. - * Later, if the syscall is not unloadable, it could patch the vector. - */ -/*ARGSUSED*/ -int64_t -loadable_syscall( - long a0, long a1, long a2, long a3, - long a4, long a5, long a6, long a7) -{ - klwp_t *lwp = ttolwp(curthread); - int64_t rval; - struct sysent *callp; - struct sysent *se = LWP_GETSYSENT(lwp); - krwlock_t *module_lock; - int code, error = 0; - - code = curthread->t_sysnum; - callp = se + code; - - /* - * Try to autoload the system call if necessary - */ - module_lock = lock_syscall(se, code); - - /* - * we've locked either the loaded syscall or nosys - */ - - if (lwp_getdatamodel(lwp) == DATAMODEL_NATIVE) { -#if defined(_LP64) - if (callp->sy_flags & SE_ARGC) { - rval = (int64_t)(*callp->sy_call)(a0, a1, a2, a3, - a4, a5); - } else { - rval = syscall_ap(); - } - } else { -#endif - /* - * Now that it's loaded, make sure enough args were copied. - */ - if (COPYIN_ARGS32(lwptoregs(lwp), lwp->lwp_ap, callp->sy_narg)) - error = EFAULT; - if (error) { - rval = set_errno(error); - } else if (callp->sy_flags & SE_ARGC) { - rval = (int64_t)(*callp->sy_call)(lwp->lwp_ap[0], - lwp->lwp_ap[1], lwp->lwp_ap[2], lwp->lwp_ap[3], - lwp->lwp_ap[4], lwp->lwp_ap[5]); - } else { - rval = syscall_ap(); - } - } - - rw_exit(module_lock); - return (rval); -} - -/* - * Indirect syscall handled in libc on x86 architectures - */ -int64_t -indir() -{ - return (nosys()); -} - -/* - * set_errno - set an error return from the current system call. - * This could be a macro. - * This returns the value it is passed, so that the caller can - * use tail-recursion-elimination and do return (set_errno(ERRNO)); - */ -uint_t -set_errno(uint_t error) -{ - ASSERT(error != 0); /* must not be used to clear errno */ - - curthread->t_post_sys = 1; /* have post_syscall do error return */ - return (ttolwp(curthread)->lwp_errno = error); -} - -/* - * set_proc_pre_sys - Set pre-syscall processing for entire process. - */ -void -set_proc_pre_sys(proc_t *p) -{ - kthread_t *t; - kthread_t *first; - - ASSERT(MUTEX_HELD(&p->p_lock)); - - t = first = p->p_tlist; - do { - t->t_pre_sys = 1; - } while ((t = t->t_forw) != first); -} - -/* - * set_proc_post_sys - Set post-syscall processing for entire process. - */ -void -set_proc_post_sys(proc_t *p) -{ - kthread_t *t; - kthread_t *first; - - ASSERT(MUTEX_HELD(&p->p_lock)); - - t = first = p->p_tlist; - do { - t->t_post_sys = 1; - } while ((t = t->t_forw) != first); -} - -/* - * set_proc_sys - Set pre- and post-syscall processing for entire process. - */ -void -set_proc_sys(proc_t *p) -{ - kthread_t *t; - kthread_t *first; - - ASSERT(MUTEX_HELD(&p->p_lock)); - - t = first = p->p_tlist; - do { - t->t_pre_sys = 1; - t->t_post_sys = 1; - } while ((t = t->t_forw) != first); -} - -/* - * set_all_proc_sys - set pre- and post-syscall processing flags for all - * user processes. - * - * This is needed when auditing, tracing, or other facilities which affect - * all processes are turned on. - */ -void -set_all_proc_sys() -{ - kthread_t *t; - kthread_t *first; - - mutex_enter(&pidlock); - t = first = curthread; - do { - t->t_pre_sys = 1; - t->t_post_sys = 1; - } while ((t = t->t_next) != first); - mutex_exit(&pidlock); -} - -/* - * set_all_zone_usr_proc_sys - set pre- and post-syscall processing flags for - * all user processes running in the zone of the current process - * - * This is needed when auditing, tracing, or other facilities which affect - * all processes are turned on. - */ -void -set_all_zone_usr_proc_sys(zoneid_t zoneid) -{ - proc_t *p; - kthread_t *t; - - mutex_enter(&pidlock); - for (p = practive; p != NULL; p = p->p_next) { - /* skip kernel and incomplete processes */ - if (p->p_exec == NULLVP || p->p_as == &kas || - p->p_stat == SIDL || p->p_stat == SZOMB || - (p->p_flag & (SSYS | SEXITING | SEXITLWPS))) - continue; - /* - * Only processes in the given zone (eventually in - * all zones) are taken into account - */ - if (zoneid == ALL_ZONES || p->p_zone->zone_id == zoneid) { - mutex_enter(&p->p_lock); - if ((t = p->p_tlist) == NULL) { - mutex_exit(&p->p_lock); - continue; - } - /* - * Set pre- and post-syscall processing flags - * for all threads of the process - */ - do { - t->t_pre_sys = 1; - t->t_post_sys = 1; - } while (p->p_tlist != (t = t->t_forw)); - mutex_exit(&p->p_lock); - } - } - mutex_exit(&pidlock); -} - -/* - * set_proc_ast - Set asynchronous service trap (AST) flag for all - * threads in process. - */ -void -set_proc_ast(proc_t *p) -{ - kthread_t *t; - kthread_t *first; - - ASSERT(MUTEX_HELD(&p->p_lock)); - - t = first = p->p_tlist; - do { - aston(t); - } while ((t = t->t_forw) != first); -} diff --git a/usr/src/uts/intel/ia32/os/sysi86.c b/usr/src/uts/intel/ia32/os/sysi86.c deleted file mode 100644 index b107afddfb..0000000000 --- a/usr/src/uts/intel/ia32/os/sysi86.c +++ /dev/null @@ -1,850 +0,0 @@ -/* - * CDDL HEADER START - * - * The contents of this file are subject to the terms of the - * Common Development and Distribution License (the "License"). - * You may not use this file except in compliance with the License. - * - * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE - * or http://www.opensolaris.org/os/licensing. - * See the License for the specific language governing permissions - * and limitations under the License. - * - * When distributing Covered Code, include this CDDL HEADER in each - * file and include the License file at usr/src/OPENSOLARIS.LICENSE. - * If applicable, add the following below this CDDL HEADER, with the - * fields enclosed by brackets "[]" replaced with your own identifying - * information: Portions Copyright [yyyy] [name of copyright owner] - * - * CDDL HEADER END - */ -/* - * Copyright (c) 1992, 2010, Oracle and/or its affiliates. All rights reserved. - * Copyright 2021 Joyent, Inc. - */ - -/* Copyright (c) 1990, 1991 UNIX System Laboratories, Inc. */ -/* Copyright (c) 1984, 1986, 1987, 1988, 1989, 1990 AT&T */ -/* All Rights Reserved */ - -/* Copyright (c) 1987, 1988 Microsoft Corporation */ -/* All Rights Reserved */ - -#include <sys/param.h> -#include <sys/types.h> -#include <sys/sysmacros.h> -#include <sys/systm.h> -#include <sys/signal.h> -#include <sys/errno.h> -#include <sys/fault.h> -#include <sys/syscall.h> -#include <sys/cpuvar.h> -#include <sys/sysi86.h> -#include <sys/psw.h> -#include <sys/cred.h> -#include <sys/policy.h> -#include <sys/thread.h> -#include <sys/debug.h> -#include <sys/ontrap.h> -#include <sys/privregs.h> -#include <sys/x86_archext.h> -#include <sys/vmem.h> -#include <sys/kmem.h> -#include <sys/mman.h> -#include <sys/archsystm.h> -#include <vm/hat.h> -#include <vm/as.h> -#include <vm/seg.h> -#include <vm/seg_kmem.h> -#include <vm/faultcode.h> -#include <sys/fp.h> -#include <sys/cmn_err.h> -#include <sys/segments.h> -#include <sys/clock.h> -#include <vm/hat_i86.h> -#if defined(__xpv) -#include <sys/hypervisor.h> -#include <sys/note.h> -#endif - -static void ldt_alloc(proc_t *, uint_t); -static void ldt_free(proc_t *); -static void ldt_dup(proc_t *, proc_t *); -static void ldt_grow(proc_t *, uint_t); - -/* - * sysi86 System Call - */ - -/* ARGSUSED */ -int -sysi86(short cmd, uintptr_t arg1, uintptr_t arg2, uintptr_t arg3) -{ - struct ssd ssd; - int error = 0; - int c; - proc_t *pp = curproc; - - switch (cmd) { - - /* - * The SI86V86 subsystem call of the SYSI86 system call - * supports only one subcode -- V86SC_IOPL. - */ - case SI86V86: - if (arg1 == V86SC_IOPL) { -#if defined(__xpv) - struct ctxop *ctx; -#endif - struct regs *rp = lwptoregs(ttolwp(curthread)); - greg_t oldpl = rp->r_ps & PS_IOPL; - greg_t newpl = arg2 & PS_IOPL; - - /* - * Must be privileged to run this system call - * if giving more io privilege. - */ - if (newpl > oldpl && (error = - secpolicy_sys_config(CRED(), B_FALSE)) != 0) - return (set_errno(error)); -#if defined(__xpv) - ctx = installctx_preallocate(); - kpreempt_disable(); - installctx(curthread, NULL, xen_disable_user_iopl, - xen_enable_user_iopl, NULL, NULL, - xen_disable_user_iopl, NULL, ctx); - xen_enable_user_iopl(); - kpreempt_enable(); -#else - rp->r_ps ^= oldpl ^ newpl; -#endif - } else - error = EINVAL; - break; - - /* - * Set a segment descriptor - */ - case SI86DSCR: - /* - * There are considerable problems here manipulating - * resources shared by many running lwps. Get everyone - * into a safe state before changing the LDT. - */ - if (curthread != pp->p_agenttp && !holdlwps(SHOLDFORK1)) { - error = EINTR; - break; - } - - if (get_udatamodel() == DATAMODEL_LP64) { - error = EINVAL; - break; - } - - if (copyin((caddr_t)arg1, &ssd, sizeof (ssd)) < 0) { - error = EFAULT; - break; - } - - error = setdscr(&ssd); - - mutex_enter(&pp->p_lock); - if (curthread != pp->p_agenttp) - continuelwps(pp); - mutex_exit(&pp->p_lock); - break; - - case SI86FPHW: - c = fp_kind & 0xff; - if (suword32((void *)arg1, c) == -1) - error = EFAULT; - break; - - case SI86FPSTART: - /* - * arg1 is the address of _fp_hw - * arg2 is the desired x87 FCW value - * arg3 is the desired SSE MXCSR value - * a return value of one means SSE hardware, else none. - */ - c = fp_kind & 0xff; - if (suword32((void *)arg1, c) == -1) { - error = EFAULT; - break; - } - fpsetcw((uint16_t)arg2, (uint32_t)arg3); - return ((fp_kind & __FP_SSE) ? 1 : 0); - - /* real time clock management commands */ - - case WTODC: - if ((error = secpolicy_settime(CRED())) == 0) { - timestruc_t ts; - mutex_enter(&tod_lock); - gethrestime(&ts); - tod_set(ts); - mutex_exit(&tod_lock); - } - break; - -/* Give some timezone playing room */ -#define ONEWEEK (7 * 24 * 60 * 60) - - case SGMTL: - /* - * Called from 32 bit land, negative values - * are not sign extended, so we do that here - * by casting it to an int and back. We also - * clamp the value to within reason and detect - * when a 64 bit call overflows an int. - */ - if ((error = secpolicy_settime(CRED())) == 0) { - int newlag = (int)arg1; - -#ifdef _SYSCALL32_IMPL - if (get_udatamodel() == DATAMODEL_NATIVE && - (long)newlag != (long)arg1) { - error = EOVERFLOW; - } else -#endif - if (newlag >= -ONEWEEK && newlag <= ONEWEEK) - sgmtl(newlag); - else - error = EOVERFLOW; - } - break; - - case GGMTL: - if (get_udatamodel() == DATAMODEL_NATIVE) { - if (sulword((void *)arg1, ggmtl()) == -1) - error = EFAULT; -#ifdef _SYSCALL32_IMPL - } else { - time_t gmtl; - - if ((gmtl = ggmtl()) > INT32_MAX) { - /* - * Since gmt_lag can at most be - * +/- 12 hours, something is - * *seriously* messed up here. - */ - error = EOVERFLOW; - } else if (suword32((void *)arg1, (int32_t)gmtl) == -1) - error = EFAULT; -#endif - } - break; - - case RTCSYNC: - if ((error = secpolicy_settime(CRED())) == 0) - rtcsync(); - break; - - /* END OF real time clock management commands */ - - default: - error = EINVAL; - break; - } - return (error == 0 ? 0 : set_errno(error)); -} - -void -usd_to_ssd(user_desc_t *usd, struct ssd *ssd, selector_t sel) -{ - ssd->bo = USEGD_GETBASE(usd); - ssd->ls = USEGD_GETLIMIT(usd); - ssd->sel = sel; - - /* - * set type, dpl and present bits. - */ - ssd->acc1 = usd->usd_type; - ssd->acc1 |= usd->usd_dpl << 5; - ssd->acc1 |= usd->usd_p << (5 + 2); - - /* - * set avl, DB and granularity bits. - */ - ssd->acc2 = usd->usd_avl; - - ssd->acc2 |= usd->usd_long << 1; - - ssd->acc2 |= usd->usd_def32 << (1 + 1); - ssd->acc2 |= usd->usd_gran << (1 + 1 + 1); -} - -static void -ssd_to_usd(struct ssd *ssd, user_desc_t *usd) -{ - - ASSERT(bcmp(usd, &null_udesc, sizeof (*usd)) == 0); - - USEGD_SETBASE(usd, ssd->bo); - USEGD_SETLIMIT(usd, ssd->ls); - - /* - * Set type, dpl and present bits. - * - * Force the "accessed" bit to on so that we don't run afoul of - * KPTI. - */ - usd->usd_type = ssd->acc1 | SDT_A; - usd->usd_dpl = ssd->acc1 >> 5; - usd->usd_p = ssd->acc1 >> (5 + 2); - - ASSERT(usd->usd_type >= SDT_MEMRO); - ASSERT(usd->usd_dpl == SEL_UPL); - - /* - * 64-bit code selectors are never allowed in the LDT. - * Reserved bit is always 0 on 32-bit systems. - */ - usd->usd_long = 0; - - /* - * set avl, DB and granularity bits. - */ - usd->usd_avl = ssd->acc2; - usd->usd_def32 = ssd->acc2 >> (1 + 1); - usd->usd_gran = ssd->acc2 >> (1 + 1 + 1); -} - - - -/* - * Load LDT register with the current process's LDT. - */ -static void -ldt_load(void) -{ -#if defined(__xpv) - xen_set_ldt(curproc->p_ldt, curproc->p_ldtlimit + 1); -#else - size_t len; - system_desc_t desc; - - /* - * Before we can use the LDT on this CPU, we must install the LDT in the - * user mapping table. - */ - len = (curproc->p_ldtlimit + 1) * sizeof (user_desc_t); - bcopy(curproc->p_ldt, CPU->cpu_m.mcpu_ldt, len); - CPU->cpu_m.mcpu_ldt_len = len; - set_syssegd(&desc, CPU->cpu_m.mcpu_ldt, len - 1, SDT_SYSLDT, SEL_KPL); - *((system_desc_t *)&CPU->cpu_gdt[GDT_LDT]) = desc; - - wr_ldtr(ULDT_SEL); -#endif -} - -/* - * Store a NULL selector in the LDTR. All subsequent illegal references to - * the LDT will result in a #gp. - */ -void -ldt_unload(void) -{ -#if defined(__xpv) - xen_set_ldt(NULL, 0); -#else - *((system_desc_t *)&CPU->cpu_gdt[GDT_LDT]) = null_sdesc; - wr_ldtr(0); - - bzero(CPU->cpu_m.mcpu_ldt, CPU->cpu_m.mcpu_ldt_len); - CPU->cpu_m.mcpu_ldt_len = 0; -#endif -} - -/*ARGSUSED*/ -static void -ldt_savectx(proc_t *p) -{ - ASSERT(p->p_ldt != NULL); - ASSERT(p == curproc); - - /* - * The 64-bit kernel must be sure to clear any stale ldt - * selectors when context switching away from a process that - * has a private ldt. Consider the following example: - * - * Wine creats a ldt descriptor and points a segment register - * to it. - * - * We then context switch away from wine lwp to kernel - * thread and hit breakpoint in kernel with kmdb - * - * When we continue and resume from kmdb we will #gp - * fault since kmdb will have saved the stale ldt selector - * from wine and will try to restore it but we are no longer in - * the context of the wine process and do not have our - * ldtr register pointing to the private ldt. - */ - reset_sregs(); - - ldt_unload(); - cpu_fast_syscall_enable(); -} - -static void -ldt_restorectx(proc_t *p) -{ - ASSERT(p->p_ldt != NULL); - ASSERT(p == curproc); - - ldt_load(); - cpu_fast_syscall_disable(); -} - -/* - * At exec time, we need to clear up our LDT context and re-enable fast syscalls - * for the new process image. - * - * The same is true for the other case, where we have: - * - * proc_exit() - * ->exitpctx()->ldt_savectx() - * ->freepctx()->ldt_freectx() - * - * Because pre-emption is not prevented between the two callbacks, we could have - * come off CPU, and brought back LDT context when coming back on CPU via - * ldt_restorectx(). - */ -/* ARGSUSED */ -static void -ldt_freectx(proc_t *p, int isexec) -{ - ASSERT(p->p_ldt != NULL); - ASSERT(p == curproc); - - kpreempt_disable(); - ldt_free(p); - cpu_fast_syscall_enable(); - kpreempt_enable(); -} - -/* - * Install ctx op that ensures syscall/sysenter are disabled. - * See comments below. - * - * When a thread with a private LDT forks, the new process - * must have the LDT context ops installed. - */ -/* ARGSUSED */ -static void -ldt_installctx(proc_t *p, proc_t *cp) -{ - proc_t *targ = p; - kthread_t *t; - - /* - * If this is a fork, operate on the child process. - */ - if (cp != NULL) { - targ = cp; - ldt_dup(p, cp); - } - - /* - * The process context ops expect the target process as their argument. - */ - ASSERT(removepctx(targ, targ, ldt_savectx, ldt_restorectx, - ldt_installctx, ldt_savectx, ldt_freectx) == 0); - - installpctx(targ, targ, ldt_savectx, ldt_restorectx, - ldt_installctx, ldt_savectx, ldt_freectx); - - /* - * We've just disabled fast system call and return instructions; take - * the slow path out to make sure we don't try to use one to return - * back to user. We must set t_post_sys for every thread in the - * process to make sure none of them escape out via fast return. - */ - - mutex_enter(&targ->p_lock); - t = targ->p_tlist; - do { - t->t_post_sys = 1; - } while ((t = t->t_forw) != targ->p_tlist); - mutex_exit(&targ->p_lock); -} - -int -setdscr(struct ssd *ssd) -{ - ushort_t seli; /* selector index */ - user_desc_t *ldp; /* descriptor pointer */ - user_desc_t ndesc; /* new descriptor */ - proc_t *pp = curproc; - int rc = 0; - - /* - * LDT segments: executable and data at DPL 3 only. - */ - if (!SELISLDT(ssd->sel) || !SELISUPL(ssd->sel)) - return (EINVAL); - - /* - * check the selector index. - */ - seli = SELTOIDX(ssd->sel); - if (seli >= MAXNLDT || seli < LDT_UDBASE) - return (EINVAL); - - ndesc = null_udesc; - mutex_enter(&pp->p_ldtlock); - - /* - * If this is the first time for this process then setup a - * private LDT for it. - */ - if (pp->p_ldt == NULL) { - ldt_alloc(pp, seli); - - /* - * Now that this process has a private LDT, the use of - * the syscall/sysret and sysenter/sysexit instructions - * is forbidden for this processes because they destroy - * the contents of %cs and %ss segment registers. - * - * Explicity disable them here and add a context handler - * to the process. Note that disabling - * them here means we can't use sysret or sysexit on - * the way out of this system call - so we force this - * thread to take the slow path (which doesn't make use - * of sysenter or sysexit) back out. - */ - kpreempt_disable(); - ldt_installctx(pp, NULL); - cpu_fast_syscall_disable(); - ASSERT(curthread->t_post_sys != 0); - kpreempt_enable(); - - } else if (seli > pp->p_ldtlimit) { - ASSERT(pp->p_pctx != NULL); - - /* - * Increase size of ldt to include seli. - */ - ldt_grow(pp, seli); - } - - ASSERT(seli <= pp->p_ldtlimit); - ldp = &pp->p_ldt[seli]; - - /* - * On the 64-bit kernel, this is where things get more subtle. - * Recall that in the 64-bit kernel, when we enter the kernel we - * deliberately -don't- reload the segment selectors we came in on - * for %ds, %es, %fs or %gs. Messing with selectors is expensive, - * and the underlying descriptors are essentially ignored by the - * hardware in long mode - except for the base that we override with - * the gsbase MSRs. - * - * However, there's one unfortunate issue with this rosy picture -- - * a descriptor that's not marked as 'present' will still generate - * an #np when loading a segment register. - * - * Consider this case. An lwp creates a harmless LDT entry, points - * one of it's segment registers at it, then tells the kernel (here) - * to delete it. In the 32-bit kernel, the #np will happen on the - * way back to userland where we reload the segment registers, and be - * handled in kern_gpfault(). In the 64-bit kernel, the same thing - * will happen in the normal case too. However, if we're trying to - * use a debugger that wants to save and restore the segment registers, - * and the debugger things that we have valid segment registers, we - * have the problem that the debugger will try and restore the - * segment register that points at the now 'not present' descriptor - * and will take a #np right there. - * - * We should obviously fix the debugger to be paranoid about - * -not- restoring segment registers that point to bad descriptors; - * however we can prevent the problem here if we check to see if any - * of the segment registers are still pointing at the thing we're - * destroying; if they are, return an error instead. (That also seems - * a lot better failure mode than SIGKILL and a core file - * from kern_gpfault() too.) - */ - if (SI86SSD_PRES(ssd) == 0) { - kthread_t *t; - int bad = 0; - - /* - * Look carefully at the segment registers of every lwp - * in the process (they're all stopped by our caller). - * If we're about to invalidate a descriptor that's still - * being referenced by *any* of them, return an error, - * rather than having them #gp on their way out of the kernel. - */ - ASSERT(pp->p_lwprcnt == 1); - - mutex_enter(&pp->p_lock); - t = pp->p_tlist; - do { - klwp_t *lwp = ttolwp(t); - struct regs *rp = lwp->lwp_regs; - pcb_t *pcb = &lwp->lwp_pcb; - - if (ssd->sel == rp->r_cs || ssd->sel == rp->r_ss) { - bad = 1; - break; - } - - if (PCB_NEED_UPDATE_SEGS(pcb)) { - if (ssd->sel == pcb->pcb_ds || - ssd->sel == pcb->pcb_es || - ssd->sel == pcb->pcb_fs || - ssd->sel == pcb->pcb_gs) { - bad = 1; - break; - } - } else { - if (ssd->sel == rp->r_ds || - ssd->sel == rp->r_es || - ssd->sel == rp->r_fs || - ssd->sel == rp->r_gs) { - bad = 1; - break; - } - } - - } while ((t = t->t_forw) != pp->p_tlist); - mutex_exit(&pp->p_lock); - - if (bad) { - mutex_exit(&pp->p_ldtlock); - return (EBUSY); - } - } - - /* - * If acc1 is zero, clear the descriptor (including the 'present' bit). - * Make sure we update the CPU-private copy of the LDT. - */ - if (ssd->acc1 == 0) { - rc = ldt_update_segd(ldp, &null_udesc); - kpreempt_disable(); - ldt_load(); - kpreempt_enable(); - mutex_exit(&pp->p_ldtlock); - return (rc); - } - - /* - * Check segment type, allow segment not present and - * only user DPL (3). - */ - if (SI86SSD_DPL(ssd) != SEL_UPL) { - mutex_exit(&pp->p_ldtlock); - return (EINVAL); - } - - /* - * Do not allow 32-bit applications to create 64-bit mode code - * segments. - */ - if (SI86SSD_ISUSEG(ssd) && ((SI86SSD_TYPE(ssd) >> 3) & 1) == 1 && - SI86SSD_ISLONG(ssd)) { - mutex_exit(&pp->p_ldtlock); - return (EINVAL); - } - - /* - * Set up a code or data user segment descriptor, making sure to update - * the CPU-private copy of the LDT. - */ - if (SI86SSD_ISUSEG(ssd)) { - ssd_to_usd(ssd, &ndesc); - rc = ldt_update_segd(ldp, &ndesc); - kpreempt_disable(); - ldt_load(); - kpreempt_enable(); - mutex_exit(&pp->p_ldtlock); - return (rc); - } - - mutex_exit(&pp->p_ldtlock); - return (EINVAL); -} - -/* - * Allocate new LDT for process just large enough to contain seli. Note we - * allocate and grow LDT in PAGESIZE chunks. We do this to simplify the - * implementation and because on the hypervisor it's required, since the LDT - * must live on pages that have PROT_WRITE removed and which are given to the - * hypervisor. - * - * Note that we don't actually load the LDT into the current CPU here: it's done - * later by our caller. - */ -static void -ldt_alloc(proc_t *pp, uint_t seli) -{ - user_desc_t *ldt; - size_t ldtsz; - uint_t nsels; - - ASSERT(MUTEX_HELD(&pp->p_ldtlock)); - ASSERT(pp->p_ldt == NULL); - ASSERT(pp->p_ldtlimit == 0); - - /* - * Allocate new LDT just large enough to contain seli. The LDT must - * always be allocated in units of pages for KPTI. - */ - ldtsz = P2ROUNDUP((seli + 1) * sizeof (user_desc_t), PAGESIZE); - nsels = ldtsz / sizeof (user_desc_t); - ASSERT(nsels >= MINNLDT && nsels <= MAXNLDT); - - ldt = kmem_zalloc(ldtsz, KM_SLEEP); - ASSERT(IS_P2ALIGNED(ldt, PAGESIZE)); - -#if defined(__xpv) - if (xen_ldt_setprot(ldt, ldtsz, PROT_READ)) - panic("ldt_alloc:xen_ldt_setprot(PROT_READ) failed"); -#endif - - pp->p_ldt = ldt; - pp->p_ldtlimit = nsels - 1; -} - -static void -ldt_free(proc_t *pp) -{ - user_desc_t *ldt; - size_t ldtsz; - - ASSERT(pp->p_ldt != NULL); - - mutex_enter(&pp->p_ldtlock); - ldt = pp->p_ldt; - ldtsz = (pp->p_ldtlimit + 1) * sizeof (user_desc_t); - - ASSERT(IS_P2ALIGNED(ldtsz, PAGESIZE)); - - pp->p_ldt = NULL; - pp->p_ldtlimit = 0; - mutex_exit(&pp->p_ldtlock); - - if (pp == curproc) { - kpreempt_disable(); - ldt_unload(); - kpreempt_enable(); - } - -#if defined(__xpv) - /* - * We are not allowed to make the ldt writable until after - * we tell the hypervisor to unload it. - */ - if (xen_ldt_setprot(ldt, ldtsz, PROT_READ | PROT_WRITE)) - panic("ldt_free:xen_ldt_setprot(PROT_READ|PROT_WRITE) failed"); -#endif - - kmem_free(ldt, ldtsz); -} - -/* - * On fork copy new ldt for child. - */ -static void -ldt_dup(proc_t *pp, proc_t *cp) -{ - size_t ldtsz; - - ASSERT(pp->p_ldt != NULL); - ASSERT(cp != curproc); - - /* - * I assume the parent's ldt can't increase since we're in a fork. - */ - mutex_enter(&pp->p_ldtlock); - mutex_enter(&cp->p_ldtlock); - - ldtsz = (pp->p_ldtlimit + 1) * sizeof (user_desc_t); - - ldt_alloc(cp, pp->p_ldtlimit); - -#if defined(__xpv) - /* - * Make child's ldt writable so it can be copied into from - * parent's ldt. This works since ldt_alloc above did not load - * the ldt since its for the child process. If we tried to make - * an LDT writable that is loaded in hw the setprot operation - * would fail. - */ - if (xen_ldt_setprot(cp->p_ldt, ldtsz, PROT_READ | PROT_WRITE)) - panic("ldt_dup:xen_ldt_setprot(PROT_READ|PROT_WRITE) failed"); -#endif - - bcopy(pp->p_ldt, cp->p_ldt, ldtsz); - -#if defined(__xpv) - if (xen_ldt_setprot(cp->p_ldt, ldtsz, PROT_READ)) - panic("ldt_dup:xen_ldt_setprot(PROT_READ) failed"); -#endif - mutex_exit(&cp->p_ldtlock); - mutex_exit(&pp->p_ldtlock); - -} - -/* - * Note that we don't actually load the LDT into the current CPU here: it's done - * later by our caller - unless we take an error. This works out because - * ldt_load() does a copy of ->p_ldt instead of directly loading it into the GDT - * (and therefore can't be using the freed old LDT), and by definition if the - * new entry didn't pass validation, then the proc shouldn't be referencing an - * entry in the extended region. - */ -static void -ldt_grow(proc_t *pp, uint_t seli) -{ - user_desc_t *oldt, *nldt; - uint_t nsels; - size_t oldtsz, nldtsz; - - ASSERT(MUTEX_HELD(&pp->p_ldtlock)); - ASSERT(pp->p_ldt != NULL); - ASSERT(pp->p_ldtlimit != 0); - - /* - * Allocate larger LDT just large enough to contain seli. The LDT must - * always be allocated in units of pages for KPTI. - */ - nldtsz = P2ROUNDUP((seli + 1) * sizeof (user_desc_t), PAGESIZE); - nsels = nldtsz / sizeof (user_desc_t); - ASSERT(nsels >= MINNLDT && nsels <= MAXNLDT); - ASSERT(nsels > pp->p_ldtlimit); - - oldt = pp->p_ldt; - oldtsz = (pp->p_ldtlimit + 1) * sizeof (user_desc_t); - - nldt = kmem_zalloc(nldtsz, KM_SLEEP); - ASSERT(IS_P2ALIGNED(nldt, PAGESIZE)); - - bcopy(oldt, nldt, oldtsz); - - /* - * unload old ldt. - */ - kpreempt_disable(); - ldt_unload(); - kpreempt_enable(); - -#if defined(__xpv) - - /* - * Make old ldt writable and new ldt read only. - */ - if (xen_ldt_setprot(oldt, oldtsz, PROT_READ | PROT_WRITE)) - panic("ldt_grow:xen_ldt_setprot(PROT_READ|PROT_WRITE) failed"); - - if (xen_ldt_setprot(nldt, nldtsz, PROT_READ)) - panic("ldt_grow:xen_ldt_setprot(PROT_READ) failed"); -#endif - - pp->p_ldt = nldt; - pp->p_ldtlimit = nsels - 1; - - kmem_free(oldt, oldtsz); -} |