summaryrefslogtreecommitdiff
path: root/usr/src/uts/intel/ia32/os
diff options
context:
space:
mode:
authorRichard Lowe <richlowe@richlowe.net>2021-06-04 15:15:12 -0500
committerRichard Lowe <richlowe@richlowe.net>2021-08-16 12:46:39 -0500
commitf0089e391b2bc4be2755f1a1b51fb4cd9b8f3988 (patch)
treec4ac2f5e703ed459d50bcee7ddb38a993d961520 /usr/src/uts/intel/ia32/os
parentd083fed0c91296a88878f7a468910ad5b5c888ea (diff)
downloadillumos-joyent-f0089e391b2bc4be2755f1a1b51fb4cd9b8f3988.tar.gz
13941 intel code and headers should not look ia32 specific
Reviewed by: Hans Rosenfeld <rosenfeld@grumpf.hope-2000.org> Reviewed by: Toomas Soome <tsoome@me.com> Reviewed by: Patrick Mooney <pmooney@pfmooney.com> Approved by: Garret D'Amore <garrett@damore.org>
Diffstat (limited to 'usr/src/uts/intel/ia32/os')
-rw-r--r--usr/src/uts/intel/ia32/os/archdep.c1240
-rw-r--r--usr/src/uts/intel/ia32/os/bootdev.c100
-rw-r--r--usr/src/uts/intel/ia32/os/comm_page_util.c62
-rw-r--r--usr/src/uts/intel/ia32/os/copy_subr.c104
-rw-r--r--usr/src/uts/intel/ia32/os/cpc_subr.c274
-rw-r--r--usr/src/uts/intel/ia32/os/ddi_i86.c1903
-rw-r--r--usr/src/uts/intel/ia32/os/desctbls.c1218
-rw-r--r--usr/src/uts/intel/ia32/os/fpu.c1506
-rw-r--r--usr/src/uts/intel/ia32/os/sendsig.c589
-rw-r--r--usr/src/uts/intel/ia32/os/sundep.c1012
-rw-r--r--usr/src/uts/intel/ia32/os/syscall.c1397
-rw-r--r--usr/src/uts/intel/ia32/os/sysi86.c850
12 files changed, 0 insertions, 10255 deletions
diff --git a/usr/src/uts/intel/ia32/os/archdep.c b/usr/src/uts/intel/ia32/os/archdep.c
deleted file mode 100644
index 14d20bb487..0000000000
--- a/usr/src/uts/intel/ia32/os/archdep.c
+++ /dev/null
@@ -1,1240 +0,0 @@
-/*
- * CDDL HEADER START
- *
- * The contents of this file are subject to the terms of the
- * Common Development and Distribution License (the "License").
- * You may not use this file except in compliance with the License.
- *
- * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
- * or http://www.opensolaris.org/os/licensing.
- * See the License for the specific language governing permissions
- * and limitations under the License.
- *
- * When distributing Covered Code, include this CDDL HEADER in each
- * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
- * If applicable, add the following below this CDDL HEADER, with the
- * fields enclosed by brackets "[]" replaced with your own identifying
- * information: Portions Copyright [yyyy] [name of copyright owner]
- *
- * CDDL HEADER END
- */
-/*
- * Copyright (c) 1992, 2010, Oracle and/or its affiliates. All rights reserved.
- */
-
-/* Copyright (c) 1984, 1986, 1987, 1988, 1989 AT&T */
-/* All Rights Reserved */
-/*
- * Copyright (c) 2018, Joyent, Inc.
- * Copyright 2012 Nexenta Systems, Inc. All rights reserved.
- */
-
-#include <sys/param.h>
-#include <sys/types.h>
-#include <sys/vmparam.h>
-#include <sys/systm.h>
-#include <sys/signal.h>
-#include <sys/stack.h>
-#include <sys/regset.h>
-#include <sys/privregs.h>
-#include <sys/frame.h>
-#include <sys/proc.h>
-#include <sys/psw.h>
-#include <sys/siginfo.h>
-#include <sys/cpuvar.h>
-#include <sys/asm_linkage.h>
-#include <sys/kmem.h>
-#include <sys/errno.h>
-#include <sys/bootconf.h>
-#include <sys/archsystm.h>
-#include <sys/debug.h>
-#include <sys/elf.h>
-#include <sys/spl.h>
-#include <sys/time.h>
-#include <sys/atomic.h>
-#include <sys/sysmacros.h>
-#include <sys/cmn_err.h>
-#include <sys/modctl.h>
-#include <sys/kobj.h>
-#include <sys/panic.h>
-#include <sys/reboot.h>
-#include <sys/time.h>
-#include <sys/fp.h>
-#include <sys/x86_archext.h>
-#include <sys/auxv.h>
-#include <sys/auxv_386.h>
-#include <sys/dtrace.h>
-#include <sys/brand.h>
-#include <sys/machbrand.h>
-#include <sys/cmn_err.h>
-
-/*
- * Map an fnsave-formatted save area into an fxsave-formatted save area.
- *
- * Most fields are the same width, content and semantics. However
- * the tag word is compressed.
- */
-static void
-fnsave_to_fxsave(const struct fnsave_state *fn, struct fxsave_state *fx)
-{
- uint_t i, tagbits;
-
- fx->fx_fcw = fn->f_fcw;
- fx->fx_fsw = fn->f_fsw;
-
- /*
- * copy element by element (because of holes)
- */
- for (i = 0; i < 8; i++)
- bcopy(&fn->f_st[i].fpr_16[0], &fx->fx_st[i].fpr_16[0],
- sizeof (fn->f_st[0].fpr_16)); /* 80-bit x87-style floats */
-
- /*
- * synthesize compressed tag bits
- */
- fx->fx_fctw = 0;
- for (tagbits = fn->f_ftw, i = 0; i < 8; i++, tagbits >>= 2)
- if ((tagbits & 3) != 3)
- fx->fx_fctw |= (1 << i);
-
- fx->fx_fop = fn->f_fop;
-
- fx->fx_rip = (uint64_t)fn->f_eip;
- fx->fx_rdp = (uint64_t)fn->f_dp;
-}
-
-/*
- * Map from an fxsave-format save area to an fnsave-format save area.
- */
-static void
-fxsave_to_fnsave(const struct fxsave_state *fx, struct fnsave_state *fn)
-{
- uint_t i, top, tagbits;
-
- fn->f_fcw = fx->fx_fcw;
- fn->__f_ign0 = 0;
- fn->f_fsw = fx->fx_fsw;
- fn->__f_ign1 = 0;
-
- top = (fx->fx_fsw & FPS_TOP) >> 11;
-
- /*
- * copy element by element (because of holes)
- */
- for (i = 0; i < 8; i++)
- bcopy(&fx->fx_st[i].fpr_16[0], &fn->f_st[i].fpr_16[0],
- sizeof (fn->f_st[0].fpr_16)); /* 80-bit x87-style floats */
-
- /*
- * synthesize uncompressed tag bits
- */
- fn->f_ftw = 0;
- for (tagbits = fx->fx_fctw, i = 0; i < 8; i++, tagbits >>= 1) {
- uint_t ibit, expo;
- const uint16_t *fpp;
- static const uint16_t zero[5] = { 0, 0, 0, 0, 0 };
-
- if ((tagbits & 1) == 0) {
- fn->f_ftw |= 3 << (i << 1); /* empty */
- continue;
- }
-
- /*
- * (tags refer to *physical* registers)
- */
- fpp = &fx->fx_st[(i - top + 8) & 7].fpr_16[0];
- ibit = fpp[3] >> 15;
- expo = fpp[4] & 0x7fff;
-
- if (ibit && expo != 0 && expo != 0x7fff)
- continue; /* valid fp number */
-
- if (bcmp(fpp, &zero, sizeof (zero)))
- fn->f_ftw |= 2 << (i << 1); /* NaN */
- else
- fn->f_ftw |= 1 << (i << 1); /* fp zero */
- }
-
- fn->f_fop = fx->fx_fop;
-
- fn->__f_ign2 = 0;
- fn->f_eip = (uint32_t)fx->fx_rip;
- fn->f_cs = U32CS_SEL;
- fn->f_dp = (uint32_t)fx->fx_rdp;
- fn->f_ds = UDS_SEL;
- fn->__f_ign3 = 0;
-}
-
-/*
- * Map from an fpregset_t into an fxsave-format save area
- */
-static void
-fpregset_to_fxsave(const fpregset_t *fp, struct fxsave_state *fx)
-{
- bcopy(fp, fx, sizeof (*fx));
- /*
- * avoid useless #gp exceptions - mask reserved bits
- */
- fx->fx_mxcsr &= sse_mxcsr_mask;
-}
-
-/*
- * Map from an fxsave-format save area into a fpregset_t
- */
-static void
-fxsave_to_fpregset(const struct fxsave_state *fx, fpregset_t *fp)
-{
- bcopy(fx, fp, sizeof (*fx));
-}
-
-#if defined(_SYSCALL32_IMPL)
-static void
-fpregset32_to_fxsave(const fpregset32_t *fp, struct fxsave_state *fx)
-{
- const struct fpchip32_state *fc = &fp->fp_reg_set.fpchip_state;
-
- fnsave_to_fxsave((const struct fnsave_state *)fc, fx);
- /*
- * avoid useless #gp exceptions - mask reserved bits
- */
- fx->fx_mxcsr = sse_mxcsr_mask & fc->mxcsr;
- bcopy(&fc->xmm[0], &fx->fx_xmm[0], sizeof (fc->xmm));
-}
-
-static void
-fxsave_to_fpregset32(const struct fxsave_state *fx, fpregset32_t *fp)
-{
- struct fpchip32_state *fc = &fp->fp_reg_set.fpchip_state;
-
- fxsave_to_fnsave(fx, (struct fnsave_state *)fc);
- fc->mxcsr = fx->fx_mxcsr;
- bcopy(&fx->fx_xmm[0], &fc->xmm[0], sizeof (fc->xmm));
-}
-
-static void
-fpregset_nto32(const fpregset_t *src, fpregset32_t *dst)
-{
- fxsave_to_fpregset32((struct fxsave_state *)src, dst);
- dst->fp_reg_set.fpchip_state.status =
- src->fp_reg_set.fpchip_state.status;
- dst->fp_reg_set.fpchip_state.xstatus =
- src->fp_reg_set.fpchip_state.xstatus;
-}
-
-static void
-fpregset_32ton(const fpregset32_t *src, fpregset_t *dst)
-{
- fpregset32_to_fxsave(src, (struct fxsave_state *)dst);
- dst->fp_reg_set.fpchip_state.status =
- src->fp_reg_set.fpchip_state.status;
- dst->fp_reg_set.fpchip_state.xstatus =
- src->fp_reg_set.fpchip_state.xstatus;
-}
-#endif
-
-/*
- * Set floating-point registers from a native fpregset_t.
- */
-void
-setfpregs(klwp_t *lwp, fpregset_t *fp)
-{
- struct fpu_ctx *fpu = &lwp->lwp_pcb.pcb_fpu;
-
- if (fpu->fpu_flags & FPU_EN) {
- if (!(fpu->fpu_flags & FPU_VALID)) {
- /*
- * FPU context is still active, release the
- * ownership.
- */
- fp_free(fpu, 0);
- }
- }
- /*
- * Else: if we are trying to change the FPU state of a thread which
- * hasn't yet initialized floating point, store the state in
- * the pcb and indicate that the state is valid. When the
- * thread enables floating point, it will use this state instead
- * of the default state.
- */
-
- switch (fp_save_mech) {
- case FP_FXSAVE:
- fpregset_to_fxsave(fp, fpu->fpu_regs.kfpu_u.kfpu_fx);
- fpu->fpu_regs.kfpu_xstatus =
- fp->fp_reg_set.fpchip_state.xstatus;
- break;
-
- case FP_XSAVE:
- fpregset_to_fxsave(fp,
- &fpu->fpu_regs.kfpu_u.kfpu_xs->xs_fxsave);
- fpu->fpu_regs.kfpu_xstatus =
- fp->fp_reg_set.fpchip_state.xstatus;
- fpu->fpu_regs.kfpu_u.kfpu_xs->xs_xstate_bv |=
- (XFEATURE_LEGACY_FP | XFEATURE_SSE);
- break;
- default:
- panic("Invalid fp_save_mech");
- /*NOTREACHED*/
- }
-
- fpu->fpu_regs.kfpu_status = fp->fp_reg_set.fpchip_state.status;
- fpu->fpu_flags |= FPU_VALID;
- PCB_SET_UPDATE_FPU(&lwp->lwp_pcb);
-}
-
-/*
- * Get floating-point registers into a native fpregset_t.
- */
-void
-getfpregs(klwp_t *lwp, fpregset_t *fp)
-{
- struct fpu_ctx *fpu = &lwp->lwp_pcb.pcb_fpu;
-
- kpreempt_disable();
- if (fpu->fpu_flags & FPU_EN) {
- /*
- * If we have FPU hw and the thread's pcb doesn't have
- * a valid FPU state then get the state from the hw.
- */
- if (fpu_exists && ttolwp(curthread) == lwp &&
- !(fpu->fpu_flags & FPU_VALID))
- fp_save(fpu); /* get the current FPU state */
- }
-
- /*
- * There are 3 possible cases we have to be aware of here:
- *
- * 1. FPU is enabled. FPU state is stored in the current LWP.
- *
- * 2. FPU is not enabled, and there have been no intervening /proc
- * modifications. Return initial FPU state.
- *
- * 3. FPU is not enabled, but a /proc consumer has modified FPU state.
- * FPU state is stored in the current LWP.
- */
- if ((fpu->fpu_flags & FPU_EN) || (fpu->fpu_flags & FPU_VALID)) {
- /*
- * Cases 1 and 3.
- */
- switch (fp_save_mech) {
- case FP_FXSAVE:
- fxsave_to_fpregset(fpu->fpu_regs.kfpu_u.kfpu_fx, fp);
- fp->fp_reg_set.fpchip_state.xstatus =
- fpu->fpu_regs.kfpu_xstatus;
- break;
- case FP_XSAVE:
- fxsave_to_fpregset(
- &fpu->fpu_regs.kfpu_u.kfpu_xs->xs_fxsave, fp);
- fp->fp_reg_set.fpchip_state.xstatus =
- fpu->fpu_regs.kfpu_xstatus;
- break;
- default:
- panic("Invalid fp_save_mech");
- /*NOTREACHED*/
- }
- fp->fp_reg_set.fpchip_state.status = fpu->fpu_regs.kfpu_status;
- } else {
- /*
- * Case 2.
- */
- switch (fp_save_mech) {
- case FP_FXSAVE:
- case FP_XSAVE:
- /*
- * For now, we don't have any AVX specific field in ABI.
- * If we add any in the future, we need to initial them
- * as well.
- */
- fxsave_to_fpregset(&sse_initial, fp);
- fp->fp_reg_set.fpchip_state.xstatus =
- fpu->fpu_regs.kfpu_xstatus;
- break;
- default:
- panic("Invalid fp_save_mech");
- /*NOTREACHED*/
- }
- fp->fp_reg_set.fpchip_state.status = fpu->fpu_regs.kfpu_status;
- }
- kpreempt_enable();
-}
-
-#if defined(_SYSCALL32_IMPL)
-
-/*
- * Set floating-point registers from an fpregset32_t.
- */
-void
-setfpregs32(klwp_t *lwp, fpregset32_t *fp)
-{
- fpregset_t fpregs;
-
- fpregset_32ton(fp, &fpregs);
- setfpregs(lwp, &fpregs);
-}
-
-/*
- * Get floating-point registers into an fpregset32_t.
- */
-void
-getfpregs32(klwp_t *lwp, fpregset32_t *fp)
-{
- fpregset_t fpregs;
-
- getfpregs(lwp, &fpregs);
- fpregset_nto32(&fpregs, fp);
-}
-
-#endif /* _SYSCALL32_IMPL */
-
-/*
- * Return the general registers
- */
-void
-getgregs(klwp_t *lwp, gregset_t grp)
-{
- struct regs *rp = lwptoregs(lwp);
- struct pcb *pcb = &lwp->lwp_pcb;
- int thisthread = lwptot(lwp) == curthread;
-
- grp[REG_RDI] = rp->r_rdi;
- grp[REG_RSI] = rp->r_rsi;
- grp[REG_RDX] = rp->r_rdx;
- grp[REG_RCX] = rp->r_rcx;
- grp[REG_R8] = rp->r_r8;
- grp[REG_R9] = rp->r_r9;
- grp[REG_RAX] = rp->r_rax;
- grp[REG_RBX] = rp->r_rbx;
- grp[REG_RBP] = rp->r_rbp;
- grp[REG_R10] = rp->r_r10;
- grp[REG_R11] = rp->r_r11;
- grp[REG_R12] = rp->r_r12;
- grp[REG_R13] = rp->r_r13;
- grp[REG_R14] = rp->r_r14;
- grp[REG_R15] = rp->r_r15;
- grp[REG_FSBASE] = pcb->pcb_fsbase;
- grp[REG_GSBASE] = pcb->pcb_gsbase;
- if (thisthread)
- kpreempt_disable();
- if (PCB_NEED_UPDATE_SEGS(pcb)) {
- grp[REG_DS] = pcb->pcb_ds;
- grp[REG_ES] = pcb->pcb_es;
- grp[REG_FS] = pcb->pcb_fs;
- grp[REG_GS] = pcb->pcb_gs;
- } else {
- grp[REG_DS] = rp->r_ds;
- grp[REG_ES] = rp->r_es;
- grp[REG_FS] = rp->r_fs;
- grp[REG_GS] = rp->r_gs;
- }
- if (thisthread)
- kpreempt_enable();
- grp[REG_TRAPNO] = rp->r_trapno;
- grp[REG_ERR] = rp->r_err;
- grp[REG_RIP] = rp->r_rip;
- grp[REG_CS] = rp->r_cs;
- grp[REG_SS] = rp->r_ss;
- grp[REG_RFL] = rp->r_rfl;
- grp[REG_RSP] = rp->r_rsp;
-}
-
-#if defined(_SYSCALL32_IMPL)
-
-void
-getgregs32(klwp_t *lwp, gregset32_t grp)
-{
- struct regs *rp = lwptoregs(lwp);
- struct pcb *pcb = &lwp->lwp_pcb;
- int thisthread = lwptot(lwp) == curthread;
-
- if (thisthread)
- kpreempt_disable();
- if (PCB_NEED_UPDATE_SEGS(pcb)) {
- grp[GS] = (uint16_t)pcb->pcb_gs;
- grp[FS] = (uint16_t)pcb->pcb_fs;
- grp[DS] = (uint16_t)pcb->pcb_ds;
- grp[ES] = (uint16_t)pcb->pcb_es;
- } else {
- grp[GS] = (uint16_t)rp->r_gs;
- grp[FS] = (uint16_t)rp->r_fs;
- grp[DS] = (uint16_t)rp->r_ds;
- grp[ES] = (uint16_t)rp->r_es;
- }
- if (thisthread)
- kpreempt_enable();
- grp[EDI] = (greg32_t)rp->r_rdi;
- grp[ESI] = (greg32_t)rp->r_rsi;
- grp[EBP] = (greg32_t)rp->r_rbp;
- grp[ESP] = 0;
- grp[EBX] = (greg32_t)rp->r_rbx;
- grp[EDX] = (greg32_t)rp->r_rdx;
- grp[ECX] = (greg32_t)rp->r_rcx;
- grp[EAX] = (greg32_t)rp->r_rax;
- grp[TRAPNO] = (greg32_t)rp->r_trapno;
- grp[ERR] = (greg32_t)rp->r_err;
- grp[EIP] = (greg32_t)rp->r_rip;
- grp[CS] = (uint16_t)rp->r_cs;
- grp[EFL] = (greg32_t)rp->r_rfl;
- grp[UESP] = (greg32_t)rp->r_rsp;
- grp[SS] = (uint16_t)rp->r_ss;
-}
-
-void
-ucontext_32ton(const ucontext32_t *src, ucontext_t *dst)
-{
- mcontext_t *dmc = &dst->uc_mcontext;
- const mcontext32_t *smc = &src->uc_mcontext;
-
- bzero(dst, sizeof (*dst));
- dst->uc_flags = src->uc_flags;
- dst->uc_link = (ucontext_t *)(uintptr_t)src->uc_link;
-
- bcopy(&src->uc_sigmask, &dst->uc_sigmask, sizeof (dst->uc_sigmask));
-
- dst->uc_stack.ss_sp = (void *)(uintptr_t)src->uc_stack.ss_sp;
- dst->uc_stack.ss_size = (size_t)src->uc_stack.ss_size;
- dst->uc_stack.ss_flags = src->uc_stack.ss_flags;
-
- dmc->gregs[REG_GS] = (greg_t)(uint32_t)smc->gregs[GS];
- dmc->gregs[REG_FS] = (greg_t)(uint32_t)smc->gregs[FS];
- dmc->gregs[REG_ES] = (greg_t)(uint32_t)smc->gregs[ES];
- dmc->gregs[REG_DS] = (greg_t)(uint32_t)smc->gregs[DS];
- dmc->gregs[REG_RDI] = (greg_t)(uint32_t)smc->gregs[EDI];
- dmc->gregs[REG_RSI] = (greg_t)(uint32_t)smc->gregs[ESI];
- dmc->gregs[REG_RBP] = (greg_t)(uint32_t)smc->gregs[EBP];
- dmc->gregs[REG_RBX] = (greg_t)(uint32_t)smc->gregs[EBX];
- dmc->gregs[REG_RDX] = (greg_t)(uint32_t)smc->gregs[EDX];
- dmc->gregs[REG_RCX] = (greg_t)(uint32_t)smc->gregs[ECX];
- dmc->gregs[REG_RAX] = (greg_t)(uint32_t)smc->gregs[EAX];
- dmc->gregs[REG_TRAPNO] = (greg_t)(uint32_t)smc->gregs[TRAPNO];
- dmc->gregs[REG_ERR] = (greg_t)(uint32_t)smc->gregs[ERR];
- dmc->gregs[REG_RIP] = (greg_t)(uint32_t)smc->gregs[EIP];
- dmc->gregs[REG_CS] = (greg_t)(uint32_t)smc->gregs[CS];
- dmc->gregs[REG_RFL] = (greg_t)(uint32_t)smc->gregs[EFL];
- dmc->gregs[REG_RSP] = (greg_t)(uint32_t)smc->gregs[UESP];
- dmc->gregs[REG_SS] = (greg_t)(uint32_t)smc->gregs[SS];
-
- /*
- * A valid fpregs is only copied in if uc.uc_flags has UC_FPU set
- * otherwise there is no guarantee that anything in fpregs is valid.
- */
- if (src->uc_flags & UC_FPU)
- fpregset_32ton(&src->uc_mcontext.fpregs,
- &dst->uc_mcontext.fpregs);
-}
-
-#endif /* _SYSCALL32_IMPL */
-
-/*
- * Return the user-level PC.
- * If in a system call, return the address of the syscall trap.
- */
-greg_t
-getuserpc()
-{
- greg_t upc = lwptoregs(ttolwp(curthread))->r_pc;
- uint32_t insn;
-
- if (curthread->t_sysnum == 0)
- return (upc);
-
- /*
- * We might've gotten here from sysenter (0xf 0x34),
- * syscall (0xf 0x5) or lcall (0x9a 0 0 0 0 0x27 0).
- *
- * Go peek at the binary to figure it out..
- */
- if (fuword32((void *)(upc - 2), &insn) != -1 &&
- (insn & 0xffff) == 0x340f || (insn & 0xffff) == 0x050f)
- return (upc - 2);
- return (upc - 7);
-}
-
-/*
- * Protect segment registers from non-user privilege levels and GDT selectors
- * other than USER_CS, USER_DS and lwp FS and GS values. If the segment
- * selector is non-null and not USER_CS/USER_DS, we make sure that the
- * TI bit is set to point into the LDT and that the RPL is set to 3.
- *
- * Since struct regs stores each 16-bit segment register as a 32-bit greg_t, we
- * also explicitly zero the top 16 bits since they may be coming from the
- * user's address space via setcontext(2) or /proc.
- *
- * Note about null selector. When running on the hypervisor if we allow a
- * process to set its %cs to null selector with RPL of 0 the hypervisor will
- * crash the domain. If running on bare metal we would get a #gp fault and
- * be able to kill the process and continue on. Therefore we make sure to
- * force RPL to SEL_UPL even for null selector when setting %cs.
- */
-
-#if defined(IS_CS) || defined(IS_NOT_CS)
-#error "IS_CS and IS_NOT_CS already defined"
-#endif
-
-#define IS_CS 1
-#define IS_NOT_CS 0
-
-/*ARGSUSED*/
-static greg_t
-fix_segreg(greg_t sr, int iscs, model_t datamodel)
-{
- switch (sr &= 0xffff) {
-
- case 0:
- if (iscs == IS_CS)
- return (0 | SEL_UPL);
- else
- return (0);
-
- /*
- * If lwp attempts to switch data model then force their
- * code selector to be null selector.
- */
- case U32CS_SEL:
- if (datamodel == DATAMODEL_NATIVE)
- return (0 | SEL_UPL);
- else
- return (sr);
-
- case UCS_SEL:
- if (datamodel == DATAMODEL_ILP32)
- return (0 | SEL_UPL);
- /*FALLTHROUGH*/
- case UDS_SEL:
- case LWPFS_SEL:
- case LWPGS_SEL:
- case SEL_UPL:
- return (sr);
- default:
- break;
- }
-
- /*
- * Force it into the LDT in ring 3 for 32-bit processes, which by
- * default do not have an LDT, so that any attempt to use an invalid
- * selector will reference the (non-existant) LDT, and cause a #gp
- * fault for the process.
- *
- * 64-bit processes get the null gdt selector since they
- * are not allowed to have a private LDT.
- */
- if (datamodel == DATAMODEL_ILP32) {
- return (sr | SEL_TI_LDT | SEL_UPL);
- } else {
- if (iscs == IS_CS)
- return (0 | SEL_UPL);
- else
- return (0);
- }
-
-}
-
-/*
- * Set general registers.
- */
-void
-setgregs(klwp_t *lwp, gregset_t grp)
-{
- struct regs *rp = lwptoregs(lwp);
- model_t datamodel = lwp_getdatamodel(lwp);
-
- struct pcb *pcb = &lwp->lwp_pcb;
- int thisthread = lwptot(lwp) == curthread;
-
- if (datamodel == DATAMODEL_NATIVE) {
- if (thisthread)
- (void) save_syscall_args(); /* copy the args */
-
- rp->r_rdi = grp[REG_RDI];
- rp->r_rsi = grp[REG_RSI];
- rp->r_rdx = grp[REG_RDX];
- rp->r_rcx = grp[REG_RCX];
- rp->r_r8 = grp[REG_R8];
- rp->r_r9 = grp[REG_R9];
- rp->r_rax = grp[REG_RAX];
- rp->r_rbx = grp[REG_RBX];
- rp->r_rbp = grp[REG_RBP];
- rp->r_r10 = grp[REG_R10];
- rp->r_r11 = grp[REG_R11];
- rp->r_r12 = grp[REG_R12];
- rp->r_r13 = grp[REG_R13];
- rp->r_r14 = grp[REG_R14];
- rp->r_r15 = grp[REG_R15];
- rp->r_trapno = grp[REG_TRAPNO];
- rp->r_err = grp[REG_ERR];
- rp->r_rip = grp[REG_RIP];
- /*
- * Setting %cs or %ss to anything else is quietly but
- * quite definitely forbidden!
- */
- rp->r_cs = UCS_SEL;
- rp->r_ss = UDS_SEL;
- rp->r_rsp = grp[REG_RSP];
-
- if (thisthread)
- kpreempt_disable();
-
- pcb->pcb_ds = UDS_SEL;
- pcb->pcb_es = UDS_SEL;
-
- /*
- * 64-bit processes -are- allowed to set their fsbase/gsbase
- * values directly, but only if they're using the segment
- * selectors that allow that semantic.
- *
- * (32-bit processes must use lwp_set_private().)
- */
- pcb->pcb_fsbase = grp[REG_FSBASE];
- pcb->pcb_gsbase = grp[REG_GSBASE];
- pcb->pcb_fs = fix_segreg(grp[REG_FS], IS_NOT_CS, datamodel);
- pcb->pcb_gs = fix_segreg(grp[REG_GS], IS_NOT_CS, datamodel);
-
- /*
- * Ensure that we go out via update_sregs
- */
- PCB_SET_UPDATE_SEGS(pcb);
- lwptot(lwp)->t_post_sys = 1;
- if (thisthread)
- kpreempt_enable();
-#if defined(_SYSCALL32_IMPL)
- } else {
- rp->r_rdi = (uint32_t)grp[REG_RDI];
- rp->r_rsi = (uint32_t)grp[REG_RSI];
- rp->r_rdx = (uint32_t)grp[REG_RDX];
- rp->r_rcx = (uint32_t)grp[REG_RCX];
- rp->r_rax = (uint32_t)grp[REG_RAX];
- rp->r_rbx = (uint32_t)grp[REG_RBX];
- rp->r_rbp = (uint32_t)grp[REG_RBP];
- rp->r_trapno = (uint32_t)grp[REG_TRAPNO];
- rp->r_err = (uint32_t)grp[REG_ERR];
- rp->r_rip = (uint32_t)grp[REG_RIP];
-
- rp->r_cs = fix_segreg(grp[REG_CS], IS_CS, datamodel);
- rp->r_ss = fix_segreg(grp[REG_DS], IS_NOT_CS, datamodel);
-
- rp->r_rsp = (uint32_t)grp[REG_RSP];
-
- if (thisthread)
- kpreempt_disable();
-
- pcb->pcb_ds = fix_segreg(grp[REG_DS], IS_NOT_CS, datamodel);
- pcb->pcb_es = fix_segreg(grp[REG_ES], IS_NOT_CS, datamodel);
-
- /*
- * (See fsbase/gsbase commentary above)
- */
- pcb->pcb_fs = fix_segreg(grp[REG_FS], IS_NOT_CS, datamodel);
- pcb->pcb_gs = fix_segreg(grp[REG_GS], IS_NOT_CS, datamodel);
-
- /*
- * Ensure that we go out via update_sregs
- */
- PCB_SET_UPDATE_SEGS(pcb);
- lwptot(lwp)->t_post_sys = 1;
- if (thisthread)
- kpreempt_enable();
-#endif
- }
-
- /*
- * Only certain bits of the flags register can be modified.
- */
- rp->r_rfl = (rp->r_rfl & ~PSL_USERMASK) |
- (grp[REG_RFL] & PSL_USERMASK);
-}
-
-/*
- * Determine whether eip is likely to have an interrupt frame
- * on the stack. We do this by comparing the address to the
- * range of addresses spanned by several well-known routines.
- */
-extern void _interrupt();
-extern void _allsyscalls();
-extern void _cmntrap();
-extern void fakesoftint();
-
-extern size_t _interrupt_size;
-extern size_t _allsyscalls_size;
-extern size_t _cmntrap_size;
-extern size_t _fakesoftint_size;
-
-/*
- * Get a pc-only stacktrace. Used for kmem_alloc() buffer ownership tracking.
- * Returns MIN(current stack depth, pcstack_limit).
- */
-int
-getpcstack(pc_t *pcstack, int pcstack_limit)
-{
- struct frame *fp = (struct frame *)getfp();
- struct frame *nextfp, *minfp, *stacktop;
- int depth = 0;
- int on_intr;
- uintptr_t pc;
-
- if ((on_intr = CPU_ON_INTR(CPU)) != 0)
- stacktop = (struct frame *)(CPU->cpu_intr_stack + SA(MINFRAME));
- else
- stacktop = (struct frame *)curthread->t_stk;
- minfp = fp;
-
- pc = ((struct regs *)fp)->r_pc;
-
- while (depth < pcstack_limit) {
- nextfp = (struct frame *)fp->fr_savfp;
- pc = fp->fr_savpc;
- if (nextfp <= minfp || nextfp >= stacktop) {
- if (on_intr) {
- /*
- * Hop from interrupt stack to thread stack.
- */
- stacktop = (struct frame *)curthread->t_stk;
- minfp = (struct frame *)curthread->t_stkbase;
- on_intr = 0;
- continue;
- }
- break;
- }
- pcstack[depth++] = (pc_t)pc;
- fp = nextfp;
- minfp = fp;
- }
- return (depth);
-}
-
-/*
- * The following ELF header fields are defined as processor-specific
- * in the V8 ABI:
- *
- * e_ident[EI_DATA] encoding of the processor-specific
- * data in the object file
- * e_machine processor identification
- * e_flags processor-specific flags associated
- * with the file
- */
-
-/*
- * The value of at_flags reflects a platform's cpu module support.
- * at_flags is used to check for allowing a binary to execute and
- * is passed as the value of the AT_FLAGS auxiliary vector.
- */
-int at_flags = 0;
-
-/*
- * Check the processor-specific fields of an ELF header.
- *
- * returns 1 if the fields are valid, 0 otherwise
- */
-/*ARGSUSED2*/
-int
-elfheadcheck(
- unsigned char e_data,
- Elf32_Half e_machine,
- Elf32_Word e_flags)
-{
- if (e_data != ELFDATA2LSB)
- return (0);
- if (e_machine == EM_AMD64)
- return (1);
- return (e_machine == EM_386);
-}
-
-uint_t auxv_hwcap_include = 0; /* patch to enable unrecognized features */
-uint_t auxv_hwcap_include_2 = 0; /* second word */
-uint_t auxv_hwcap_exclude = 0; /* patch for broken cpus, debugging */
-uint_t auxv_hwcap_exclude_2 = 0; /* second word */
-#if defined(_SYSCALL32_IMPL)
-uint_t auxv_hwcap32_include = 0; /* ditto for 32-bit apps */
-uint_t auxv_hwcap32_include_2 = 0; /* ditto for 32-bit apps */
-uint_t auxv_hwcap32_exclude = 0; /* ditto for 32-bit apps */
-uint_t auxv_hwcap32_exclude_2 = 0; /* ditto for 32-bit apps */
-#endif
-
-/*
- * Gather information about the processor and place it into auxv_hwcap
- * so that it can be exported to the linker via the aux vector.
- *
- * We use this seemingly complicated mechanism so that we can ensure
- * that /etc/system can be used to override what the system can or
- * cannot discover for itself.
- */
-void
-bind_hwcap(void)
-{
- uint_t cpu_hwcap_flags[2];
- cpuid_pass4(NULL, cpu_hwcap_flags);
-
- auxv_hwcap = (auxv_hwcap_include | cpu_hwcap_flags[0]) &
- ~auxv_hwcap_exclude;
- auxv_hwcap_2 = (auxv_hwcap_include_2 | cpu_hwcap_flags[1]) &
- ~auxv_hwcap_exclude_2;
-
- /*
- * On AMD processors, sysenter just doesn't work at all
- * when the kernel is in long mode. On IA-32e processors
- * it does, but there's no real point in all the alternate
- * mechanism when syscall works on both.
- *
- * Besides, the kernel's sysenter handler is expecting a
- * 32-bit lwp ...
- */
- auxv_hwcap &= ~AV_386_SEP;
-
- if (auxv_hwcap_include || auxv_hwcap_exclude || auxv_hwcap_include_2 ||
- auxv_hwcap_exclude_2) {
- /*
- * The below assignment is regrettably required to get lint
- * to accept the validity of our format string. The format
- * string is in fact valid, but whatever intelligence in lint
- * understands the cmn_err()-specific %b appears to have an
- * off-by-one error: it (mistakenly) complains about bit
- * number 32 (even though this is explicitly permitted).
- * Normally, one would will away such warnings with a "LINTED"
- * directive, but for reasons unclear and unknown, lint
- * refuses to be assuaged in this case. Fortunately, lint
- * doesn't pretend to have solved the Halting Problem --
- * and as soon as the format string is programmatic, it
- * knows enough to shut up.
- */
- char *fmt = "?user ABI extensions: %b\n";
- cmn_err(CE_CONT, fmt, auxv_hwcap, FMT_AV_386);
- fmt = "?user ABI extensions (word 2): %b\n";
- cmn_err(CE_CONT, fmt, auxv_hwcap_2, FMT_AV_386_2);
- }
-
-#if defined(_SYSCALL32_IMPL)
- auxv_hwcap32 = (auxv_hwcap32_include | cpu_hwcap_flags[0]) &
- ~auxv_hwcap32_exclude;
- auxv_hwcap32_2 = (auxv_hwcap32_include_2 | cpu_hwcap_flags[1]) &
- ~auxv_hwcap32_exclude_2;
-
- /*
- * If this is an amd64 architecture machine from Intel, then
- * syscall -doesn't- work in compatibility mode, only sysenter does.
- *
- * Sigh.
- */
- if (!cpuid_syscall32_insn(NULL))
- auxv_hwcap32 &= ~AV_386_AMD_SYSC;
-
- /*
- * 32-bit processes can -always- use the lahf/sahf instructions
- */
- auxv_hwcap32 |= AV_386_AHF;
-
- /*
- * 32-bit processes can -never- use fsgsbase instructions.
- */
- auxv_hwcap32_2 &= ~AV_386_2_FSGSBASE;
-
- if (auxv_hwcap32_include || auxv_hwcap32_exclude ||
- auxv_hwcap32_include_2 || auxv_hwcap32_exclude_2) {
- /*
- * See the block comment in the cmn_err() of auxv_hwcap, above.
- */
- char *fmt = "?32-bit user ABI extensions: %b\n";
- cmn_err(CE_CONT, fmt, auxv_hwcap32, FMT_AV_386);
- fmt = "?32-bit user ABI extensions (word 2): %b\n";
- cmn_err(CE_CONT, fmt, auxv_hwcap32_2, FMT_AV_386_2);
- }
-#endif
-}
-
-/*
- * sync_icache() - this is called
- * in proc/fs/prusrio.c. x86 has an unified cache and therefore
- * this is a nop.
- */
-/* ARGSUSED */
-void
-sync_icache(caddr_t addr, uint_t len)
-{
- /* Do nothing for now */
-}
-
-/*ARGSUSED*/
-void
-sync_data_memory(caddr_t va, size_t len)
-{
- /* Not implemented for this platform */
-}
-
-int
-__ipltospl(int ipl)
-{
- return (ipltospl(ipl));
-}
-
-/*
- * The panic code invokes panic_saveregs() to record the contents of a
- * regs structure into the specified panic_data structure for debuggers.
- */
-void
-panic_saveregs(panic_data_t *pdp, struct regs *rp)
-{
- panic_nv_t *pnv = PANICNVGET(pdp);
-
- struct cregs creg;
-
- getcregs(&creg);
-
- PANICNVADD(pnv, "rdi", rp->r_rdi);
- PANICNVADD(pnv, "rsi", rp->r_rsi);
- PANICNVADD(pnv, "rdx", rp->r_rdx);
- PANICNVADD(pnv, "rcx", rp->r_rcx);
- PANICNVADD(pnv, "r8", rp->r_r8);
- PANICNVADD(pnv, "r9", rp->r_r9);
- PANICNVADD(pnv, "rax", rp->r_rax);
- PANICNVADD(pnv, "rbx", rp->r_rbx);
- PANICNVADD(pnv, "rbp", rp->r_rbp);
- PANICNVADD(pnv, "r10", rp->r_r10);
- PANICNVADD(pnv, "r11", rp->r_r11);
- PANICNVADD(pnv, "r12", rp->r_r12);
- PANICNVADD(pnv, "r13", rp->r_r13);
- PANICNVADD(pnv, "r14", rp->r_r14);
- PANICNVADD(pnv, "r15", rp->r_r15);
- PANICNVADD(pnv, "fsbase", rdmsr(MSR_AMD_FSBASE));
- PANICNVADD(pnv, "gsbase", rdmsr(MSR_AMD_GSBASE));
- PANICNVADD(pnv, "ds", rp->r_ds);
- PANICNVADD(pnv, "es", rp->r_es);
- PANICNVADD(pnv, "fs", rp->r_fs);
- PANICNVADD(pnv, "gs", rp->r_gs);
- PANICNVADD(pnv, "trapno", rp->r_trapno);
- PANICNVADD(pnv, "err", rp->r_err);
- PANICNVADD(pnv, "rip", rp->r_rip);
- PANICNVADD(pnv, "cs", rp->r_cs);
- PANICNVADD(pnv, "rflags", rp->r_rfl);
- PANICNVADD(pnv, "rsp", rp->r_rsp);
- PANICNVADD(pnv, "ss", rp->r_ss);
- PANICNVADD(pnv, "gdt_hi", (uint64_t)(creg.cr_gdt._l[3]));
- PANICNVADD(pnv, "gdt_lo", (uint64_t)(creg.cr_gdt._l[0]));
- PANICNVADD(pnv, "idt_hi", (uint64_t)(creg.cr_idt._l[3]));
- PANICNVADD(pnv, "idt_lo", (uint64_t)(creg.cr_idt._l[0]));
-
- PANICNVADD(pnv, "ldt", creg.cr_ldt);
- PANICNVADD(pnv, "task", creg.cr_task);
- PANICNVADD(pnv, "cr0", creg.cr_cr0);
- PANICNVADD(pnv, "cr2", creg.cr_cr2);
- PANICNVADD(pnv, "cr3", creg.cr_cr3);
- if (creg.cr_cr4)
- PANICNVADD(pnv, "cr4", creg.cr_cr4);
-
- PANICNVSET(pdp, pnv);
-}
-
-#define TR_ARG_MAX 6 /* Max args to print, same as SPARC */
-
-
-/*
- * Print a stack backtrace using the specified frame pointer. We delay two
- * seconds before continuing, unless this is the panic traceback.
- * If we are in the process of panicking, we also attempt to write the
- * stack backtrace to a staticly assigned buffer, to allow the panic
- * code to find it and write it in to uncompressed pages within the
- * system crash dump.
- * Note that the frame for the starting stack pointer value is omitted because
- * the corresponding %eip is not known.
- */
-
-extern char *dump_stack_scratch;
-
-
-void
-traceback(caddr_t fpreg)
-{
- struct frame *fp = (struct frame *)fpreg;
- struct frame *nextfp;
- uintptr_t pc, nextpc;
- ulong_t off;
- char args[TR_ARG_MAX * 2 + 16], *sym;
- uint_t offset = 0;
- uint_t next_offset = 0;
- char stack_buffer[1024];
-
- if (!panicstr)
- printf("traceback: %%fp = %p\n", (void *)fp);
-
- if (panicstr && !dump_stack_scratch) {
- printf("Warning - stack not written to the dump buffer\n");
- }
-
- fp = (struct frame *)plat_traceback(fpreg);
- if ((uintptr_t)fp < KERNELBASE)
- goto out;
-
- pc = fp->fr_savpc;
- fp = (struct frame *)fp->fr_savfp;
-
- while ((uintptr_t)fp >= KERNELBASE) {
- /*
- * XX64 Until port is complete tolerate 8-byte aligned
- * frame pointers but flag with a warning so they can
- * be fixed.
- */
- if (((uintptr_t)fp & (STACK_ALIGN - 1)) != 0) {
- if (((uintptr_t)fp & (8 - 1)) == 0) {
- printf(" >> warning! 8-byte"
- " aligned %%fp = %p\n", (void *)fp);
- } else {
- printf(
- " >> mis-aligned %%fp = %p\n", (void *)fp);
- break;
- }
- }
-
- args[0] = '\0';
- nextpc = (uintptr_t)fp->fr_savpc;
- nextfp = (struct frame *)fp->fr_savfp;
- if ((sym = kobj_getsymname(pc, &off)) != NULL) {
- printf("%016lx %s:%s+%lx (%s)\n", (uintptr_t)fp,
- mod_containing_pc((caddr_t)pc), sym, off, args);
- (void) snprintf(stack_buffer, sizeof (stack_buffer),
- "%s:%s+%lx (%s) | ",
- mod_containing_pc((caddr_t)pc), sym, off, args);
- } else {
- printf("%016lx %lx (%s)\n",
- (uintptr_t)fp, pc, args);
- (void) snprintf(stack_buffer, sizeof (stack_buffer),
- "%lx (%s) | ", pc, args);
- }
-
- if (panicstr && dump_stack_scratch) {
- next_offset = offset + strlen(stack_buffer);
- if (next_offset < STACK_BUF_SIZE) {
- bcopy(stack_buffer, dump_stack_scratch + offset,
- strlen(stack_buffer));
- offset = next_offset;
- } else {
- /*
- * In attempting to save the panic stack
- * to the dumpbuf we have overflowed that area.
- * Print a warning and continue to printf the
- * stack to the msgbuf
- */
- printf("Warning: stack in the dump buffer"
- " may be incomplete\n");
- offset = next_offset;
- }
- }
-
- pc = nextpc;
- fp = nextfp;
- }
-out:
- if (!panicstr) {
- printf("end of traceback\n");
- DELAY(2 * MICROSEC);
- } else if (dump_stack_scratch) {
- dump_stack_scratch[offset] = '\0';
- }
-}
-
-
-/*
- * Generate a stack backtrace from a saved register set.
- */
-void
-traceregs(struct regs *rp)
-{
- traceback((caddr_t)rp->r_fp);
-}
-
-void
-exec_set_sp(size_t stksize)
-{
- klwp_t *lwp = ttolwp(curthread);
-
- lwptoregs(lwp)->r_sp = (uintptr_t)curproc->p_usrstack - stksize;
-}
-
-hrtime_t
-gethrtime_waitfree(void)
-{
- return (dtrace_gethrtime());
-}
-
-hrtime_t
-gethrtime(void)
-{
- return (gethrtimef());
-}
-
-hrtime_t
-gethrtime_unscaled(void)
-{
- return (gethrtimeunscaledf());
-}
-
-void
-scalehrtime(hrtime_t *hrt)
-{
- scalehrtimef(hrt);
-}
-
-uint64_t
-unscalehrtime(hrtime_t nsecs)
-{
- return (unscalehrtimef(nsecs));
-}
-
-void
-gethrestime(timespec_t *tp)
-{
- gethrestimef(tp);
-}
-
-/*
- * Part of the implementation of hres_tick(); this routine is
- * easier in C than assembler .. called with the hres_lock held.
- *
- * XX64 Many of these timekeeping variables need to be extern'ed in a header
- */
-
-#include <sys/time.h>
-#include <sys/machlock.h>
-
-extern int one_sec;
-extern int max_hres_adj;
-
-void
-__adj_hrestime(void)
-{
- long long adj;
-
- if (hrestime_adj == 0)
- adj = 0;
- else if (hrestime_adj > 0) {
- if (hrestime_adj < max_hres_adj)
- adj = hrestime_adj;
- else
- adj = max_hres_adj;
- } else {
- if (hrestime_adj < -max_hres_adj)
- adj = -max_hres_adj;
- else
- adj = hrestime_adj;
- }
-
- timedelta -= adj;
- hrestime_adj = timedelta;
- hrestime.tv_nsec += adj;
-
- while (hrestime.tv_nsec >= NANOSEC) {
- one_sec++;
- hrestime.tv_sec++;
- hrestime.tv_nsec -= NANOSEC;
- }
-}
-
-/*
- * Wrapper functions to maintain backwards compability
- */
-int
-xcopyin(const void *uaddr, void *kaddr, size_t count)
-{
- return (xcopyin_nta(uaddr, kaddr, count, UIO_COPY_CACHED));
-}
-
-int
-xcopyout(const void *kaddr, void *uaddr, size_t count)
-{
- return (xcopyout_nta(kaddr, uaddr, count, UIO_COPY_CACHED));
-}
diff --git a/usr/src/uts/intel/ia32/os/bootdev.c b/usr/src/uts/intel/ia32/os/bootdev.c
deleted file mode 100644
index 02f31efd56..0000000000
--- a/usr/src/uts/intel/ia32/os/bootdev.c
+++ /dev/null
@@ -1,100 +0,0 @@
-/*
- * CDDL HEADER START
- *
- * The contents of this file are subject to the terms of the
- * Common Development and Distribution License, Version 1.0 only
- * (the "License"). You may not use this file except in compliance
- * with the License.
- *
- * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
- * or http://www.opensolaris.org/os/licensing.
- * See the License for the specific language governing permissions
- * and limitations under the License.
- *
- * When distributing Covered Code, include this CDDL HEADER in each
- * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
- * If applicable, add the following below this CDDL HEADER, with the
- * fields enclosed by brackets "[]" replaced with your own identifying
- * information: Portions Copyright [yyyy] [name of copyright owner]
- *
- * CDDL HEADER END
- */
-/*
- * Copyright 2008 Sun Microsystems, Inc. All rights reserved.
- * Use is subject to license terms.
- */
-
-#include <sys/modctl.h>
-#include <sys/sunddi.h>
-
-/* internal global data */
-static struct modlmisc modlmisc = {
- &mod_miscops, "bootdev misc module"
-};
-
-static struct modlinkage modlinkage = {
- MODREV_1, (void *)&modlmisc, NULL
-};
-
-int
-_init()
-{
- return (mod_install(&modlinkage));
-}
-
-int
-_fini()
-{
- return (mod_remove(&modlinkage));
-}
-
-int
-_info(struct modinfo *modinfop)
-{
- return (mod_info(&modlinkage, modinfop));
-}
-
-/*
- * convert a prom device path to an equivalent path in /devices
- * Does not deal with aliases. Does deal with pathnames which
- * are not fully qualified. This routine is generalized
- * to work across several flavors of OBP
- */
-int
-i_promname_to_devname(char *prom_name, char *ret_buf)
-{
- if (prom_name == NULL || ret_buf == NULL ||
- (strlen(prom_name) >= MAXPATHLEN)) {
- return (EINVAL);
- }
- if (i_ddi_prompath_to_devfspath(prom_name, ret_buf) != DDI_SUCCESS)
- return (EINVAL);
-
- return (0);
-}
-
-/*
- * If bootstring contains a device path, we need to convert to a format
- * the prom will understand. To do so, we convert the existing path to
- * a prom-compatible path and return the value of new_path. If the
- * caller specifies new_path as NULL, we allocate an appropriately
- * sized new_path on behalf of the caller. If the caller invokes this
- * function with new_path = NULL, they must do so from a context in
- * which it is safe to perform a sleeping memory allocation.
- *
- * NOTE: Intel does not have a real PROM, so the implementation
- * simply returns a copy of the string passed in.
- */
-char *
-i_convert_boot_device_name(char *cur_path, char *new_path, size_t *len)
-{
- if (new_path != NULL) {
- (void) snprintf(new_path, *len, "%s", cur_path);
- return (new_path);
- } else {
- *len = strlen(cur_path) + 1;
- new_path = kmem_alloc(*len, KM_SLEEP);
- (void) snprintf(new_path, *len, "%s", cur_path);
- return (new_path);
- }
-}
diff --git a/usr/src/uts/intel/ia32/os/comm_page_util.c b/usr/src/uts/intel/ia32/os/comm_page_util.c
deleted file mode 100644
index f286bee7f6..0000000000
--- a/usr/src/uts/intel/ia32/os/comm_page_util.c
+++ /dev/null
@@ -1,62 +0,0 @@
-/*
- * This file and its contents are supplied under the terms of the
- * Common Development and Distribution License ("CDDL"), version 1.0.
- * You may only use this file in accordance with the terms of version
- * 1.0 of the CDDL.
- *
- * A full copy of the text of the CDDL should have accompanied this
- * source. A copy of the CDDL is also available via the Internet at
- * http://www.illumos.org/license/CDDL.
- */
-
-/*
- * Copyright 2016 Joyent, Inc.
- */
-
-
-#include <sys/types.h>
-#include <sys/thread.h>
-#include <sys/proc.h>
-#include <sys/mman.h>
-#include <sys/vmsystm.h>
-#include <vm/as.h>
-#include <vm/seg_umap.h>
-
-#if !defined(__xpv)
-#include <sys/comm_page.h>
-#endif /* !defined(__xpv) */
-
-/*
- * Map in the comm page.
- *
- * The contents of the comm page are only defined on non-xpv x86 at this time.
- * Furthermore, the data is only valid in userspace (32-bit or 64-bit) when
- * mapped from a 64-bit kernel.
- * See: "uts/i86pc/sys/comm_page.h"
- */
-caddr_t
-comm_page_mapin()
-{
-#if !defined(__xpv)
- proc_t *p = curproc;
- caddr_t addr = NULL;
- size_t len = COMM_PAGE_SIZE;
- uint_t prot = PROT_USER | PROT_READ;
- segumap_crargs_t suarg;
-
- map_addr(&addr, len, (offset_t)0, 1, 0);
- if (addr == NULL || valid_usr_range(addr, len, prot, p->p_as,
- p->p_as->a_userlimit) != RANGE_OKAY) {
- return (NULL);
- }
-
- suarg.kaddr = (caddr_t)&comm_page;
- suarg.prot = suarg.maxprot = prot;
- if (as_map(p->p_as, addr, len, segumap_create, &suarg) != 0) {
- return (NULL);
- }
- return (addr);
-#else /* !defined(__xpv) */
- return (NULL);
-#endif /* !defined(__xpv) */
-}
diff --git a/usr/src/uts/intel/ia32/os/copy_subr.c b/usr/src/uts/intel/ia32/os/copy_subr.c
deleted file mode 100644
index 0df1086260..0000000000
--- a/usr/src/uts/intel/ia32/os/copy_subr.c
+++ /dev/null
@@ -1,104 +0,0 @@
-/*
- * CDDL HEADER START
- *
- * The contents of this file are subject to the terms of the
- * Common Development and Distribution License, Version 1.0 only
- * (the "License"). You may not use this file except in compliance
- * with the License.
- *
- * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
- * or http://www.opensolaris.org/os/licensing.
- * See the License for the specific language governing permissions
- * and limitations under the License.
- *
- * When distributing Covered Code, include this CDDL HEADER in each
- * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
- * If applicable, add the following below this CDDL HEADER, with the
- * fields enclosed by brackets "[]" replaced with your own identifying
- * information: Portions Copyright [yyyy] [name of copyright owner]
- *
- * CDDL HEADER END
- */
-/*
- * Copyright 2004 Sun Microsystems, Inc. All rights reserved.
- * Use is subject to license terms.
- */
-
-#pragma ident "%Z%%M% %I% %E% SMI"
-
-/*
- * Miscellaneous C routines for copying data around without
- * descending into assembler. Compilers are pretty good at
- * scheduling instructions, and humans are pretty hopeless at
- * writing correct assembler.
- */
-
-#include <sys/types.h>
-#include <sys/systm.h>
-#include <sys/errno.h>
-#include <sys/param.h>
-
-/*
- * copyinstr_noerr and copyoutstr_noerr can be implemented completely
- * in C on machines with shared user and kernel context.
- */
-static int
-copystr_nofault(const char *src, char *dst, size_t maxlength,
- size_t *lencopied)
-{
- int error = 0;
- size_t leftover;
-
- if ((leftover = maxlength) == 0)
- error = ENAMETOOLONG;
- else
- do {
- leftover--;
- if ((*dst++ = *src++) == '\0')
- break;
- if (leftover == 0) {
- error = ENAMETOOLONG;
- break;
- }
- /*CONSTCOND*/
- } while (1);
-
- if (lencopied)
- *lencopied = maxlength - leftover;
- return (error);
-}
-
-
-int
-copyinstr_noerr(const char *uaddr, char *kaddr, size_t maxlength,
- size_t *lencopied)
-{
- char *ua = (char *)uaddr;
-
- ASSERT((uintptr_t)kaddr > kernelbase);
-
- if ((uintptr_t)ua > kernelbase) {
- /*
- * force fault at kernelbase
- */
- ua = (char *)kernelbase;
- }
- return (copystr_nofault(ua, kaddr, maxlength, lencopied));
-}
-
-int
-copyoutstr_noerr(const char *kaddr, char *uaddr, size_t maxlength,
- size_t *lencopied)
-{
- char *ua = (char *)uaddr;
-
- ASSERT((uintptr_t)kaddr > kernelbase);
-
- if ((uintptr_t)ua > kernelbase) {
- /*
- * force fault at kernelbase
- */
- ua = (char *)kernelbase;
- }
- return (copystr_nofault(kaddr, ua, maxlength, lencopied));
-}
diff --git a/usr/src/uts/intel/ia32/os/cpc_subr.c b/usr/src/uts/intel/ia32/os/cpc_subr.c
deleted file mode 100644
index 71e1ebaeee..0000000000
--- a/usr/src/uts/intel/ia32/os/cpc_subr.c
+++ /dev/null
@@ -1,274 +0,0 @@
-/*
- * CDDL HEADER START
- *
- * The contents of this file are subject to the terms of the
- * Common Development and Distribution License (the "License").
- * You may not use this file except in compliance with the License.
- *
- * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
- * or http://www.opensolaris.org/os/licensing.
- * See the License for the specific language governing permissions
- * and limitations under the License.
- *
- * When distributing Covered Code, include this CDDL HEADER in each
- * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
- * If applicable, add the following below this CDDL HEADER, with the
- * fields enclosed by brackets "[]" replaced with your own identifying
- * information: Portions Copyright [yyyy] [name of copyright owner]
- *
- * CDDL HEADER END
- */
-/*
- * Copyright (c) 1999, 2010, Oracle and/or its affiliates. All rights reserved.
- * Copyright 2021 Joyent, Inc.
- */
-
-/*
- * x86-specific routines used by the CPU Performance counter driver.
- */
-
-#include <sys/types.h>
-#include <sys/time.h>
-#include <sys/atomic.h>
-#include <sys/regset.h>
-#include <sys/privregs.h>
-#include <sys/x86_archext.h>
-#include <sys/cpuvar.h>
-#include <sys/machcpuvar.h>
-#include <sys/archsystm.h>
-#include <sys/cpc_pcbe.h>
-#include <sys/cpc_impl.h>
-#include <sys/x_call.h>
-#include <sys/cmn_err.h>
-#include <sys/cmt.h>
-#include <sys/spl.h>
-#include <sys/apic.h>
-
-static const uint64_t allstopped = 0;
-static kcpc_ctx_t *(*overflow_intr_handler)(caddr_t);
-
-/* Do threads share performance monitoring hardware? */
-static int strands_perfmon_shared = 0;
-
-int kcpc_hw_overflow_intr_installed; /* set by APIC code */
-extern kcpc_ctx_t *kcpc_overflow_intr(caddr_t arg, uint64_t bitmap);
-
-extern int kcpc_counts_include_idle; /* Project Private /etc/system variable */
-
-void (*kcpc_hw_enable_cpc_intr)(void); /* set by APIC code */
-
-int
-kcpc_hw_add_ovf_intr(kcpc_ctx_t *(*handler)(caddr_t))
-{
- if (x86_type != X86_TYPE_P6)
- return (0);
- overflow_intr_handler = handler;
- return (ipltospl(APIC_PCINT_IPL));
-}
-
-void
-kcpc_hw_rem_ovf_intr(void)
-{
- overflow_intr_handler = NULL;
-}
-
-/*
- * Hook used on P4 systems to catch online/offline events.
- */
-/*ARGSUSED*/
-static int
-kcpc_cpu_setup(cpu_setup_t what, int cpuid, void *arg)
-{
- pg_cmt_t *chip_pg;
- int active_cpus_cnt;
-
- if (what != CPU_ON)
- return (0);
-
- /*
- * If any CPU-bound contexts exist, we don't need to invalidate
- * anything, as no per-LWP contexts can coexist.
- */
- if (kcpc_cpuctx || dtrace_cpc_in_use)
- return (0);
-
- /*
- * If this chip now has more than 1 active cpu, we must invalidate all
- * contexts in the system.
- */
- chip_pg = (pg_cmt_t *)pghw_find_pg(cpu[cpuid], PGHW_CHIP);
- if (chip_pg != NULL) {
- active_cpus_cnt = GROUP_SIZE(&chip_pg->cmt_cpus_actv);
- if (active_cpus_cnt > 1)
- kcpc_invalidate_all();
- }
-
- return (0);
-}
-
-static kmutex_t cpu_setup_lock; /* protects setup_registered */
-static int setup_registered;
-
-
-void
-kcpc_hw_init(cpu_t *cp)
-{
- kthread_t *t = cp->cpu_idle_thread;
- uint32_t versionid;
- struct cpuid_regs cpuid;
-
- strands_perfmon_shared = 0;
- if (is_x86_feature(x86_featureset, X86FSET_HTT)) {
- if (cpuid_getvendor(cpu[0]) == X86_VENDOR_Intel) {
- /*
- * Intel processors that support Architectural
- * Performance Monitoring Version 3 have per strand
- * performance monitoring hardware.
- * Hence we can allow use of performance counters on
- * multiple strands on the same core simultaneously.
- */
- cpuid.cp_eax = 0x0;
- (void) __cpuid_insn(&cpuid);
- if (cpuid.cp_eax < 0xa) {
- strands_perfmon_shared = 1;
- } else {
- cpuid.cp_eax = 0xa;
- (void) __cpuid_insn(&cpuid);
-
- versionid = cpuid.cp_eax & 0xFF;
- if (versionid < 3) {
- strands_perfmon_shared = 1;
- }
- }
- } else if (cpuid_getvendor(cpu[0]) == X86_VENDOR_AMD ||
- cpuid_getvendor(cpu[0]) == X86_VENDOR_HYGON) {
- /*
- * On AMD systems with HT, all of the performance
- * monitors exist on a per-logical CPU basis.
- */
- strands_perfmon_shared = 0;
- } else {
- strands_perfmon_shared = 1;
- }
- }
-
- if (strands_perfmon_shared) {
- mutex_enter(&cpu_setup_lock);
- if (setup_registered == 0) {
- mutex_enter(&cpu_lock);
- register_cpu_setup_func(kcpc_cpu_setup, NULL);
- mutex_exit(&cpu_lock);
- setup_registered = 1;
- }
- mutex_exit(&cpu_setup_lock);
- }
-
- mutex_init(&cp->cpu_cpc_ctxlock, "cpu_cpc_ctxlock", MUTEX_DEFAULT, 0);
-
- if (kcpc_counts_include_idle)
- return;
-
- installctx(t, cp, kcpc_idle_save, kcpc_idle_restore,
- NULL, NULL, NULL, NULL, NULL);
-}
-
-void
-kcpc_hw_fini(cpu_t *cp)
-{
- ASSERT(cp->cpu_idle_thread == NULL);
-
- mutex_destroy(&cp->cpu_cpc_ctxlock);
-}
-
-#define BITS(v, u, l) \
- (((v) >> (l)) & ((1 << (1 + (u) - (l))) - 1))
-
-#define PCBE_NAMELEN 30 /* Enough Room for pcbe.manuf.model.family.stepping */
-
-/*
- * Examine the processor and load an appropriate PCBE.
- */
-int
-kcpc_hw_load_pcbe(void)
-{
- return (kcpc_pcbe_tryload(cpuid_getvendorstr(CPU), cpuid_getfamily(CPU),
- cpuid_getmodel(CPU), cpuid_getstep(CPU)));
-}
-
-/*
- * Called by the generic framework to check if it's OK to bind a set to a CPU.
- */
-int
-kcpc_hw_cpu_hook(processorid_t cpuid, ulong_t *kcpc_cpumap)
-{
- cpu_t *cpu, *p;
- pg_t *chip_pg;
- pg_cpu_itr_t itr;
-
- if (!strands_perfmon_shared)
- return (0);
-
- /*
- * Only one logical CPU on each Pentium 4 HT CPU may be bound to at
- * once.
- *
- * This loop is protected by holding cpu_lock, in order to properly
- * access the cpu_t of the desired cpu.
- */
- mutex_enter(&cpu_lock);
- if ((cpu = cpu_get(cpuid)) == NULL) {
- mutex_exit(&cpu_lock);
- return (-1);
- }
-
- chip_pg = (pg_t *)pghw_find_pg(cpu, PGHW_CHIP);
-
- PG_CPU_ITR_INIT(chip_pg, itr);
- while ((p = pg_cpu_next(&itr)) != NULL) {
- if (p == cpu)
- continue;
- if (BT_TEST(kcpc_cpumap, p->cpu_id)) {
- mutex_exit(&cpu_lock);
- return (-1);
- }
- }
-
- mutex_exit(&cpu_lock);
- return (0);
-}
-
-/*
- * Called by the generic framework to check if it's OK to bind a set to an LWP.
- */
-int
-kcpc_hw_lwp_hook(void)
-{
- pg_cmt_t *chip;
- group_t *chips;
- group_iter_t i;
-
- if (!strands_perfmon_shared)
- return (0);
-
- /*
- * Only one CPU per chip may be online.
- */
- mutex_enter(&cpu_lock);
-
- chips = pghw_set_lookup(PGHW_CHIP);
- if (chips == NULL) {
- mutex_exit(&cpu_lock);
- return (0);
- }
-
- group_iter_init(&i);
- while ((chip = group_iterate(chips, &i)) != NULL) {
- if (GROUP_SIZE(&chip->cmt_cpus_actv) > 1) {
- mutex_exit(&cpu_lock);
- return (-1);
- }
- }
-
- mutex_exit(&cpu_lock);
- return (0);
-}
diff --git a/usr/src/uts/intel/ia32/os/ddi_i86.c b/usr/src/uts/intel/ia32/os/ddi_i86.c
deleted file mode 100644
index f135d0673c..0000000000
--- a/usr/src/uts/intel/ia32/os/ddi_i86.c
+++ /dev/null
@@ -1,1903 +0,0 @@
-/*
- * CDDL HEADER START
- *
- * The contents of this file are subject to the terms of the
- * Common Development and Distribution License (the "License").
- * You may not use this file except in compliance with the License.
- *
- * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
- * or http://www.opensolaris.org/os/licensing.
- * See the License for the specific language governing permissions
- * and limitations under the License.
- *
- * When distributing Covered Code, include this CDDL HEADER in each
- * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
- * If applicable, add the following below this CDDL HEADER, with the
- * fields enclosed by brackets "[]" replaced with your own identifying
- * information: Portions Copyright [yyyy] [name of copyright owner]
- *
- * CDDL HEADER END
- */
-
-/*
- * Copyright 2009 Sun Microsystems, Inc. All rights reserved.
- * Use is subject to license terms.
- */
-/*
- * Copyright 2014 Garrett D'Amore <garrett@damore.org>
- */
-
-#include <sys/conf.h>
-#include <sys/kmem.h>
-#include <sys/ddi_impldefs.h>
-#include <sys/ddi.h>
-#include <sys/sunddi.h>
-#include <sys/ddifm.h>
-#include <sys/fm/io/ddi.h>
-#include <sys/fm/protocol.h>
-#include <sys/ontrap.h>
-
-
-/*
- * DDI DMA Engine functions for x86.
- * These functions are more naturally generic, but do not apply to SPARC.
- */
-
-int
-ddi_dmae_alloc(dev_info_t *dip, int chnl, int (*dmae_waitfp)(), caddr_t arg)
-{
- return (ddi_dma_mctl(dip, dip, 0, DDI_DMA_E_ACQUIRE,
- (off_t *)dmae_waitfp, (size_t *)arg,
- (caddr_t *)(uintptr_t)chnl, 0));
-}
-
-int
-ddi_dmae_release(dev_info_t *dip, int chnl)
-{
- return (ddi_dma_mctl(dip, dip, 0, DDI_DMA_E_FREE, 0, 0,
- (caddr_t *)(uintptr_t)chnl, 0));
-}
-
-int
-ddi_dmae_getattr(dev_info_t *dip, ddi_dma_attr_t *attrp)
-{
- return (ddi_dma_mctl(dip, dip, 0, DDI_DMA_E_GETATTR, 0, 0,
- (caddr_t *)attrp, 0));
-}
-
-int
-ddi_dmae_1stparty(dev_info_t *dip, int chnl)
-{
- return (ddi_dma_mctl(dip, dip, 0, DDI_DMA_E_1STPTY, 0, 0,
- (caddr_t *)(uintptr_t)chnl, 0));
-}
-
-int
-ddi_dmae_prog(dev_info_t *dip, struct ddi_dmae_req *dmaereqp,
- ddi_dma_cookie_t *cookiep, int chnl)
-{
- return (ddi_dma_mctl(dip, dip, 0, DDI_DMA_E_PROG, (off_t *)dmaereqp,
- (size_t *)cookiep, (caddr_t *)(uintptr_t)chnl, 0));
-}
-
-int
-ddi_dmae_swsetup(dev_info_t *dip, struct ddi_dmae_req *dmaereqp,
- ddi_dma_cookie_t *cookiep, int chnl)
-{
- return (ddi_dma_mctl(dip, dip, 0, DDI_DMA_E_SWSETUP, (off_t *)dmaereqp,
- (size_t *)cookiep, (caddr_t *)(uintptr_t)chnl, 0));
-}
-
-int
-ddi_dmae_swstart(dev_info_t *dip, int chnl)
-{
- return (ddi_dma_mctl(dip, dip, 0, DDI_DMA_E_SWSTART, 0, 0,
- (caddr_t *)(uintptr_t)chnl, 0));
-}
-
-int
-ddi_dmae_stop(dev_info_t *dip, int chnl)
-{
- return (ddi_dma_mctl(dip, dip, 0, DDI_DMA_E_STOP, 0, 0,
- (caddr_t *)(uintptr_t)chnl, 0));
-}
-
-int
-ddi_dmae_enable(dev_info_t *dip, int chnl)
-{
- return (ddi_dma_mctl(dip, dip, 0, DDI_DMA_E_ENABLE, 0, 0,
- (caddr_t *)(uintptr_t)chnl, 0));
-}
-
-int
-ddi_dmae_disable(dev_info_t *dip, int chnl)
-{
- return (ddi_dma_mctl(dip, dip, 0, DDI_DMA_E_DISABLE, 0, 0,
- (caddr_t *)(uintptr_t)chnl, 0));
-}
-
-int
-ddi_dmae_getcnt(dev_info_t *dip, int chnl, int *countp)
-{
- return (ddi_dma_mctl(dip, dip, 0, DDI_DMA_E_GETCNT, 0, (size_t *)countp,
- (caddr_t *)(uintptr_t)chnl, 0));
-}
-
-/*
- * implementation specific access handle and routines:
- */
-
-static uintptr_t impl_acc_hdl_id = 0;
-
-/*
- * access handle allocator
- */
-ddi_acc_hdl_t *
-impl_acc_hdl_get(ddi_acc_handle_t hdl)
-{
- /*
- * recast to ddi_acc_hdl_t instead of
- * casting to ddi_acc_impl_t and then return the ah_platform_private
- *
- * this optimization based on the ddi_acc_hdl_t is the
- * first member of the ddi_acc_impl_t.
- */
- return ((ddi_acc_hdl_t *)hdl);
-}
-
-ddi_acc_handle_t
-impl_acc_hdl_alloc(int (*waitfp)(caddr_t), caddr_t arg)
-{
- ddi_acc_impl_t *hp;
- on_trap_data_t *otp;
- int sleepflag;
-
- sleepflag = ((waitfp == (int (*)())KM_SLEEP) ? KM_SLEEP : KM_NOSLEEP);
- /*
- * Allocate and initialize the data access handle and error status.
- */
- if ((hp = kmem_zalloc(sizeof (ddi_acc_impl_t), sleepflag)) == NULL)
- goto fail;
- if ((hp->ahi_err = (ndi_err_t *)kmem_zalloc(
- sizeof (ndi_err_t), sleepflag)) == NULL) {
- kmem_free(hp, sizeof (ddi_acc_impl_t));
- goto fail;
- }
- if ((otp = (on_trap_data_t *)kmem_zalloc(
- sizeof (on_trap_data_t), sleepflag)) == NULL) {
- kmem_free(hp->ahi_err, sizeof (ndi_err_t));
- kmem_free(hp, sizeof (ddi_acc_impl_t));
- goto fail;
- }
- hp->ahi_err->err_ontrap = otp;
- hp->ahi_common.ah_platform_private = (void *)hp;
-
- return ((ddi_acc_handle_t)hp);
-fail:
- if ((waitfp != (int (*)())KM_SLEEP) &&
- (waitfp != (int (*)())KM_NOSLEEP))
- ddi_set_callback(waitfp, arg, &impl_acc_hdl_id);
- return (NULL);
-}
-
-void
-impl_acc_hdl_free(ddi_acc_handle_t handle)
-{
- ddi_acc_impl_t *hp;
-
- /*
- * The supplied (ddi_acc_handle_t) is actually a (ddi_acc_impl_t *),
- * because that's what we allocated in impl_acc_hdl_alloc() above.
- */
- hp = (ddi_acc_impl_t *)handle;
- if (hp) {
- kmem_free(hp->ahi_err->err_ontrap, sizeof (on_trap_data_t));
- kmem_free(hp->ahi_err, sizeof (ndi_err_t));
- kmem_free(hp, sizeof (ddi_acc_impl_t));
- if (impl_acc_hdl_id)
- ddi_run_callback(&impl_acc_hdl_id);
- }
-}
-
-/*
- * Function used to check if a given access handle owns the failing address.
- * Called by ndi_fmc_error, when we detect a PIO error.
- */
-/* ARGSUSED */
-static int
-impl_acc_check(dev_info_t *dip, const void *handle, const void *addr,
- const void *not_used)
-{
- pfn_t pfn, fault_pfn;
- ddi_acc_hdl_t *hp;
-
- hp = impl_acc_hdl_get((ddi_acc_handle_t)handle);
-
- ASSERT(hp);
-
- if (addr != NULL) {
- pfn = hp->ah_pfn;
- fault_pfn = mmu_btop(*(uint64_t *)addr);
- if (fault_pfn >= pfn && fault_pfn < (pfn + hp->ah_pnum))
- return (DDI_FM_NONFATAL);
- }
- return (DDI_FM_UNKNOWN);
-}
-
-void
-impl_acc_err_init(ddi_acc_hdl_t *handlep)
-{
- int fmcap;
- ndi_err_t *errp;
- on_trap_data_t *otp;
- ddi_acc_impl_t *hp = (ddi_acc_impl_t *)handlep;
-
- fmcap = ddi_fm_capable(handlep->ah_dip);
-
- if (handlep->ah_acc.devacc_attr_version < DDI_DEVICE_ATTR_V1 ||
- !DDI_FM_ACC_ERR_CAP(fmcap)) {
- handlep->ah_acc.devacc_attr_access = DDI_DEFAULT_ACC;
- } else if (handlep->ah_acc.devacc_attr_access == DDI_FLAGERR_ACC &&
- hp->ahi_scan == NULL) {
- handlep->ah_acc.devacc_attr_access = DDI_DEFAULT_ACC;
- } else if (DDI_FM_ACC_ERR_CAP(fmcap)) {
- if (handlep->ah_acc.devacc_attr_access == DDI_DEFAULT_ACC) {
- if (handlep->ah_xfermodes)
- return;
- i_ddi_drv_ereport_post(handlep->ah_dip, DVR_EFMCAP,
- NULL, DDI_NOSLEEP);
- } else {
- errp = hp->ahi_err;
- otp = (on_trap_data_t *)errp->err_ontrap;
- otp->ot_handle = (void *)(hp);
- otp->ot_prot = OT_DATA_ACCESS;
- errp->err_status = DDI_FM_OK;
- errp->err_expected = DDI_FM_ERR_UNEXPECTED;
- errp->err_cf = impl_acc_check;
- }
- }
-}
-
-/* ARGSUSED */
-int
-impl_dma_check(dev_info_t *dip, const void *handle, const void *pci_hdl,
- const void *not_used)
-{
- return (DDI_FM_UNKNOWN);
-}
-
-void
-impl_acc_hdl_init(ddi_acc_hdl_t *handlep)
-{
- ddi_acc_impl_t *hp;
- int fmcap;
- int devacc_attr_access;
-
- if (!handlep)
- return;
- fmcap = ddi_fm_capable(handlep->ah_dip);
- if (handlep->ah_acc.devacc_attr_version < DDI_DEVICE_ATTR_V1 ||
- !DDI_FM_ACC_ERR_CAP(fmcap))
- devacc_attr_access = DDI_DEFAULT_ACC;
- else
- devacc_attr_access = handlep->ah_acc.devacc_attr_access;
-
- hp = (ddi_acc_impl_t *)handlep->ah_platform_private;
-
- /*
- * Can only do FLAGERR if scan callback is set up. This should
- * also guarantee that the peekpoke_mutex and err_mutex are defined.
- */
- if (devacc_attr_access == DDI_FLAGERR_ACC && hp->ahi_scan == NULL)
- devacc_attr_access = DDI_DEFAULT_ACC;
-
- switch (devacc_attr_access) {
- case DDI_CAUTIOUS_ACC:
- hp->ahi_get8 = i_ddi_caut_get8;
- hp->ahi_put8 = i_ddi_caut_put8;
- hp->ahi_rep_get8 = i_ddi_caut_rep_get8;
- hp->ahi_rep_put8 = i_ddi_caut_rep_put8;
- hp->ahi_get16 = i_ddi_caut_get16;
- hp->ahi_get32 = i_ddi_caut_get32;
- hp->ahi_put16 = i_ddi_caut_put16;
- hp->ahi_put32 = i_ddi_caut_put32;
- hp->ahi_rep_get16 = i_ddi_caut_rep_get16;
- hp->ahi_rep_get32 = i_ddi_caut_rep_get32;
- hp->ahi_rep_put16 = i_ddi_caut_rep_put16;
- hp->ahi_rep_put32 = i_ddi_caut_rep_put32;
- hp->ahi_get64 = i_ddi_caut_get64;
- hp->ahi_put64 = i_ddi_caut_put64;
- hp->ahi_rep_get64 = i_ddi_caut_rep_get64;
- hp->ahi_rep_put64 = i_ddi_caut_rep_put64;
- break;
- case DDI_FLAGERR_ACC:
- if (hp->ahi_acc_attr & DDI_ACCATTR_IO_SPACE) {
- hp->ahi_get8 = i_ddi_prot_io_get8;
- hp->ahi_put8 = i_ddi_prot_io_put8;
- hp->ahi_rep_get8 = i_ddi_prot_io_rep_get8;
- hp->ahi_rep_put8 = i_ddi_prot_io_rep_put8;
-
- /* temporary set these 64 functions to no-ops */
- hp->ahi_get64 = i_ddi_io_get64;
- hp->ahi_put64 = i_ddi_io_put64;
- hp->ahi_rep_get64 = i_ddi_io_rep_get64;
- hp->ahi_rep_put64 = i_ddi_io_rep_put64;
-
- /*
- * check for BIG endian access
- */
- if (handlep->ah_acc.devacc_attr_endian_flags ==
- DDI_STRUCTURE_BE_ACC) {
- hp->ahi_get16 = i_ddi_prot_io_swap_get16;
- hp->ahi_get32 = i_ddi_prot_io_swap_get32;
- hp->ahi_put16 = i_ddi_prot_io_swap_put16;
- hp->ahi_put32 = i_ddi_prot_io_swap_put32;
- hp->ahi_rep_get16 =
- i_ddi_prot_io_swap_rep_get16;
- hp->ahi_rep_get32 =
- i_ddi_prot_io_swap_rep_get32;
- hp->ahi_rep_put16 =
- i_ddi_prot_io_swap_rep_put16;
- hp->ahi_rep_put32 =
- i_ddi_prot_io_swap_rep_put32;
- } else {
- hp->ahi_acc_attr |= DDI_ACCATTR_DIRECT;
- hp->ahi_get16 = i_ddi_prot_io_get16;
- hp->ahi_get32 = i_ddi_prot_io_get32;
- hp->ahi_put16 = i_ddi_prot_io_put16;
- hp->ahi_put32 = i_ddi_prot_io_put32;
- hp->ahi_rep_get16 = i_ddi_prot_io_rep_get16;
- hp->ahi_rep_get32 = i_ddi_prot_io_rep_get32;
- hp->ahi_rep_put16 = i_ddi_prot_io_rep_put16;
- hp->ahi_rep_put32 = i_ddi_prot_io_rep_put32;
- }
-
- } else if (hp->ahi_acc_attr & DDI_ACCATTR_CPU_VADDR) {
-
- hp->ahi_get8 = i_ddi_prot_vaddr_get8;
- hp->ahi_put8 = i_ddi_prot_vaddr_put8;
- hp->ahi_rep_get8 = i_ddi_prot_vaddr_rep_get8;
- hp->ahi_rep_put8 = i_ddi_prot_vaddr_rep_put8;
-
- /*
- * check for BIG endian access
- */
- if (handlep->ah_acc.devacc_attr_endian_flags ==
- DDI_STRUCTURE_BE_ACC) {
-
- hp->ahi_get16 = i_ddi_prot_vaddr_swap_get16;
- hp->ahi_get32 = i_ddi_prot_vaddr_swap_get32;
- hp->ahi_get64 = i_ddi_prot_vaddr_swap_get64;
- hp->ahi_put16 = i_ddi_prot_vaddr_swap_put16;
- hp->ahi_put32 = i_ddi_prot_vaddr_swap_put32;
- hp->ahi_put64 = i_ddi_prot_vaddr_swap_put64;
- hp->ahi_rep_get16 =
- i_ddi_prot_vaddr_swap_rep_get16;
- hp->ahi_rep_get32 =
- i_ddi_prot_vaddr_swap_rep_get32;
- hp->ahi_rep_get64 =
- i_ddi_prot_vaddr_swap_rep_get64;
- hp->ahi_rep_put16 =
- i_ddi_prot_vaddr_swap_rep_put16;
- hp->ahi_rep_put32 =
- i_ddi_prot_vaddr_swap_rep_put32;
- hp->ahi_rep_put64 =
- i_ddi_prot_vaddr_swap_rep_put64;
- } else {
- hp->ahi_acc_attr |= DDI_ACCATTR_DIRECT;
- hp->ahi_get16 = i_ddi_prot_vaddr_get16;
- hp->ahi_get32 = i_ddi_prot_vaddr_get32;
- hp->ahi_get64 = i_ddi_prot_vaddr_get64;
- hp->ahi_put16 = i_ddi_prot_vaddr_put16;
- hp->ahi_put32 = i_ddi_prot_vaddr_put32;
- hp->ahi_put64 = i_ddi_prot_vaddr_put64;
- hp->ahi_rep_get16 = i_ddi_prot_vaddr_rep_get16;
- hp->ahi_rep_get32 = i_ddi_prot_vaddr_rep_get32;
- hp->ahi_rep_get64 = i_ddi_prot_vaddr_rep_get64;
- hp->ahi_rep_put16 = i_ddi_prot_vaddr_rep_put16;
- hp->ahi_rep_put32 = i_ddi_prot_vaddr_rep_put32;
- hp->ahi_rep_put64 = i_ddi_prot_vaddr_rep_put64;
- }
- }
- break;
- case DDI_DEFAULT_ACC:
- if (hp->ahi_acc_attr & DDI_ACCATTR_IO_SPACE) {
- hp->ahi_get8 = i_ddi_io_get8;
- hp->ahi_put8 = i_ddi_io_put8;
- hp->ahi_rep_get8 = i_ddi_io_rep_get8;
- hp->ahi_rep_put8 = i_ddi_io_rep_put8;
-
- /* temporary set these 64 functions to no-ops */
- hp->ahi_get64 = i_ddi_io_get64;
- hp->ahi_put64 = i_ddi_io_put64;
- hp->ahi_rep_get64 = i_ddi_io_rep_get64;
- hp->ahi_rep_put64 = i_ddi_io_rep_put64;
-
- /*
- * check for BIG endian access
- */
- if (handlep->ah_acc.devacc_attr_endian_flags ==
- DDI_STRUCTURE_BE_ACC) {
- hp->ahi_get16 = i_ddi_io_swap_get16;
- hp->ahi_get32 = i_ddi_io_swap_get32;
- hp->ahi_put16 = i_ddi_io_swap_put16;
- hp->ahi_put32 = i_ddi_io_swap_put32;
- hp->ahi_rep_get16 = i_ddi_io_swap_rep_get16;
- hp->ahi_rep_get32 = i_ddi_io_swap_rep_get32;
- hp->ahi_rep_put16 = i_ddi_io_swap_rep_put16;
- hp->ahi_rep_put32 = i_ddi_io_swap_rep_put32;
- } else {
- hp->ahi_acc_attr |= DDI_ACCATTR_DIRECT;
- hp->ahi_get16 = i_ddi_io_get16;
- hp->ahi_get32 = i_ddi_io_get32;
- hp->ahi_put16 = i_ddi_io_put16;
- hp->ahi_put32 = i_ddi_io_put32;
- hp->ahi_rep_get16 = i_ddi_io_rep_get16;
- hp->ahi_rep_get32 = i_ddi_io_rep_get32;
- hp->ahi_rep_put16 = i_ddi_io_rep_put16;
- hp->ahi_rep_put32 = i_ddi_io_rep_put32;
- }
-
- } else if (hp->ahi_acc_attr & DDI_ACCATTR_CPU_VADDR) {
-
- hp->ahi_get8 = i_ddi_vaddr_get8;
- hp->ahi_put8 = i_ddi_vaddr_put8;
- hp->ahi_rep_get8 = i_ddi_vaddr_rep_get8;
- hp->ahi_rep_put8 = i_ddi_vaddr_rep_put8;
-
- /*
- * check for BIG endian access
- */
- if (handlep->ah_acc.devacc_attr_endian_flags ==
- DDI_STRUCTURE_BE_ACC) {
-
- hp->ahi_get16 = i_ddi_vaddr_swap_get16;
- hp->ahi_get32 = i_ddi_vaddr_swap_get32;
- hp->ahi_get64 = i_ddi_vaddr_swap_get64;
- hp->ahi_put16 = i_ddi_vaddr_swap_put16;
- hp->ahi_put32 = i_ddi_vaddr_swap_put32;
- hp->ahi_put64 = i_ddi_vaddr_swap_put64;
- hp->ahi_rep_get16 = i_ddi_vaddr_swap_rep_get16;
- hp->ahi_rep_get32 = i_ddi_vaddr_swap_rep_get32;
- hp->ahi_rep_get64 = i_ddi_vaddr_swap_rep_get64;
- hp->ahi_rep_put16 = i_ddi_vaddr_swap_rep_put16;
- hp->ahi_rep_put32 = i_ddi_vaddr_swap_rep_put32;
- hp->ahi_rep_put64 = i_ddi_vaddr_swap_rep_put64;
- } else {
- hp->ahi_acc_attr |= DDI_ACCATTR_DIRECT;
- hp->ahi_get16 = i_ddi_vaddr_get16;
- hp->ahi_get32 = i_ddi_vaddr_get32;
- hp->ahi_get64 = i_ddi_vaddr_get64;
- hp->ahi_put16 = i_ddi_vaddr_put16;
- hp->ahi_put32 = i_ddi_vaddr_put32;
- hp->ahi_put64 = i_ddi_vaddr_put64;
- hp->ahi_rep_get16 = i_ddi_vaddr_rep_get16;
- hp->ahi_rep_get32 = i_ddi_vaddr_rep_get32;
- hp->ahi_rep_get64 = i_ddi_vaddr_rep_get64;
- hp->ahi_rep_put16 = i_ddi_vaddr_rep_put16;
- hp->ahi_rep_put32 = i_ddi_vaddr_rep_put32;
- hp->ahi_rep_put64 = i_ddi_vaddr_rep_put64;
- }
- }
- break;
- }
- hp->ahi_fault_check = i_ddi_acc_fault_check;
- hp->ahi_fault_notify = i_ddi_acc_fault_notify;
- hp->ahi_fault = 0;
- impl_acc_err_init(handlep);
-}
-
-/*
- * The followings are low-level routines for data access.
- *
- * All of these routines should be implemented in assembly. Those
- * that have been rewritten be found in ~ml/ddi_i86_asm.s
- */
-
-/*ARGSUSED*/
-uint16_t
-i_ddi_vaddr_swap_get16(ddi_acc_impl_t *hdlp, uint16_t *addr)
-{
- return (ddi_swap16(*addr));
-}
-
-/*ARGSUSED*/
-uint16_t
-i_ddi_io_swap_get16(ddi_acc_impl_t *hdlp, uint16_t *addr)
-{
- return (ddi_swap16(inw((uintptr_t)addr)));
-}
-
-/*ARGSUSED*/
-uint32_t
-i_ddi_vaddr_swap_get32(ddi_acc_impl_t *hdlp, uint32_t *addr)
-{
- return (ddi_swap32(*addr));
-}
-
-/*ARGSUSED*/
-uint32_t
-i_ddi_io_swap_get32(ddi_acc_impl_t *hdlp, uint32_t *addr)
-{
- return (ddi_swap32(inl((uintptr_t)addr)));
-}
-
-/*ARGSUSED*/
-uint64_t
-i_ddi_vaddr_swap_get64(ddi_acc_impl_t *hdlp, uint64_t *addr)
-{
- return (ddi_swap64(*addr));
-}
-
-/*ARGSUSED*/
-void
-i_ddi_vaddr_swap_put16(ddi_acc_impl_t *hdlp, uint16_t *addr, uint16_t value)
-{
- *addr = ddi_swap16(value);
-}
-
-/*ARGSUSED*/
-void
-i_ddi_io_swap_put16(ddi_acc_impl_t *hdlp, uint16_t *addr, uint16_t value)
-{
- outw((uintptr_t)addr, ddi_swap16(value));
-}
-
-/*ARGSUSED*/
-void
-i_ddi_vaddr_swap_put32(ddi_acc_impl_t *hdlp, uint32_t *addr, uint32_t value)
-{
- *addr = ddi_swap32(value);
-}
-
-/*ARGSUSED*/
-void
-i_ddi_io_swap_put32(ddi_acc_impl_t *hdlp, uint32_t *addr, uint32_t value)
-{
- outl((uintptr_t)addr, ddi_swap32(value));
-}
-
-/*ARGSUSED*/
-void
-i_ddi_vaddr_swap_put64(ddi_acc_impl_t *hdlp, uint64_t *addr, uint64_t value)
-{
- *addr = ddi_swap64(value);
-}
-
-/*ARGSUSED*/
-void
-i_ddi_vaddr_rep_get8(ddi_acc_impl_t *hdlp, uint8_t *host_addr,
- uint8_t *dev_addr, size_t repcount, uint_t flags)
-{
- uint8_t *h, *d;
-
- h = host_addr;
- d = dev_addr;
-
- if (flags == DDI_DEV_AUTOINCR)
- for (; repcount; repcount--)
- *h++ = *d++;
- else
- for (; repcount; repcount--)
- *h++ = *d;
-}
-
-/*ARGSUSED*/
-void
-i_ddi_vaddr_rep_get16(ddi_acc_impl_t *hdlp, uint16_t *host_addr,
- uint16_t *dev_addr, size_t repcount, uint_t flags)
-{
- uint16_t *h, *d;
-
- h = host_addr;
- d = dev_addr;
-
- if (flags == DDI_DEV_AUTOINCR)
- for (; repcount; repcount--)
- *h++ = *d++;
- else
- for (; repcount; repcount--)
- *h++ = *d;
-}
-
-/*ARGSUSED*/
-void
-i_ddi_vaddr_swap_rep_get16(ddi_acc_impl_t *hdlp, uint16_t *host_addr,
- uint16_t *dev_addr, size_t repcount, uint_t flags)
-{
- uint16_t *h, *d;
-
- h = host_addr;
- d = dev_addr;
-
- if (flags == DDI_DEV_AUTOINCR)
- for (; repcount; repcount--)
- *h++ = ddi_swap16(*d++);
- else
- for (; repcount; repcount--)
- *h++ = ddi_swap16(*d);
-}
-
-/*ARGSUSED*/
-void
-i_ddi_io_swap_rep_get16(ddi_acc_impl_t *hdlp, uint16_t *host_addr,
- uint16_t *dev_addr, size_t repcount, uint_t flags)
-{
- uint16_t *h;
- uintptr_t port;
-
- h = host_addr;
- port = (uintptr_t)dev_addr;
-
- if (flags == DDI_DEV_AUTOINCR)
- for (; repcount; repcount--, port += 2)
- *h++ = ddi_swap16(inw(port));
- else
- for (; repcount; repcount--)
- *h++ = ddi_swap16(inw(port));
-}
-
-/*ARGSUSED*/
-void
-i_ddi_vaddr_rep_get32(ddi_acc_impl_t *hdlp, uint32_t *host_addr,
- uint32_t *dev_addr, size_t repcount, uint_t flags)
-{
- uint32_t *h, *d;
-
- h = host_addr;
- d = dev_addr;
-
- if (flags == DDI_DEV_AUTOINCR)
- for (; repcount; repcount--)
- *h++ = *d++;
- else
- for (; repcount; repcount--)
- *h++ = *d;
-}
-
-/*ARGSUSED*/
-void
-i_ddi_vaddr_swap_rep_get32(ddi_acc_impl_t *hdlp, uint32_t *host_addr,
- uint32_t *dev_addr, size_t repcount, uint_t flags)
-{
- uint32_t *h, *d;
-
- h = host_addr;
- d = dev_addr;
-
- if (flags == DDI_DEV_AUTOINCR)
- for (; repcount; repcount--)
- *h++ = ddi_swap32(*d++);
- else
- for (; repcount; repcount--)
- *h++ = ddi_swap32(*d);
-}
-
-/*ARGSUSED*/
-void
-i_ddi_io_swap_rep_get32(ddi_acc_impl_t *hdlp, uint32_t *host_addr,
- uint32_t *dev_addr, size_t repcount, uint_t flags)
-{
- uint32_t *h;
- uintptr_t port;
-
- h = host_addr;
- port = (uintptr_t)dev_addr;
-
- if (flags == DDI_DEV_AUTOINCR)
- for (; repcount; repcount--, port += 4)
- *h++ = ddi_swap32(inl(port));
- else
- for (; repcount; repcount--)
- *h++ = ddi_swap32(inl(port));
-}
-
-/*ARGSUSED*/
-void
-i_ddi_vaddr_rep_get64(ddi_acc_impl_t *hdlp, uint64_t *host_addr,
- uint64_t *dev_addr, size_t repcount, uint_t flags)
-{
- uint64_t *h, *d;
-
- h = host_addr;
- d = dev_addr;
-
- if (flags == DDI_DEV_AUTOINCR)
- for (; repcount; repcount--)
- *h++ = *d++;
- else
- for (; repcount; repcount--)
- *h++ = *d;
-}
-
-/*ARGSUSED*/
-void
-i_ddi_vaddr_swap_rep_get64(ddi_acc_impl_t *hdlp, uint64_t *host_addr,
- uint64_t *dev_addr, size_t repcount, uint_t flags)
-{
- uint64_t *h, *d;
-
- h = host_addr;
- d = dev_addr;
-
- if (flags == DDI_DEV_AUTOINCR)
- for (; repcount; repcount--)
- *h++ = ddi_swap64(*d++);
- else
- for (; repcount; repcount--)
- *h++ = ddi_swap64(*d);
-}
-
-/*ARGSUSED*/
-void
-i_ddi_vaddr_rep_put8(ddi_acc_impl_t *hdlp, uint8_t *host_addr,
- uint8_t *dev_addr, size_t repcount, uint_t flags)
-{
- uint8_t *h, *d;
-
- h = host_addr;
- d = dev_addr;
-
- if (flags == DDI_DEV_AUTOINCR)
- for (; repcount; repcount--)
- *d++ = *h++;
- else
- for (; repcount; repcount--)
- *d = *h++;
-}
-
-/*ARGSUSED*/
-void
-i_ddi_vaddr_rep_put16(ddi_acc_impl_t *hdlp, uint16_t *host_addr,
- uint16_t *dev_addr, size_t repcount, uint_t flags)
-{
- uint16_t *h, *d;
-
- h = host_addr;
- d = dev_addr;
-
- if (flags == DDI_DEV_AUTOINCR)
- for (; repcount; repcount--)
- *d++ = *h++;
- else
- for (; repcount; repcount--)
- *d = *h++;
-}
-
-/*ARGSUSED*/
-void
-i_ddi_vaddr_swap_rep_put16(ddi_acc_impl_t *hdlp, uint16_t *host_addr,
- uint16_t *dev_addr, size_t repcount, uint_t flags)
-{
- uint16_t *h, *d;
-
- h = host_addr;
- d = dev_addr;
-
- if (flags == DDI_DEV_AUTOINCR)
- for (; repcount; repcount--)
- *d++ = ddi_swap16(*h++);
- else
- for (; repcount; repcount--)
- *d = ddi_swap16(*h++);
-}
-
-/*ARGSUSED*/
-void
-i_ddi_io_swap_rep_put16(ddi_acc_impl_t *hdlp, uint16_t *host_addr,
- uint16_t *dev_addr, size_t repcount, uint_t flags)
-{
- uint16_t *h;
- uintptr_t port;
-
- h = host_addr;
- port = (uintptr_t)dev_addr;
-
- if (flags == DDI_DEV_AUTOINCR)
- for (; repcount; repcount--, port += 2)
- outw(port, ddi_swap16(*h++));
- else
- for (; repcount; repcount--)
- outw(port, ddi_swap16(*h++));
-}
-
-/*ARGSUSED*/
-void
-i_ddi_vaddr_rep_put32(ddi_acc_impl_t *hdlp, uint32_t *host_addr,
- uint32_t *dev_addr, size_t repcount, uint_t flags)
-{
- uint32_t *h, *d;
-
- h = host_addr;
- d = dev_addr;
-
- if (flags == DDI_DEV_AUTOINCR)
- for (; repcount; repcount--)
- *d++ = *h++;
- else
- for (; repcount; repcount--)
- *d = *h++;
-}
-
-/*ARGSUSED*/
-void
-i_ddi_vaddr_swap_rep_put32(ddi_acc_impl_t *hdlp, uint32_t *host_addr,
- uint32_t *dev_addr, size_t repcount, uint_t flags)
-{
- uint32_t *h, *d;
-
- h = host_addr;
- d = dev_addr;
-
- if (flags == DDI_DEV_AUTOINCR)
- for (; repcount; repcount--)
- *d++ = ddi_swap32(*h++);
- else
- for (; repcount; repcount--)
- *d = ddi_swap32(*h++);
-}
-
-/*ARGSUSED*/
-void
-i_ddi_io_swap_rep_put32(ddi_acc_impl_t *hdlp, uint32_t *host_addr,
- uint32_t *dev_addr, size_t repcount, uint_t flags)
-{
- uint32_t *h;
- uintptr_t port;
-
- h = host_addr;
- port = (uintptr_t)dev_addr;
-
- if (flags == DDI_DEV_AUTOINCR)
- for (; repcount; repcount--, port += 4)
- outl(port, ddi_swap32(*h++));
- else
- for (; repcount; repcount--)
- outl(port, ddi_swap32(*h++));
-}
-
-/*ARGSUSED*/
-void
-i_ddi_vaddr_rep_put64(ddi_acc_impl_t *hdlp, uint64_t *host_addr,
- uint64_t *dev_addr, size_t repcount, uint_t flags)
-{
- uint64_t *h, *d;
-
- h = host_addr;
- d = dev_addr;
-
- if (flags == DDI_DEV_AUTOINCR)
- for (; repcount; repcount--)
- *d++ = *h++;
- else
- for (; repcount; repcount--)
- *d = *h++;
-}
-
-/*ARGSUSED*/
-void
-i_ddi_vaddr_swap_rep_put64(ddi_acc_impl_t *hdlp, uint64_t *host_addr,
- uint64_t *dev_addr, size_t repcount, uint_t flags)
-{
- uint64_t *h, *d;
-
- h = host_addr;
- d = dev_addr;
-
- if (flags == DDI_DEV_AUTOINCR)
- for (; repcount; repcount--)
- *d++ = ddi_swap64(*h++);
- else
- for (; repcount; repcount--)
- *d = ddi_swap64(*h++);
-}
-
-/*ARGSUSED*/
-uint64_t
-i_ddi_io_get64(ddi_acc_impl_t *hdlp, uint64_t *addr)
-{
- panic("ddi_get64 from i/o space");
- /*NOTREACHED*/
- return (0);
-}
-
-/*ARGSUSED*/
-void
-i_ddi_io_put64(ddi_acc_impl_t *hdlp, uint64_t *host_addr, uint64_t value)
-{
- panic("ddi_put64 to i/o space");
- /*NOTREACHED*/
-}
-
-void
-do_scan(ddi_acc_impl_t *hdlp)
-{
- ddi_fm_error_t de;
- ndi_err_t *errp = (ndi_err_t *)hdlp->ahi_err;
-
- bzero(&de, sizeof (ddi_fm_error_t));
- de.fme_version = DDI_FME_VERSION;
- de.fme_ena = fm_ena_generate(0, FM_ENA_FMT1);
- de.fme_flag = DDI_FM_ERR_UNEXPECTED;
-
- mutex_enter(hdlp->ahi_err_mutexp);
- hdlp->ahi_scan(hdlp->ahi_scan_dip, &de);
- if (de.fme_status != DDI_FM_OK) {
- errp->err_ena = de.fme_ena;
- errp->err_expected = de.fme_flag;
- errp->err_status = DDI_FM_NONFATAL;
- }
- mutex_exit(hdlp->ahi_err_mutexp);
-}
-
-/*ARGSUSED*/
-uint8_t
-i_ddi_prot_vaddr_get8(ddi_acc_impl_t *hdlp, uint8_t *addr)
-{
- uint8_t val;
-
- mutex_enter(hdlp->ahi_peekpoke_mutexp);
- val = *addr;
- if (val == 0xff)
- do_scan(hdlp);
- mutex_exit(hdlp->ahi_peekpoke_mutexp);
-
- return (val);
-}
-
-/*ARGSUSED*/
-uint16_t
-i_ddi_prot_vaddr_get16(ddi_acc_impl_t *hdlp, uint16_t *addr)
-{
- uint16_t val;
-
- mutex_enter(hdlp->ahi_peekpoke_mutexp);
- val = *addr;
- if (val == 0xffff)
- do_scan(hdlp);
- mutex_exit(hdlp->ahi_peekpoke_mutexp);
-
- return (val);
-}
-
-/*ARGSUSED*/
-uint32_t
-i_ddi_prot_vaddr_get32(ddi_acc_impl_t *hdlp, uint32_t *addr)
-{
- uint32_t val;
-
- mutex_enter(hdlp->ahi_peekpoke_mutexp);
- val = *addr;
- if (val == 0xffffffff)
- do_scan(hdlp);
- mutex_exit(hdlp->ahi_peekpoke_mutexp);
-
- return (val);
-}
-
-/*ARGSUSED*/
-uint64_t
-i_ddi_prot_vaddr_get64(ddi_acc_impl_t *hdlp, uint64_t *addr)
-{
- uint64_t val;
-
- mutex_enter(hdlp->ahi_peekpoke_mutexp);
- val = *addr;
- if (val == 0xffffffffffffffff)
- do_scan(hdlp);
- mutex_exit(hdlp->ahi_peekpoke_mutexp);
-
- return (val);
-}
-
-/*ARGSUSED*/
-uint8_t
-i_ddi_prot_io_get8(ddi_acc_impl_t *hdlp, uint8_t *addr)
-{
- uint8_t val;
-
- mutex_enter(hdlp->ahi_peekpoke_mutexp);
- val = inb((uintptr_t)addr);
- if (val == 0xff)
- do_scan(hdlp);
- mutex_exit(hdlp->ahi_peekpoke_mutexp);
-
- return (val);
-}
-
-/*ARGSUSED*/
-uint16_t
-i_ddi_prot_io_get16(ddi_acc_impl_t *hdlp, uint16_t *addr)
-{
- uint16_t val;
-
- mutex_enter(hdlp->ahi_peekpoke_mutexp);
- val = inw((uintptr_t)addr);
- if (val == 0xffff)
- do_scan(hdlp);
- mutex_exit(hdlp->ahi_peekpoke_mutexp);
-
- return (val);
-}
-
-/*ARGSUSED*/
-uint32_t
-i_ddi_prot_io_get32(ddi_acc_impl_t *hdlp, uint32_t *addr)
-{
- uint32_t val;
-
- mutex_enter(hdlp->ahi_peekpoke_mutexp);
- val = inl((uintptr_t)addr);
- if (val == 0xffffffff)
- do_scan(hdlp);
- mutex_exit(hdlp->ahi_peekpoke_mutexp);
-
- return (val);
-}
-
-/*ARGSUSED*/
-uint16_t
-i_ddi_prot_vaddr_swap_get16(ddi_acc_impl_t *hdlp, uint16_t *addr)
-{
- uint16_t val;
-
- mutex_enter(hdlp->ahi_peekpoke_mutexp);
- val = ddi_swap16(*addr);
- if (val == 0xffff)
- do_scan(hdlp);
- mutex_exit(hdlp->ahi_peekpoke_mutexp);
-
- return (val);
-}
-
-/*ARGSUSED*/
-uint16_t
-i_ddi_prot_io_swap_get16(ddi_acc_impl_t *hdlp, uint16_t *addr)
-{
- uint16_t val;
-
- mutex_enter(hdlp->ahi_peekpoke_mutexp);
- val = ddi_swap16(inw((uintptr_t)addr));
- if (val == 0xffff)
- do_scan(hdlp);
- mutex_exit(hdlp->ahi_peekpoke_mutexp);
-
- return (val);
-}
-
-/*ARGSUSED*/
-uint32_t
-i_ddi_prot_vaddr_swap_get32(ddi_acc_impl_t *hdlp, uint32_t *addr)
-{
- uint32_t val;
-
- mutex_enter(hdlp->ahi_peekpoke_mutexp);
- val = ddi_swap32(*addr);
- if (val == 0xffffffff)
- do_scan(hdlp);
- mutex_exit(hdlp->ahi_peekpoke_mutexp);
-
- return (val);
-}
-
-/*ARGSUSED*/
-uint32_t
-i_ddi_prot_io_swap_get32(ddi_acc_impl_t *hdlp, uint32_t *addr)
-{
- uint32_t val;
-
- mutex_enter(hdlp->ahi_peekpoke_mutexp);
- val = ddi_swap32(inl((uintptr_t)addr));
- if (val == 0xffffffff)
- do_scan(hdlp);
- mutex_exit(hdlp->ahi_peekpoke_mutexp);
-
- return (val);
-}
-
-/*ARGSUSED*/
-uint64_t
-i_ddi_prot_vaddr_swap_get64(ddi_acc_impl_t *hdlp, uint64_t *addr)
-{
- uint64_t val;
-
- mutex_enter(hdlp->ahi_peekpoke_mutexp);
- val = ddi_swap64(*addr);
- if (val == 0xffffffffffffffff)
- do_scan(hdlp);
- mutex_exit(hdlp->ahi_peekpoke_mutexp);
-
- return (val);
-}
-
-/*ARGSUSED*/
-void
-i_ddi_prot_vaddr_put8(ddi_acc_impl_t *hdlp, uint8_t *addr, uint8_t value)
-{
- mutex_enter(hdlp->ahi_peekpoke_mutexp);
- *addr = value;
- mutex_exit(hdlp->ahi_peekpoke_mutexp);
-}
-
-/*ARGSUSED*/
-void
-i_ddi_prot_io_put8(ddi_acc_impl_t *hdlp, uint8_t *addr, uint8_t value)
-{
- mutex_enter(hdlp->ahi_peekpoke_mutexp);
- outb((uintptr_t)addr, value);
- mutex_exit(hdlp->ahi_peekpoke_mutexp);
-}
-
-/*ARGSUSED*/
-void
-i_ddi_prot_vaddr_put16(ddi_acc_impl_t *hdlp, uint16_t *addr, uint16_t value)
-{
- mutex_enter(hdlp->ahi_peekpoke_mutexp);
- *addr = value;
- mutex_exit(hdlp->ahi_peekpoke_mutexp);
-}
-
-/*ARGSUSED*/
-void
-i_ddi_prot_io_put16(ddi_acc_impl_t *hdlp, uint16_t *addr, uint16_t value)
-{
- mutex_enter(hdlp->ahi_peekpoke_mutexp);
- outw((uintptr_t)addr, value);
- mutex_exit(hdlp->ahi_peekpoke_mutexp);
-}
-
-/*ARGSUSED*/
-void
-i_ddi_prot_vaddr_put32(ddi_acc_impl_t *hdlp, uint32_t *addr,
- uint32_t value)
-{
- mutex_enter(hdlp->ahi_peekpoke_mutexp);
- *addr = value;
- mutex_exit(hdlp->ahi_peekpoke_mutexp);
-}
-
-/*ARGSUSED*/
-void
-i_ddi_prot_io_put32(ddi_acc_impl_t *hdlp, uint32_t *addr, uint32_t value)
-{
- mutex_enter(hdlp->ahi_peekpoke_mutexp);
- outl((uintptr_t)addr, value);
- mutex_exit(hdlp->ahi_peekpoke_mutexp);
-}
-
-/*ARGSUSED*/
-void
-i_ddi_prot_vaddr_put64(ddi_acc_impl_t *hdlp, uint64_t *addr,
- uint64_t value)
-{
- mutex_enter(hdlp->ahi_peekpoke_mutexp);
- *addr = value;
- mutex_exit(hdlp->ahi_peekpoke_mutexp);
-}
-
-/*ARGSUSED*/
-void
-i_ddi_prot_vaddr_swap_put16(ddi_acc_impl_t *hdlp, uint16_t *addr,
- uint16_t value)
-{
- mutex_enter(hdlp->ahi_peekpoke_mutexp);
- *addr = ddi_swap16(value);
- mutex_exit(hdlp->ahi_peekpoke_mutexp);
-}
-
-/*ARGSUSED*/
-void
-i_ddi_prot_io_swap_put16(ddi_acc_impl_t *hdlp, uint16_t *addr, uint16_t value)
-{
- mutex_enter(hdlp->ahi_peekpoke_mutexp);
- outw((uintptr_t)addr, ddi_swap16(value));
- mutex_exit(hdlp->ahi_peekpoke_mutexp);
-}
-
-/*ARGSUSED*/
-void
-i_ddi_prot_vaddr_swap_put32(ddi_acc_impl_t *hdlp, uint32_t *addr,
- uint32_t value)
-{
- mutex_enter(hdlp->ahi_peekpoke_mutexp);
- *addr = ddi_swap32(value);
- mutex_exit(hdlp->ahi_peekpoke_mutexp);
-}
-
-/*ARGSUSED*/
-void
-i_ddi_prot_io_swap_put32(ddi_acc_impl_t *hdlp, uint32_t *addr, uint32_t value)
-{
- mutex_enter(hdlp->ahi_peekpoke_mutexp);
- outl((uintptr_t)addr, ddi_swap32(value));
- mutex_exit(hdlp->ahi_peekpoke_mutexp);
-}
-
-/*ARGSUSED*/
-void
-i_ddi_prot_vaddr_swap_put64(ddi_acc_impl_t *hdlp, uint64_t *addr,
- uint64_t value)
-{
- mutex_enter(hdlp->ahi_peekpoke_mutexp);
- *addr = ddi_swap64(value);
- mutex_exit(hdlp->ahi_peekpoke_mutexp);
-}
-
-/*ARGSUSED*/
-void
-i_ddi_prot_io_rep_get8(ddi_acc_impl_t *hdlp, uint8_t *host_addr,
- uint8_t *dev_addr, size_t repcount, uint_t flags)
-{
- int fail = 0;
- uint8_t *h;
- uintptr_t port;
-
- h = host_addr;
- port = (uintptr_t)dev_addr;
-
- mutex_enter(hdlp->ahi_peekpoke_mutexp);
- if (flags == DDI_DEV_AUTOINCR) {
- for (; repcount; repcount--, port++)
- if ((*h++ = inb(port)) == 0xff)
- fail = 1;
- } else {
- for (; repcount; repcount--)
- if ((*h++ = inb(port)) == 0xff)
- fail = 1;
- }
- if (fail == 1)
- do_scan(hdlp);
- mutex_exit(hdlp->ahi_peekpoke_mutexp);
-}
-
-/*ARGSUSED*/
-void
-i_ddi_prot_io_rep_get16(ddi_acc_impl_t *hdlp, uint16_t *host_addr,
- uint16_t *dev_addr, size_t repcount, uint_t flags)
-{
- int fail = 0;
- uint16_t *h;
- uintptr_t port;
-
- h = host_addr;
- port = (uintptr_t)dev_addr;
-
- mutex_enter(hdlp->ahi_peekpoke_mutexp);
- if (flags == DDI_DEV_AUTOINCR) {
- for (; repcount; repcount--, port += 2)
- if ((*h++ = inw(port)) == 0xffff)
- fail = 1;
- } else {
- for (; repcount; repcount--)
- if ((*h++ = inw(port)) == 0xffff)
- fail = 1;
- }
- if (fail == 1)
- do_scan(hdlp);
- mutex_exit(hdlp->ahi_peekpoke_mutexp);
-}
-
-/*ARGSUSED*/
-void
-i_ddi_prot_io_rep_get32(ddi_acc_impl_t *hdlp, uint32_t *host_addr,
- uint32_t *dev_addr, size_t repcount, uint_t flags)
-{
- int fail = 0;
- uint32_t *h;
- uintptr_t port;
-
- h = host_addr;
- port = (uintptr_t)dev_addr;
-
- mutex_enter(hdlp->ahi_peekpoke_mutexp);
- if (flags == DDI_DEV_AUTOINCR) {
- for (; repcount; repcount--, port += 4)
- if ((*h++ = inl(port)) == 0xffffffff)
- fail = 1;
- } else {
- for (; repcount; repcount--)
- if ((*h++ = inl(port)) == 0xffffffff)
- fail = 1;
- }
- if (fail == 1)
- do_scan(hdlp);
- mutex_exit(hdlp->ahi_peekpoke_mutexp);
-}
-
-/*ARGSUSED*/
-void
-i_ddi_prot_vaddr_rep_get8(ddi_acc_impl_t *hdlp, uint8_t *host_addr,
- uint8_t *dev_addr, size_t repcount, uint_t flags)
-{
- int fail = 0;
- uint8_t *h, *d;
-
- h = host_addr;
- d = dev_addr;
-
- mutex_enter(hdlp->ahi_peekpoke_mutexp);
- if (flags == DDI_DEV_AUTOINCR) {
- for (; repcount; repcount--)
- if ((*h++ = *d++) == 0xff)
- fail = 1;
- } else {
- for (; repcount; repcount--)
- if ((*h++ = *d) == 0xff)
- fail = 1;
- }
- if (fail == 1)
- do_scan(hdlp);
- mutex_exit(hdlp->ahi_peekpoke_mutexp);
-}
-
-/*ARGSUSED*/
-void
-i_ddi_prot_vaddr_rep_get16(ddi_acc_impl_t *hdlp, uint16_t *host_addr,
- uint16_t *dev_addr, size_t repcount, uint_t flags)
-{
- int fail = 0;
- uint16_t *h, *d;
-
- h = host_addr;
- d = dev_addr;
-
- mutex_enter(hdlp->ahi_peekpoke_mutexp);
- if (flags == DDI_DEV_AUTOINCR) {
- for (; repcount; repcount--)
- if ((*h++ = *d++) == 0xffff)
- fail = 1;
- } else {
- for (; repcount; repcount--)
- if ((*h++ = *d) == 0xffff)
- fail = 1;
- }
- if (fail == 1)
- do_scan(hdlp);
- mutex_exit(hdlp->ahi_peekpoke_mutexp);
-}
-
-/*ARGSUSED*/
-void
-i_ddi_prot_vaddr_swap_rep_get16(ddi_acc_impl_t *hdlp, uint16_t *host_addr,
- uint16_t *dev_addr, size_t repcount, uint_t flags)
-{
- int fail = 0;
- uint16_t *h, *d;
-
- h = host_addr;
- d = dev_addr;
-
- mutex_enter(hdlp->ahi_peekpoke_mutexp);
- if (flags == DDI_DEV_AUTOINCR) {
- for (; repcount; repcount--)
- if ((*h++ = ddi_swap16(*d++)) == 0xffff)
- fail = 1;
- } else {
- for (; repcount; repcount--)
- if ((*h++ = ddi_swap16(*d)) == 0xffff)
- fail = 1;
- }
- if (fail == 1)
- do_scan(hdlp);
- mutex_exit(hdlp->ahi_peekpoke_mutexp);
-}
-
-/*ARGSUSED*/
-void
-i_ddi_prot_io_swap_rep_get16(ddi_acc_impl_t *hdlp, uint16_t *host_addr,
- uint16_t *dev_addr, size_t repcount, uint_t flags)
-{
- int fail = 0;
- uint16_t *h;
- uintptr_t port;
-
- h = host_addr;
- port = (uintptr_t)dev_addr;
-
- mutex_enter(hdlp->ahi_peekpoke_mutexp);
- if (flags == DDI_DEV_AUTOINCR) {
- for (; repcount; repcount--, port += 2)
- if ((*h++ = ddi_swap16(inw(port))) == 0xffff)
- fail = 1;
- } else {
- for (; repcount; repcount--)
- if ((*h++ = ddi_swap16(inw(port))) == 0xffff)
- fail = 1;
- }
- if (fail == 1)
- do_scan(hdlp);
- mutex_exit(hdlp->ahi_peekpoke_mutexp);
-}
-
-/*ARGSUSED*/
-void
-i_ddi_prot_vaddr_rep_get32(ddi_acc_impl_t *hdlp, uint32_t *host_addr,
- uint32_t *dev_addr, size_t repcount, uint_t flags)
-{
- int fail = 0;
- uint32_t *h, *d;
-
- h = host_addr;
- d = dev_addr;
-
- mutex_enter(hdlp->ahi_peekpoke_mutexp);
- if (flags == DDI_DEV_AUTOINCR) {
- for (; repcount; repcount--)
- if ((*h++ = *d++) == 0xffffffff)
- fail = 1;
- } else {
- for (; repcount; repcount--)
- if ((*h++ = *d) == 0xffffffff)
- fail = 1;
- }
- if (fail == 1)
- do_scan(hdlp);
- mutex_exit(hdlp->ahi_peekpoke_mutexp);
-}
-
-/*ARGSUSED*/
-void
-i_ddi_prot_vaddr_swap_rep_get32(ddi_acc_impl_t *hdlp, uint32_t *host_addr,
- uint32_t *dev_addr, size_t repcount, uint_t flags)
-{
- int fail = 0;
- uint32_t *h, *d;
-
- h = host_addr;
- d = dev_addr;
-
- mutex_enter(hdlp->ahi_peekpoke_mutexp);
- if (flags == DDI_DEV_AUTOINCR) {
- for (; repcount; repcount--)
- if ((*h++ = ddi_swap32(*d++)) == 0xffffffff)
- fail = 1;
- } else {
- for (; repcount; repcount--)
- if ((*h++ = ddi_swap32(*d)) == 0xffffffff)
- fail = 1;
- }
- if (fail == 1)
- do_scan(hdlp);
- mutex_exit(hdlp->ahi_peekpoke_mutexp);
-}
-
-/*ARGSUSED*/
-void
-i_ddi_prot_io_swap_rep_get32(ddi_acc_impl_t *hdlp, uint32_t *host_addr,
- uint32_t *dev_addr, size_t repcount, uint_t flags)
-{
- int fail = 0;
- uint32_t *h;
- uintptr_t port;
-
- h = host_addr;
- port = (uintptr_t)dev_addr;
-
- mutex_enter(hdlp->ahi_peekpoke_mutexp);
- if (flags == DDI_DEV_AUTOINCR) {
- for (; repcount; repcount--, port += 4)
- if ((*h++ = ddi_swap32(inl(port))) == 0xffffffff)
- fail = 1;
- } else {
- for (; repcount; repcount--)
- if ((*h++ = ddi_swap32(inl(port))) == 0xffffffff)
- fail = 1;
- }
- if (fail == 1)
- do_scan(hdlp);
- mutex_exit(hdlp->ahi_peekpoke_mutexp);
-}
-
-/*ARGSUSED*/
-void
-i_ddi_prot_vaddr_rep_get64(ddi_acc_impl_t *hdlp, uint64_t *host_addr,
- uint64_t *dev_addr, size_t repcount, uint_t flags)
-{
- int fail = 0;
- uint64_t *h, *d;
-
- h = host_addr;
- d = dev_addr;
-
- mutex_enter(hdlp->ahi_peekpoke_mutexp);
- if (flags == DDI_DEV_AUTOINCR) {
- for (; repcount; repcount--)
- if ((*h++ = *d++) == 0xffffffffffffffff)
- fail = 1;
- } else {
- for (; repcount; repcount--)
- if ((*h++ = *d) == 0xffffffffffffffff)
- fail = 1;
- }
- if (fail == 1)
- do_scan(hdlp);
- mutex_exit(hdlp->ahi_peekpoke_mutexp);
-}
-
-/*ARGSUSED*/
-void
-i_ddi_prot_vaddr_swap_rep_get64(ddi_acc_impl_t *hdlp, uint64_t *host_addr,
- uint64_t *dev_addr, size_t repcount, uint_t flags)
-{
- int fail = 0;
- uint64_t *h, *d;
-
- h = host_addr;
- d = dev_addr;
-
- mutex_enter(hdlp->ahi_peekpoke_mutexp);
- if (flags == DDI_DEV_AUTOINCR) {
- for (; repcount; repcount--)
- if ((*h++ = ddi_swap64(*d++)) == 0xffffffffffffffff)
- fail = 1;
- } else {
- for (; repcount; repcount--)
- if ((*h++ = ddi_swap64(*d)) == 0xffffffffffffffff)
- fail = 1;
- }
- if (fail == 1)
- do_scan(hdlp);
- mutex_exit(hdlp->ahi_peekpoke_mutexp);
-}
-
-/*ARGSUSED*/
-void
-i_ddi_prot_vaddr_rep_put8(ddi_acc_impl_t *hdlp, uint8_t *host_addr,
- uint8_t *dev_addr, size_t repcount, uint_t flags)
-{
- uint8_t *h, *d;
-
- h = host_addr;
- d = dev_addr;
-
- mutex_enter(hdlp->ahi_peekpoke_mutexp);
- if (flags == DDI_DEV_AUTOINCR)
- for (; repcount; repcount--)
- *d++ = *h++;
- else
- for (; repcount; repcount--)
- *d = *h++;
- mutex_exit(hdlp->ahi_peekpoke_mutexp);
-}
-
-/*ARGSUSED*/
-void
-i_ddi_prot_io_rep_put8(ddi_acc_impl_t *hdlp, uint8_t *host_addr,
- uint8_t *dev_addr, size_t repcount, uint_t flags)
-{
- uint8_t *h;
- uintptr_t port;
-
- h = host_addr;
- port = (uintptr_t)dev_addr;
-
- mutex_enter(hdlp->ahi_peekpoke_mutexp);
- if (flags == DDI_DEV_AUTOINCR)
- for (; repcount; repcount--, port++)
- outb(port, *h++);
- else
- for (; repcount; repcount--)
- outb(port, *h++);
- mutex_exit(hdlp->ahi_peekpoke_mutexp);
-}
-
-/*ARGSUSED*/
-void
-i_ddi_prot_vaddr_rep_put16(ddi_acc_impl_t *hdlp, uint16_t *host_addr,
- uint16_t *dev_addr, size_t repcount, uint_t flags)
-{
- uint16_t *h, *d;
-
- h = host_addr;
- d = dev_addr;
-
- mutex_enter(hdlp->ahi_peekpoke_mutexp);
- if (flags == DDI_DEV_AUTOINCR)
- for (; repcount; repcount--)
- *d++ = *h++;
- else
- for (; repcount; repcount--)
- *d = *h++;
- mutex_exit(hdlp->ahi_peekpoke_mutexp);
-}
-
-/*ARGSUSED*/
-void
-i_ddi_prot_io_rep_put16(ddi_acc_impl_t *hdlp, uint16_t *host_addr,
- uint16_t *dev_addr, size_t repcount, uint_t flags)
-{
- uint16_t *h;
- uintptr_t port;
-
- h = host_addr;
- port = (uintptr_t)dev_addr;
-
- mutex_enter(hdlp->ahi_peekpoke_mutexp);
- if (flags == DDI_DEV_AUTOINCR)
- for (; repcount; repcount--, port += 2)
- outw(port, *h++);
- else
- for (; repcount; repcount--)
- outw(port, *h++);
- mutex_exit(hdlp->ahi_peekpoke_mutexp);
-}
-
-/*ARGSUSED*/
-void
-i_ddi_prot_vaddr_swap_rep_put16(ddi_acc_impl_t *hdlp, uint16_t *host_addr,
- uint16_t *dev_addr, size_t repcount, uint_t flags)
-{
- uint16_t *h, *d;
-
- h = host_addr;
- d = dev_addr;
-
- mutex_enter(hdlp->ahi_peekpoke_mutexp);
- if (flags == DDI_DEV_AUTOINCR)
- for (; repcount; repcount--)
- *d++ = ddi_swap16(*h++);
- else
- for (; repcount; repcount--)
- *d = ddi_swap16(*h++);
- mutex_exit(hdlp->ahi_peekpoke_mutexp);
-}
-
-/*ARGSUSED*/
-void
-i_ddi_prot_io_swap_rep_put16(ddi_acc_impl_t *hdlp, uint16_t *host_addr,
- uint16_t *dev_addr, size_t repcount, uint_t flags)
-{
- uint16_t *h;
- uintptr_t port;
-
- h = host_addr;
- port = (uintptr_t)dev_addr;
-
- mutex_enter(hdlp->ahi_peekpoke_mutexp);
- if (flags == DDI_DEV_AUTOINCR)
- for (; repcount; repcount--, port += 2)
- outw(port, ddi_swap16(*h++));
- else
- for (; repcount; repcount--)
- outw(port, ddi_swap16(*h++));
- mutex_exit(hdlp->ahi_peekpoke_mutexp);
-}
-
-/*ARGSUSED*/
-void
-i_ddi_prot_vaddr_rep_put32(ddi_acc_impl_t *hdlp, uint32_t *host_addr,
- uint32_t *dev_addr, size_t repcount, uint_t flags)
-{
- uint32_t *h, *d;
-
- h = host_addr;
- d = dev_addr;
-
- mutex_enter(hdlp->ahi_peekpoke_mutexp);
- if (flags == DDI_DEV_AUTOINCR)
- for (; repcount; repcount--)
- *d++ = *h++;
- else
- for (; repcount; repcount--)
- *d = *h++;
- mutex_exit(hdlp->ahi_peekpoke_mutexp);
-}
-
-/*ARGSUSED*/
-void
-i_ddi_prot_io_rep_put32(ddi_acc_impl_t *hdlp, uint32_t *host_addr,
- uint32_t *dev_addr, size_t repcount, uint_t flags)
-{
- uint32_t *h;
- uintptr_t port;
-
- h = host_addr;
- port = (uintptr_t)dev_addr;
-
- mutex_enter(hdlp->ahi_peekpoke_mutexp);
- if (flags == DDI_DEV_AUTOINCR)
- for (; repcount; repcount--, port += 4)
- outl(port, *h++);
- else
- for (; repcount; repcount--)
- outl(port, *h++);
- mutex_exit(hdlp->ahi_peekpoke_mutexp);
-}
-
-/*ARGSUSED*/
-void
-i_ddi_prot_vaddr_swap_rep_put32(ddi_acc_impl_t *hdlp, uint32_t *host_addr,
- uint32_t *dev_addr, size_t repcount, uint_t flags)
-{
- uint32_t *h, *d;
-
- h = host_addr;
- d = dev_addr;
-
- mutex_enter(hdlp->ahi_peekpoke_mutexp);
- if (flags == DDI_DEV_AUTOINCR)
- for (; repcount; repcount--)
- *d++ = ddi_swap32(*h++);
- else
- for (; repcount; repcount--)
- *d = ddi_swap32(*h++);
- mutex_exit(hdlp->ahi_peekpoke_mutexp);
-}
-
-/*ARGSUSED*/
-void
-i_ddi_prot_io_swap_rep_put32(ddi_acc_impl_t *hdlp, uint32_t *host_addr,
- uint32_t *dev_addr, size_t repcount, uint_t flags)
-{
- uint32_t *h;
- uintptr_t port;
-
- h = host_addr;
- port = (uintptr_t)dev_addr;
-
- mutex_enter(hdlp->ahi_peekpoke_mutexp);
- if (flags == DDI_DEV_AUTOINCR)
- for (; repcount; repcount--, port += 4)
- outl(port, ddi_swap32(*h++));
- else
- for (; repcount; repcount--)
- outl(port, ddi_swap32(*h++));
- mutex_exit(hdlp->ahi_peekpoke_mutexp);
-}
-
-/*ARGSUSED*/
-void
-i_ddi_prot_vaddr_rep_put64(ddi_acc_impl_t *hdlp, uint64_t *host_addr,
- uint64_t *dev_addr, size_t repcount, uint_t flags)
-{
- uint64_t *h, *d;
-
- h = host_addr;
- d = dev_addr;
-
- mutex_enter(hdlp->ahi_peekpoke_mutexp);
- if (flags == DDI_DEV_AUTOINCR)
- for (; repcount; repcount--)
- *d++ = *h++;
- else
- for (; repcount; repcount--)
- *d = *h++;
- mutex_exit(hdlp->ahi_peekpoke_mutexp);
-}
-
-/*ARGSUSED*/
-void
-i_ddi_prot_vaddr_swap_rep_put64(ddi_acc_impl_t *hdlp, uint64_t *host_addr,
- uint64_t *dev_addr, size_t repcount, uint_t flags)
-{
- uint64_t *h, *d;
-
- h = host_addr;
- d = dev_addr;
-
- mutex_enter(hdlp->ahi_peekpoke_mutexp);
- if (flags == DDI_DEV_AUTOINCR)
- for (; repcount; repcount--)
- *d++ = ddi_swap64(*h++);
- else
- for (; repcount; repcount--)
- *d = ddi_swap64(*h++);
- mutex_exit(hdlp->ahi_peekpoke_mutexp);
-}
-
-void
-ddi_io_rep_get8(ddi_acc_handle_t handle,
- uint8_t *host_addr, uint8_t *dev_addr, size_t repcount)
-{
- (((ddi_acc_impl_t *)handle)->ahi_rep_get8)
- ((ddi_acc_impl_t *)handle, host_addr, dev_addr,
- repcount, DDI_DEV_NO_AUTOINCR);
-}
-
-void
-ddi_io_rep_get16(ddi_acc_handle_t handle,
- uint16_t *host_addr, uint16_t *dev_addr, size_t repcount)
-{
- (((ddi_acc_impl_t *)handle)->ahi_rep_get16)
- ((ddi_acc_impl_t *)handle, host_addr, dev_addr,
- repcount, DDI_DEV_NO_AUTOINCR);
-}
-
-void
-ddi_io_rep_get32(ddi_acc_handle_t handle,
- uint32_t *host_addr, uint32_t *dev_addr, size_t repcount)
-{
- (((ddi_acc_impl_t *)handle)->ahi_rep_get32)
- ((ddi_acc_impl_t *)handle, host_addr, dev_addr,
- repcount, DDI_DEV_NO_AUTOINCR);
-}
-
-/*ARGSUSED*/
-void
-i_ddi_io_rep_get64(ddi_acc_impl_t *hdlp, uint64_t *host_addr,
- uint64_t *dev_addr, size_t repcount, uint_t flags)
-{
- cmn_err(CE_PANIC, "ddi_rep_get64 from i/o space");
-}
-
-void
-ddi_io_rep_put8(ddi_acc_handle_t handle,
- uint8_t *host_addr, uint8_t *dev_addr, size_t repcount)
-{
- (((ddi_acc_impl_t *)handle)->ahi_rep_put8)
- ((ddi_acc_impl_t *)handle, host_addr, dev_addr,
- repcount, DDI_DEV_NO_AUTOINCR);
-}
-
-void
-ddi_io_rep_put16(ddi_acc_handle_t handle,
- uint16_t *host_addr, uint16_t *dev_addr, size_t repcount)
-{
- (((ddi_acc_impl_t *)handle)->ahi_rep_put16)
- ((ddi_acc_impl_t *)handle, host_addr, dev_addr,
- repcount, DDI_DEV_NO_AUTOINCR);
-}
-
-void
-ddi_io_rep_put32(ddi_acc_handle_t handle,
- uint32_t *host_addr, uint32_t *dev_addr, size_t repcount)
-{
- (((ddi_acc_impl_t *)handle)->ahi_rep_put32)
- ((ddi_acc_impl_t *)handle, host_addr, dev_addr,
- repcount, DDI_DEV_NO_AUTOINCR);
-}
-
-/*ARGSUSED*/
-void
-i_ddi_io_rep_put64(ddi_acc_impl_t *hdlp, uint64_t *host_addr,
- uint64_t *dev_addr, size_t repcount, uint_t flags)
-{
- cmn_err(CE_PANIC, "ddi_rep_put64 to i/o space");
-}
-
-/*
- * These next two functions could be translated into assembler someday
- */
-int
-ddi_check_acc_handle(ddi_acc_handle_t handle)
-{
- ddi_acc_impl_t *hdlp = (ddi_acc_impl_t *)handle;
- return (((*hdlp->ahi_fault_check)(hdlp) == DDI_SUCCESS) ? DDI_SUCCESS :
- DDI_FAILURE);
-}
-
-int
-i_ddi_acc_fault_check(ddi_acc_impl_t *hdlp)
-{
- /* Default version, just returns flag value */
- return (hdlp->ahi_fault);
-}
-
-/*ARGSUSED*/
-void
-i_ddi_acc_fault_notify(ddi_acc_impl_t *hdlp)
-{
- /* Default version, does nothing for now */
-}
-
-void
-i_ddi_acc_set_fault(ddi_acc_handle_t handle)
-{
- ddi_acc_impl_t *hdlp = (ddi_acc_impl_t *)handle;
-
- if (!hdlp->ahi_fault) {
- hdlp->ahi_fault = 1;
- (*hdlp->ahi_fault_notify)(hdlp);
- }
-}
-
-void
-i_ddi_acc_clr_fault(ddi_acc_handle_t handle)
-{
- ddi_acc_impl_t *hdlp = (ddi_acc_impl_t *)handle;
-
- if (hdlp->ahi_fault) {
- hdlp->ahi_fault = 0;
- (*hdlp->ahi_fault_notify)(hdlp);
- }
-}
diff --git a/usr/src/uts/intel/ia32/os/desctbls.c b/usr/src/uts/intel/ia32/os/desctbls.c
deleted file mode 100644
index 35345c3fe8..0000000000
--- a/usr/src/uts/intel/ia32/os/desctbls.c
+++ /dev/null
@@ -1,1218 +0,0 @@
-/*
- * CDDL HEADER START
- *
- * The contents of this file are subject to the terms of the
- * Common Development and Distribution License (the "License").
- * You may not use this file except in compliance with the License.
- *
- * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
- * or http://www.opensolaris.org/os/licensing.
- * See the License for the specific language governing permissions
- * and limitations under the License.
- *
- * When distributing Covered Code, include this CDDL HEADER in each
- * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
- * If applicable, add the following below this CDDL HEADER, with the
- * fields enclosed by brackets "[]" replaced with your own identifying
- * information: Portions Copyright [yyyy] [name of copyright owner]
- *
- * CDDL HEADER END
- */
-
-/*
- * Copyright (c) 2004, 2010, Oracle and/or its affiliates. All rights reserved.
- */
-
-/*
- * Copyright 2018 Joyent, Inc. All rights reserved.
- */
-
-/*
- * Copyright (c) 1992 Terrence R. Lambert.
- * Copyright (c) 1990 The Regents of the University of California.
- * All rights reserved.
- *
- * This code is derived from software contributed to Berkeley by
- * William Jolitz.
- *
- * Redistribution and use in source and binary forms, with or without
- * modification, are permitted provided that the following conditions
- * are met:
- * 1. Redistributions of source code must retain the above copyright
- * notice, this list of conditions and the following disclaimer.
- * 2. Redistributions in binary form must reproduce the above copyright
- * notice, this list of conditions and the following disclaimer in the
- * documentation and/or other materials provided with the distribution.
- * 3. All advertising materials mentioning features or use of this software
- * must display the following acknowledgement:
- * This product includes software developed by the University of
- * California, Berkeley and its contributors.
- * 4. Neither the name of the University nor the names of its contributors
- * may be used to endorse or promote products derived from this software
- * without specific prior written permission.
- *
- * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
- * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
- * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
- * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
- * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
- * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
- * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
- * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
- * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
- * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
- * SUCH DAMAGE.
- *
- * from: @(#)machdep.c 7.4 (Berkeley) 6/3/91
- */
-
-#include <sys/types.h>
-#include <sys/sysmacros.h>
-#include <sys/tss.h>
-#include <sys/segments.h>
-#include <sys/trap.h>
-#include <sys/cpuvar.h>
-#include <sys/bootconf.h>
-#include <sys/x86_archext.h>
-#include <sys/controlregs.h>
-#include <sys/archsystm.h>
-#include <sys/machsystm.h>
-#include <sys/kobj.h>
-#include <sys/cmn_err.h>
-#include <sys/reboot.h>
-#include <sys/kdi.h>
-#include <sys/mach_mmu.h>
-#include <sys/systm.h>
-#include <sys/note.h>
-
-#ifdef __xpv
-#include <sys/hypervisor.h>
-#include <vm/as.h>
-#endif
-
-#include <sys/promif.h>
-#include <sys/bootinfo.h>
-#include <vm/kboot_mmu.h>
-#include <vm/hat_pte.h>
-
-/*
- * cpu0 and default tables and structures.
- */
-user_desc_t *gdt0;
-#if !defined(__xpv)
-desctbr_t gdt0_default_r;
-#endif
-
-gate_desc_t *idt0; /* interrupt descriptor table */
-
-tss_t *ktss0; /* kernel task state structure */
-
-
-user_desc_t zero_udesc; /* base zero user desc native procs */
-user_desc_t null_udesc; /* null user descriptor */
-system_desc_t null_sdesc; /* null system descriptor */
-
-user_desc_t zero_u32desc; /* 32-bit compatibility procs */
-
-user_desc_t ucs_on;
-user_desc_t ucs_off;
-user_desc_t ucs32_on;
-user_desc_t ucs32_off;
-
-/*
- * If the size of this is changed, you must update hat_pcp_setup() and the
- * definitions in exception.s
- */
-extern char dblfault_stack0[DEFAULTSTKSZ];
-extern char nmi_stack0[DEFAULTSTKSZ];
-extern char mce_stack0[DEFAULTSTKSZ];
-
-extern void fast_null(void);
-extern hrtime_t get_hrtime(void);
-extern hrtime_t gethrvtime(void);
-extern hrtime_t get_hrestime(void);
-extern uint64_t getlgrp(void);
-
-void (*(fasttable[]))(void) = {
- fast_null, /* T_FNULL routine */
- fast_null, /* T_FGETFP routine (initially null) */
- fast_null, /* T_FSETFP routine (initially null) */
- (void (*)())(uintptr_t)get_hrtime, /* T_GETHRTIME */
- (void (*)())(uintptr_t)gethrvtime, /* T_GETHRVTIME */
- (void (*)())(uintptr_t)get_hrestime, /* T_GETHRESTIME */
- (void (*)())(uintptr_t)getlgrp /* T_GETLGRP */
-};
-
-/*
- * Structure containing pre-computed descriptors to allow us to temporarily
- * interpose on a standard handler.
- */
-struct interposing_handler {
- int ih_inum;
- gate_desc_t ih_interp_desc;
- gate_desc_t ih_default_desc;
-};
-
-/*
- * The brand infrastructure interposes on two handlers, and we use one as a
- * NULL signpost.
- */
-static struct interposing_handler brand_tbl[2];
-
-/*
- * software prototypes for default local descriptor table
- */
-
-/*
- * Routines for loading segment descriptors in format the hardware
- * can understand.
- */
-
-/*
- * In long mode we have the new L or long mode attribute bit
- * for code segments. Only the conforming bit in type is used along
- * with descriptor priority and present bits. Default operand size must
- * be zero when in long mode. In 32-bit compatibility mode all fields
- * are treated as in legacy mode. For data segments while in long mode
- * only the present bit is loaded.
- */
-void
-set_usegd(user_desc_t *dp, uint_t lmode, void *base, size_t size,
- uint_t type, uint_t dpl, uint_t gran, uint_t defopsz)
-{
- ASSERT(lmode == SDP_SHORT || lmode == SDP_LONG);
- /* This should never be a "system" segment. */
- ASSERT3U(type & SDT_S, !=, 0);
-
- /*
- * 64-bit long mode.
- */
- if (lmode == SDP_LONG)
- dp->usd_def32 = 0; /* 32-bit operands only */
- else
- /*
- * 32-bit compatibility mode.
- */
- dp->usd_def32 = defopsz; /* 0 = 16, 1 = 32-bit ops */
-
- /*
- * We should always set the "accessed" bit (SDT_A), otherwise the CPU
- * will write to the GDT whenever we change segment registers around.
- * With KPTI on, the GDT is read-only in the user page table, which
- * causes crashes if we don't set this.
- */
- ASSERT3U(type & SDT_A, !=, 0);
-
- dp->usd_long = lmode; /* 64-bit mode */
- dp->usd_type = type;
- dp->usd_dpl = dpl;
- dp->usd_p = 1;
- dp->usd_gran = gran; /* 0 = bytes, 1 = pages */
-
- dp->usd_lobase = (uintptr_t)base;
- dp->usd_midbase = (uintptr_t)base >> 16;
- dp->usd_hibase = (uintptr_t)base >> (16 + 8);
- dp->usd_lolimit = size;
- dp->usd_hilimit = (uintptr_t)size >> 16;
-}
-
-/*
- * Install system segment descriptor for LDT and TSS segments.
- */
-
-void
-set_syssegd(system_desc_t *dp, void *base, size_t size, uint_t type,
- uint_t dpl)
-{
- dp->ssd_lolimit = size;
- dp->ssd_hilimit = (uintptr_t)size >> 16;
-
- dp->ssd_lobase = (uintptr_t)base;
- dp->ssd_midbase = (uintptr_t)base >> 16;
- dp->ssd_hibase = (uintptr_t)base >> (16 + 8);
- dp->ssd_hi64base = (uintptr_t)base >> (16 + 8 + 8);
-
- dp->ssd_type = type;
- dp->ssd_zero1 = 0; /* must be zero */
- dp->ssd_zero2 = 0;
- dp->ssd_dpl = dpl;
- dp->ssd_p = 1;
- dp->ssd_gran = 0; /* force byte units */
-}
-
-void *
-get_ssd_base(system_desc_t *dp)
-{
- uintptr_t base;
-
- base = (uintptr_t)dp->ssd_lobase |
- (uintptr_t)dp->ssd_midbase << 16 |
- (uintptr_t)dp->ssd_hibase << (16 + 8) |
- (uintptr_t)dp->ssd_hi64base << (16 + 8 + 8);
- return ((void *)base);
-}
-
-/*
- * Install gate segment descriptor for interrupt, trap, call and task gates.
- *
- * For 64 bit native if we have KPTI enabled, we use the IST stack mechanism on
- * all interrupts. We have different ISTs for each class of exceptions that are
- * most likely to occur while handling an existing exception; while many of
- * these are just going to panic, it's nice not to trample on the existing
- * exception state for debugging purposes.
- *
- * Normal interrupts are all redirected unconditionally to the KPTI trampoline
- * stack space. This unifies the trampoline handling between user and kernel
- * space (and avoids the need to touch %gs).
- *
- * The KDI IDT *all* uses the DBG IST: consider single stepping tr_pftrap, when
- * we do a read from KMDB that cause another #PF. Without its own IST, this
- * would stomp on the kernel's mcpu_kpti_flt frame.
- */
-uint_t
-idt_vector_to_ist(uint_t vector)
-{
-#if defined(__xpv)
- _NOTE(ARGUNUSED(vector));
- return (IST_NONE);
-#else
- switch (vector) {
- /* These should always use IST even without KPTI enabled. */
- case T_DBLFLT:
- return (IST_DF);
- case T_NMIFLT:
- return (IST_NMI);
- case T_MCE:
- return (IST_MCE);
-
- case T_BPTFLT:
- case T_SGLSTP:
- if (kpti_enable == 1) {
- return (IST_DBG);
- }
- return (IST_NONE);
- case T_STKFLT:
- case T_GPFLT:
- case T_PGFLT:
- if (kpti_enable == 1) {
- return (IST_NESTABLE);
- }
- return (IST_NONE);
- default:
- if (kpti_enable == 1) {
- return (IST_DEFAULT);
- }
- return (IST_NONE);
- }
-#endif
-}
-
-void
-set_gatesegd(gate_desc_t *dp, void (*func)(void), selector_t sel,
- uint_t type, uint_t dpl, uint_t ist)
-{
- dp->sgd_looffset = (uintptr_t)func;
- dp->sgd_hioffset = (uintptr_t)func >> 16;
- dp->sgd_hi64offset = (uintptr_t)func >> (16 + 16);
- dp->sgd_selector = (uint16_t)sel;
- dp->sgd_ist = ist;
- dp->sgd_type = type;
- dp->sgd_dpl = dpl;
- dp->sgd_p = 1;
-}
-
-/*
- * Updates a single user descriptor in the the GDT of the current cpu.
- * Caller is responsible for preventing cpu migration.
- */
-
-void
-gdt_update_usegd(uint_t sidx, user_desc_t *udp)
-{
-#if defined(DEBUG)
- /* This should never be a "system" segment, but it might be null. */
- if (udp->usd_p != 0 || udp->usd_type != 0) {
- ASSERT3U(udp->usd_type & SDT_S, !=, 0);
- }
- /*
- * We should always set the "accessed" bit (SDT_A), otherwise the CPU
- * will write to the GDT whenever we change segment registers around.
- * With KPTI on, the GDT is read-only in the user page table, which
- * causes crashes if we don't set this.
- */
- if (udp->usd_p != 0 || udp->usd_type != 0) {
- ASSERT3U(udp->usd_type & SDT_A, !=, 0);
- }
-#endif
-
-#if defined(__xpv)
- uint64_t dpa = CPU->cpu_m.mcpu_gdtpa + sizeof (*udp) * sidx;
-
- if (HYPERVISOR_update_descriptor(pa_to_ma(dpa), *(uint64_t *)udp))
- panic("gdt_update_usegd: HYPERVISOR_update_descriptor");
-
-#else /* __xpv */
- CPU->cpu_gdt[sidx] = *udp;
-#endif /* __xpv */
-}
-
-/*
- * Writes single descriptor pointed to by udp into a processes
- * LDT entry pointed to by ldp.
- */
-int
-ldt_update_segd(user_desc_t *ldp, user_desc_t *udp)
-{
-#if defined(DEBUG)
- /* This should never be a "system" segment, but it might be null. */
- if (udp->usd_p != 0 || udp->usd_type != 0) {
- ASSERT3U(udp->usd_type & SDT_S, !=, 0);
- }
- /*
- * We should always set the "accessed" bit (SDT_A), otherwise the CPU
- * will write to the LDT whenever we change segment registers around.
- * With KPTI on, the LDT is read-only in the user page table, which
- * causes crashes if we don't set this.
- */
- if (udp->usd_p != 0 || udp->usd_type != 0) {
- ASSERT3U(udp->usd_type & SDT_A, !=, 0);
- }
-#endif
-
-#if defined(__xpv)
- uint64_t dpa;
-
- dpa = mmu_ptob(hat_getpfnum(kas.a_hat, (caddr_t)ldp)) |
- ((uintptr_t)ldp & PAGEOFFSET);
-
- /*
- * The hypervisor is a little more restrictive about what it
- * supports in the LDT.
- */
- if (HYPERVISOR_update_descriptor(pa_to_ma(dpa), *(uint64_t *)udp) != 0)
- return (EINVAL);
-
-#else /* __xpv */
- *ldp = *udp;
-
-#endif /* __xpv */
- return (0);
-}
-
-#if defined(__xpv)
-
-/*
- * Converts hw format gate descriptor into pseudo-IDT format for the hypervisor.
- * Returns true if a valid entry was written.
- */
-int
-xen_idt_to_trap_info(uint_t vec, gate_desc_t *sgd, void *ti_arg)
-{
- trap_info_t *ti = ti_arg; /* XXPV Aargh - segments.h comment */
-
- /*
- * skip holes in the IDT
- */
- if (GATESEG_GETOFFSET(sgd) == 0)
- return (0);
-
- ASSERT(sgd->sgd_type == SDT_SYSIGT);
- ti->vector = vec;
- TI_SET_DPL(ti, sgd->sgd_dpl);
-
- /*
- * Is this an interrupt gate?
- */
- if (sgd->sgd_type == SDT_SYSIGT) {
- /* LINTED */
- TI_SET_IF(ti, 1);
- }
- ti->cs = sgd->sgd_selector;
- ti->cs |= SEL_KPL; /* force into ring 3. see KCS_SEL */
- ti->address = GATESEG_GETOFFSET(sgd);
- return (1);
-}
-
-/*
- * Convert a single hw format gate descriptor and write it into our virtual IDT.
- */
-void
-xen_idt_write(gate_desc_t *sgd, uint_t vec)
-{
- trap_info_t trapinfo[2];
-
- bzero(trapinfo, sizeof (trapinfo));
- if (xen_idt_to_trap_info(vec, sgd, &trapinfo[0]) == 0)
- return;
- if (xen_set_trap_table(trapinfo) != 0)
- panic("xen_idt_write: xen_set_trap_table() failed");
-}
-
-#endif /* __xpv */
-
-
-/*
- * Build kernel GDT.
- */
-
-static void
-init_gdt_common(user_desc_t *gdt)
-{
- int i;
-
- /*
- * 64-bit kernel code segment.
- */
- set_usegd(&gdt[GDT_KCODE], SDP_LONG, NULL, 0, SDT_MEMERA, SEL_KPL,
- SDP_PAGES, SDP_OP32);
-
- /*
- * 64-bit kernel data segment. The limit attribute is ignored in 64-bit
- * mode, but we set it here to 0xFFFF so that we can use the SYSRET
- * instruction to return from system calls back to 32-bit applications.
- * SYSRET doesn't update the base, limit, or attributes of %ss or %ds
- * descriptors. We therefore must ensure that the kernel uses something,
- * though it will be ignored by hardware, that is compatible with 32-bit
- * apps. For the same reason we must set the default op size of this
- * descriptor to 32-bit operands.
- */
- set_usegd(&gdt[GDT_KDATA], SDP_LONG, NULL, -1, SDT_MEMRWA,
- SEL_KPL, SDP_PAGES, SDP_OP32);
- gdt[GDT_KDATA].usd_def32 = 1;
-
- /*
- * 64-bit user code segment.
- */
- set_usegd(&gdt[GDT_UCODE], SDP_LONG, NULL, 0, SDT_MEMERA, SEL_UPL,
- SDP_PAGES, SDP_OP32);
-
- /*
- * 32-bit user code segment.
- */
- set_usegd(&gdt[GDT_U32CODE], SDP_SHORT, NULL, -1, SDT_MEMERA,
- SEL_UPL, SDP_PAGES, SDP_OP32);
-
- /*
- * See gdt_ucode32() and gdt_ucode_native().
- */
- ucs_on = ucs_off = gdt[GDT_UCODE];
- ucs_off.usd_p = 0; /* forces #np fault */
-
- ucs32_on = ucs32_off = gdt[GDT_U32CODE];
- ucs32_off.usd_p = 0; /* forces #np fault */
-
- /*
- * 32 and 64 bit data segments can actually share the same descriptor.
- * In long mode only the present bit is checked but all other fields
- * are loaded. But in compatibility mode all fields are interpreted
- * as in legacy mode so they must be set correctly for a 32-bit data
- * segment.
- */
- set_usegd(&gdt[GDT_UDATA], SDP_SHORT, NULL, -1, SDT_MEMRWA, SEL_UPL,
- SDP_PAGES, SDP_OP32);
-
-#if !defined(__xpv)
-
- /*
- * The 64-bit kernel has no default LDT. By default, the LDT descriptor
- * in the GDT is 0.
- */
-
- /*
- * Kernel TSS
- */
- set_syssegd((system_desc_t *)&gdt[GDT_KTSS], ktss0,
- sizeof (*ktss0) - 1, SDT_SYSTSS, SEL_KPL);
-
-#endif /* !__xpv */
-
- /*
- * Initialize fs and gs descriptors for 32 bit processes.
- * Only attributes and limits are initialized, the effective
- * base address is programmed via fsbase/gsbase.
- */
- set_usegd(&gdt[GDT_LWPFS], SDP_SHORT, NULL, -1, SDT_MEMRWA,
- SEL_UPL, SDP_PAGES, SDP_OP32);
- set_usegd(&gdt[GDT_LWPGS], SDP_SHORT, NULL, -1, SDT_MEMRWA,
- SEL_UPL, SDP_PAGES, SDP_OP32);
-
- /*
- * Initialize the descriptors set aside for brand usage.
- * Only attributes and limits are initialized.
- */
- for (i = GDT_BRANDMIN; i <= GDT_BRANDMAX; i++)
- set_usegd(&gdt0[i], SDP_SHORT, NULL, -1, SDT_MEMRWA,
- SEL_UPL, SDP_PAGES, SDP_OP32);
-
- /*
- * Initialize convenient zero base user descriptors for clearing
- * lwp private %fs and %gs descriptors in GDT. See setregs() for
- * an example.
- */
- set_usegd(&zero_udesc, SDP_LONG, 0, 0, SDT_MEMRWA, SEL_UPL,
- SDP_BYTES, SDP_OP32);
- set_usegd(&zero_u32desc, SDP_SHORT, 0, -1, SDT_MEMRWA, SEL_UPL,
- SDP_PAGES, SDP_OP32);
-}
-
-#if defined(__xpv)
-
-static user_desc_t *
-init_gdt(void)
-{
- uint64_t gdtpa;
- ulong_t ma[1]; /* XXPV should be a memory_t */
- ulong_t addr;
-
-#if !defined(__lint)
- /*
- * Our gdt is never larger than a single page.
- */
- ASSERT((sizeof (*gdt0) * NGDT) <= PAGESIZE);
-#endif
- gdt0 = (user_desc_t *)BOP_ALLOC(bootops, (caddr_t)GDT_VA,
- PAGESIZE, PAGESIZE);
- bzero(gdt0, PAGESIZE);
-
- init_gdt_common(gdt0);
-
- /*
- * XXX Since we never invoke kmdb until after the kernel takes
- * over the descriptor tables why not have it use the kernel's
- * selectors?
- */
- if (boothowto & RB_DEBUG) {
- set_usegd(&gdt0[GDT_B32DATA], SDP_LONG, NULL, -1, SDT_MEMRWA,
- SEL_KPL, SDP_PAGES, SDP_OP32);
- set_usegd(&gdt0[GDT_B64CODE], SDP_LONG, NULL, -1, SDT_MEMERA,
- SEL_KPL, SDP_PAGES, SDP_OP32);
- }
-
- /*
- * Clear write permission for page containing the gdt and install it.
- */
- gdtpa = pfn_to_pa(va_to_pfn(gdt0));
- ma[0] = (ulong_t)(pa_to_ma(gdtpa) >> PAGESHIFT);
- kbm_read_only((uintptr_t)gdt0, gdtpa);
- xen_set_gdt(ma, NGDT);
-
- /*
- * Reload the segment registers to use the new GDT.
- * On 64-bit, fixup KCS_SEL to be in ring 3.
- * See KCS_SEL in segments.h.
- */
- load_segment_registers((KCS_SEL | SEL_KPL), KFS_SEL, KGS_SEL, KDS_SEL);
-
- /*
- * setup %gs for kernel
- */
- xen_set_segment_base(SEGBASE_GS_KERNEL, (ulong_t)&cpus[0]);
-
- /*
- * XX64 We should never dereference off "other gsbase" or
- * "fsbase". So, we should arrange to point FSBASE and
- * KGSBASE somewhere truly awful e.g. point it at the last
- * valid address below the hole so that any attempts to index
- * off them cause an exception.
- *
- * For now, point it at 8G -- at least it should be unmapped
- * until some 64-bit processes run.
- */
- addr = 0x200000000ul;
- xen_set_segment_base(SEGBASE_FS, addr);
- xen_set_segment_base(SEGBASE_GS_USER, addr);
- xen_set_segment_base(SEGBASE_GS_USER_SEL, 0);
-
- return (gdt0);
-}
-
-#else /* __xpv */
-
-static user_desc_t *
-init_gdt(void)
-{
- desctbr_t r_bgdt, r_gdt;
- user_desc_t *bgdt;
-
-#if !defined(__lint)
- /*
- * Our gdt is never larger than a single page.
- */
- ASSERT((sizeof (*gdt0) * NGDT) <= PAGESIZE);
-#endif
- gdt0 = (user_desc_t *)BOP_ALLOC(bootops, (caddr_t)GDT_VA,
- PAGESIZE, PAGESIZE);
- bzero(gdt0, PAGESIZE);
-
- init_gdt_common(gdt0);
-
- /*
- * Copy in from boot's gdt to our gdt.
- * Entry 0 is the null descriptor by definition.
- */
- rd_gdtr(&r_bgdt);
- bgdt = (user_desc_t *)r_bgdt.dtr_base;
- if (bgdt == NULL)
- panic("null boot gdt");
-
- gdt0[GDT_B32DATA] = bgdt[GDT_B32DATA];
- gdt0[GDT_B32CODE] = bgdt[GDT_B32CODE];
- gdt0[GDT_B16CODE] = bgdt[GDT_B16CODE];
- gdt0[GDT_B16DATA] = bgdt[GDT_B16DATA];
- gdt0[GDT_B64CODE] = bgdt[GDT_B64CODE];
-
- /*
- * Install our new GDT
- */
- r_gdt.dtr_limit = (sizeof (*gdt0) * NGDT) - 1;
- r_gdt.dtr_base = (uintptr_t)gdt0;
- wr_gdtr(&r_gdt);
-
- /*
- * Reload the segment registers to use the new GDT
- */
- load_segment_registers(KCS_SEL, KFS_SEL, KGS_SEL, KDS_SEL);
-
- /*
- * setup %gs for kernel
- */
- wrmsr(MSR_AMD_GSBASE, (uint64_t)&cpus[0]);
-
- /*
- * XX64 We should never dereference off "other gsbase" or
- * "fsbase". So, we should arrange to point FSBASE and
- * KGSBASE somewhere truly awful e.g. point it at the last
- * valid address below the hole so that any attempts to index
- * off them cause an exception.
- *
- * For now, point it at 8G -- at least it should be unmapped
- * until some 64-bit processes run.
- */
- wrmsr(MSR_AMD_FSBASE, 0x200000000ul);
- wrmsr(MSR_AMD_KGSBASE, 0x200000000ul);
- return (gdt0);
-}
-
-#endif /* __xpv */
-
-
-/*
- * Build kernel IDT.
- *
- * Note that for amd64 we pretty much require every gate to be an interrupt
- * gate which blocks interrupts atomically on entry; that's because of our
- * dependency on using 'swapgs' every time we come into the kernel to find
- * the cpu structure. If we get interrupted just before doing that, %cs could
- * be in kernel mode (so that the trap prolog doesn't do a swapgs), but
- * %gsbase is really still pointing at something in userland. Bad things will
- * ensue. We also use interrupt gates for i386 as well even though this is not
- * required for some traps.
- *
- * Perhaps they should have invented a trap gate that does an atomic swapgs?
- */
-static void
-init_idt_common(gate_desc_t *idt)
-{
- set_gatesegd(&idt[T_ZERODIV],
- (kpti_enable == 1) ? &tr_div0trap : &div0trap,
- KCS_SEL, SDT_SYSIGT, TRP_KPL, idt_vector_to_ist(T_ZERODIV));
- set_gatesegd(&idt[T_SGLSTP],
- (kpti_enable == 1) ? &tr_dbgtrap : &dbgtrap,
- KCS_SEL, SDT_SYSIGT, TRP_KPL, idt_vector_to_ist(T_SGLSTP));
- set_gatesegd(&idt[T_NMIFLT],
- (kpti_enable == 1) ? &tr_nmiint : &nmiint,
- KCS_SEL, SDT_SYSIGT, TRP_KPL, idt_vector_to_ist(T_NMIFLT));
- set_gatesegd(&idt[T_BPTFLT],
- (kpti_enable == 1) ? &tr_brktrap : &brktrap,
- KCS_SEL, SDT_SYSIGT, TRP_UPL, idt_vector_to_ist(T_BPTFLT));
- set_gatesegd(&idt[T_OVFLW],
- (kpti_enable == 1) ? &tr_ovflotrap : &ovflotrap,
- KCS_SEL, SDT_SYSIGT, TRP_UPL, idt_vector_to_ist(T_OVFLW));
- set_gatesegd(&idt[T_BOUNDFLT],
- (kpti_enable == 1) ? &tr_boundstrap : &boundstrap,
- KCS_SEL, SDT_SYSIGT, TRP_KPL, idt_vector_to_ist(T_BOUNDFLT));
- set_gatesegd(&idt[T_ILLINST],
- (kpti_enable == 1) ? &tr_invoptrap : &invoptrap,
- KCS_SEL, SDT_SYSIGT, TRP_KPL, idt_vector_to_ist(T_ILLINST));
- set_gatesegd(&idt[T_NOEXTFLT],
- (kpti_enable == 1) ? &tr_ndptrap : &ndptrap,
- KCS_SEL, SDT_SYSIGT, TRP_KPL, idt_vector_to_ist(T_NOEXTFLT));
-
- /*
- * double fault handler.
- *
- * Note that on the hypervisor a guest does not receive #df faults.
- * Instead a failsafe event is injected into the guest if its selectors
- * and/or stack is in a broken state. See xen_failsafe_callback.
- */
-#if !defined(__xpv)
- set_gatesegd(&idt[T_DBLFLT],
- (kpti_enable == 1) ? &tr_syserrtrap : &syserrtrap,
- KCS_SEL, SDT_SYSIGT, TRP_KPL, idt_vector_to_ist(T_DBLFLT));
-#endif /* !__xpv */
-
- /*
- * T_EXTOVRFLT coprocessor-segment-overrun not supported.
- */
- set_gatesegd(&idt[T_TSSFLT],
- (kpti_enable == 1) ? &tr_invtsstrap : &invtsstrap,
- KCS_SEL, SDT_SYSIGT, TRP_KPL, idt_vector_to_ist(T_TSSFLT));
- set_gatesegd(&idt[T_SEGFLT],
- (kpti_enable == 1) ? &tr_segnptrap : &segnptrap,
- KCS_SEL, SDT_SYSIGT, TRP_KPL, idt_vector_to_ist(T_SEGFLT));
- set_gatesegd(&idt[T_STKFLT],
- (kpti_enable == 1) ? &tr_stktrap : &stktrap,
- KCS_SEL, SDT_SYSIGT, TRP_KPL, idt_vector_to_ist(T_STKFLT));
- set_gatesegd(&idt[T_GPFLT],
- (kpti_enable == 1) ? &tr_gptrap : &gptrap,
- KCS_SEL, SDT_SYSIGT, TRP_KPL, idt_vector_to_ist(T_GPFLT));
- set_gatesegd(&idt[T_PGFLT],
- (kpti_enable == 1) ? &tr_pftrap : &pftrap,
- KCS_SEL, SDT_SYSIGT, TRP_KPL, idt_vector_to_ist(T_PGFLT));
- set_gatesegd(&idt[T_EXTERRFLT],
- (kpti_enable == 1) ? &tr_ndperr : &ndperr,
- KCS_SEL, SDT_SYSIGT, TRP_KPL, idt_vector_to_ist(T_EXTERRFLT));
- set_gatesegd(&idt[T_ALIGNMENT],
- (kpti_enable == 1) ? &tr_achktrap : &achktrap,
- KCS_SEL, SDT_SYSIGT, TRP_KPL, idt_vector_to_ist(T_ALIGNMENT));
- set_gatesegd(&idt[T_MCE],
- (kpti_enable == 1) ? &tr_mcetrap : &mcetrap,
- KCS_SEL, SDT_SYSIGT, TRP_KPL, idt_vector_to_ist(T_MCE));
- set_gatesegd(&idt[T_SIMDFPE],
- (kpti_enable == 1) ? &tr_xmtrap : &xmtrap,
- KCS_SEL, SDT_SYSIGT, TRP_KPL, idt_vector_to_ist(T_SIMDFPE));
-
- /*
- * install fast trap handler at 210.
- */
- set_gatesegd(&idt[T_FASTTRAP],
- (kpti_enable == 1) ? &tr_fasttrap : &fasttrap,
- KCS_SEL, SDT_SYSIGT, TRP_UPL, idt_vector_to_ist(T_FASTTRAP));
-
- /*
- * System call handler.
- */
- set_gatesegd(&idt[T_SYSCALLINT],
- (kpti_enable == 1) ? &tr_sys_syscall_int : &sys_syscall_int,
- KCS_SEL, SDT_SYSIGT, TRP_UPL, idt_vector_to_ist(T_SYSCALLINT));
-
- /*
- * Install the DTrace interrupt handler for the pid provider.
- */
- set_gatesegd(&idt[T_DTRACE_RET],
- (kpti_enable == 1) ? &tr_dtrace_ret : &dtrace_ret,
- KCS_SEL, SDT_SYSIGT, TRP_UPL, idt_vector_to_ist(T_DTRACE_RET));
-
- /*
- * Prepare interposing descriptor for the syscall handler
- * and cache copy of the default descriptor.
- */
- brand_tbl[0].ih_inum = T_SYSCALLINT;
- brand_tbl[0].ih_default_desc = idt0[T_SYSCALLINT];
-
- set_gatesegd(&(brand_tbl[0].ih_interp_desc),
- (kpti_enable == 1) ? &tr_brand_sys_syscall_int :
- &brand_sys_syscall_int, KCS_SEL, SDT_SYSIGT, TRP_UPL,
- idt_vector_to_ist(T_SYSCALLINT));
-
- brand_tbl[1].ih_inum = 0;
-}
-
-#if defined(__xpv)
-
-static void
-init_idt(gate_desc_t *idt)
-{
- init_idt_common(idt);
-}
-
-#else /* __xpv */
-
-static void
-init_idt(gate_desc_t *idt)
-{
- char ivctname[80];
- void (*ivctptr)(void);
- int i;
-
- /*
- * Initialize entire table with 'reserved' trap and then overwrite
- * specific entries. T_EXTOVRFLT (9) is unsupported and reserved
- * since it can only be generated on a 386 processor. 15 is also
- * unsupported and reserved.
- */
-#if !defined(__xpv)
- for (i = 0; i < NIDT; i++) {
- set_gatesegd(&idt[i],
- (kpti_enable == 1) ? &tr_resvtrap : &resvtrap,
- KCS_SEL, SDT_SYSIGT, TRP_KPL,
- idt_vector_to_ist(T_RESVTRAP));
- }
-#else
- for (i = 0; i < NIDT; i++) {
- set_gatesegd(&idt[i], &resvtrap, KCS_SEL, SDT_SYSIGT, TRP_KPL,
- IST_NONE);
- }
-#endif
-
- /*
- * 20-31 reserved
- */
-#if !defined(__xpv)
- for (i = 20; i < 32; i++) {
- set_gatesegd(&idt[i],
- (kpti_enable == 1) ? &tr_invaltrap : &invaltrap,
- KCS_SEL, SDT_SYSIGT, TRP_KPL,
- idt_vector_to_ist(T_INVALTRAP));
- }
-#else
- for (i = 20; i < 32; i++) {
- set_gatesegd(&idt[i], &invaltrap, KCS_SEL, SDT_SYSIGT, TRP_KPL,
- IST_NONE);
- }
-#endif
-
- /*
- * interrupts 32 - 255
- */
- for (i = 32; i < 256; i++) {
-#if !defined(__xpv)
- (void) snprintf(ivctname, sizeof (ivctname),
- (kpti_enable == 1) ? "tr_ivct%d" : "ivct%d", i);
-#else
- (void) snprintf(ivctname, sizeof (ivctname), "ivct%d", i);
-#endif
- ivctptr = (void (*)(void))kobj_getsymvalue(ivctname, 0);
- if (ivctptr == NULL)
- panic("kobj_getsymvalue(%s) failed", ivctname);
-
- set_gatesegd(&idt[i], ivctptr, KCS_SEL, SDT_SYSIGT, TRP_KPL,
- idt_vector_to_ist(i));
- }
-
- /*
- * Now install the common ones. Note that it will overlay some
- * entries installed above like T_SYSCALLINT, T_FASTTRAP etc.
- */
- init_idt_common(idt);
-}
-
-#endif /* __xpv */
-
-/*
- * The kernel does not deal with LDTs unless a user explicitly creates
- * one. Under normal circumstances, the LDTR contains 0. Any process attempting
- * to reference the LDT will therefore cause a #gp. System calls made via the
- * obsolete lcall mechanism are emulated by the #gp fault handler.
- */
-static void
-init_ldt(void)
-{
-#if defined(__xpv)
- xen_set_ldt(NULL, 0);
-#else
- wr_ldtr(0);
-#endif
-}
-
-#if !defined(__xpv)
-
-static void
-init_tss(void)
-{
- extern struct cpu cpus[];
-
- /*
- * tss_rsp0 is dynamically filled in by resume() (in swtch.s) on each
- * context switch but it'll be overwritten with this same value anyway.
- */
- if (kpti_enable == 1) {
- ktss0->tss_rsp0 = (uint64_t)&cpus->cpu_m.mcpu_kpti.kf_tr_rsp;
- }
-
- /* Set up the IST stacks for double fault, NMI, MCE. */
- ktss0->tss_ist1 = (uintptr_t)&dblfault_stack0[sizeof (dblfault_stack0)];
- ktss0->tss_ist2 = (uintptr_t)&nmi_stack0[sizeof (nmi_stack0)];
- ktss0->tss_ist3 = (uintptr_t)&mce_stack0[sizeof (mce_stack0)];
-
- /*
- * This IST stack is used for #DB,#BP (debug) interrupts (when KPTI is
- * enabled), and also for KDI (always).
- */
- ktss0->tss_ist4 = (uint64_t)&cpus->cpu_m.mcpu_kpti_dbg.kf_tr_rsp;
-
- if (kpti_enable == 1) {
- /* This IST stack is used for #GP,#PF,#SS (fault) interrupts. */
- ktss0->tss_ist5 =
- (uint64_t)&cpus->cpu_m.mcpu_kpti_flt.kf_tr_rsp;
-
- /* This IST stack is used for all other intrs (for KPTI). */
- ktss0->tss_ist6 = (uint64_t)&cpus->cpu_m.mcpu_kpti.kf_tr_rsp;
- }
-
- /*
- * Set I/O bit map offset equal to size of TSS segment limit
- * for no I/O permission map. This will force all user I/O
- * instructions to generate #gp fault.
- */
- ktss0->tss_bitmapbase = sizeof (*ktss0);
-
- /*
- * Point %tr to descriptor for ktss0 in gdt.
- */
- wr_tsr(KTSS_SEL);
-}
-
-#endif /* !__xpv */
-
-#if defined(__xpv)
-
-void
-init_desctbls(void)
-{
- uint_t vec;
- user_desc_t *gdt;
-
- /*
- * Setup and install our GDT.
- */
- gdt = init_gdt();
-
- /*
- * Store static pa of gdt to speed up pa_to_ma() translations
- * on lwp context switches.
- */
- ASSERT(IS_P2ALIGNED((uintptr_t)gdt, PAGESIZE));
- CPU->cpu_gdt = gdt;
- CPU->cpu_m.mcpu_gdtpa = pfn_to_pa(va_to_pfn(gdt));
-
- /*
- * Setup and install our IDT.
- */
-#if !defined(__lint)
- ASSERT(NIDT * sizeof (*idt0) <= PAGESIZE);
-#endif
- idt0 = (gate_desc_t *)BOP_ALLOC(bootops, (caddr_t)IDT_VA,
- PAGESIZE, PAGESIZE);
- bzero(idt0, PAGESIZE);
- init_idt(idt0);
- for (vec = 0; vec < NIDT; vec++)
- xen_idt_write(&idt0[vec], vec);
-
- CPU->cpu_idt = idt0;
-
- /*
- * set default kernel stack
- */
- xen_stack_switch(KDS_SEL,
- (ulong_t)&dblfault_stack0[sizeof (dblfault_stack0)]);
-
- xen_init_callbacks();
-
- init_ldt();
-}
-
-#else /* __xpv */
-
-void
-init_desctbls(void)
-{
- user_desc_t *gdt;
- desctbr_t idtr;
-
- /*
- * Allocate IDT and TSS structures on unique pages for better
- * performance in virtual machines.
- */
-#if !defined(__lint)
- ASSERT(NIDT * sizeof (*idt0) <= PAGESIZE);
-#endif
- idt0 = (gate_desc_t *)BOP_ALLOC(bootops, (caddr_t)IDT_VA,
- PAGESIZE, PAGESIZE);
- bzero(idt0, PAGESIZE);
-#if !defined(__lint)
- ASSERT(sizeof (*ktss0) <= PAGESIZE);
-#endif
- ktss0 = (tss_t *)BOP_ALLOC(bootops, (caddr_t)KTSS_VA,
- PAGESIZE, PAGESIZE);
- bzero(ktss0, PAGESIZE);
-
-
- /*
- * Setup and install our GDT.
- */
- gdt = init_gdt();
- ASSERT(IS_P2ALIGNED((uintptr_t)gdt, PAGESIZE));
- CPU->cpu_gdt = gdt;
-
- /*
- * Initialize this CPU's LDT.
- */
- CPU->cpu_m.mcpu_ldt = BOP_ALLOC(bootops, (caddr_t)LDT_VA,
- LDT_CPU_SIZE, PAGESIZE);
- bzero(CPU->cpu_m.mcpu_ldt, LDT_CPU_SIZE);
- CPU->cpu_m.mcpu_ldt_len = 0;
-
- /*
- * Setup and install our IDT.
- */
- init_idt(idt0);
-
- idtr.dtr_base = (uintptr_t)idt0;
- idtr.dtr_limit = (NIDT * sizeof (*idt0)) - 1;
- wr_idtr(&idtr);
- CPU->cpu_idt = idt0;
-
-
- init_tss();
- CPU->cpu_tss = ktss0;
- init_ldt();
-
- /* Stash this so that the NMI,MCE,#DF and KDI handlers can use it. */
- kpti_safe_cr3 = (uint64_t)getcr3();
-}
-
-#endif /* __xpv */
-
-#ifndef __xpv
-/*
- * As per Intel Vol 3 27.5.2, the GDTR limit is reset to 64Kb on a VM exit, so
- * we have to manually fix it up ourselves.
- *
- * The caller may still need to make sure that it can't go off-CPU with the
- * incorrect limit, before calling this (such as disabling pre-emption).
- */
-void
-reset_gdtr_limit(void)
-{
- ulong_t flags = intr_clear();
- desctbr_t gdtr;
-
- rd_gdtr(&gdtr);
- gdtr.dtr_limit = (sizeof (user_desc_t) * NGDT) - 1;
- wr_gdtr(&gdtr);
-
- intr_restore(flags);
-}
-#endif /* __xpv */
-
-/*
- * In the early kernel, we need to set up a simple GDT to run on.
- *
- * XXPV Can dboot use this too? See dboot_gdt.s
- */
-void
-init_boot_gdt(user_desc_t *bgdt)
-{
- set_usegd(&bgdt[GDT_B32DATA], SDP_LONG, NULL, -1, SDT_MEMRWA, SEL_KPL,
- SDP_PAGES, SDP_OP32);
- set_usegd(&bgdt[GDT_B64CODE], SDP_LONG, NULL, -1, SDT_MEMERA, SEL_KPL,
- SDP_PAGES, SDP_OP32);
-}
-
-/*
- * Enable interpositioning on the system call path by rewriting the
- * sys{call|enter} MSRs and the syscall-related entries in the IDT to use
- * the branded entry points.
- */
-void
-brand_interpositioning_enable(void)
-{
- gate_desc_t *idt = CPU->cpu_idt;
- int i;
-
- ASSERT(curthread->t_preempt != 0 || getpil() >= DISP_LEVEL);
-
- for (i = 0; brand_tbl[i].ih_inum; i++) {
- idt[brand_tbl[i].ih_inum] = brand_tbl[i].ih_interp_desc;
-#if defined(__xpv)
- xen_idt_write(&idt[brand_tbl[i].ih_inum],
- brand_tbl[i].ih_inum);
-#endif
- }
-
-#if defined(__xpv)
-
- /*
- * Currently the hypervisor only supports 64-bit syscalls via
- * syscall instruction. The 32-bit syscalls are handled by
- * interrupt gate above.
- */
- xen_set_callback(brand_sys_syscall, CALLBACKTYPE_syscall,
- CALLBACKF_mask_events);
-
-#else
-
- if (is_x86_feature(x86_featureset, X86FSET_ASYSC)) {
- if (kpti_enable == 1) {
- wrmsr(MSR_AMD_LSTAR, (uintptr_t)tr_brand_sys_syscall);
- wrmsr(MSR_AMD_CSTAR, (uintptr_t)tr_brand_sys_syscall32);
- } else {
- wrmsr(MSR_AMD_LSTAR, (uintptr_t)brand_sys_syscall);
- wrmsr(MSR_AMD_CSTAR, (uintptr_t)brand_sys_syscall32);
- }
- }
-
-#endif
-
- if (is_x86_feature(x86_featureset, X86FSET_SEP)) {
- if (kpti_enable == 1) {
- wrmsr(MSR_INTC_SEP_EIP,
- (uintptr_t)tr_brand_sys_sysenter);
- } else {
- wrmsr(MSR_INTC_SEP_EIP, (uintptr_t)brand_sys_sysenter);
- }
- }
-}
-
-/*
- * Disable interpositioning on the system call path by rewriting the
- * sys{call|enter} MSRs and the syscall-related entries in the IDT to use
- * the standard entry points, which bypass the interpositioning hooks.
- */
-void
-brand_interpositioning_disable(void)
-{
- gate_desc_t *idt = CPU->cpu_idt;
- int i;
-
- ASSERT(curthread->t_preempt != 0 || getpil() >= DISP_LEVEL);
-
- for (i = 0; brand_tbl[i].ih_inum; i++) {
- idt[brand_tbl[i].ih_inum] = brand_tbl[i].ih_default_desc;
-#if defined(__xpv)
- xen_idt_write(&idt[brand_tbl[i].ih_inum],
- brand_tbl[i].ih_inum);
-#endif
- }
-
-#if defined(__xpv)
-
- /*
- * See comment above in brand_interpositioning_enable.
- */
- xen_set_callback(sys_syscall, CALLBACKTYPE_syscall,
- CALLBACKF_mask_events);
-
-#else
-
- if (is_x86_feature(x86_featureset, X86FSET_ASYSC)) {
- if (kpti_enable == 1) {
- wrmsr(MSR_AMD_LSTAR, (uintptr_t)tr_sys_syscall);
- wrmsr(MSR_AMD_CSTAR, (uintptr_t)tr_sys_syscall32);
- } else {
- wrmsr(MSR_AMD_LSTAR, (uintptr_t)sys_syscall);
- wrmsr(MSR_AMD_CSTAR, (uintptr_t)sys_syscall32);
- }
- }
-
-#endif
-
- if (is_x86_feature(x86_featureset, X86FSET_SEP)) {
- if (kpti_enable == 1) {
- wrmsr(MSR_INTC_SEP_EIP, (uintptr_t)tr_sys_sysenter);
- } else {
- wrmsr(MSR_INTC_SEP_EIP, (uintptr_t)sys_sysenter);
- }
- }
-}
diff --git a/usr/src/uts/intel/ia32/os/fpu.c b/usr/src/uts/intel/ia32/os/fpu.c
deleted file mode 100644
index 0037f49f85..0000000000
--- a/usr/src/uts/intel/ia32/os/fpu.c
+++ /dev/null
@@ -1,1506 +0,0 @@
-/*
- * CDDL HEADER START
- *
- * The contents of this file are subject to the terms of the
- * Common Development and Distribution License (the "License").
- * You may not use this file except in compliance with the License.
- *
- * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
- * or http://www.opensolaris.org/os/licensing.
- * See the License for the specific language governing permissions
- * and limitations under the License.
- *
- * When distributing Covered Code, include this CDDL HEADER in each
- * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
- * If applicable, add the following below this CDDL HEADER, with the
- * fields enclosed by brackets "[]" replaced with your own identifying
- * information: Portions Copyright [yyyy] [name of copyright owner]
- *
- * CDDL HEADER END
- */
-/*
- * Copyright (c) 1992, 2010, Oracle and/or its affiliates. All rights reserved.
- * Copyright 2021 Joyent, Inc.
- * Copyright 2021 RackTop Systems, Inc.
- */
-
-/* Copyright (c) 1990, 1991 UNIX System Laboratories, Inc. */
-/* Copyright (c) 1984, 1986, 1987, 1988, 1989, 1990 AT&T */
-/* All Rights Reserved */
-
-/* Copyright (c) 1987, 1988 Microsoft Corporation */
-/* All Rights Reserved */
-
-/*
- * Copyright (c) 2009, Intel Corporation.
- * All rights reserved.
- */
-
-#include <sys/types.h>
-#include <sys/param.h>
-#include <sys/signal.h>
-#include <sys/regset.h>
-#include <sys/privregs.h>
-#include <sys/psw.h>
-#include <sys/trap.h>
-#include <sys/fault.h>
-#include <sys/systm.h>
-#include <sys/user.h>
-#include <sys/file.h>
-#include <sys/proc.h>
-#include <sys/pcb.h>
-#include <sys/lwp.h>
-#include <sys/cpuvar.h>
-#include <sys/thread.h>
-#include <sys/disp.h>
-#include <sys/fp.h>
-#include <sys/siginfo.h>
-#include <sys/archsystm.h>
-#include <sys/kmem.h>
-#include <sys/debug.h>
-#include <sys/x86_archext.h>
-#include <sys/sysmacros.h>
-#include <sys/cmn_err.h>
-#include <sys/kfpu.h>
-
-/*
- * FPU Management Overview
- * -----------------------
- *
- * The x86 FPU has evolved substantially since its days as the x87 coprocessor;
- * however, many aspects of its life as a coprocessor are still around in x86.
- *
- * Today, when we refer to the 'FPU', we don't just mean the original x87 FPU.
- * While that state still exists, there is much more that is covered by the FPU.
- * Today, this includes not just traditional FPU state, but also supervisor only
- * state. The following state is currently managed and covered logically by the
- * idea of the FPU registers:
- *
- * o Traditional x87 FPU
- * o Vector Registers (%xmm, %ymm, %zmm)
- * o Memory Protection Extensions (MPX) Bounds Registers
- * o Protected Key Rights Registers (PKRU)
- * o Processor Trace data
- *
- * The rest of this covers how the FPU is managed and controlled, how state is
- * saved and restored between threads, interactions with hypervisors, and other
- * information exported to user land through aux vectors. A lot of background
- * information is here to synthesize major parts of the Intel SDM, but
- * unfortunately, it is not a replacement for reading it.
- *
- * FPU Control Registers
- * ---------------------
- *
- * Because the x87 FPU began its life as a co-processor and the FPU was
- * optional there are several bits that show up in %cr0 that we have to
- * manipulate when dealing with the FPU. These are:
- *
- * o CR0.ET The 'extension type' bit. This was used originally to indicate
- * that the FPU co-processor was present. Now it is forced on for
- * compatibility. This is often used to verify whether or not the
- * FPU is present.
- *
- * o CR0.NE The 'native error' bit. Used to indicate that native error
- * mode should be enabled. This indicates that we should take traps
- * on FPU errors. The OS enables this early in boot.
- *
- * o CR0.MP The 'Monitor Coprocessor' bit. Used to control whether or not
- * wait/fwait instructions generate a #NM if CR0.TS is set.
- *
- * o CR0.EM The 'Emulation' bit. This is used to cause floating point
- * operations (x87 through SSE4) to trap with a #UD so they can be
- * emulated. The system never sets this bit, but makes sure it is
- * clear on processor start up.
- *
- * o CR0.TS The 'Task Switched' bit. When this is turned on, a floating
- * point operation will generate a #NM. An fwait will as well,
- * depending on the value in CR0.MP.
- *
- * Our general policy is that CR0.ET, CR0.NE, and CR0.MP are always set by
- * the system. Similarly CR0.EM is always unset by the system. CR0.TS has a more
- * complicated role. Historically it has been used to allow running systems to
- * restore the FPU registers lazily. This will be discussed in greater depth
- * later on.
- *
- * %cr4 is also used as part of the FPU control. Specifically we need to worry
- * about the following bits in the system:
- *
- * o CR4.OSFXSR This bit is used to indicate that the OS understands and
- * supports the execution of the fxsave and fxrstor
- * instructions. This bit is required to be set to enable
- * the use of the SSE->SSE4 instructions.
- *
- * o CR4.OSXMMEXCPT This bit is used to indicate that the OS can understand
- * and take a SIMD floating point exception (#XM). This bit
- * is always enabled by the system.
- *
- * o CR4.OSXSAVE This bit is used to indicate that the OS understands and
- * supports the execution of the xsave and xrstor family of
- * instructions. This bit is required to use any of the AVX
- * and newer feature sets.
- *
- * Because all supported processors are 64-bit, they'll always support the XMM
- * extensions and we will enable both CR4.OXFXSR and CR4.OSXMMEXCPT in boot.
- * CR4.OSXSAVE will be enabled and used whenever xsave is reported in cpuid.
- *
- * %xcr0 is used to manage the behavior of the xsave feature set and is only
- * present on the system if xsave is supported. %xcr0 is read and written to
- * through by the xgetbv and xsetbv instructions. This register is present
- * whenever the xsave feature set is supported. Each bit in %xcr0 refers to a
- * different component of the xsave state and controls whether or not that
- * information is saved and restored. For newer feature sets like AVX and MPX,
- * it also controls whether or not the corresponding instructions can be
- * executed (much like CR0.OSFXSR does for the SSE feature sets).
- *
- * Everything in %xcr0 is around features available to users. There is also the
- * IA32_XSS MSR which is used to control supervisor-only features that are still
- * part of the xsave state. Bits that can be set in %xcr0 are reserved in
- * IA32_XSS and vice versa. This is an important property that is particularly
- * relevant to how the xsave instructions operate.
- *
- * Save Mechanisms
- * ---------------
- *
- * When switching between running threads the FPU state needs to be saved and
- * restored by the OS. If this state was not saved, users would rightfully
- * complain about corrupt state. There are three mechanisms that exist on the
- * processor for saving and restoring these state images:
- *
- * o fsave
- * o fxsave
- * o xsave
- *
- * fsave saves and restores only the x87 FPU and is the oldest of these
- * mechanisms. This mechanism is never used in the kernel today because we are
- * always running on systems that support fxsave.
- *
- * The fxsave and fxrstor mechanism allows the x87 FPU and the SSE register
- * state to be saved and restored to and from a struct fxsave_state. This is the
- * default mechanism that is used to save and restore the FPU on amd64. An
- * important aspect of fxsave that was different from the original i386 fsave
- * mechanism is that the restoring of FPU state with pending exceptions will not
- * generate an exception, it will be deferred to the next use of the FPU.
- *
- * The final and by far the most complex mechanism is that of the xsave set.
- * xsave allows for saving and restoring all of the traditional x86 pieces (x87
- * and SSE), while allowing for extensions that will save the %ymm, %zmm, etc.
- * registers.
- *
- * Data is saved and restored into and out of a struct xsave_state. The first
- * part of the struct xsave_state is equivalent to the struct fxsave_state.
- * After that, there is a header which is used to describe the remaining
- * portions of the state. The header is a 64-byte value of which the first two
- * uint64_t values are defined and the rest are reserved and must be zero. The
- * first uint64_t is the xstate_bv member. This describes which values in the
- * xsave_state are actually valid and present. This is updated on a save and
- * used on restore. The second member is the xcomp_bv member. Its last bit
- * determines whether or not a compressed version of the structure is used.
- *
- * When the uncompressed structure is used (currently the only format we
- * support), then each state component is at a fixed offset in the structure,
- * even if it is not being used. For example, if you only saved the AVX related
- * state, but did not save the MPX related state, the offset would not change
- * for any component. With the compressed format, components that aren't used
- * are all elided (though the x87 and SSE state are always there).
- *
- * Unlike fxsave which saves all state, the xsave family does not always save
- * and restore all the state that could be covered by the xsave_state. The
- * instructions all take an argument which is a mask of what to consider. This
- * is the same mask that will be used in the xstate_bv vector and it is also the
- * same values that are present in %xcr0 and IA32_XSS. Though IA32_XSS is only
- * considered with the xsaves and xrstors instructions.
- *
- * When a save or restore is requested, a bitwise and is performed between the
- * requested bits and those that have been enabled in %xcr0. Only the bits that
- * match that are then saved or restored. Others will be silently ignored by
- * the processor. This idea is used often in the OS. We will always request that
- * we save and restore all of the state, but only those portions that are
- * actually enabled in %xcr0 will be touched.
- *
- * If a feature has been asked to be restored that is not set in the xstate_bv
- * feature vector of the save state, then it will be set to its initial state by
- * the processor (usually zeros). Also, when asked to save state, the processor
- * may not write out data that is in its initial state as an optimization. This
- * optimization only applies to saving data and not to restoring data.
- *
- * There are a few different variants of the xsave and xrstor instruction. They
- * are:
- *
- * o xsave This is the original save instruction. It will save all of the
- * requested data in the xsave state structure. It only saves data
- * in the uncompressed (xcomp_bv[63] is zero) format. It may be
- * executed at all privilege levels.
- *
- * o xrstor This is the original restore instruction. It will restore all of
- * the requested data. The xrstor function can handle both the
- * compressed and uncompressed formats. It may be executed at all
- * privilege levels.
- *
- * o xsaveopt This is a variant of the xsave instruction that employs
- * optimizations to try and only write out state that has been
- * modified since the last time an xrstor instruction was called.
- * The processor tracks a tuple of information about the last
- * xrstor and tries to ensure that the same buffer is being used
- * when this optimization is being used. However, because of the
- * way that it tracks the xrstor buffer based on the address of it,
- * it is not suitable for use if that buffer can be easily reused.
- * The most common case is trying to save data to the stack in
- * rtld. It may be executed at all privilege levels.
- *
- * o xsavec This is a variant of the xsave instruction that writes out the
- * compressed form of the xsave_state. Otherwise it behaves as
- * xsave. It may be executed at all privilege levels.
- *
- * o xsaves This is a variant of the xsave instruction. It is similar to
- * xsavec in that it always writes the compressed form of the
- * buffer. Unlike all the other forms, this instruction looks at
- * both the user (%xcr0) and supervisor (IA32_XSS MSR) to determine
- * what to save and restore. xsaves also implements the same
- * optimization that xsaveopt does around modified pieces. User
- * land may not execute the instruction.
- *
- * o xrstors This is a variant of the xrstor instruction. Similar to xsaves
- * it can save and restore both the user and privileged states.
- * Unlike xrstor it can only operate on the compressed form.
- * User land may not execute the instruction.
- *
- * Based on all of these, the kernel has a precedence for what it will use.
- * Basically, xsaves (not supported) is preferred to xsaveopt, which is
- * preferred to xsave. A similar scheme is used when informing rtld (more later)
- * about what it should use. xsavec is preferred to xsave. xsaveopt is not
- * recommended due to the modified optimization not being appropriate for this
- * use.
- *
- * Finally, there is one last gotcha with the xsave state. Importantly some AMD
- * processors did not always save and restore some of the FPU exception state in
- * some cases like Intel did. In those cases the OS will make up for this fact
- * itself.
- *
- * FPU Initialization
- * ------------------
- *
- * One difference with the FPU registers is that not all threads have FPU state,
- * only those that have an lwp. Generally this means kernel threads, which all
- * share p0 and its lwp, do not have FPU state. Though there are definitely
- * exceptions such as kcfpoold. In the rest of this discussion we'll use thread
- * and lwp interchangeably, just think of thread meaning a thread that has a
- * lwp.
- *
- * Each lwp has its FPU state allocated in its pcb (process control block). The
- * actual storage comes from the fpsave_cachep kmem cache. This cache is sized
- * dynamically at start up based on the save mechanism that we're using and the
- * amount of memory required for it. This is dynamic because the xsave_state
- * size varies based on the supported feature set.
- *
- * The hardware side of the FPU is initialized early in boot before we mount the
- * root file system. This is effectively done in fpu_probe(). This is where we
- * make the final decision about what the save and restore mechanisms we should
- * use are, create the fpsave_cachep kmem cache, and initialize a number of
- * function pointers that use save and restoring logic.
- *
- * The thread/lwp side is a a little more involved. There are two different
- * things that we need to concern ourselves with. The first is how the FPU
- * resources are allocated and the second is how the FPU state is initialized
- * for a given lwp.
- *
- * We allocate the FPU save state from our kmem cache as part of lwp_fp_init().
- * This is always called unconditionally by the system as part of creating an
- * LWP.
- *
- * There are three different initialization paths that we deal with. The first
- * is when we are executing a new process. As part of exec all of the register
- * state is reset. The exec case is particularly important because init is born
- * like Athena, sprouting from the head of the kernel, without any true parent
- * to fork from. The second is used whenever we fork or create a new lwp. The
- * third is to deal with special lwps like the agent lwp.
- *
- * During exec, we will call fp_exec() which will initialize and set up the FPU
- * state for the process. That will fill in the initial state for the FPU and
- * also set that state in the FPU itself. As part of fp_exec() we also install a
- * thread context operations vector that takes care of dealing with the saving
- * and restoring of the FPU. These context handlers will also be called whenever
- * an lwp is created or forked. In those cases, to initialize the FPU we will
- * call fp_new_lwp(). Like fp_exec(), fp_new_lwp() will install a context
- * operations vector for the new thread.
- *
- * Next we'll end up in the context operation fp_new_lwp(). This saves the
- * current thread's state, initializes the new thread's state, and copies over
- * the relevant parts of the originating thread's state. It's as this point that
- * we also install the FPU context operations into the new thread, which ensures
- * that all future threads that are descendants of the current one get the
- * thread context operations (unless they call exec).
- *
- * To deal with some things like the agent lwp, we double check the state of the
- * FPU in sys_rtt_common() to make sure that it has been enabled before
- * returning to user land. In general, this path should be rare, but it's useful
- * for the odd lwp here and there.
- *
- * The FPU state will remain valid most of the time. There are times that
- * the state will be rewritten. For example in restorecontext, due to /proc, or
- * the lwp calls exec(). Whether the context is being freed or we are resetting
- * the state, we will call fp_free() to disable the FPU and our context.
- *
- * Finally, when the lwp is destroyed, it will actually destroy and free the FPU
- * state by calling fp_lwp_cleanup().
- *
- * Kernel FPU Multiplexing
- * -----------------------
- *
- * Just as the kernel has to maintain all of the general purpose registers when
- * switching between scheduled threads, the same is true of the FPU registers.
- *
- * When a thread has FPU state, it also has a set of context operations
- * installed. These context operations take care of making sure that the FPU is
- * properly saved and restored during a context switch (fpsave_ctxt and
- * fprestore_ctxt respectively). This means that the current implementation of
- * the FPU is 'eager', when a thread is running the CPU will have its FPU state
- * loaded. While this is always true when executing in userland, there are a few
- * cases where this is not true in the kernel.
- *
- * This was not always the case. Traditionally on x86 a 'lazy' FPU restore was
- * employed. This meant that the FPU would be saved on a context switch and the
- * CR0.TS bit would be set. When a thread next tried to use the FPU, it would
- * then take a #NM trap, at which point we would restore the FPU from the save
- * area and return to user land. Given the frequency of use of the FPU alone by
- * libc, there's no point returning to user land just to trap again.
- *
- * There are a few cases though where the FPU state may need to be changed for a
- * thread on its behalf. The most notable cases are in the case of processes
- * using /proc, restorecontext, forking, etc. In all of these cases the kernel
- * will force a threads FPU state to be saved into the PCB through the fp_save()
- * function. Whenever the FPU is saved, then the FPU_VALID flag is set on the
- * pcb. This indicates that the save state holds currently valid data. As a side
- * effect of this, CR0.TS will be set. To make sure that all of the state is
- * updated before returning to user land, in these cases, we set a flag on the
- * PCB that says the FPU needs to be updated. This will make sure that we take
- * the slow path out of a system call to fix things up for the thread. Due to
- * the fact that this is a rather rare case, effectively setting the equivalent
- * of t_postsys is acceptable.
- *
- * CR0.TS will be set after a save occurs and cleared when a restore occurs.
- * Generally this means it will be cleared immediately by the new thread that is
- * running in a context switch. However, this isn't the case for kernel threads.
- * They currently operate with CR0.TS set as no kernel state is restored for
- * them. This means that using the FPU will cause a #NM and panic.
- *
- * The FPU_VALID flag on the currently executing thread's pcb is meant to track
- * what the value of CR0.TS should be. If it is set, then CR0.TS will be set.
- * However, because we eagerly restore, the only time that CR0.TS should be set
- * for a non-kernel thread is during operations where it will be cleared before
- * returning to user land and importantly, the only data that is in it is its
- * own.
- *
- * Kernel FPU Usage
- * ----------------
- *
- * Traditionally the kernel never used the FPU since it had no need for
- * floating point operations. However, modern FPU hardware supports a variety
- * of SIMD extensions which can speed up code such as parity calculations or
- * encryption.
- *
- * To allow the kernel to take advantage of these features, the
- * kernel_fpu_begin() and kernel_fpu_end() functions should be wrapped
- * around any usage of the FPU by the kernel to ensure that user-level context
- * is properly saved/restored, as well as to properly setup the FPU for use by
- * the kernel. There are a variety of ways this wrapping can be used, as
- * discussed in this section below.
- *
- * When kernel_fpu_begin() and kernel_fpu_end() are used for extended
- * operations, the kernel_fpu_alloc() function should be used to allocate a
- * kfpu_state_t structure that is used to save/restore the thread's kernel FPU
- * state. This structure is not tied to any thread. That is, different threads
- * can reuse the same kfpu_state_t structure, although not concurrently. A
- * kfpu_state_t structure is freed by the kernel_fpu_free() function.
- *
- * In some cases, the kernel may need to use the FPU for a short operation
- * without the overhead to manage a kfpu_state_t structure and without
- * allowing for a context switch off the FPU. In this case the KFPU_NO_STATE
- * bit can be set in the kernel_fpu_begin() and kernel_fpu_end() flags
- * parameter. This indicates that there is no kfpu_state_t. When used this way,
- * kernel preemption should be disabled by the caller (kpreempt_disable) before
- * calling kernel_fpu_begin(), and re-enabled after calling kernel_fpu_end().
- * For this usage, it is important to limit the kernel's FPU use to short
- * operations. The tradeoff between using the FPU without a kfpu_state_t
- * structure vs. the overhead of allowing a context switch while using the FPU
- * should be carefully considered on a case by case basis.
- *
- * In other cases, kernel threads have an LWP, but never execute in user space.
- * In this situation, the LWP's pcb_fpu area can be used to save/restore the
- * kernel's FPU state if the thread is context switched, instead of having to
- * allocate and manage a kfpu_state_t structure. The KFPU_USE_LWP bit in the
- * kernel_fpu_begin() and kernel_fpu_end() flags parameter is used to
- * enable this behavior. It is the caller's responsibility to ensure that this
- * is only used for a kernel thread which never executes in user space.
- *
- * FPU Exceptions
- * --------------
- *
- * Certain operations can cause the kernel to take traps due to FPU activity.
- * Generally these events will cause a user process to receive a SIGFPU and if
- * the kernel receives it in kernel context, we will die. Traditionally the #NM
- * (Device Not Available / No Math) exception generated by CR0.TS would have
- * caused us to restore the FPU. Now it is a fatal event regardless of whether
- * or not user land causes it.
- *
- * While there are some cases where the kernel uses the FPU, it is up to the
- * kernel to use the FPU in a way such that it cannot receive a trap or to use
- * the appropriate trap protection mechanisms.
- *
- * Hypervisors
- * -----------
- *
- * When providing support for hypervisors things are a little bit more
- * complicated because the FPU is not virtualized at all. This means that they
- * need to save and restore the FPU and %xcr0 across entry and exit to the
- * guest. To facilitate this, we provide a series of APIs in <sys/hma.h>. These
- * allow us to use the full native state to make sure that we are always saving
- * and restoring the full FPU that the host sees, even when the guest is using a
- * subset.
- *
- * One tricky aspect of this is that the guest may be using a subset of %xcr0
- * and therefore changing our %xcr0 on the fly. It is vital that when we're
- * saving and restoring the FPU that we always use the largest %xcr0 contents
- * otherwise we will end up leaving behind data in it.
- *
- * ELF PLT Support
- * ---------------
- *
- * rtld has to preserve a subset of the FPU when it is saving and restoring
- * registers due to the amd64 SYS V ABI. See cmd/sgs/rtld/amd64/boot_elf.s for
- * more information. As a result, we set up an aux vector that contains
- * information about what save and restore mechanisms it should be using and
- * the sizing thereof based on what the kernel supports. This is passed down in
- * a series of aux vectors SUN_AT_FPTYPE and SUN_AT_FPSIZE. This information is
- * initialized in fpu_subr.c.
- */
-
-kmem_cache_t *fpsave_cachep;
-
-/* Legacy fxsave layout + xsave header + ymm */
-#define AVX_XSAVE_SIZE (512 + 64 + 256)
-
-/*
- * Various sanity checks.
- */
-CTASSERT(sizeof (struct fxsave_state) == 512);
-CTASSERT(sizeof (struct fnsave_state) == 108);
-CTASSERT((offsetof(struct fxsave_state, fx_xmm[0]) & 0xf) == 0);
-CTASSERT(sizeof (struct xsave_state) >= AVX_XSAVE_SIZE);
-
-/*
- * This structure is the x86 implementation of the kernel FPU that is defined in
- * uts/common/sys/kfpu.h.
- */
-
-typedef enum kfpu_flags {
- /*
- * This indicates that the save state has initial FPU data.
- */
- KFPU_F_INITIALIZED = 0x01
-} kfpu_flags_t;
-
-struct kfpu_state {
- fpu_ctx_t kfpu_ctx;
- kfpu_flags_t kfpu_flags;
- kthread_t *kfpu_curthread;
-};
-
-/*
- * Initial kfpu state for SSE/SSE2 used by fpinit()
- */
-const struct fxsave_state sse_initial = {
- FPU_CW_INIT, /* fx_fcw */
- 0, /* fx_fsw */
- 0, /* fx_fctw */
- 0, /* fx_fop */
- 0, /* fx_rip */
- 0, /* fx_rdp */
- SSE_MXCSR_INIT /* fx_mxcsr */
- /* rest of structure is zero */
-};
-
-/*
- * Initial kfpu state for AVX used by fpinit()
- */
-const struct xsave_state avx_initial = {
- /*
- * The definition below needs to be identical with sse_initial
- * defined above.
- */
- {
- FPU_CW_INIT, /* fx_fcw */
- 0, /* fx_fsw */
- 0, /* fx_fctw */
- 0, /* fx_fop */
- 0, /* fx_rip */
- 0, /* fx_rdp */
- SSE_MXCSR_INIT /* fx_mxcsr */
- /* rest of structure is zero */
- },
- /*
- * bit0 = 1 for XSTATE_BV to indicate that legacy fields are valid,
- * and CPU should initialize XMM/YMM.
- */
- 1,
- 0 /* xs_xcomp_bv */
- /* rest of structure is zero */
-};
-
-/*
- * mxcsr_mask value (possibly reset in fpu_probe); used to avoid
- * the #gp exception caused by setting unsupported bits in the
- * MXCSR register
- */
-uint32_t sse_mxcsr_mask = SSE_MXCSR_MASK_DEFAULT;
-
-/*
- * Initial kfpu state for x87 used by fpinit()
- */
-const struct fnsave_state x87_initial = {
- FPU_CW_INIT, /* f_fcw */
- 0, /* __f_ign0 */
- 0, /* f_fsw */
- 0, /* __f_ign1 */
- 0xffff, /* f_ftw */
- /* rest of structure is zero */
-};
-
-/*
- * This vector is patched to xsave_ctxt() or xsaveopt_ctxt() if we discover we
- * have an XSAVE-capable chip in fpu_probe.
- */
-void (*fpsave_ctxt)(void *) = fpxsave_ctxt;
-void (*fprestore_ctxt)(void *) = fpxrestore_ctxt;
-
-/*
- * This function pointer is changed to xsaveopt if the CPU is xsaveopt capable.
- */
-void (*xsavep)(struct xsave_state *, uint64_t) = xsave;
-
-static int fpe_sicode(uint_t);
-static int fpe_simd_sicode(uint_t);
-
-/*
- * Copy the state of parent lwp's floating point context into the new lwp.
- * Invoked for both fork() and lwp_create().
- *
- * Note that we inherit -only- the control state (e.g. exception masks,
- * rounding, precision control, etc.); the FPU registers are otherwise
- * reset to their initial state.
- */
-static void
-fp_new_lwp(kthread_id_t t, kthread_id_t ct)
-{
- struct fpu_ctx *fp; /* parent fpu context */
- struct fpu_ctx *cfp; /* new fpu context */
- struct fxsave_state *fx, *cfx;
- struct xsave_state *cxs;
-
- ASSERT(fp_kind != FP_NO);
-
- fp = &t->t_lwp->lwp_pcb.pcb_fpu;
- cfp = &ct->t_lwp->lwp_pcb.pcb_fpu;
-
- /*
- * If the parent FPU state is still in the FPU hw then save it;
- * conveniently, fp_save() already does this for us nicely.
- */
- fp_save(fp);
-
- cfp->fpu_flags = FPU_EN | FPU_VALID;
- cfp->fpu_regs.kfpu_status = 0;
- cfp->fpu_regs.kfpu_xstatus = 0;
-
- /*
- * Make sure that the child's FPU is cleaned up and made ready for user
- * land.
- */
- PCB_SET_UPDATE_FPU(&ct->t_lwp->lwp_pcb);
-
- switch (fp_save_mech) {
- case FP_FXSAVE:
- fx = fp->fpu_regs.kfpu_u.kfpu_fx;
- cfx = cfp->fpu_regs.kfpu_u.kfpu_fx;
- bcopy(&sse_initial, cfx, sizeof (*cfx));
- cfx->fx_mxcsr = fx->fx_mxcsr & ~SSE_MXCSR_EFLAGS;
- cfx->fx_fcw = fx->fx_fcw;
- break;
-
- case FP_XSAVE:
- cfp->fpu_xsave_mask = fp->fpu_xsave_mask;
-
- VERIFY(fp->fpu_regs.kfpu_u.kfpu_xs != NULL);
-
- fx = &fp->fpu_regs.kfpu_u.kfpu_xs->xs_fxsave;
- cxs = cfp->fpu_regs.kfpu_u.kfpu_xs;
- cfx = &cxs->xs_fxsave;
-
- bcopy(&avx_initial, cxs, sizeof (*cxs));
- cfx->fx_mxcsr = fx->fx_mxcsr & ~SSE_MXCSR_EFLAGS;
- cfx->fx_fcw = fx->fx_fcw;
- cxs->xs_xstate_bv |= (get_xcr(XFEATURE_ENABLED_MASK) &
- XFEATURE_FP_INITIAL);
- break;
- default:
- panic("Invalid fp_save_mech");
- /*NOTREACHED*/
- }
-
- /*
- * Mark that both the parent and child need to have the FPU cleaned up
- * before returning to user land.
- */
-
- installctx(ct, cfp, fpsave_ctxt, fprestore_ctxt, fp_new_lwp,
- fp_new_lwp, NULL, fp_free, NULL);
-}
-
-/*
- * Free any state associated with floating point context.
- * Fp_free can be called in three cases:
- * 1) from reaper -> thread_free -> freectx-> fp_free
- * fp context belongs to a thread on deathrow
- * nothing to do, thread will never be resumed
- * thread calling ctxfree is reaper
- *
- * 2) from exec -> freectx -> fp_free
- * fp context belongs to the current thread
- * must disable fpu, thread calling ctxfree is curthread
- *
- * 3) from restorecontext -> setfpregs -> fp_free
- * we have a modified context in the memory (lwp->pcb_fpu)
- * disable fpu and release the fp context for the CPU
- *
- */
-/*ARGSUSED*/
-void
-fp_free(struct fpu_ctx *fp, int isexec)
-{
- ASSERT(fp_kind != FP_NO);
-
- if (fp->fpu_flags & FPU_VALID)
- return;
-
- kpreempt_disable();
- /*
- * We want to do fpsave rather than fpdisable so that we can
- * keep the fpu_flags as FPU_VALID tracking the CR0_TS bit
- */
- fp->fpu_flags |= FPU_VALID;
- /* If for current thread disable FP to track FPU_VALID */
- if (curthread->t_lwp && fp == &curthread->t_lwp->lwp_pcb.pcb_fpu) {
- /* Clear errors if any to prevent frstor from complaining */
- (void) fperr_reset();
- if (fp_kind & __FP_SSE)
- (void) fpxerr_reset();
- fpdisable();
- }
- kpreempt_enable();
-}
-
-/*
- * Store the floating point state and disable the floating point unit.
- */
-void
-fp_save(struct fpu_ctx *fp)
-{
- ASSERT(fp_kind != FP_NO);
-
- kpreempt_disable();
- if (!fp || fp->fpu_flags & FPU_VALID ||
- (fp->fpu_flags & FPU_EN) == 0) {
- kpreempt_enable();
- return;
- }
- ASSERT(curthread->t_lwp && fp == &curthread->t_lwp->lwp_pcb.pcb_fpu);
-
- switch (fp_save_mech) {
- case FP_FXSAVE:
- fpxsave(fp->fpu_regs.kfpu_u.kfpu_fx);
- break;
-
- case FP_XSAVE:
- xsavep(fp->fpu_regs.kfpu_u.kfpu_xs, fp->fpu_xsave_mask);
- break;
- default:
- panic("Invalid fp_save_mech");
- /*NOTREACHED*/
- }
-
- fp->fpu_flags |= FPU_VALID;
-
- /*
- * We save the FPU as part of forking, execing, modifications via /proc,
- * restorecontext, etc. As such, we need to make sure that we return to
- * userland with valid state in the FPU. If we're context switched out
- * before we hit sys_rtt_common() we'll end up having restored the FPU
- * as part of the context ops operations. The restore logic always makes
- * sure that FPU_VALID is set before doing a restore so we don't restore
- * it a second time.
- */
- PCB_SET_UPDATE_FPU(&curthread->t_lwp->lwp_pcb);
-
- kpreempt_enable();
-}
-
-/*
- * Restore the FPU context for the thread:
- * The possibilities are:
- * 1. No active FPU context: Load the new context into the FPU hw
- * and enable the FPU.
- */
-void
-fp_restore(struct fpu_ctx *fp)
-{
- switch (fp_save_mech) {
- case FP_FXSAVE:
- fpxrestore(fp->fpu_regs.kfpu_u.kfpu_fx);
- break;
-
- case FP_XSAVE:
- xrestore(fp->fpu_regs.kfpu_u.kfpu_xs, fp->fpu_xsave_mask);
- break;
- default:
- panic("Invalid fp_save_mech");
- /*NOTREACHED*/
- }
-
- fp->fpu_flags &= ~FPU_VALID;
-}
-
-/*
- * Reset the FPU such that it is in a valid state for a new thread that is
- * coming out of exec. The FPU will be in a usable state at this point. At this
- * point we know that the FPU state has already been allocated and if this
- * wasn't an init process, then it will have had fp_free() previously called.
- */
-void
-fp_exec(void)
-{
- struct fpu_ctx *fp = &ttolwp(curthread)->lwp_pcb.pcb_fpu;
- struct ctxop *ctx = installctx_preallocate();
-
- if (fp_save_mech == FP_XSAVE) {
- fp->fpu_xsave_mask = XFEATURE_FP_ALL;
- }
-
- /*
- * Make sure that we're not preempted in the middle of initializing the
- * FPU on CPU.
- */
- kpreempt_disable();
- installctx(curthread, fp, fpsave_ctxt, fprestore_ctxt, fp_new_lwp,
- fp_new_lwp, NULL, fp_free, ctx);
- fpinit();
- fp->fpu_flags = FPU_EN;
- kpreempt_enable();
-}
-
-
-/*
- * Seeds the initial state for the current thread. The possibilities are:
- * 1. Another process has modified the FPU state before we have done any
- * initialization: Load the FPU state from the LWP state.
- * 2. The FPU state has not been externally modified: Load a clean state.
- */
-void
-fp_seed(void)
-{
- struct fpu_ctx *fp = &ttolwp(curthread)->lwp_pcb.pcb_fpu;
-
- ASSERT(curthread->t_preempt >= 1);
- ASSERT((fp->fpu_flags & FPU_EN) == 0);
-
- /*
- * Always initialize a new context and initialize the hardware.
- */
- if (fp_save_mech == FP_XSAVE) {
- fp->fpu_xsave_mask = XFEATURE_FP_ALL;
- }
-
- installctx(curthread, fp, fpsave_ctxt, fprestore_ctxt, fp_new_lwp,
- fp_new_lwp, NULL, fp_free, NULL);
- fpinit();
-
- /*
- * If FPU_VALID is set, it means someone has modified registers via
- * /proc. In this case, restore the current lwp's state.
- */
- if (fp->fpu_flags & FPU_VALID)
- fp_restore(fp);
-
- ASSERT((fp->fpu_flags & FPU_VALID) == 0);
- fp->fpu_flags = FPU_EN;
-}
-
-/*
- * When using xsave/xrstor, these three functions are used by the lwp code to
- * manage the memory for the xsave area.
- */
-void
-fp_lwp_init(struct _klwp *lwp)
-{
- struct fpu_ctx *fp = &lwp->lwp_pcb.pcb_fpu;
-
- /*
- * We keep a copy of the pointer in lwp_fpu so that we can restore the
- * value in forklwp() after we duplicate the parent's LWP state.
- */
- lwp->lwp_fpu = fp->fpu_regs.kfpu_u.kfpu_generic =
- kmem_cache_alloc(fpsave_cachep, KM_SLEEP);
-
- if (fp_save_mech == FP_XSAVE) {
- /*
- *
- * We bzero since the fpinit() code path will only
- * partially initialize the xsave area using avx_inital.
- */
- ASSERT(cpuid_get_xsave_size() >= sizeof (struct xsave_state));
- bzero(fp->fpu_regs.kfpu_u.kfpu_xs, cpuid_get_xsave_size());
- }
-}
-
-void
-fp_lwp_cleanup(struct _klwp *lwp)
-{
- struct fpu_ctx *fp = &lwp->lwp_pcb.pcb_fpu;
-
- if (fp->fpu_regs.kfpu_u.kfpu_generic != NULL) {
- kmem_cache_free(fpsave_cachep,
- fp->fpu_regs.kfpu_u.kfpu_generic);
- lwp->lwp_fpu = fp->fpu_regs.kfpu_u.kfpu_generic = NULL;
- }
-}
-
-/*
- * Called during the process of forklwp(). The kfpu_u pointer will have been
- * overwritten while copying the parent's LWP structure. We have a valid copy
- * stashed in the child's lwp_fpu which we use to restore the correct value.
- */
-void
-fp_lwp_dup(struct _klwp *lwp)
-{
- void *xp = lwp->lwp_fpu;
- size_t sz;
-
- switch (fp_save_mech) {
- case FP_FXSAVE:
- sz = sizeof (struct fxsave_state);
- break;
- case FP_XSAVE:
- sz = cpuid_get_xsave_size();
- break;
- default:
- panic("Invalid fp_save_mech");
- /*NOTREACHED*/
- }
-
- /* copy the parent's values into the new lwp's struct */
- bcopy(lwp->lwp_pcb.pcb_fpu.fpu_regs.kfpu_u.kfpu_generic, xp, sz);
- /* now restore the pointer */
- lwp->lwp_pcb.pcb_fpu.fpu_regs.kfpu_u.kfpu_generic = xp;
-}
-
-/*
- * Handle a processor extension error fault
- * Returns non zero for error.
- */
-
-/*ARGSUSED*/
-int
-fpexterrflt(struct regs *rp)
-{
- uint32_t fpcw, fpsw;
- fpu_ctx_t *fp = &ttolwp(curthread)->lwp_pcb.pcb_fpu;
-
- ASSERT(fp_kind != FP_NO);
-
- /*
- * Now we can enable the interrupts.
- * (NOTE: x87 fp exceptions come thru interrupt gate)
- */
- sti();
-
- if (!fpu_exists)
- return (FPE_FLTINV);
-
- /*
- * Do an unconditional save of the FP state. If it's dirty (TS=0),
- * it'll be saved into the fpu context area passed in (that of the
- * current thread). If it's not dirty (it may not be, due to
- * an intervening save due to a context switch between the sti(),
- * above and here, then it's safe to just use the stored values in
- * the context save area to determine the cause of the fault.
- */
- fp_save(fp);
-
- /* clear exception flags in saved state, as if by fnclex */
- switch (fp_save_mech) {
- case FP_FXSAVE:
- fpsw = fp->fpu_regs.kfpu_u.kfpu_fx->fx_fsw;
- fpcw = fp->fpu_regs.kfpu_u.kfpu_fx->fx_fcw;
- fp->fpu_regs.kfpu_u.kfpu_fx->fx_fsw &= ~FPS_SW_EFLAGS;
- break;
-
- case FP_XSAVE:
- fpsw = fp->fpu_regs.kfpu_u.kfpu_xs->xs_fxsave.fx_fsw;
- fpcw = fp->fpu_regs.kfpu_u.kfpu_xs->xs_fxsave.fx_fcw;
- fp->fpu_regs.kfpu_u.kfpu_xs->xs_fxsave.fx_fsw &= ~FPS_SW_EFLAGS;
- /*
- * Always set LEGACY_FP as it may have been cleared by XSAVE
- * instruction
- */
- fp->fpu_regs.kfpu_u.kfpu_xs->xs_xstate_bv |= XFEATURE_LEGACY_FP;
- break;
- default:
- panic("Invalid fp_save_mech");
- /*NOTREACHED*/
- }
-
- fp->fpu_regs.kfpu_status = fpsw;
-
- if ((fpsw & FPS_ES) == 0)
- return (0); /* No exception */
-
- /*
- * "and" the exception flags with the complement of the mask
- * bits to determine which exception occurred
- */
- return (fpe_sicode(fpsw & ~fpcw & 0x3f));
-}
-
-/*
- * Handle an SSE/SSE2 precise exception.
- * Returns a non-zero sicode for error.
- */
-/*ARGSUSED*/
-int
-fpsimderrflt(struct regs *rp)
-{
- uint32_t mxcsr, xmask;
- fpu_ctx_t *fp = &ttolwp(curthread)->lwp_pcb.pcb_fpu;
-
- ASSERT(fp_kind & __FP_SSE);
-
- /*
- * NOTE: Interrupts are disabled during execution of this
- * function. They are enabled by the caller in trap.c.
- */
-
- /*
- * The only way we could have gotten here if there is no FP unit
- * is via a user executing an INT $19 instruction, so there is
- * no fault in that case.
- */
- if (!fpu_exists)
- return (0);
-
- /*
- * Do an unconditional save of the FP state. If it's dirty (TS=0),
- * it'll be saved into the fpu context area passed in (that of the
- * current thread). If it's not dirty, then it's safe to just use
- * the stored values in the context save area to determine the
- * cause of the fault.
- */
- fp_save(fp); /* save the FPU state */
-
- if (fp_save_mech == FP_XSAVE) {
- mxcsr = fp->fpu_regs.kfpu_u.kfpu_xs->xs_fxsave.fx_mxcsr;
- fp->fpu_regs.kfpu_status =
- fp->fpu_regs.kfpu_u.kfpu_xs->xs_fxsave.fx_fsw;
- } else {
- mxcsr = fp->fpu_regs.kfpu_u.kfpu_fx->fx_mxcsr;
- fp->fpu_regs.kfpu_status = fp->fpu_regs.kfpu_u.kfpu_fx->fx_fsw;
- }
- fp->fpu_regs.kfpu_xstatus = mxcsr;
-
- /*
- * compute the mask that determines which conditions can cause
- * a #xm exception, and use this to clean the status bits so that
- * we can identify the true cause of this one.
- */
- xmask = (mxcsr >> 7) & SSE_MXCSR_EFLAGS;
- return (fpe_simd_sicode((mxcsr & SSE_MXCSR_EFLAGS) & ~xmask));
-}
-
-/*
- * In the unlikely event that someone is relying on this subcode being
- * FPE_FLTILL for denormalize exceptions, it can always be patched back
- * again to restore old behaviour.
- */
-int fpe_fltden = FPE_FLTDEN;
-
-/*
- * Map from the FPU status word to the FP exception si_code.
- */
-static int
-fpe_sicode(uint_t sw)
-{
- if (sw & FPS_IE)
- return (FPE_FLTINV);
- if (sw & FPS_ZE)
- return (FPE_FLTDIV);
- if (sw & FPS_DE)
- return (fpe_fltden);
- if (sw & FPS_OE)
- return (FPE_FLTOVF);
- if (sw & FPS_UE)
- return (FPE_FLTUND);
- if (sw & FPS_PE)
- return (FPE_FLTRES);
- return (FPE_FLTINV); /* default si_code for other exceptions */
-}
-
-/*
- * Map from the SSE status word to the FP exception si_code.
- */
-static int
-fpe_simd_sicode(uint_t sw)
-{
- if (sw & SSE_IE)
- return (FPE_FLTINV);
- if (sw & SSE_ZE)
- return (FPE_FLTDIV);
- if (sw & SSE_DE)
- return (FPE_FLTDEN);
- if (sw & SSE_OE)
- return (FPE_FLTOVF);
- if (sw & SSE_UE)
- return (FPE_FLTUND);
- if (sw & SSE_PE)
- return (FPE_FLTRES);
- return (FPE_FLTINV); /* default si_code for other exceptions */
-}
-
-/*
- * This routine is invoked as part of libc's __fpstart implementation
- * via sysi86(2).
- *
- * It may be called -before- any context has been assigned in which case
- * we try and avoid touching the hardware. Or it may be invoked well
- * after the context has been assigned and fiddled with, in which case
- * just tweak it directly.
- */
-void
-fpsetcw(uint16_t fcw, uint32_t mxcsr)
-{
- struct fpu_ctx *fp = &curthread->t_lwp->lwp_pcb.pcb_fpu;
- struct fxsave_state *fx;
-
- if (!fpu_exists || fp_kind == FP_NO)
- return;
-
- if ((fp->fpu_flags & FPU_EN) == 0) {
- if (fcw == FPU_CW_INIT && mxcsr == SSE_MXCSR_INIT) {
- /*
- * Common case. Floating point unit not yet
- * enabled, and kernel already intends to initialize
- * the hardware the way the caller wants.
- */
- return;
- }
- /*
- * Hmm. Userland wants a different default.
- * Do a fake "first trap" to establish the context, then
- * handle as if we already had a context before we came in.
- */
- kpreempt_disable();
- fp_seed();
- kpreempt_enable();
- }
-
- /*
- * Ensure that the current hardware state is flushed back to the
- * pcb, then modify that copy. Next use of the fp will
- * restore the context.
- */
- fp_save(fp);
-
- switch (fp_save_mech) {
- case FP_FXSAVE:
- fx = fp->fpu_regs.kfpu_u.kfpu_fx;
- fx->fx_fcw = fcw;
- fx->fx_mxcsr = sse_mxcsr_mask & mxcsr;
- break;
-
- case FP_XSAVE:
- fx = &fp->fpu_regs.kfpu_u.kfpu_xs->xs_fxsave;
- fx->fx_fcw = fcw;
- fx->fx_mxcsr = sse_mxcsr_mask & mxcsr;
- /*
- * Always set LEGACY_FP as it may have been cleared by XSAVE
- * instruction
- */
- fp->fpu_regs.kfpu_u.kfpu_xs->xs_xstate_bv |= XFEATURE_LEGACY_FP;
- break;
- default:
- panic("Invalid fp_save_mech");
- /*NOTREACHED*/
- }
-}
-
-static void
-kernel_fpu_fpstate_init(kfpu_state_t *kfpu)
-{
- struct xsave_state *xs;
-
- switch (fp_save_mech) {
- case FP_FXSAVE:
- bcopy(&sse_initial, kfpu->kfpu_ctx.fpu_regs.kfpu_u.kfpu_fx,
- sizeof (struct fxsave_state));
- kfpu->kfpu_ctx.fpu_xsave_mask = 0;
- break;
- case FP_XSAVE:
- xs = kfpu->kfpu_ctx.fpu_regs.kfpu_u.kfpu_xs;
- bzero(xs, cpuid_get_xsave_size());
- bcopy(&avx_initial, xs, sizeof (*xs));
- xs->xs_xstate_bv = XFEATURE_LEGACY_FP | XFEATURE_SSE;
- kfpu->kfpu_ctx.fpu_xsave_mask = XFEATURE_FP_ALL;
- break;
- default:
- panic("invalid fp_save_mech");
- }
-
- /*
- * Set the corresponding flags that the system expects on the FPU state
- * to indicate that this is our state. The FPU_EN flag is required to
- * indicate that FPU usage is allowed. The FPU_KERN flag is explicitly
- * not set below as it represents that this state is being suppressed
- * by the kernel.
- */
- kfpu->kfpu_ctx.fpu_flags = FPU_EN | FPU_VALID;
- kfpu->kfpu_flags |= KFPU_F_INITIALIZED;
-}
-
-kfpu_state_t *
-kernel_fpu_alloc(int kmflags)
-{
- kfpu_state_t *kfpu;
-
- if ((kfpu = kmem_zalloc(sizeof (kfpu_state_t), kmflags)) == NULL) {
- return (NULL);
- }
-
- kfpu->kfpu_ctx.fpu_regs.kfpu_u.kfpu_generic =
- kmem_cache_alloc(fpsave_cachep, kmflags);
- if (kfpu->kfpu_ctx.fpu_regs.kfpu_u.kfpu_generic == NULL) {
- kmem_free(kfpu, sizeof (kfpu_state_t));
- return (NULL);
- }
-
- kernel_fpu_fpstate_init(kfpu);
-
- return (kfpu);
-}
-
-void
-kernel_fpu_free(kfpu_state_t *kfpu)
-{
- kmem_cache_free(fpsave_cachep,
- kfpu->kfpu_ctx.fpu_regs.kfpu_u.kfpu_generic);
- kmem_free(kfpu, sizeof (kfpu_state_t));
-}
-
-static void
-kernel_fpu_ctx_save(void *arg)
-{
- kfpu_state_t *kfpu = arg;
- fpu_ctx_t *pf;
-
- if (kfpu == NULL) {
- /*
- * A NULL kfpu implies this is a kernel thread with an LWP and
- * no user-level FPU usage. Use the lwp fpu save area.
- */
- pf = &curthread->t_lwp->lwp_pcb.pcb_fpu;
-
- ASSERT(curthread->t_procp->p_flag & SSYS);
- ASSERT3U(pf->fpu_flags & FPU_VALID, ==, 0);
-
- fp_save(pf);
- } else {
- pf = &kfpu->kfpu_ctx;
-
- ASSERT3P(kfpu->kfpu_curthread, ==, curthread);
- ASSERT3U(pf->fpu_flags & FPU_VALID, ==, 0);
-
- /*
- * Note, we can't use fp_save because it assumes that we're
- * saving to the thread's PCB and not somewhere else. Because
- * this is a different FPU context, we instead have to do this
- * ourselves.
- */
- switch (fp_save_mech) {
- case FP_FXSAVE:
- fpxsave(pf->fpu_regs.kfpu_u.kfpu_fx);
- break;
- case FP_XSAVE:
- xsavep(pf->fpu_regs.kfpu_u.kfpu_xs, pf->fpu_xsave_mask);
- break;
- default:
- panic("Invalid fp_save_mech");
- }
-
- /*
- * Because we have saved context here, our save state is no
- * longer valid and therefore needs to be reinitialized.
- */
- kfpu->kfpu_flags &= ~KFPU_F_INITIALIZED;
- }
-
- pf->fpu_flags |= FPU_VALID;
-
- /*
- * Clear KFPU flag. This allows swtch to check for improper kernel
- * usage of the FPU (i.e. switching to a new thread while the old
- * thread was in the kernel and using the FPU, but did not perform a
- * context save).
- */
- curthread->t_flag &= ~T_KFPU;
-}
-
-static void
-kernel_fpu_ctx_restore(void *arg)
-{
- kfpu_state_t *kfpu = arg;
- fpu_ctx_t *pf;
-
- if (kfpu == NULL) {
- /*
- * A NULL kfpu implies this is a kernel thread with an LWP and
- * no user-level FPU usage. Use the lwp fpu save area.
- */
- pf = &curthread->t_lwp->lwp_pcb.pcb_fpu;
-
- ASSERT(curthread->t_procp->p_flag & SSYS);
- ASSERT3U(pf->fpu_flags & FPU_VALID, !=, 0);
- } else {
- pf = &kfpu->kfpu_ctx;
-
- ASSERT3P(kfpu->kfpu_curthread, ==, curthread);
- ASSERT3U(pf->fpu_flags & FPU_VALID, !=, 0);
- }
-
- fp_restore(pf);
- curthread->t_flag |= T_KFPU;
-}
-
-/*
- * Validate that the thread is not switching off-cpu while actively using the
- * FPU within the kernel.
- */
-void
-kernel_fpu_no_swtch(void)
-{
- if ((curthread->t_flag & T_KFPU) != 0) {
- panic("curthread swtch-ing while the kernel is using the FPU");
- }
-}
-
-void
-kernel_fpu_begin(kfpu_state_t *kfpu, uint_t flags)
-{
- klwp_t *pl = curthread->t_lwp;
- struct ctxop *ctx;
-
- if ((curthread->t_flag & T_KFPU) != 0) {
- panic("curthread attempting to nest kernel FPU states");
- }
-
- /* KFPU_USE_LWP and KFPU_NO_STATE are mutually exclusive. */
- ASSERT((flags & (KFPU_USE_LWP | KFPU_NO_STATE)) !=
- (KFPU_USE_LWP | KFPU_NO_STATE));
-
- if ((flags & KFPU_NO_STATE) == KFPU_NO_STATE) {
- /*
- * Since we don't have a kfpu_state or usable lwp pcb_fpu to
- * hold our kernel FPU context, we depend on the caller doing
- * kpreempt_disable for the duration of our FPU usage. This
- * should only be done for very short periods of time.
- */
- ASSERT(curthread->t_preempt > 0);
- ASSERT(kfpu == NULL);
-
- if (pl != NULL) {
- /*
- * We might have already saved once so FPU_VALID could
- * be set. This is handled in fp_save.
- */
- fp_save(&pl->lwp_pcb.pcb_fpu);
- pl->lwp_pcb.pcb_fpu.fpu_flags |= FPU_KERNEL;
- }
-
- curthread->t_flag |= T_KFPU;
-
- /* Always restore the fpu to the initial state. */
- fpinit();
-
- return;
- }
-
- /*
- * We either have a kfpu, or are using the LWP pcb_fpu for context ops.
- */
-
- if ((flags & KFPU_USE_LWP) == 0) {
- if (kfpu->kfpu_curthread != NULL)
- panic("attempting to reuse kernel FPU state at %p when "
- "another thread already is using", kfpu);
-
- if ((kfpu->kfpu_flags & KFPU_F_INITIALIZED) == 0)
- kernel_fpu_fpstate_init(kfpu);
-
- kfpu->kfpu_curthread = curthread;
- }
-
- /*
- * Not all threads may have an active LWP. If they do and we're not
- * going to re-use the LWP, then we should go ahead and save the state.
- * We must also note that the fpu is now being used by the kernel and
- * therefore we do not want to manage the fpu state via the user-level
- * thread's context handlers.
- *
- * We might have already saved once (due to a prior use of the kernel
- * FPU or another code path) so FPU_VALID could be set. This is handled
- * by fp_save, as is the FPU_EN check.
- */
- ctx = installctx_preallocate();
- kpreempt_disable();
- if (pl != NULL) {
- if ((flags & KFPU_USE_LWP) == 0)
- fp_save(&pl->lwp_pcb.pcb_fpu);
- pl->lwp_pcb.pcb_fpu.fpu_flags |= FPU_KERNEL;
- }
-
- /*
- * Set the context operations for kernel FPU usage. Note that this is
- * done with a preallocated buffer and under kpreempt_disable because
- * without a preallocated buffer, installctx does a sleeping
- * allocation. We haven't finished initializing our kernel FPU state
- * yet, and in the rare case that we happen to save/restore just as
- * installctx() exits its own kpreempt_enable() internal call, we
- * guard against restoring an uninitialized buffer (0xbaddcafe).
- */
- installctx(curthread, kfpu, kernel_fpu_ctx_save, kernel_fpu_ctx_restore,
- NULL, NULL, NULL, NULL, ctx);
-
- curthread->t_flag |= T_KFPU;
-
- if ((flags & KFPU_USE_LWP) == KFPU_USE_LWP) {
- /*
- * For pure kernel threads with an LWP, we can use the LWP's
- * pcb_fpu to save/restore context.
- */
- fpu_ctx_t *pf = &pl->lwp_pcb.pcb_fpu;
-
- VERIFY(curthread->t_procp->p_flag & SSYS);
- VERIFY(kfpu == NULL);
- ASSERT((pf->fpu_flags & FPU_EN) == 0);
-
- /* Always restore the fpu to the initial state. */
- if (fp_save_mech == FP_XSAVE)
- pf->fpu_xsave_mask = XFEATURE_FP_ALL;
- fpinit();
- pf->fpu_flags = FPU_EN | FPU_KERNEL;
- } else {
- /* initialize the kfpu state */
- kernel_fpu_ctx_restore(kfpu);
- }
- kpreempt_enable();
-}
-
-void
-kernel_fpu_end(kfpu_state_t *kfpu, uint_t flags)
-{
- ulong_t iflags;
-
- if ((curthread->t_flag & T_KFPU) == 0) {
- panic("curthread attempting to clear kernel FPU state "
- "without using it");
- }
-
- /*
- * General comments on why the rest of this function is structured the
- * way it is. Be aware that there is a lot of subtlety here.
- *
- * If a user-level thread ever uses the fpu while in the kernel, then
- * we cannot call fpdisable since that does STTS. That will set the
- * ts bit in %cr0 which will cause an exception if anything touches the
- * fpu. However, the user-level context switch handler (fpsave_ctxt)
- * needs to access the fpu to save the registers into the pcb.
- * fpsave_ctxt relies on CLTS having been done to clear the ts bit in
- * fprestore_ctxt when the thread context switched onto the CPU.
- *
- * Calling fpdisable only effects the current CPU's %cr0 register.
- *
- * During removectx and kpreempt_enable, we can voluntarily context
- * switch, so the CPU we were on when we entered this function might
- * not be the same one we're on when we return from removectx or end
- * the function. Note there can be user-level context switch handlers
- * still installed if this is a user-level thread.
- *
- * We also must be careful in the unlikely chance we're running in an
- * interrupt thread, since we can't leave the CPU's %cr0 TS state set
- * incorrectly for the "real" thread to resume on this CPU.
- */
-
- if ((flags & KFPU_NO_STATE) == 0) {
- kpreempt_disable();
- } else {
- ASSERT(curthread->t_preempt > 0);
- }
-
- curthread->t_flag &= ~T_KFPU;
-
- /*
- * When we are ending things, we explicitly don't save the current
- * kernel FPU state back to the temporary state. The kfpu API is not
- * intended to be a permanent save location.
- *
- * If this is a user-level thread and we were to context switch
- * before returning to user-land, fpsave_ctxt will be a no-op since we
- * already saved the user-level FPU state the first time we run
- * kernel_fpu_begin (i.e. we won't save the bad kernel fpu state over
- * the user-level fpu state). The fpsave_ctxt functions only save if
- * FPU_VALID is not already set. fp_save also set PCB_SET_UPDATE_FPU so
- * fprestore_ctxt will be done in sys_rtt_common when the thread
- * finally returns to user-land.
- */
-
- if ((curthread->t_procp->p_flag & SSYS) != 0 &&
- curthread->t_intr == NULL) {
- /*
- * A kernel thread which is not an interrupt thread, so we
- * STTS now.
- */
- fpdisable();
- }
-
- if ((flags & KFPU_NO_STATE) == 0) {
- removectx(curthread, kfpu, kernel_fpu_ctx_save,
- kernel_fpu_ctx_restore, NULL, NULL, NULL, NULL);
-
- if (kfpu != NULL) {
- if (kfpu->kfpu_curthread != curthread) {
- panic("attempting to end kernel FPU state "
- "for %p, but active thread is not "
- "curthread", kfpu);
- } else {
- kfpu->kfpu_curthread = NULL;
- }
- }
-
- kpreempt_enable();
- }
-
- if (curthread->t_lwp != NULL) {
- uint_t f;
-
- if (flags & KFPU_USE_LWP) {
- f = FPU_EN | FPU_KERNEL;
- } else {
- f = FPU_KERNEL;
- }
- curthread->t_lwp->lwp_pcb.pcb_fpu.fpu_flags &= ~f;
- }
-}
diff --git a/usr/src/uts/intel/ia32/os/sendsig.c b/usr/src/uts/intel/ia32/os/sendsig.c
deleted file mode 100644
index e3d60eb62b..0000000000
--- a/usr/src/uts/intel/ia32/os/sendsig.c
+++ /dev/null
@@ -1,589 +0,0 @@
-/*
- * CDDL HEADER START
- *
- * The contents of this file are subject to the terms of the
- * Common Development and Distribution License (the "License").
- * You may not use this file except in compliance with the License.
- *
- * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
- * or http://www.opensolaris.org/os/licensing.
- * See the License for the specific language governing permissions
- * and limitations under the License.
- *
- * When distributing Covered Code, include this CDDL HEADER in each
- * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
- * If applicable, add the following below this CDDL HEADER, with the
- * fields enclosed by brackets "[]" replaced with your own identifying
- * information: Portions Copyright [yyyy] [name of copyright owner]
- *
- * CDDL HEADER END
- */
-
-/*
- * Copyright 2010 Sun Microsystems, Inc. All rights reserved.
- * Use is subject to license terms.
- */
-
-/* Copyright (c) 1990, 1991 UNIX System Laboratories, Inc. */
-/* Copyright (c) 1984, 1986, 1987, 1988, 1989, 1990 AT&T */
-/* All Rights Reserved */
-
-#include <sys/types.h>
-#include <sys/param.h>
-#include <sys/sysmacros.h>
-#include <sys/signal.h>
-#include <sys/systm.h>
-#include <sys/user.h>
-#include <sys/mman.h>
-#include <sys/class.h>
-#include <sys/proc.h>
-#include <sys/procfs.h>
-#include <sys/buf.h>
-#include <sys/kmem.h>
-#include <sys/cred.h>
-#include <sys/archsystm.h>
-#include <sys/vmparam.h>
-#include <sys/prsystm.h>
-#include <sys/reboot.h>
-#include <sys/uadmin.h>
-#include <sys/vfs.h>
-#include <sys/vnode.h>
-#include <sys/file.h>
-#include <sys/session.h>
-#include <sys/ucontext.h>
-#include <sys/dnlc.h>
-#include <sys/var.h>
-#include <sys/cmn_err.h>
-#include <sys/debugreg.h>
-#include <sys/thread.h>
-#include <sys/vtrace.h>
-#include <sys/consdev.h>
-#include <sys/psw.h>
-#include <sys/regset.h>
-
-#include <sys/privregs.h>
-
-#include <sys/stack.h>
-#include <sys/swap.h>
-#include <vm/hat.h>
-#include <vm/anon.h>
-#include <vm/as.h>
-#include <vm/page.h>
-#include <vm/seg.h>
-#include <vm/seg_kmem.h>
-#include <vm/seg_map.h>
-#include <vm/seg_vn.h>
-#include <sys/exec.h>
-#include <sys/acct.h>
-#include <sys/core.h>
-#include <sys/corectl.h>
-#include <sys/modctl.h>
-#include <sys/tuneable.h>
-#include <c2/audit.h>
-#include <sys/bootconf.h>
-#include <sys/dumphdr.h>
-#include <sys/promif.h>
-#include <sys/systeminfo.h>
-#include <sys/kdi.h>
-#include <sys/contract_impl.h>
-#include <sys/x86_archext.h>
-
-/*
- * Construct the execution environment for the user's signal
- * handler and arrange for control to be given to it on return
- * to userland. The library code now calls setcontext() to
- * clean up after the signal handler, so sigret() is no longer
- * needed.
- *
- * (The various 'volatile' declarations are need to ensure that values
- * are correct on the error return from on_fault().)
- */
-
-
-/*
- * An amd64 signal frame looks like this on the stack:
- *
- * old %rsp:
- * <128 bytes of untouched stack space>
- * <a siginfo_t [optional]>
- * <a ucontext_t>
- * <siginfo_t *>
- * <signal number>
- * new %rsp: <return address (deliberately invalid)>
- *
- * The signal number and siginfo_t pointer are only pushed onto the stack in
- * order to allow stack backtraces. The actual signal handling code expects the
- * arguments in registers.
- */
-
-struct sigframe {
- caddr_t retaddr;
- long signo;
- siginfo_t *sip;
-};
-
-int
-sendsig(int sig, k_siginfo_t *sip, void (*hdlr)())
-{
- volatile int minstacksz;
- int newstack;
- label_t ljb;
- volatile caddr_t sp;
- caddr_t fp;
- volatile struct regs *rp;
- volatile greg_t upc;
- volatile proc_t *p = ttoproc(curthread);
- struct as *as = p->p_as;
- klwp_t *lwp = ttolwp(curthread);
- ucontext_t *volatile tuc = NULL;
- ucontext_t *uc;
- siginfo_t *sip_addr;
- volatile int watched;
-
- /*
- * This routine is utterly dependent upon STACK_ALIGN being
- * 16 and STACK_ENTRY_ALIGN being 8. Let's just acknowledge
- * that and require it.
- */
-
-#if STACK_ALIGN != 16 || STACK_ENTRY_ALIGN != 8
-#error "sendsig() amd64 did not find the expected stack alignments"
-#endif
-
- rp = lwptoregs(lwp);
- upc = rp->r_pc;
-
- /*
- * Since we're setting up to run the signal handler we have to
- * arrange that the stack at entry to the handler is (only)
- * STACK_ENTRY_ALIGN (i.e. 8) byte aligned so that when the handler
- * executes its push of %rbp, the stack realigns to STACK_ALIGN
- * (i.e. 16) correctly.
- *
- * The new sp will point to the sigframe and the ucontext_t. The
- * above means that sp (and thus sigframe) will be 8-byte aligned,
- * but not 16-byte aligned. ucontext_t, however, contains %xmm regs
- * which must be 16-byte aligned. Because of this, for correct
- * alignment, sigframe must be a multiple of 8-bytes in length, but
- * not 16-bytes. This will place ucontext_t at a nice 16-byte boundary.
- */
-
- /* LINTED: logical expression always true: op "||" */
- ASSERT((sizeof (struct sigframe) % 16) == 8);
-
- minstacksz = sizeof (struct sigframe) + SA(sizeof (*uc));
- if (sip != NULL)
- minstacksz += SA(sizeof (siginfo_t));
- ASSERT((minstacksz & (STACK_ENTRY_ALIGN - 1ul)) == 0);
-
- /*
- * Figure out whether we will be handling this signal on
- * an alternate stack specified by the user. Then allocate
- * and validate the stack requirements for the signal handler
- * context. on_fault will catch any faults.
- */
- newstack = sigismember(&PTOU(curproc)->u_sigonstack, sig) &&
- !(lwp->lwp_sigaltstack.ss_flags & (SS_ONSTACK|SS_DISABLE));
-
- if (newstack) {
- fp = (caddr_t)(SA((uintptr_t)lwp->lwp_sigaltstack.ss_sp) +
- SA(lwp->lwp_sigaltstack.ss_size) - STACK_ALIGN);
- } else {
- /*
- * Drop below the 128-byte reserved region of the stack frame
- * we're interrupting.
- */
- fp = (caddr_t)rp->r_sp - STACK_RESERVE;
- }
-
- /*
- * Force proper stack pointer alignment, even in the face of a
- * misaligned stack pointer from user-level before the signal.
- */
- fp = (caddr_t)((uintptr_t)fp & ~(STACK_ENTRY_ALIGN - 1ul));
-
- /*
- * Most of the time during normal execution, the stack pointer
- * is aligned on a STACK_ALIGN (i.e. 16 byte) boundary. However,
- * (for example) just after a call instruction (which pushes
- * the return address), the callers stack misaligns until the
- * 'push %rbp' happens in the callee prolog. So while we should
- * expect the stack pointer to be always at least STACK_ENTRY_ALIGN
- * aligned, we should -not- expect it to always be STACK_ALIGN aligned.
- * We now adjust to ensure that the new sp is aligned to
- * STACK_ENTRY_ALIGN but not to STACK_ALIGN.
- */
- sp = fp - minstacksz;
- if (((uintptr_t)sp & (STACK_ALIGN - 1ul)) == 0) {
- sp -= STACK_ENTRY_ALIGN;
- minstacksz = fp - sp;
- }
-
- /*
- * Now, make sure the resulting signal frame address is sane
- */
- if (sp >= as->a_userlimit || fp >= as->a_userlimit) {
-#ifdef DEBUG
- printf("sendsig: bad signal stack cmd=%s, pid=%d, sig=%d\n",
- PTOU(p)->u_comm, p->p_pid, sig);
- printf("sigsp = 0x%p, action = 0x%p, upc = 0x%lx\n",
- (void *)sp, (void *)hdlr, (uintptr_t)upc);
- printf("sp above USERLIMIT\n");
-#endif
- return (0);
- }
-
- watched = watch_disable_addr((caddr_t)sp, minstacksz, S_WRITE);
-
- if (on_fault(&ljb))
- goto badstack;
-
- if (sip != NULL) {
- zoneid_t zoneid;
-
- fp -= SA(sizeof (siginfo_t));
- uzero(fp, sizeof (siginfo_t));
- if (SI_FROMUSER(sip) &&
- (zoneid = p->p_zone->zone_id) != GLOBAL_ZONEID &&
- zoneid != sip->si_zoneid) {
- k_siginfo_t sani_sip = *sip;
-
- sani_sip.si_pid = p->p_zone->zone_zsched->p_pid;
- sani_sip.si_uid = 0;
- sani_sip.si_ctid = -1;
- sani_sip.si_zoneid = zoneid;
- copyout_noerr(&sani_sip, fp, sizeof (sani_sip));
- } else
- copyout_noerr(sip, fp, sizeof (*sip));
- sip_addr = (siginfo_t *)fp;
-
- if (sig == SIGPROF &&
- curthread->t_rprof != NULL &&
- curthread->t_rprof->rp_anystate) {
- /*
- * We stand on our head to deal with
- * the real time profiling signal.
- * Fill in the stuff that doesn't fit
- * in a normal k_siginfo structure.
- */
- int i = sip->si_nsysarg;
-
- while (--i >= 0)
- sulword_noerr(
- (ulong_t *)&(sip_addr->si_sysarg[i]),
- (ulong_t)lwp->lwp_arg[i]);
- copyout_noerr(curthread->t_rprof->rp_state,
- sip_addr->si_mstate,
- sizeof (curthread->t_rprof->rp_state));
- }
- } else
- sip_addr = NULL;
-
- /*
- * save the current context on the user stack directly after the
- * sigframe. Since sigframe is 8-byte-but-not-16-byte aligned,
- * and since sizeof (struct sigframe) is 24, this guarantees
- * 16-byte alignment for ucontext_t and its %xmm registers.
- */
- uc = (ucontext_t *)(sp + sizeof (struct sigframe));
- tuc = kmem_alloc(sizeof (*tuc), KM_SLEEP);
- no_fault();
- savecontext(tuc, &lwp->lwp_sigoldmask);
- if (on_fault(&ljb))
- goto badstack;
- copyout_noerr(tuc, uc, sizeof (*tuc));
- kmem_free(tuc, sizeof (*tuc));
- tuc = NULL;
-
- lwp->lwp_oldcontext = (uintptr_t)uc;
-
- if (newstack) {
- lwp->lwp_sigaltstack.ss_flags |= SS_ONSTACK;
- if (lwp->lwp_ustack)
- copyout_noerr(&lwp->lwp_sigaltstack,
- (stack_t *)lwp->lwp_ustack, sizeof (stack_t));
- }
-
- /*
- * Set up signal handler return and stack linkage
- */
- {
- struct sigframe frame;
-
- /*
- * ensure we never return "normally"
- */
- frame.retaddr = (caddr_t)(uintptr_t)-1L;
- frame.signo = sig;
- frame.sip = sip_addr;
- copyout_noerr(&frame, sp, sizeof (frame));
- }
-
- no_fault();
- if (watched)
- watch_enable_addr((caddr_t)sp, minstacksz, S_WRITE);
-
- /*
- * Set up user registers for execution of signal handler.
- */
- rp->r_sp = (greg_t)sp;
- rp->r_pc = (greg_t)hdlr;
- rp->r_ps = PSL_USER | (rp->r_ps & PS_IOPL);
-
- rp->r_rdi = sig;
- rp->r_rsi = (uintptr_t)sip_addr;
- rp->r_rdx = (uintptr_t)uc;
-
- if ((rp->r_cs & 0xffff) != UCS_SEL ||
- (rp->r_ss & 0xffff) != UDS_SEL) {
- /*
- * Try our best to deliver the signal.
- */
- rp->r_cs = UCS_SEL;
- rp->r_ss = UDS_SEL;
- }
-
- /*
- * Don't set lwp_eosys here. sendsig() is called via psig() after
- * lwp_eosys is handled, so setting it here would affect the next
- * system call.
- */
- return (1);
-
-badstack:
- no_fault();
- if (watched)
- watch_enable_addr((caddr_t)sp, minstacksz, S_WRITE);
- if (tuc)
- kmem_free(tuc, sizeof (*tuc));
-#ifdef DEBUG
- printf("sendsig: bad signal stack cmd=%s, pid=%d, sig=%d\n",
- PTOU(p)->u_comm, p->p_pid, sig);
- printf("on fault, sigsp = 0x%p, action = 0x%p, upc = 0x%lx\n",
- (void *)sp, (void *)hdlr, (uintptr_t)upc);
-#endif
- return (0);
-}
-
-#ifdef _SYSCALL32_IMPL
-
-/*
- * An i386 SVR4/ABI signal frame looks like this on the stack:
- *
- * old %esp:
- * <a siginfo32_t [optional]>
- * <a ucontext32_t>
- * <pointer to that ucontext32_t>
- * <pointer to that siginfo32_t>
- * <signo>
- * new %esp: <return address (deliberately invalid)>
- */
-struct sigframe32 {
- caddr32_t retaddr;
- uint32_t signo;
- caddr32_t sip;
- caddr32_t ucp;
-};
-
-int
-sendsig32(int sig, k_siginfo_t *sip, void (*hdlr)())
-{
- volatile int minstacksz;
- int newstack;
- label_t ljb;
- volatile caddr_t sp;
- caddr_t fp;
- volatile struct regs *rp;
- volatile greg_t upc;
- volatile proc_t *p = ttoproc(curthread);
- klwp_t *lwp = ttolwp(curthread);
- ucontext32_t *volatile tuc = NULL;
- ucontext32_t *uc;
- siginfo32_t *sip_addr;
- volatile int watched;
-
- rp = lwptoregs(lwp);
- upc = rp->r_pc;
-
- minstacksz = SA32(sizeof (struct sigframe32)) + SA32(sizeof (*uc));
- if (sip != NULL)
- minstacksz += SA32(sizeof (siginfo32_t));
- ASSERT((minstacksz & (STACK_ALIGN32 - 1)) == 0);
-
- /*
- * Figure out whether we will be handling this signal on
- * an alternate stack specified by the user. Then allocate
- * and validate the stack requirements for the signal handler
- * context. on_fault will catch any faults.
- */
- newstack = sigismember(&PTOU(curproc)->u_sigonstack, sig) &&
- !(lwp->lwp_sigaltstack.ss_flags & (SS_ONSTACK|SS_DISABLE));
-
- if (newstack) {
- fp = (caddr_t)(SA32((uintptr_t)lwp->lwp_sigaltstack.ss_sp) +
- SA32(lwp->lwp_sigaltstack.ss_size) - STACK_ALIGN32);
- } else if ((rp->r_ss & 0xffff) != UDS_SEL) {
- user_desc_t *ldt;
- /*
- * If the stack segment selector is -not- pointing at
- * the UDS_SEL descriptor and we have an LDT entry for
- * it instead, add the base address to find the effective va.
- */
- if ((ldt = p->p_ldt) != NULL)
- fp = (caddr_t)rp->r_sp +
- USEGD_GETBASE(&ldt[SELTOIDX(rp->r_ss)]);
- else
- fp = (caddr_t)rp->r_sp;
- } else
- fp = (caddr_t)rp->r_sp;
-
- /*
- * Force proper stack pointer alignment, even in the face of a
- * misaligned stack pointer from user-level before the signal.
- * Don't use the SA32() macro because that rounds up, not down.
- */
- fp = (caddr_t)((uintptr_t)fp & ~(STACK_ALIGN32 - 1));
- sp = fp - minstacksz;
-
- /*
- * Make sure lwp hasn't trashed its stack
- */
- if (sp >= (caddr_t)(uintptr_t)USERLIMIT32 ||
- fp >= (caddr_t)(uintptr_t)USERLIMIT32) {
-#ifdef DEBUG
- printf("sendsig32: bad signal stack cmd=%s, pid=%d, sig=%d\n",
- PTOU(p)->u_comm, p->p_pid, sig);
- printf("sigsp = 0x%p, action = 0x%p, upc = 0x%lx\n",
- (void *)sp, (void *)hdlr, (uintptr_t)upc);
- printf("sp above USERLIMIT\n");
-#endif
- return (0);
- }
-
- watched = watch_disable_addr((caddr_t)sp, minstacksz, S_WRITE);
-
- if (on_fault(&ljb))
- goto badstack;
-
- if (sip != NULL) {
- siginfo32_t si32;
- zoneid_t zoneid;
-
- siginfo_kto32(sip, &si32);
- if (SI_FROMUSER(sip) &&
- (zoneid = p->p_zone->zone_id) != GLOBAL_ZONEID &&
- zoneid != sip->si_zoneid) {
- si32.si_pid = p->p_zone->zone_zsched->p_pid;
- si32.si_uid = 0;
- si32.si_ctid = -1;
- si32.si_zoneid = zoneid;
- }
- fp -= SA32(sizeof (si32));
- uzero(fp, sizeof (si32));
- copyout_noerr(&si32, fp, sizeof (si32));
- sip_addr = (siginfo32_t *)fp;
-
- if (sig == SIGPROF &&
- curthread->t_rprof != NULL &&
- curthread->t_rprof->rp_anystate) {
- /*
- * We stand on our head to deal with
- * the real-time profiling signal.
- * Fill in the stuff that doesn't fit
- * in a normal k_siginfo structure.
- */
- int i = sip->si_nsysarg;
-
- while (--i >= 0)
- suword32_noerr(&(sip_addr->si_sysarg[i]),
- (uint32_t)lwp->lwp_arg[i]);
- copyout_noerr(curthread->t_rprof->rp_state,
- sip_addr->si_mstate,
- sizeof (curthread->t_rprof->rp_state));
- }
- } else
- sip_addr = NULL;
-
- /* save the current context on the user stack */
- fp -= SA32(sizeof (*tuc));
- uc = (ucontext32_t *)fp;
- tuc = kmem_alloc(sizeof (*tuc), KM_SLEEP);
- no_fault();
- savecontext32(tuc, &lwp->lwp_sigoldmask);
- if (on_fault(&ljb))
- goto badstack;
- copyout_noerr(tuc, uc, sizeof (*tuc));
- kmem_free(tuc, sizeof (*tuc));
- tuc = NULL;
-
- lwp->lwp_oldcontext = (uintptr_t)uc;
-
- if (newstack) {
- lwp->lwp_sigaltstack.ss_flags |= SS_ONSTACK;
- if (lwp->lwp_ustack) {
- stack32_t stk32;
-
- stk32.ss_sp = (caddr32_t)(uintptr_t)
- lwp->lwp_sigaltstack.ss_sp;
- stk32.ss_size = (size32_t)
- lwp->lwp_sigaltstack.ss_size;
- stk32.ss_flags = (int32_t)
- lwp->lwp_sigaltstack.ss_flags;
- copyout_noerr(&stk32,
- (stack32_t *)lwp->lwp_ustack, sizeof (stk32));
- }
- }
-
- /*
- * Set up signal handler arguments
- */
- {
- struct sigframe32 frame32;
-
- frame32.sip = (caddr32_t)(uintptr_t)sip_addr;
- frame32.ucp = (caddr32_t)(uintptr_t)uc;
- frame32.signo = sig;
- frame32.retaddr = 0xffffffff; /* never return! */
- copyout_noerr(&frame32, sp, sizeof (frame32));
- }
-
- no_fault();
- if (watched)
- watch_enable_addr((caddr_t)sp, minstacksz, S_WRITE);
-
- rp->r_sp = (greg_t)(uintptr_t)sp;
- rp->r_pc = (greg_t)(uintptr_t)hdlr;
- rp->r_ps = PSL_USER | (rp->r_ps & PS_IOPL);
-
- if ((rp->r_cs & 0xffff) != U32CS_SEL ||
- (rp->r_ss & 0xffff) != UDS_SEL) {
- /*
- * Try our best to deliver the signal.
- */
- rp->r_cs = U32CS_SEL;
- rp->r_ss = UDS_SEL;
- }
-
- /*
- * Don't set lwp_eosys here. sendsig() is called via psig() after
- * lwp_eosys is handled, so setting it here would affect the next
- * system call.
- */
- return (1);
-
-badstack:
- no_fault();
- if (watched)
- watch_enable_addr((caddr_t)sp, minstacksz, S_WRITE);
- if (tuc)
- kmem_free(tuc, sizeof (*tuc));
-#ifdef DEBUG
- printf("sendsig32: bad signal stack cmd=%s pid=%d, sig=%d\n",
- PTOU(p)->u_comm, p->p_pid, sig);
- printf("on fault, sigsp = 0x%p, action = 0x%p, upc = 0x%lx\n",
- (void *)sp, (void *)hdlr, (uintptr_t)upc);
-#endif
- return (0);
-}
-
-#endif /* _SYSCALL32_IMPL */
diff --git a/usr/src/uts/intel/ia32/os/sundep.c b/usr/src/uts/intel/ia32/os/sundep.c
deleted file mode 100644
index 80e149f01b..0000000000
--- a/usr/src/uts/intel/ia32/os/sundep.c
+++ /dev/null
@@ -1,1012 +0,0 @@
-/*
- * CDDL HEADER START
- *
- * The contents of this file are subject to the terms of the
- * Common Development and Distribution License (the "License").
- * You may not use this file except in compliance with the License.
- *
- * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
- * or http://www.opensolaris.org/os/licensing.
- * See the License for the specific language governing permissions
- * and limitations under the License.
- *
- * When distributing Covered Code, include this CDDL HEADER in each
- * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
- * If applicable, add the following below this CDDL HEADER, with the
- * fields enclosed by brackets "[]" replaced with your own identifying
- * information: Portions Copyright [yyyy] [name of copyright owner]
- *
- * CDDL HEADER END
- */
-/*
- * Copyright (c) 1992, 2010, Oracle and/or its affiliates. All rights reserved.
- * Copyright 2021 Joyent, Inc.
- */
-
-/* Copyright (c) 1990, 1991 UNIX System Laboratories, Inc. */
-/* Copyright (c) 1984, 1986, 1987, 1988, 1989, 1990 AT&T */
-/* All Rights Reserved */
-
-#include <sys/types.h>
-#include <sys/param.h>
-#include <sys/sysmacros.h>
-#include <sys/signal.h>
-#include <sys/systm.h>
-#include <sys/user.h>
-#include <sys/mman.h>
-#include <sys/class.h>
-#include <sys/proc.h>
-#include <sys/procfs.h>
-#include <sys/buf.h>
-#include <sys/kmem.h>
-#include <sys/cred.h>
-#include <sys/archsystm.h>
-#include <sys/vmparam.h>
-#include <sys/prsystm.h>
-#include <sys/reboot.h>
-#include <sys/uadmin.h>
-#include <sys/vfs.h>
-#include <sys/vnode.h>
-#include <sys/file.h>
-#include <sys/session.h>
-#include <sys/ucontext.h>
-#include <sys/dnlc.h>
-#include <sys/var.h>
-#include <sys/cmn_err.h>
-#include <sys/debugreg.h>
-#include <sys/thread.h>
-#include <sys/vtrace.h>
-#include <sys/consdev.h>
-#include <sys/psw.h>
-#include <sys/regset.h>
-#include <sys/privregs.h>
-#include <sys/cpu.h>
-#include <sys/stack.h>
-#include <sys/swap.h>
-#include <vm/hat.h>
-#include <vm/anon.h>
-#include <vm/as.h>
-#include <vm/page.h>
-#include <vm/seg.h>
-#include <vm/seg_kmem.h>
-#include <vm/seg_map.h>
-#include <vm/seg_vn.h>
-#include <sys/exec.h>
-#include <sys/acct.h>
-#include <sys/core.h>
-#include <sys/corectl.h>
-#include <sys/modctl.h>
-#include <sys/tuneable.h>
-#include <c2/audit.h>
-#include <sys/bootconf.h>
-#include <sys/brand.h>
-#include <sys/dumphdr.h>
-#include <sys/promif.h>
-#include <sys/systeminfo.h>
-#include <sys/kdi.h>
-#include <sys/contract_impl.h>
-#include <sys/x86_archext.h>
-#include <sys/segments.h>
-#include <sys/ontrap.h>
-#include <sys/cpu.h>
-#ifdef __xpv
-#include <sys/hypervisor.h>
-#endif
-
-/*
- * Compare the version of boot that boot says it is against
- * the version of boot the kernel expects.
- */
-int
-check_boot_version(int boots_version)
-{
- if (boots_version == BO_VERSION)
- return (0);
-
- prom_printf("Wrong boot interface - kernel needs v%d found v%d\n",
- BO_VERSION, boots_version);
- prom_panic("halting");
- /*NOTREACHED*/
-}
-
-/*
- * Process the physical installed list for boot.
- * Finds:
- * 1) the pfn of the highest installed physical page,
- * 2) the number of pages installed
- * 3) the number of distinct contiguous regions these pages fall into.
- * 4) the number of contiguous memory ranges
- */
-void
-installed_top_size_ex(
- struct memlist *list, /* pointer to start of installed list */
- pfn_t *high_pfn, /* return ptr for top value */
- pgcnt_t *pgcnt, /* return ptr for sum of installed pages */
- int *ranges) /* return ptr for the count of contig. ranges */
-{
- pfn_t top = 0;
- pgcnt_t sumpages = 0;
- pfn_t highp; /* high page in a chunk */
- int cnt = 0;
-
- for (; list; list = list->ml_next) {
- ++cnt;
- highp = (list->ml_address + list->ml_size - 1) >> PAGESHIFT;
- if (top < highp)
- top = highp;
- sumpages += btop(list->ml_size);
- }
-
- *high_pfn = top;
- *pgcnt = sumpages;
- *ranges = cnt;
-}
-
-void
-installed_top_size(
- struct memlist *list, /* pointer to start of installed list */
- pfn_t *high_pfn, /* return ptr for top value */
- pgcnt_t *pgcnt) /* return ptr for sum of installed pages */
-{
- int ranges;
-
- installed_top_size_ex(list, high_pfn, pgcnt, &ranges);
-}
-
-void
-phys_install_has_changed(void)
-{}
-
-/*
- * Copy in a memory list from boot to kernel, with a filter function
- * to remove pages. The filter function can increase the address and/or
- * decrease the size to filter out pages. It will also align addresses and
- * sizes to PAGESIZE.
- */
-void
-copy_memlist_filter(
- struct memlist *src,
- struct memlist **dstp,
- void (*filter)(uint64_t *, uint64_t *))
-{
- struct memlist *dst, *prev;
- uint64_t addr;
- uint64_t size;
- uint64_t eaddr;
-
- dst = *dstp;
- prev = dst;
-
- /*
- * Move through the memlist applying a filter against
- * each range of memory. Note that we may apply the
- * filter multiple times against each memlist entry.
- */
- for (; src; src = src->ml_next) {
- addr = P2ROUNDUP(src->ml_address, PAGESIZE);
- eaddr = P2ALIGN(src->ml_address + src->ml_size, PAGESIZE);
- while (addr < eaddr) {
- size = eaddr - addr;
- if (filter != NULL)
- filter(&addr, &size);
- if (size == 0)
- break;
- dst->ml_address = addr;
- dst->ml_size = size;
- dst->ml_next = 0;
- if (prev == dst) {
- dst->ml_prev = 0;
- dst++;
- } else {
- dst->ml_prev = prev;
- prev->ml_next = dst;
- dst++;
- prev++;
- }
- addr += size;
- }
- }
-
- *dstp = dst;
-}
-
-/*
- * Kernel setup code, called from startup().
- */
-void
-kern_setup1(void)
-{
- proc_t *pp;
-
- pp = &p0;
-
- proc_sched = pp;
-
- /*
- * Initialize process 0 data structures
- */
- pp->p_stat = SRUN;
- pp->p_flag = SSYS;
-
- pp->p_pidp = &pid0;
- pp->p_pgidp = &pid0;
- pp->p_sessp = &session0;
- pp->p_tlist = &t0;
- pid0.pid_pglink = pp;
- pid0.pid_pgtail = pp;
-
- /*
- * XXX - we asssume that the u-area is zeroed out except for
- * ttolwp(curthread)->lwp_regs.
- */
- PTOU(curproc)->u_cmask = (mode_t)CMASK;
-
- thread_init(); /* init thread_free list */
- pid_init(); /* initialize pid (proc) table */
- contract_init(); /* initialize contracts */
-
- init_pages_pp_maximum();
-}
-
-/*
- * Load a procedure into a thread.
- */
-void
-thread_load(kthread_t *t, void (*start)(), caddr_t arg, size_t len)
-{
- caddr_t sp;
- size_t framesz;
- caddr_t argp;
- long *p;
- extern void thread_start();
-
- /*
- * Push a "c" call frame onto the stack to represent
- * the caller of "start".
- */
- sp = t->t_stk;
- ASSERT(((uintptr_t)t->t_stk & (STACK_ENTRY_ALIGN - 1)) == 0);
- if (len != 0) {
- /*
- * the object that arg points at is copied into the
- * caller's frame.
- */
- framesz = SA(len);
- sp -= framesz;
- ASSERT(sp > t->t_stkbase);
- argp = sp + SA(MINFRAME);
- bcopy(arg, argp, len);
- arg = argp;
- }
- /*
- * Set up arguments (arg and len) on the caller's stack frame.
- */
- p = (long *)sp;
-
- *--p = 0; /* fake call */
- *--p = 0; /* null frame pointer terminates stack trace */
- *--p = (long)len;
- *--p = (intptr_t)arg;
- *--p = (intptr_t)start;
-
- /*
- * initialize thread to resume at thread_start() which will
- * turn around and invoke (*start)(arg, len).
- */
- t->t_pc = (uintptr_t)thread_start;
- t->t_sp = (uintptr_t)p;
-
- ASSERT((t->t_sp & (STACK_ENTRY_ALIGN - 1)) == 0);
-}
-
-/*
- * load user registers into lwp.
- */
-/*ARGSUSED2*/
-void
-lwp_load(klwp_t *lwp, gregset_t grp, uintptr_t thrptr)
-{
- struct regs *rp = lwptoregs(lwp);
-
- setgregs(lwp, grp);
- rp->r_ps = PSL_USER;
-
- /*
- * For 64-bit lwps, we allow one magic %fs selector value, and one
- * magic %gs selector to point anywhere in the address space using
- * %fsbase and %gsbase behind the scenes. libc uses %fs to point
- * at the ulwp_t structure.
- *
- * For 32-bit lwps, libc wedges its lwp thread pointer into the
- * ucontext ESP slot (which is otherwise irrelevant to setting a
- * ucontext) and LWPGS_SEL value into gregs[REG_GS]. This is so
- * syslwp_create() can atomically setup %gs.
- *
- * See setup_context() in libc.
- */
-#ifdef _SYSCALL32_IMPL
- if (lwp_getdatamodel(lwp) == DATAMODEL_ILP32) {
- if (grp[REG_GS] == LWPGS_SEL)
- (void) lwp_setprivate(lwp, _LWP_GSBASE, thrptr);
- } else {
- /*
- * See lwp_setprivate in kernel and setup_context in libc.
- *
- * Currently libc constructs a ucontext from whole cloth for
- * every new (not main) lwp created. For 64 bit processes
- * %fsbase is directly set to point to current thread pointer.
- * In the past (solaris 10) %fs was also set LWPFS_SEL to
- * indicate %fsbase. Now we use the null GDT selector for
- * this purpose. LWP[FS|GS]_SEL are only intended for 32 bit
- * processes. To ease transition we support older libcs in
- * the newer kernel by forcing %fs or %gs selector to null
- * by calling lwp_setprivate if LWP[FS|GS]_SEL is passed in
- * the ucontext. This is should be ripped out at some future
- * date. Another fix would be for libc to do a getcontext
- * and inherit the null %fs/%gs from the current context but
- * that means an extra system call and could hurt performance.
- */
- if (grp[REG_FS] == 0x1bb) /* hard code legacy LWPFS_SEL */
- (void) lwp_setprivate(lwp, _LWP_FSBASE,
- (uintptr_t)grp[REG_FSBASE]);
-
- if (grp[REG_GS] == 0x1c3) /* hard code legacy LWPGS_SEL */
- (void) lwp_setprivate(lwp, _LWP_GSBASE,
- (uintptr_t)grp[REG_GSBASE]);
- }
-#else
- if (grp[GS] == LWPGS_SEL)
- (void) lwp_setprivate(lwp, _LWP_GSBASE, thrptr);
-#endif
-
- lwp->lwp_eosys = JUSTRETURN;
- lwptot(lwp)->t_post_sys = 1;
-}
-
-/*
- * set syscall()'s return values for a lwp.
- */
-void
-lwp_setrval(klwp_t *lwp, int v1, int v2)
-{
- lwptoregs(lwp)->r_ps &= ~PS_C;
- lwptoregs(lwp)->r_r0 = v1;
- lwptoregs(lwp)->r_r1 = v2;
-}
-
-/*
- * set syscall()'s return values for a lwp.
- */
-void
-lwp_setsp(klwp_t *lwp, caddr_t sp)
-{
- lwptoregs(lwp)->r_sp = (intptr_t)sp;
-}
-
-/*
- * Copy regs from parent to child.
- */
-void
-lwp_forkregs(klwp_t *lwp, klwp_t *clwp)
-{
- struct pcb *pcb = &clwp->lwp_pcb;
- struct regs *rp = lwptoregs(lwp);
-
- if (!PCB_NEED_UPDATE_SEGS(pcb)) {
- pcb->pcb_ds = rp->r_ds;
- pcb->pcb_es = rp->r_es;
- pcb->pcb_fs = rp->r_fs;
- pcb->pcb_gs = rp->r_gs;
- PCB_SET_UPDATE_SEGS(pcb);
- lwptot(clwp)->t_post_sys = 1;
- }
- ASSERT(lwptot(clwp)->t_post_sys);
-
- fp_lwp_dup(clwp);
-
- bcopy(lwp->lwp_regs, clwp->lwp_regs, sizeof (struct regs));
-}
-
-/*
- * This function is currently unused on x86.
- */
-/*ARGSUSED*/
-void
-lwp_freeregs(klwp_t *lwp, int isexec)
-{}
-
-/*
- * This function is currently unused on x86.
- */
-void
-lwp_pcb_exit(void)
-{}
-
-/*
- * Lwp context ops for segment registers.
- */
-
-/*
- * Every time we come into the kernel (syscall, interrupt or trap
- * but not fast-traps) we capture the current values of the user's
- * segment registers into the lwp's reg structure. This includes
- * lcall for i386 generic system call support since it is handled
- * as a segment-not-present trap.
- *
- * Here we save the current values from the lwp regs into the pcb
- * and or PCB_UPDATE_SEGS (1) in pcb->pcb_rupdate to tell the rest
- * of the kernel that the pcb copy of the segment registers is the
- * current one. This ensures the lwp's next trip to user land via
- * update_sregs. Finally we set t_post_sys to ensure that no
- * system call fast-path's its way out of the kernel via sysret.
- *
- * (This means that we need to have interrupts disabled when we
- * test t->t_post_sys in the syscall handlers; if the test fails,
- * we need to keep interrupts disabled until we return to userland
- * so we can't be switched away.)
- *
- * As a result of all this, we don't really have to do a whole lot
- * if the thread is just mucking about in the kernel, switching on
- * and off the cpu for whatever reason it feels like. And yet we
- * still preserve fast syscalls, cause if we -don't- get
- * descheduled, we never come here either.
- */
-
-#define VALID_LWP_DESC(udp) ((udp)->usd_type == SDT_MEMRWA && \
- (udp)->usd_p == 1 && (udp)->usd_dpl == SEL_UPL)
-
-/*ARGSUSED*/
-void
-lwp_segregs_save(klwp_t *lwp)
-{
- pcb_t *pcb = &lwp->lwp_pcb;
- struct regs *rp;
-
- ASSERT(VALID_LWP_DESC(&pcb->pcb_fsdesc));
- ASSERT(VALID_LWP_DESC(&pcb->pcb_gsdesc));
-
- if (!PCB_NEED_UPDATE_SEGS(pcb)) {
- rp = lwptoregs(lwp);
-
- /*
- * If there's no update already pending, capture the current
- * %ds/%es/%fs/%gs values from lwp's regs in case the user
- * changed them; %fsbase and %gsbase are privileged so the
- * kernel versions of these registers in pcb_fsbase and
- * pcb_gsbase are always up-to-date.
- */
- pcb->pcb_ds = rp->r_ds;
- pcb->pcb_es = rp->r_es;
- pcb->pcb_fs = rp->r_fs;
- pcb->pcb_gs = rp->r_gs;
- PCB_SET_UPDATE_SEGS(pcb);
- lwp->lwp_thread->t_post_sys = 1;
- }
-
-#if !defined(__xpv) /* XXPV not sure if we can re-read gdt? */
- ASSERT(bcmp(&CPU->cpu_gdt[GDT_LWPFS], &lwp->lwp_pcb.pcb_fsdesc,
- sizeof (lwp->lwp_pcb.pcb_fsdesc)) == 0);
- ASSERT(bcmp(&CPU->cpu_gdt[GDT_LWPGS], &lwp->lwp_pcb.pcb_gsdesc,
- sizeof (lwp->lwp_pcb.pcb_gsdesc)) == 0);
-#endif
-}
-
-/*
- * Update the segment registers with new values from the pcb.
- *
- * We have to do this carefully, and in the following order,
- * in case any of the selectors points at a bogus descriptor.
- * If they do, we'll catch trap with on_trap and return 1.
- * returns 0 on success.
- *
- * This is particularly tricky for %gs.
- * This routine must be executed under a cli.
- */
-int
-update_sregs(struct regs *rp, klwp_t *lwp)
-{
- pcb_t *pcb = &lwp->lwp_pcb;
- ulong_t kgsbase;
- on_trap_data_t otd;
- int rc = 0;
-
- if (!on_trap(&otd, OT_SEGMENT_ACCESS)) {
-
-#if defined(__xpv)
- /*
- * On the hyervisor this is easy. The hypercall below will
- * swapgs and load %gs with the user selector. If the user
- * selector is bad the hypervisor will catch the fault and
- * load %gs with the null selector instead. Either way the
- * kernel's gsbase is not damaged.
- */
- kgsbase = (ulong_t)CPU;
- if (HYPERVISOR_set_segment_base(SEGBASE_GS_USER_SEL,
- pcb->pcb_gs) != 0) {
- no_trap();
- return (1);
- }
-
- rp->r_gs = pcb->pcb_gs;
- ASSERT((cpu_t *)kgsbase == CPU);
-
-#else /* __xpv */
-
- /*
- * A little more complicated running native.
- */
- kgsbase = (ulong_t)CPU;
- __set_gs(pcb->pcb_gs);
-
- /*
- * If __set_gs fails it's because the new %gs is a bad %gs,
- * we'll be taking a trap but with the original %gs and %gsbase
- * undamaged (i.e. pointing at curcpu).
- *
- * We've just mucked up the kernel's gsbase. Oops. In
- * particular we can't take any traps at all. Make the newly
- * computed gsbase be the hidden gs via swapgs, and fix
- * the kernel's gsbase back again. Later, when we return to
- * userland we'll swapgs again restoring gsbase just loaded
- * above.
- */
- __asm__ __volatile__("mfence; swapgs");
-
- rp->r_gs = pcb->pcb_gs;
-
- /*
- * Restore kernel's gsbase. Note that this also serializes any
- * attempted speculation from loading the user-controlled
- * %gsbase.
- */
- wrmsr(MSR_AMD_GSBASE, kgsbase);
-
-#endif /* __xpv */
-
- /*
- * Only override the descriptor base address if
- * r_gs == LWPGS_SEL or if r_gs == NULL. A note on
- * NULL descriptors -- 32-bit programs take faults
- * if they deference NULL descriptors; however,
- * when 64-bit programs load them into %fs or %gs,
- * they DONT fault -- only the base address remains
- * whatever it was from the last load. Urk.
- *
- * XXX - note that lwp_setprivate now sets %fs/%gs to the
- * null selector for 64 bit processes. Whereas before
- * %fs/%gs were set to LWP(FS|GS)_SEL regardless of
- * the process's data model. For now we check for both
- * values so that the kernel can also support the older
- * libc. This should be ripped out at some point in the
- * future.
- */
- if (pcb->pcb_gs == LWPGS_SEL || pcb->pcb_gs == 0) {
-#if defined(__xpv)
- if (HYPERVISOR_set_segment_base(SEGBASE_GS_USER,
- pcb->pcb_gsbase)) {
- no_trap();
- return (1);
- }
-#else
- wrmsr(MSR_AMD_KGSBASE, pcb->pcb_gsbase);
-#endif
- }
-
- __set_ds(pcb->pcb_ds);
- rp->r_ds = pcb->pcb_ds;
-
- __set_es(pcb->pcb_es);
- rp->r_es = pcb->pcb_es;
-
- __set_fs(pcb->pcb_fs);
- rp->r_fs = pcb->pcb_fs;
-
- /*
- * Same as for %gs
- */
- if (pcb->pcb_fs == LWPFS_SEL || pcb->pcb_fs == 0) {
-#if defined(__xpv)
- if (HYPERVISOR_set_segment_base(SEGBASE_FS,
- pcb->pcb_fsbase)) {
- no_trap();
- return (1);
- }
-#else
- wrmsr(MSR_AMD_FSBASE, pcb->pcb_fsbase);
-#endif
- }
-
- } else {
- cli();
- rc = 1;
- }
- no_trap();
- return (rc);
-}
-
-/*
- * Make sure any stale selectors are cleared from the segment registers
- * by putting KDS_SEL (the kernel's default %ds gdt selector) into them.
- * This is necessary because the kernel itself does not use %es, %fs, nor
- * %ds. (%cs and %ss are necessary, and are set up by the kernel - along with
- * %gs - to point to the current cpu struct.) If we enter kmdb while in the
- * kernel and resume with a stale ldt or brandz selector sitting there in a
- * segment register, kmdb will #gp fault if the stale selector points to,
- * for example, an ldt in the context of another process.
- *
- * WARNING: Intel and AMD chips behave differently when storing
- * the null selector into %fs and %gs while in long mode. On AMD
- * chips fsbase and gsbase are not cleared. But on Intel chips, storing
- * a null selector into %fs or %gs has the side effect of clearing
- * fsbase or gsbase. For that reason we use KDS_SEL, which has
- * consistent behavor between AMD and Intel.
- *
- * Caller responsible for preventing cpu migration.
- */
-void
-reset_sregs(void)
-{
- ulong_t kgsbase = (ulong_t)CPU;
-
- ASSERT(curthread->t_preempt != 0 || getpil() >= DISP_LEVEL);
-
- cli();
- __set_gs(KGS_SEL);
-
- /*
- * restore kernel gsbase
- */
-#if defined(__xpv)
- xen_set_segment_base(SEGBASE_GS_KERNEL, kgsbase);
-#else
- wrmsr(MSR_AMD_GSBASE, kgsbase);
-#endif
-
- sti();
-
- __set_ds(KDS_SEL);
- __set_es(0 | SEL_KPL); /* selector RPL not ring 0 on hypervisor */
- __set_fs(KFS_SEL);
-}
-
-
-#ifdef _SYSCALL32_IMPL
-
-/*
- * Make it impossible for a process to change its data model.
- * We do this by toggling the present bits for the 32 and
- * 64-bit user code descriptors. That way if a user lwp attempts
- * to change its data model (by using the wrong code descriptor in
- * %cs) it will fault immediately. This also allows us to simplify
- * assertions and checks in the kernel.
- */
-
-static void
-gdt_ucode_model(model_t model)
-{
- kpreempt_disable();
- if (model == DATAMODEL_NATIVE) {
- gdt_update_usegd(GDT_UCODE, &ucs_on);
- gdt_update_usegd(GDT_U32CODE, &ucs32_off);
- } else {
- gdt_update_usegd(GDT_U32CODE, &ucs32_on);
- gdt_update_usegd(GDT_UCODE, &ucs_off);
- }
- kpreempt_enable();
-}
-
-#endif /* _SYSCALL32_IMPL */
-
-/*
- * Restore lwp private fs and gs segment descriptors
- * on current cpu's GDT.
- */
-static void
-lwp_segregs_restore(klwp_t *lwp)
-{
- pcb_t *pcb = &lwp->lwp_pcb;
-
- ASSERT(VALID_LWP_DESC(&pcb->pcb_fsdesc));
- ASSERT(VALID_LWP_DESC(&pcb->pcb_gsdesc));
-
-#ifdef _SYSCALL32_IMPL
- gdt_ucode_model(DATAMODEL_NATIVE);
-#endif
-
- gdt_update_usegd(GDT_LWPFS, &pcb->pcb_fsdesc);
- gdt_update_usegd(GDT_LWPGS, &pcb->pcb_gsdesc);
-
-}
-
-#ifdef _SYSCALL32_IMPL
-
-static void
-lwp_segregs_restore32(klwp_t *lwp)
-{
- /*LINTED*/
- cpu_t *cpu = CPU;
- pcb_t *pcb = &lwp->lwp_pcb;
-
- ASSERT(VALID_LWP_DESC(&lwp->lwp_pcb.pcb_fsdesc));
- ASSERT(VALID_LWP_DESC(&lwp->lwp_pcb.pcb_gsdesc));
-
- gdt_ucode_model(DATAMODEL_ILP32);
- gdt_update_usegd(GDT_LWPFS, &pcb->pcb_fsdesc);
- gdt_update_usegd(GDT_LWPGS, &pcb->pcb_gsdesc);
-}
-
-#endif /* _SYSCALL32_IMPL */
-
-/*
- * If this is a process in a branded zone, then we want it to use the brand
- * syscall entry points instead of the standard Solaris entry points. This
- * routine must be called when a new lwp is created within a branded zone
- * or when an existing lwp moves into a branded zone via a zone_enter()
- * operation.
- */
-void
-lwp_attach_brand_hdlrs(klwp_t *lwp)
-{
- kthread_t *t = lwptot(lwp);
-
- ASSERT(PROC_IS_BRANDED(lwptoproc(lwp)));
-
- ASSERT(removectx(t, NULL, brand_interpositioning_disable,
- brand_interpositioning_enable, NULL, NULL,
- brand_interpositioning_disable, NULL) == 0);
- installctx(t, NULL, brand_interpositioning_disable,
- brand_interpositioning_enable, NULL, NULL,
- brand_interpositioning_disable, NULL, NULL);
-
- if (t == curthread) {
- kpreempt_disable();
- brand_interpositioning_enable();
- kpreempt_enable();
- }
-}
-
-/*
- * If this is a process in a branded zone, then we want it to disable the
- * brand syscall entry points. This routine must be called when the last
- * lwp in a process is exiting in proc_exit().
- */
-void
-lwp_detach_brand_hdlrs(klwp_t *lwp)
-{
- kthread_t *t = lwptot(lwp);
-
- ASSERT(PROC_IS_BRANDED(lwptoproc(lwp)));
- if (t == curthread)
- kpreempt_disable();
-
- /* Remove the original context handlers */
- VERIFY(removectx(t, NULL, brand_interpositioning_disable,
- brand_interpositioning_enable, NULL, NULL,
- brand_interpositioning_disable, NULL) != 0);
-
- if (t == curthread) {
- /* Cleanup our MSR and IDT entries. */
- brand_interpositioning_disable();
- kpreempt_enable();
- }
-}
-
-/*
- * Add any lwp-associated context handlers to the lwp at the beginning
- * of the lwp's useful life.
- *
- * All paths which create lwp's invoke lwp_create(); lwp_create()
- * invokes lwp_stk_init() which initializes the stack, sets up
- * lwp_regs, and invokes this routine.
- *
- * All paths which destroy lwp's invoke lwp_exit() to rip the lwp
- * apart and put it on 'lwp_deathrow'; if the lwp is destroyed it
- * ends up in thread_free() which invokes freectx(t, 0) before
- * invoking lwp_stk_fini(). When the lwp is recycled from death
- * row, lwp_stk_fini() is invoked, then thread_free(), and thus
- * freectx(t, 0) as before.
- *
- * In the case of exec, the surviving lwp is thoroughly scrubbed
- * clean; exec invokes freectx(t, 1) to destroy associated contexts.
- * On the way back to the new image, it invokes setregs() which
- * in turn invokes this routine.
- */
-void
-lwp_installctx(klwp_t *lwp)
-{
- kthread_t *t = lwptot(lwp);
- int thisthread = t == curthread;
-#ifdef _SYSCALL32_IMPL
- void (*restop)(klwp_t *) = lwp_getdatamodel(lwp) == DATAMODEL_NATIVE ?
- lwp_segregs_restore : lwp_segregs_restore32;
-#else
- void (*restop)(klwp_t *) = lwp_segregs_restore;
-#endif
- struct ctxop *ctx;
-
- /*
- * Install the basic lwp context handlers on each lwp.
- *
- * On the amd64 kernel, the context handlers are responsible for
- * virtualizing %ds, %es, %fs, and %gs to the lwp. The register
- * values are only ever changed via sys_rtt when the
- * PCB_UPDATE_SEGS bit (1) is set in pcb->pcb_rupdate. Only
- * sys_rtt gets to clear the bit.
- *
- * On the i386 kernel, the context handlers are responsible for
- * virtualizing %gs/%fs to the lwp by updating the per-cpu GDTs
- */
- ASSERT(removectx(t, lwp, lwp_segregs_save, restop,
- NULL, NULL, NULL, NULL) == 0);
- if (thisthread) {
- ctx = installctx_preallocate();
- kpreempt_disable();
- } else {
- ctx = NULL;
- }
- installctx(t, lwp, lwp_segregs_save, restop,
- NULL, NULL, NULL, NULL, ctx);
- if (thisthread) {
- /*
- * Since we're the right thread, set the values in the GDT
- */
- restop(lwp);
- kpreempt_enable();
- }
-
- /*
- * If we have sysenter/sysexit instructions enabled, we need
- * to ensure that the hardware mechanism is kept up-to-date with the
- * lwp's kernel stack pointer across context switches.
- *
- * sep_save zeros the sysenter stack pointer msr; sep_restore sets
- * it to the lwp's kernel stack pointer (kstktop).
- */
- if (is_x86_feature(x86_featureset, X86FSET_SEP)) {
- caddr_t kstktop = (caddr_t)lwp->lwp_regs;
- ASSERT(removectx(t, kstktop,
- sep_save, sep_restore, NULL, NULL, NULL, NULL) == 0);
-
- if (thisthread) {
- ctx = installctx_preallocate();
- kpreempt_disable();
- } else {
- ctx = NULL;
- }
- installctx(t, kstktop,
- sep_save, sep_restore, NULL, NULL, NULL, NULL, ctx);
- if (thisthread) {
- /*
- * We're the right thread, so set the stack pointer
- * for the first sysenter instruction to use
- */
- sep_restore(kstktop);
- kpreempt_enable();
- }
- }
-
- if (PROC_IS_BRANDED(ttoproc(t)))
- lwp_attach_brand_hdlrs(lwp);
-}
-
-/*
- * Clear registers on exec(2).
- */
-void
-setregs(uarg_t *args)
-{
- struct regs *rp;
- kthread_t *t = curthread;
- klwp_t *lwp = ttolwp(t);
- pcb_t *pcb = &lwp->lwp_pcb;
- greg_t sp;
-
- /*
- * Initialize user registers
- */
- (void) save_syscall_args(); /* copy args from registers first */
- rp = lwptoregs(lwp);
- sp = rp->r_sp;
- bzero(rp, sizeof (*rp));
-
- rp->r_ss = UDS_SEL;
- rp->r_sp = sp;
- rp->r_pc = args->entry;
- rp->r_ps = PSL_USER;
-
- pcb->pcb_fs = pcb->pcb_gs = 0;
- pcb->pcb_fsbase = pcb->pcb_gsbase = 0;
-
- if (ttoproc(t)->p_model == DATAMODEL_NATIVE) {
-
- rp->r_cs = UCS_SEL;
-
- /*
- * Only allow 64-bit user code descriptor to be present.
- */
- gdt_ucode_model(DATAMODEL_NATIVE);
-
- /*
- * Arrange that the virtualized %fs and %gs GDT descriptors
- * have a well-defined initial state (present, ring 3
- * and of type data).
- */
- pcb->pcb_fsdesc = pcb->pcb_gsdesc = zero_udesc;
-
- /*
- * thrptr is either NULL or a value used by DTrace.
- * 64-bit processes use %fs as their "thread" register.
- */
- if (args->thrptr)
- (void) lwp_setprivate(lwp, _LWP_FSBASE, args->thrptr);
-
- } else {
-
- rp->r_cs = U32CS_SEL;
- rp->r_ds = rp->r_es = UDS_SEL;
-
- /*
- * only allow 32-bit user code selector to be present.
- */
- gdt_ucode_model(DATAMODEL_ILP32);
-
- pcb->pcb_fsdesc = pcb->pcb_gsdesc = zero_u32desc;
-
- /*
- * thrptr is either NULL or a value used by DTrace.
- * 32-bit processes use %gs as their "thread" register.
- */
- if (args->thrptr)
- (void) lwp_setprivate(lwp, _LWP_GSBASE, args->thrptr);
-
- }
-
- pcb->pcb_ds = rp->r_ds;
- pcb->pcb_es = rp->r_es;
- PCB_SET_UPDATE_SEGS(pcb);
-
- lwp->lwp_eosys = JUSTRETURN;
- t->t_post_sys = 1;
-
- /*
- * Add the lwp context handlers that virtualize segment registers,
- * and/or system call stacks etc.
- */
- lwp_installctx(lwp);
-
- /*
- * Reset the FPU flags and then initialize the FPU for this lwp.
- */
- fp_exec();
-}
-
-user_desc_t *
-cpu_get_gdt(void)
-{
- return (CPU->cpu_gdt);
-}
-
-
-#if !defined(lwp_getdatamodel)
-
-/*
- * Return the datamodel of the given lwp.
- */
-/*ARGSUSED*/
-model_t
-lwp_getdatamodel(klwp_t *lwp)
-{
- return (lwp->lwp_procp->p_model);
-}
-
-#endif /* !lwp_getdatamodel */
-
-#if !defined(get_udatamodel)
-
-model_t
-get_udatamodel(void)
-{
- return (curproc->p_model);
-}
-
-#endif /* !get_udatamodel */
diff --git a/usr/src/uts/intel/ia32/os/syscall.c b/usr/src/uts/intel/ia32/os/syscall.c
deleted file mode 100644
index 6cf4293ff4..0000000000
--- a/usr/src/uts/intel/ia32/os/syscall.c
+++ /dev/null
@@ -1,1397 +0,0 @@
-/*
- * CDDL HEADER START
- *
- * The contents of this file are subject to the terms of the
- * Common Development and Distribution License (the "License").
- * You may not use this file except in compliance with the License.
- *
- * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
- * or http://www.opensolaris.org/os/licensing.
- * See the License for the specific language governing permissions
- * and limitations under the License.
- *
- * When distributing Covered Code, include this CDDL HEADER in each
- * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
- * If applicable, add the following below this CDDL HEADER, with the
- * fields enclosed by brackets "[]" replaced with your own identifying
- * information: Portions Copyright [yyyy] [name of copyright owner]
- *
- * CDDL HEADER END
- */
-
-/*
- * Copyright (c) 1992, 2010, Oracle and/or its affiliates. All rights reserved.
- * Copyright 2019 Joyent, Inc.
- */
-
-#include <sys/param.h>
-#include <sys/vmparam.h>
-#include <sys/types.h>
-#include <sys/sysmacros.h>
-#include <sys/systm.h>
-#include <sys/signal.h>
-#include <sys/stack.h>
-#include <sys/cred.h>
-#include <sys/cmn_err.h>
-#include <sys/user.h>
-#include <sys/privregs.h>
-#include <sys/psw.h>
-#include <sys/debug.h>
-#include <sys/errno.h>
-#include <sys/proc.h>
-#include <sys/modctl.h>
-#include <sys/var.h>
-#include <sys/inline.h>
-#include <sys/syscall.h>
-#include <sys/ucontext.h>
-#include <sys/cpuvar.h>
-#include <sys/siginfo.h>
-#include <sys/trap.h>
-#include <sys/vtrace.h>
-#include <sys/sysinfo.h>
-#include <sys/procfs.h>
-#include <sys/prsystm.h>
-#include <c2/audit.h>
-#include <sys/modctl.h>
-#include <sys/aio_impl.h>
-#include <sys/tnf.h>
-#include <sys/tnf_probe.h>
-#include <sys/copyops.h>
-#include <sys/priv.h>
-#include <sys/msacct.h>
-
-int syscalltrace = 0;
-#ifdef SYSCALLTRACE
-static kmutex_t systrace_lock; /* syscall tracing lock */
-#else
-#define syscalltrace 0
-#endif /* SYSCALLTRACE */
-
-typedef int64_t (*llfcn_t)(); /* function returning long long */
-
-int pre_syscall(void);
-void post_syscall(long rval1, long rval2);
-static krwlock_t *lock_syscall(struct sysent *, uint_t);
-void deferred_singlestep_trap(caddr_t);
-
-#ifdef _SYSCALL32_IMPL
-#define LWP_GETSYSENT(lwp) \
- (lwp_getdatamodel(lwp) == DATAMODEL_NATIVE ? sysent : sysent32)
-#else
-#define LWP_GETSYSENT(lwp) (sysent)
-#endif
-
-/*
- * If watchpoints are active, don't make copying in of
- * system call arguments take a read watchpoint trap.
- */
-static int
-copyin_args(struct regs *rp, long *ap, uint_t nargs)
-{
- greg_t *sp = 1 + (greg_t *)rp->r_sp; /* skip ret addr */
-
- ASSERT(nargs <= MAXSYSARGS);
-
- return (copyin_nowatch(sp, ap, nargs * sizeof (*sp)));
-}
-
-#if defined(_SYSCALL32_IMPL)
-static int
-copyin_args32(struct regs *rp, long *ap, uint_t nargs)
-{
- greg32_t *sp = 1 + (greg32_t *)rp->r_sp; /* skip ret addr */
- uint32_t a32[MAXSYSARGS];
- int rc;
-
- ASSERT(nargs <= MAXSYSARGS);
-
- if ((rc = copyin_nowatch(sp, a32, nargs * sizeof (*sp))) == 0) {
- uint32_t *a32p = &a32[0];
-
- while (nargs--)
- *ap++ = (ulong_t)*a32p++;
- }
- return (rc);
-}
-#define COPYIN_ARGS32 copyin_args32
-#else
-#define COPYIN_ARGS32 copyin_args
-#endif
-
-/*
- * Error handler for system calls where arg copy gets fault.
- */
-static longlong_t
-syscall_err()
-{
- return (0);
-}
-
-/*
- * Corresponding sysent entry to allow syscall_entry caller
- * to invoke syscall_err.
- */
-static struct sysent sysent_err = {
- 0, SE_32RVAL1, NULL, NULL, (llfcn_t)syscall_err
-};
-
-/*
- * Called from syscall() when a non-trivial 32-bit system call occurs.
- * Sets up the args and returns a pointer to the handler.
- */
-struct sysent *
-syscall_entry(kthread_t *t, long *argp)
-{
- klwp_t *lwp = ttolwp(t);
- struct regs *rp = lwptoregs(lwp);
- unsigned int code;
- struct sysent *callp;
- struct sysent *se = LWP_GETSYSENT(lwp);
- int error = 0;
- uint_t nargs;
-
- ASSERT(t == curthread && curthread->t_schedflag & TS_DONT_SWAP);
-
- lwp->lwp_ru.sysc++;
- lwp->lwp_eosys = NORMALRETURN; /* assume this will be normal */
-
- /*
- * Set lwp_ap to point to the args, even if none are needed for this
- * system call. This is for the loadable-syscall case where the
- * number of args won't be known until the system call is loaded, and
- * also maintains a non-NULL lwp_ap setup for get_syscall_args(). Note
- * that lwp_ap MUST be set to a non-NULL value _BEFORE_ t_sysnum is
- * set to non-zero; otherwise get_syscall_args(), seeing a non-zero
- * t_sysnum for this thread, will charge ahead and dereference lwp_ap.
- */
- lwp->lwp_ap = argp; /* for get_syscall_args */
-
- code = rp->r_r0;
- t->t_sysnum = (short)code;
- callp = code >= NSYSCALL ? &nosys_ent : se + code;
-
- if ((t->t_pre_sys | syscalltrace) != 0) {
- error = pre_syscall();
-
- /*
- * pre_syscall() has taken care so that lwp_ap is current;
- * it either points to syscall-entry-saved amd64 regs,
- * or it points to lwp_arg[], which has been re-copied from
- * the ia32 ustack, but either way, it's a current copy after
- * /proc has possibly mucked with the syscall args.
- */
-
- if (error)
- return (&sysent_err); /* use dummy handler */
- }
-
- /*
- * Fetch the system call arguments to the kernel stack copy used
- * for syscall handling.
- * Note: for loadable system calls the number of arguments required
- * may not be known at this point, and will be zero if the system call
- * was never loaded. Once the system call has been loaded, the number
- * of args is not allowed to be changed.
- */
- if ((nargs = (uint_t)callp->sy_narg) != 0 &&
- COPYIN_ARGS32(rp, argp, nargs)) {
- (void) set_errno(EFAULT);
- return (&sysent_err); /* use dummy handler */
- }
-
- return (callp); /* return sysent entry for caller */
-}
-
-void
-syscall_exit(kthread_t *t, long rval1, long rval2)
-{
- /*
- * Handle signals and other post-call events if necessary.
- */
- if ((t->t_post_sys_ast | syscalltrace) == 0) {
- klwp_t *lwp = ttolwp(t);
- struct regs *rp = lwptoregs(lwp);
-
- /*
- * Normal return.
- * Clear error indication and set return values.
- */
- rp->r_ps &= ~PS_C; /* reset carry bit */
- rp->r_r0 = rval1;
- rp->r_r1 = rval2;
- lwp->lwp_state = LWP_USER;
- } else {
- post_syscall(rval1, rval2);
- }
- t->t_sysnum = 0; /* invalidate args */
-}
-
-/*
- * Perform pre-system-call processing, including stopping for tracing,
- * auditing, etc.
- *
- * This routine is called only if the t_pre_sys flag is set. Any condition
- * requiring pre-syscall handling must set the t_pre_sys flag. If the
- * condition is persistent, this routine will repost t_pre_sys.
- */
-int
-pre_syscall()
-{
- kthread_t *t = curthread;
- unsigned code = t->t_sysnum;
- klwp_t *lwp = ttolwp(t);
- proc_t *p = ttoproc(t);
- int repost;
-
- t->t_pre_sys = repost = 0; /* clear pre-syscall processing flag */
-
- ASSERT(t->t_schedflag & TS_DONT_SWAP);
-
-#if defined(DEBUG)
- /*
- * On the i386 kernel, lwp_ap points at the piece of the thread
- * stack that we copy the users arguments into.
- *
- * On the amd64 kernel, the syscall arguments in the rdi..r9
- * registers should be pointed at by lwp_ap. If the args need to
- * be copied so that those registers can be changed without losing
- * the ability to get the args for /proc, they can be saved by
- * save_syscall_args(), and lwp_ap will be restored by post_syscall().
- */
- if (lwp_getdatamodel(lwp) == DATAMODEL_NATIVE) {
-#if defined(_LP64)
- ASSERT(lwp->lwp_ap == (long *)&lwptoregs(lwp)->r_rdi);
- } else {
-#endif
- ASSERT((caddr_t)lwp->lwp_ap > t->t_stkbase &&
- (caddr_t)lwp->lwp_ap < t->t_stk);
- }
-#endif /* DEBUG */
-
- /*
- * Make sure the thread is holding the latest credentials for the
- * process. The credentials in the process right now apply to this
- * thread for the entire system call.
- */
- if (t->t_cred != p->p_cred) {
- cred_t *oldcred = t->t_cred;
- /*
- * DTrace accesses t_cred in probe context. t_cred must
- * always be either NULL, or point to a valid, allocated cred
- * structure.
- */
- t->t_cred = crgetcred();
- crfree(oldcred);
- }
-
- /*
- * From the proc(4) manual page:
- * When entry to a system call is being traced, the traced process
- * stops after having begun the call to the system but before the
- * system call arguments have been fetched from the process.
- */
- if (PTOU(p)->u_systrap) {
- if (prismember(&PTOU(p)->u_entrymask, code)) {
- mutex_enter(&p->p_lock);
- /*
- * Recheck stop condition, now that lock is held.
- */
- if (PTOU(p)->u_systrap &&
- prismember(&PTOU(p)->u_entrymask, code)) {
- stop(PR_SYSENTRY, code);
-
- /*
- * /proc may have modified syscall args,
- * either in regs for amd64 or on ustack
- * for ia32. Either way, arrange to
- * copy them again, both for the syscall
- * handler and for other consumers in
- * post_syscall (like audit). Here, we
- * only do amd64, and just set lwp_ap
- * back to the kernel-entry stack copy;
- * the syscall ml code redoes
- * move-from-regs to set up for the
- * syscall handler after we return. For
- * ia32, save_syscall_args() below makes
- * an lwp_ap-accessible copy.
- */
-#if defined(_LP64)
- if (lwp_getdatamodel(lwp) == DATAMODEL_NATIVE) {
- lwp->lwp_argsaved = 0;
- lwp->lwp_ap =
- (long *)&lwptoregs(lwp)->r_rdi;
- }
-#endif
- }
- mutex_exit(&p->p_lock);
- }
- repost = 1;
- }
-
- /*
- * ia32 kernel, or ia32 proc on amd64 kernel: keep args in
- * lwp_arg for post-syscall processing, regardless of whether
- * they might have been changed in /proc above.
- */
-#if defined(_LP64)
- if (lwp_getdatamodel(lwp) != DATAMODEL_NATIVE)
-#endif
- (void) save_syscall_args();
-
- if (lwp->lwp_sysabort) {
- /*
- * lwp_sysabort may have been set via /proc while the process
- * was stopped on PR_SYSENTRY. If so, abort the system call.
- * Override any error from the copyin() of the arguments.
- */
- lwp->lwp_sysabort = 0;
- (void) set_errno(EINTR); /* forces post_sys */
- t->t_pre_sys = 1; /* repost anyway */
- return (1); /* don't do system call, return EINTR */
- }
-
- /*
- * begin auditing for this syscall if the c2audit module is loaded
- * and auditing is enabled
- */
- if (audit_active == C2AUDIT_LOADED) {
- uint32_t auditing = au_zone_getstate(NULL);
-
- if (auditing & AU_AUDIT_MASK) {
- int error;
- if (error = audit_start(T_SYSCALL, code, auditing, \
- 0, lwp)) {
- t->t_pre_sys = 1; /* repost anyway */
- (void) set_errno(error);
- return (1);
- }
- repost = 1;
- }
- }
-
-#ifndef NPROBE
- /* Kernel probe */
- if (tnf_tracing_active) {
- TNF_PROBE_1(syscall_start, "syscall thread", /* CSTYLED */,
- tnf_sysnum, sysnum, t->t_sysnum);
- t->t_post_sys = 1; /* make sure post_syscall runs */
- repost = 1;
- }
-#endif /* NPROBE */
-
-#ifdef SYSCALLTRACE
- if (syscalltrace) {
- int i;
- long *ap;
- char *cp;
- char *sysname;
- struct sysent *callp;
-
- if (code >= NSYSCALL)
- callp = &nosys_ent; /* nosys has no args */
- else
- callp = LWP_GETSYSENT(lwp) + code;
- (void) save_syscall_args();
- mutex_enter(&systrace_lock);
- printf("%d: ", p->p_pid);
- if (code >= NSYSCALL) {
- printf("0x%x", code);
- } else {
- sysname = mod_getsysname(code);
- printf("%s[0x%x/0x%p]", sysname == NULL ? "NULL" :
- sysname, code, callp->sy_callc);
- }
- cp = "(";
- for (i = 0, ap = lwp->lwp_ap; i < callp->sy_narg; i++, ap++) {
- printf("%s%lx", cp, *ap);
- cp = ", ";
- }
- if (i)
- printf(")");
- printf(" %s id=0x%p\n", PTOU(p)->u_comm, curthread);
- mutex_exit(&systrace_lock);
- }
-#endif /* SYSCALLTRACE */
-
- /*
- * If there was a continuing reason for pre-syscall processing,
- * set the t_pre_sys flag for the next system call.
- */
- if (repost)
- t->t_pre_sys = 1;
- lwp->lwp_error = 0; /* for old drivers */
- lwp->lwp_badpriv = PRIV_NONE;
- return (0);
-}
-
-
-/*
- * Post-syscall processing. Perform abnormal system call completion
- * actions such as /proc tracing, profiling, signals, preemption, etc.
- *
- * This routine is called only if t_post_sys, t_sig_check, or t_astflag is set.
- * Any condition requiring pre-syscall handling must set one of these.
- * If the condition is persistent, this routine will repost t_post_sys.
- */
-void
-post_syscall(long rval1, long rval2)
-{
- kthread_t *t = curthread;
- klwp_t *lwp = ttolwp(t);
- proc_t *p = ttoproc(t);
- struct regs *rp = lwptoregs(lwp);
- uint_t error;
- uint_t code = t->t_sysnum;
- int repost = 0;
- int proc_stop = 0; /* non-zero if stopping */
- int sigprof = 0; /* non-zero if sending SIGPROF */
-
- t->t_post_sys = 0;
-
- error = lwp->lwp_errno;
-
- /*
- * Code can be zero if this is a new LWP returning after a forkall(),
- * other than the one which matches the one in the parent which called
- * forkall(). In these LWPs, skip most of post-syscall activity.
- */
- if (code == 0)
- goto sig_check;
- /*
- * If the trace flag is set, mark the lwp to take a single-step trap
- * on return to user level (below). The x86 lcall interface and
- * sysenter has already done this, and turned off the flag, but
- * amd64 syscall interface has not.
- */
- if (rp->r_ps & PS_T) {
- lwp->lwp_pcb.pcb_flags |= DEBUG_PENDING;
- rp->r_ps &= ~PS_T;
- aston(curthread);
- }
-
- /* put out audit record for this syscall */
- if (AU_AUDITING()) {
- rval_t rval;
-
- /* XX64 -- truncation of 64-bit return values? */
- rval.r_val1 = (int)rval1;
- rval.r_val2 = (int)rval2;
- audit_finish(T_SYSCALL, code, error, &rval);
- repost = 1;
- }
-
- if (curthread->t_pdmsg != NULL) {
- char *m = curthread->t_pdmsg;
-
- uprintf("%s", m);
- kmem_free(m, strlen(m) + 1);
- curthread->t_pdmsg = NULL;
- }
-
- /*
- * If we're going to stop for /proc tracing, set the flag and
- * save the arguments so that the return values don't smash them.
- */
- if (PTOU(p)->u_systrap) {
- if (prismember(&PTOU(p)->u_exitmask, code)) {
- if (lwp_getdatamodel(lwp) == DATAMODEL_LP64)
- (void) save_syscall_args();
- proc_stop = 1;
- }
- repost = 1;
- }
-
- /*
- * Similarly check to see if SIGPROF might be sent.
- */
- if (curthread->t_rprof != NULL &&
- curthread->t_rprof->rp_anystate != 0) {
- if (lwp_getdatamodel(lwp) == DATAMODEL_LP64)
- (void) save_syscall_args();
- sigprof = 1;
- }
-
- if (lwp->lwp_eosys == NORMALRETURN) {
- if (error == 0) {
-#ifdef SYSCALLTRACE
- if (syscalltrace) {
- mutex_enter(&systrace_lock);
- printf(
- "%d: r_val1=0x%lx, r_val2=0x%lx, id 0x%p\n",
- p->p_pid, rval1, rval2, curthread);
- mutex_exit(&systrace_lock);
- }
-#endif /* SYSCALLTRACE */
- rp->r_ps &= ~PS_C;
- rp->r_r0 = rval1;
- rp->r_r1 = rval2;
- } else {
- int sig;
-#ifdef SYSCALLTRACE
- if (syscalltrace) {
- mutex_enter(&systrace_lock);
- printf("%d: error=%d, id 0x%p\n",
- p->p_pid, error, curthread);
- mutex_exit(&systrace_lock);
- }
-#endif /* SYSCALLTRACE */
- if (error == EINTR && t->t_activefd.a_stale)
- error = EBADF;
- if (error == EINTR &&
- (sig = lwp->lwp_cursig) != 0 &&
- sigismember(&PTOU(p)->u_sigrestart, sig) &&
- PTOU(p)->u_signal[sig - 1] != SIG_DFL &&
- PTOU(p)->u_signal[sig - 1] != SIG_IGN)
- error = ERESTART;
- rp->r_r0 = error;
- rp->r_ps |= PS_C;
- }
- }
-
- /*
- * From the proc(4) manual page:
- * When exit from a system call is being traced, the traced process
- * stops on completion of the system call just prior to checking for
- * signals and returning to user level. At this point all return
- * values have been stored into the traced process's saved registers.
- */
- if (proc_stop) {
- mutex_enter(&p->p_lock);
- if (PTOU(p)->u_systrap &&
- prismember(&PTOU(p)->u_exitmask, code))
- stop(PR_SYSEXIT, code);
- mutex_exit(&p->p_lock);
- }
-
- /*
- * If we are the parent returning from a successful
- * vfork, wait for the child to exec or exit.
- * This code must be here and not in the bowels of the system
- * so that /proc can intercept exit from vfork in a timely way.
- */
- if (t->t_flag & T_VFPARENT) {
- ASSERT(code == SYS_vfork || code == SYS_forksys);
- ASSERT(rp->r_r1 == 0 && error == 0);
- vfwait((pid_t)rval1);
- t->t_flag &= ~T_VFPARENT;
- }
-
- /*
- * If profiling is active, bill the current PC in user-land
- * and keep reposting until profiling is disabled.
- */
- if (p->p_prof.pr_scale) {
- if (lwp->lwp_oweupc)
- profil_tick(rp->r_pc);
- repost = 1;
- }
-
-sig_check:
- /*
- * Reset flag for next time.
- * We must do this after stopping on PR_SYSEXIT
- * because /proc uses the information in lwp_eosys.
- */
- lwp->lwp_eosys = NORMALRETURN;
- clear_stale_fd();
- t->t_flag &= ~T_FORKALL;
-
- if (t->t_astflag | t->t_sig_check) {
- /*
- * Turn off the AST flag before checking all the conditions that
- * may have caused an AST. This flag is on whenever a signal or
- * unusual condition should be handled after the next trap or
- * syscall.
- */
- astoff(t);
- /*
- * If a single-step trap occurred on a syscall (see trap())
- * recognize it now. Do this before checking for signals
- * because deferred_singlestep_trap() may generate a SIGTRAP to
- * the LWP or may otherwise mark the LWP to call issig(FORREAL).
- */
- if (lwp->lwp_pcb.pcb_flags & DEBUG_PENDING)
- deferred_singlestep_trap((caddr_t)rp->r_pc);
-
- t->t_sig_check = 0;
-
- /*
- * The following check is legal for the following reasons:
- * 1) The thread we are checking, is ourselves, so there is
- * no way the proc can go away.
- * 2) The only time we need to be protected by the
- * lock is if the binding is changed.
- *
- * Note we will still take the lock and check the binding
- * if the condition was true without the lock held. This
- * prevents lock contention among threads owned by the
- * same proc.
- */
-
- if (curthread->t_proc_flag & TP_CHANGEBIND) {
- mutex_enter(&p->p_lock);
- if (curthread->t_proc_flag & TP_CHANGEBIND) {
- timer_lwpbind();
- curthread->t_proc_flag &= ~TP_CHANGEBIND;
- }
- mutex_exit(&p->p_lock);
- }
-
- /*
- * for kaio requests on the special kaio poll queue,
- * copyout their results to user memory.
- */
- if (p->p_aio)
- aio_cleanup(0);
- /*
- * If this LWP was asked to hold, call holdlwp(), which will
- * stop. holdlwps() sets this up and calls pokelwps() which
- * sets the AST flag.
- *
- * Also check TP_EXITLWP, since this is used by fresh new LWPs
- * through lwp_rtt(). That flag is set if the lwp_create(2)
- * syscall failed after creating the LWP.
- */
- if (ISHOLD(p) || (t->t_proc_flag & TP_EXITLWP))
- holdlwp();
-
- /*
- * All code that sets signals and makes ISSIG_PENDING
- * evaluate true must set t_sig_check afterwards.
- */
- if (ISSIG_PENDING(t, lwp, p)) {
- if (issig(FORREAL))
- psig();
- t->t_sig_check = 1; /* recheck next time */
- }
-
- if (sigprof) {
- int nargs = (code > 0 && code < NSYSCALL)?
- LWP_GETSYSENT(lwp)[code].sy_narg : 0;
- realsigprof(code, nargs, error);
- t->t_sig_check = 1; /* recheck next time */
- }
-
- /*
- * If a performance counter overflow interrupt was
- * delivered *during* the syscall, then re-enable the
- * AST so that we take a trip through trap() to cause
- * the SIGEMT to be delivered.
- */
- if (lwp->lwp_pcb.pcb_flags & CPC_OVERFLOW)
- aston(t);
-
- /*
- * /proc can't enable/disable the trace bit itself
- * because that could race with the call gate used by
- * system calls via "lcall". If that happened, an
- * invalid EFLAGS would result. prstep()/prnostep()
- * therefore schedule an AST for the purpose.
- */
- if (lwp->lwp_pcb.pcb_flags & REQUEST_STEP) {
- lwp->lwp_pcb.pcb_flags &= ~REQUEST_STEP;
- rp->r_ps |= PS_T;
- }
- if (lwp->lwp_pcb.pcb_flags & REQUEST_NOSTEP) {
- lwp->lwp_pcb.pcb_flags &= ~REQUEST_NOSTEP;
- rp->r_ps &= ~PS_T;
- }
- }
-
- lwp->lwp_errno = 0; /* clear error for next time */
-
-#ifndef NPROBE
- /* Kernel probe */
- if (tnf_tracing_active) {
- TNF_PROBE_3(syscall_end, "syscall thread", /* CSTYLED */,
- tnf_long, rval1, rval1,
- tnf_long, rval2, rval2,
- tnf_long, errno, (long)error);
- repost = 1;
- }
-#endif /* NPROBE */
-
- /*
- * Set state to LWP_USER here so preempt won't give us a kernel
- * priority if it occurs after this point. Call CL_TRAPRET() to
- * restore the user-level priority.
- *
- * It is important that no locks (other than spinlocks) be entered
- * after this point before returning to user mode (unless lwp_state
- * is set back to LWP_SYS).
- *
- * XXX Sampled times past this point are charged to the user.
- */
- lwp->lwp_state = LWP_USER;
-
- if (t->t_trapret) {
- t->t_trapret = 0;
- thread_lock(t);
- CL_TRAPRET(t);
- thread_unlock(t);
- }
- if (CPU->cpu_runrun || t->t_schedflag & TS_ANYWAITQ)
- preempt();
- prunstop();
-
- lwp->lwp_errno = 0; /* clear error for next time */
-
- /*
- * The thread lock must be held in order to clear sysnum and reset
- * lwp_ap atomically with respect to other threads in the system that
- * may be looking at the args via lwp_ap from get_syscall_args().
- */
-
- thread_lock(t);
- t->t_sysnum = 0; /* no longer in a system call */
-
- if (lwp_getdatamodel(lwp) == DATAMODEL_NATIVE) {
-#if defined(_LP64)
- /*
- * In case the args were copied to the lwp, reset the
- * pointer so the next syscall will have the right
- * lwp_ap pointer.
- */
- lwp->lwp_ap = (long *)&rp->r_rdi;
- } else {
-#endif
- lwp->lwp_ap = NULL; /* reset on every syscall entry */
- }
- thread_unlock(t);
-
- lwp->lwp_argsaved = 0;
-
- /*
- * If there was a continuing reason for post-syscall processing,
- * set the t_post_sys flag for the next system call.
- */
- if (repost)
- t->t_post_sys = 1;
-
- /*
- * If there is a ustack registered for this lwp, and the stack rlimit
- * has been altered, read in the ustack. If the saved stack rlimit
- * matches the bounds of the ustack, update the ustack to reflect
- * the new rlimit. If the new stack rlimit is RLIM_INFINITY, disable
- * stack checking by setting the size to 0.
- */
- if (lwp->lwp_ustack != 0 && lwp->lwp_old_stk_ctl != 0) {
- rlim64_t new_size;
- caddr_t top;
- stack_t stk;
- struct rlimit64 rl;
-
- mutex_enter(&p->p_lock);
- new_size = p->p_stk_ctl;
- top = p->p_usrstack;
- (void) rctl_rlimit_get(rctlproc_legacy[RLIMIT_STACK], p, &rl);
- mutex_exit(&p->p_lock);
-
- if (rl.rlim_cur == RLIM64_INFINITY)
- new_size = 0;
-
- if (copyin((stack_t *)lwp->lwp_ustack, &stk,
- sizeof (stack_t)) == 0 &&
- (stk.ss_size == lwp->lwp_old_stk_ctl ||
- stk.ss_size == 0) &&
- stk.ss_sp == top - stk.ss_size) {
- stk.ss_sp = (void *)((uintptr_t)stk.ss_sp +
- stk.ss_size - (uintptr_t)new_size);
- stk.ss_size = new_size;
-
- (void) copyout(&stk, (stack_t *)lwp->lwp_ustack,
- sizeof (stack_t));
- }
-
- lwp->lwp_old_stk_ctl = 0;
- }
-}
-
-/*
- * Called from post_syscall() when a deferred singlestep is to be taken.
- */
-void
-deferred_singlestep_trap(caddr_t pc)
-{
- proc_t *p = ttoproc(curthread);
- klwp_t *lwp = ttolwp(curthread);
- pcb_t *pcb = &lwp->lwp_pcb;
- uint_t fault = 0;
- k_siginfo_t siginfo;
-
- bzero(&siginfo, sizeof (siginfo));
-
- /*
- * If both NORMAL_STEP and WATCH_STEP are in
- * effect, give precedence to WATCH_STEP.
- * If neither is set, user must have set the
- * PS_T bit in %efl; treat this as NORMAL_STEP.
- */
- if ((fault = undo_watch_step(&siginfo)) == 0 &&
- ((pcb->pcb_flags & NORMAL_STEP) ||
- !(pcb->pcb_flags & WATCH_STEP))) {
- siginfo.si_signo = SIGTRAP;
- siginfo.si_code = TRAP_TRACE;
- siginfo.si_addr = pc;
- fault = FLTTRACE;
- }
- pcb->pcb_flags &= ~(DEBUG_PENDING|NORMAL_STEP|WATCH_STEP);
-
- if (fault) {
- /*
- * Remember the fault and fault adddress
- * for real-time (SIGPROF) profiling.
- */
- lwp->lwp_lastfault = fault;
- lwp->lwp_lastfaddr = siginfo.si_addr;
- /*
- * If a debugger has declared this fault to be an
- * event of interest, stop the lwp. Otherwise just
- * deliver the associated signal.
- */
- if (prismember(&p->p_fltmask, fault) &&
- stop_on_fault(fault, &siginfo) == 0)
- siginfo.si_signo = 0;
- }
-
- if (siginfo.si_signo)
- trapsig(&siginfo, 1);
-}
-
-/*
- * nonexistent system call-- signal lwp (may want to handle it)
- * flag error if lwp won't see signal immediately
- */
-int64_t
-nosys(void)
-{
- tsignal(curthread, SIGSYS);
- return (set_errno(ENOSYS));
-}
-
-int
-nosys32(void)
-{
- return (nosys());
-}
-
-/*
- * Execute a 32-bit system call on behalf of the current thread.
- */
-void
-dosyscall(void)
-{
- /*
- * Need space on the stack to store syscall arguments.
- */
- long syscall_args[MAXSYSARGS];
- struct sysent *se;
- int64_t ret;
-
- syscall_mstate(LMS_TRAP, LMS_SYSTEM);
-
- ASSERT(curproc->p_model == DATAMODEL_ILP32);
-
- CPU_STATS_ENTER_K();
- CPU_STATS_ADDQ(CPU, sys, syscall, 1);
- CPU_STATS_EXIT_K();
-
- se = syscall_entry(curthread, syscall_args);
-
- /*
- * syscall_entry() copied all 8 arguments into syscall_args.
- */
- ret = se->sy_callc(syscall_args[0], syscall_args[1], syscall_args[2],
- syscall_args[3], syscall_args[4], syscall_args[5], syscall_args[6],
- syscall_args[7]);
-
- syscall_exit(curthread, (int)ret & 0xffffffffu, (int)(ret >> 32));
- syscall_mstate(LMS_SYSTEM, LMS_TRAP);
-}
-
-/*
- * Get the arguments to the current system call. See comment atop
- * save_syscall_args() regarding lwp_ap usage.
- */
-
-uint_t
-get_syscall_args(klwp_t *lwp, long *argp, int *nargsp)
-{
- kthread_t *t = lwptot(lwp);
- ulong_t mask = 0xfffffffful;
- uint_t code;
- long *ap;
- int nargs;
-
-#if defined(_LP64)
- if (lwp_getdatamodel(lwp) == DATAMODEL_LP64)
- mask = 0xfffffffffffffffful;
-#endif
-
- /*
- * The thread lock must be held while looking at the arguments to ensure
- * they don't go away via post_syscall().
- * get_syscall_args() is the only routine to read them which is callable
- * outside the LWP in question and hence the only one that must be
- * synchronized in this manner.
- */
- thread_lock(t);
-
- code = t->t_sysnum;
- ap = lwp->lwp_ap;
-
- thread_unlock(t);
-
- if (code != 0 && code < NSYSCALL) {
- nargs = LWP_GETSYSENT(lwp)[code].sy_narg;
-
- ASSERT(nargs <= MAXSYSARGS);
-
- *nargsp = nargs;
- while (nargs-- > 0)
- *argp++ = *ap++ & mask;
- } else {
- *nargsp = 0;
- }
-
- return (code);
-}
-
-#ifdef _SYSCALL32_IMPL
-/*
- * Get the arguments to the current 32-bit system call.
- */
-uint_t
-get_syscall32_args(klwp_t *lwp, int *argp, int *nargsp)
-{
- long args[MAXSYSARGS];
- uint_t i, code;
-
- code = get_syscall_args(lwp, args, nargsp);
-
- for (i = 0; i != *nargsp; i++)
- *argp++ = (int)args[i];
- return (code);
-}
-#endif
-
-/*
- * Save the system call arguments in a safe place.
- *
- * On the i386 kernel:
- *
- * Copy the users args prior to changing the stack or stack pointer.
- * This is so /proc will be able to get a valid copy of the
- * args from the user stack even after the user stack has been changed.
- * Note that the kernel stack copy of the args may also have been
- * changed by a system call handler which takes C-style arguments.
- *
- * Note that this may be called by stop() from trap(). In that case
- * t_sysnum will be zero (syscall_exit clears it), so no args will be
- * copied.
- *
- * On the amd64 kernel:
- *
- * For 64-bit applications, lwp->lwp_ap normally points to %rdi..%r9
- * in the reg structure. If the user is going to change the argument
- * registers, rax, or the stack and might want to get the args (for
- * /proc tracing), it must copy the args elsewhere via save_syscall_args().
- *
- * For 32-bit applications, lwp->lwp_ap normally points to a copy of
- * the system call arguments on the kernel stack made from the user
- * stack. Copy the args prior to change the stack or stack pointer.
- * This is so /proc will be able to get a valid copy of the args
- * from the user stack even after that stack has been changed.
- *
- * This may be called from stop() even when we're not in a system call.
- * Since there's no easy way to tell, this must be safe (not panic).
- * If the copyins get data faults, return non-zero.
- */
-int
-save_syscall_args()
-{
- kthread_t *t = curthread;
- klwp_t *lwp = ttolwp(t);
- uint_t code = t->t_sysnum;
- uint_t nargs;
-
- if (lwp->lwp_argsaved || code == 0)
- return (0); /* args already saved or not needed */
-
- if (code >= NSYSCALL) {
- nargs = 0; /* illegal syscall */
- } else {
- struct sysent *se = LWP_GETSYSENT(lwp);
- struct sysent *callp = se + code;
-
- nargs = callp->sy_narg;
- if (LOADABLE_SYSCALL(callp) && nargs == 0) {
- krwlock_t *module_lock;
-
- /*
- * Find out how many arguments the system
- * call uses.
- *
- * We have the property that loaded syscalls
- * never change the number of arguments they
- * use after they've been loaded once. This
- * allows us to stop for /proc tracing without
- * holding the module lock.
- * /proc is assured that sy_narg is valid.
- */
- module_lock = lock_syscall(se, code);
- nargs = callp->sy_narg;
- rw_exit(module_lock);
- }
- }
-
- /*
- * Fetch the system call arguments.
- */
- if (nargs == 0)
- goto out;
-
- ASSERT(nargs <= MAXSYSARGS);
-
- if (lwp_getdatamodel(lwp) == DATAMODEL_NATIVE) {
-#if defined(_LP64)
- struct regs *rp = lwptoregs(lwp);
-
- lwp->lwp_arg[0] = rp->r_rdi;
- lwp->lwp_arg[1] = rp->r_rsi;
- lwp->lwp_arg[2] = rp->r_rdx;
- lwp->lwp_arg[3] = rp->r_rcx;
- lwp->lwp_arg[4] = rp->r_r8;
- lwp->lwp_arg[5] = rp->r_r9;
- if (nargs > 6 && copyin_args(rp, &lwp->lwp_arg[6], nargs - 6))
- return (-1);
- } else {
-#endif
- if (COPYIN_ARGS32(lwptoregs(lwp), lwp->lwp_arg, nargs))
- return (-1);
- }
-out:
- lwp->lwp_ap = lwp->lwp_arg;
- lwp->lwp_argsaved = 1;
- t->t_post_sys = 1; /* so lwp_ap will be reset */
- return (0);
-}
-
-void
-reset_syscall_args(void)
-{
- ttolwp(curthread)->lwp_argsaved = 0;
-}
-
-/*
- * Call a system call which takes a pointer to the user args struct and
- * a pointer to the return values. This is a bit slower than the standard
- * C arg-passing method in some cases.
- */
-int64_t
-syscall_ap(void)
-{
- uint_t error;
- struct sysent *callp;
- rval_t rval;
- kthread_t *t = curthread;
- klwp_t *lwp = ttolwp(t);
- struct regs *rp = lwptoregs(lwp);
-
- callp = LWP_GETSYSENT(lwp) + t->t_sysnum;
-
- /*
- * If the arguments don't fit in registers %rdi-%r9, make sure they
- * have been copied to the lwp_arg array.
- */
- if (callp->sy_narg > 6 && save_syscall_args())
- return ((int64_t)set_errno(EFAULT));
-
- rval.r_val1 = 0;
- rval.r_val2 = rp->r_r1;
- lwp->lwp_error = 0; /* for old drivers */
- error = (*(callp->sy_call))(lwp->lwp_ap, &rval);
- if (error)
- return ((longlong_t)set_errno(error));
- return (rval.r_vals);
-}
-
-/*
- * Load system call module.
- * Returns with pointer to held read lock for module.
- */
-static krwlock_t *
-lock_syscall(struct sysent *table, uint_t code)
-{
- krwlock_t *module_lock;
- struct modctl *modp;
- int id;
- struct sysent *callp;
-
- callp = table + code;
- module_lock = callp->sy_lock;
-
- /*
- * Optimization to only call modload if we don't have a loaded
- * syscall.
- */
- rw_enter(module_lock, RW_READER);
- if (LOADED_SYSCALL(callp))
- return (module_lock);
- rw_exit(module_lock);
-
- for (;;) {
- if ((id = modload("sys", syscallnames[code])) == -1)
- break;
-
- /*
- * If we loaded successfully at least once, the modctl
- * will still be valid, so we try to grab it by filename.
- * If this call fails, it's because the mod_filename
- * was changed after the call to modload() (mod_hold_by_name()
- * is the likely culprit). We can safely just take
- * another lap if this is the case; the modload() will
- * change the mod_filename back to one by which we can
- * find the modctl.
- */
- modp = mod_find_by_filename("sys", syscallnames[code]);
-
- if (modp == NULL)
- continue;
-
- mutex_enter(&mod_lock);
-
- if (!modp->mod_installed) {
- mutex_exit(&mod_lock);
- continue;
- }
- break;
- }
- rw_enter(module_lock, RW_READER);
-
- if (id != -1)
- mutex_exit(&mod_lock);
-
- return (module_lock);
-}
-
-/*
- * Loadable syscall support.
- * If needed, load the module, then reserve it by holding a read
- * lock for the duration of the call.
- * Later, if the syscall is not unloadable, it could patch the vector.
- */
-/*ARGSUSED*/
-int64_t
-loadable_syscall(
- long a0, long a1, long a2, long a3,
- long a4, long a5, long a6, long a7)
-{
- klwp_t *lwp = ttolwp(curthread);
- int64_t rval;
- struct sysent *callp;
- struct sysent *se = LWP_GETSYSENT(lwp);
- krwlock_t *module_lock;
- int code, error = 0;
-
- code = curthread->t_sysnum;
- callp = se + code;
-
- /*
- * Try to autoload the system call if necessary
- */
- module_lock = lock_syscall(se, code);
-
- /*
- * we've locked either the loaded syscall or nosys
- */
-
- if (lwp_getdatamodel(lwp) == DATAMODEL_NATIVE) {
-#if defined(_LP64)
- if (callp->sy_flags & SE_ARGC) {
- rval = (int64_t)(*callp->sy_call)(a0, a1, a2, a3,
- a4, a5);
- } else {
- rval = syscall_ap();
- }
- } else {
-#endif
- /*
- * Now that it's loaded, make sure enough args were copied.
- */
- if (COPYIN_ARGS32(lwptoregs(lwp), lwp->lwp_ap, callp->sy_narg))
- error = EFAULT;
- if (error) {
- rval = set_errno(error);
- } else if (callp->sy_flags & SE_ARGC) {
- rval = (int64_t)(*callp->sy_call)(lwp->lwp_ap[0],
- lwp->lwp_ap[1], lwp->lwp_ap[2], lwp->lwp_ap[3],
- lwp->lwp_ap[4], lwp->lwp_ap[5]);
- } else {
- rval = syscall_ap();
- }
- }
-
- rw_exit(module_lock);
- return (rval);
-}
-
-/*
- * Indirect syscall handled in libc on x86 architectures
- */
-int64_t
-indir()
-{
- return (nosys());
-}
-
-/*
- * set_errno - set an error return from the current system call.
- * This could be a macro.
- * This returns the value it is passed, so that the caller can
- * use tail-recursion-elimination and do return (set_errno(ERRNO));
- */
-uint_t
-set_errno(uint_t error)
-{
- ASSERT(error != 0); /* must not be used to clear errno */
-
- curthread->t_post_sys = 1; /* have post_syscall do error return */
- return (ttolwp(curthread)->lwp_errno = error);
-}
-
-/*
- * set_proc_pre_sys - Set pre-syscall processing for entire process.
- */
-void
-set_proc_pre_sys(proc_t *p)
-{
- kthread_t *t;
- kthread_t *first;
-
- ASSERT(MUTEX_HELD(&p->p_lock));
-
- t = first = p->p_tlist;
- do {
- t->t_pre_sys = 1;
- } while ((t = t->t_forw) != first);
-}
-
-/*
- * set_proc_post_sys - Set post-syscall processing for entire process.
- */
-void
-set_proc_post_sys(proc_t *p)
-{
- kthread_t *t;
- kthread_t *first;
-
- ASSERT(MUTEX_HELD(&p->p_lock));
-
- t = first = p->p_tlist;
- do {
- t->t_post_sys = 1;
- } while ((t = t->t_forw) != first);
-}
-
-/*
- * set_proc_sys - Set pre- and post-syscall processing for entire process.
- */
-void
-set_proc_sys(proc_t *p)
-{
- kthread_t *t;
- kthread_t *first;
-
- ASSERT(MUTEX_HELD(&p->p_lock));
-
- t = first = p->p_tlist;
- do {
- t->t_pre_sys = 1;
- t->t_post_sys = 1;
- } while ((t = t->t_forw) != first);
-}
-
-/*
- * set_all_proc_sys - set pre- and post-syscall processing flags for all
- * user processes.
- *
- * This is needed when auditing, tracing, or other facilities which affect
- * all processes are turned on.
- */
-void
-set_all_proc_sys()
-{
- kthread_t *t;
- kthread_t *first;
-
- mutex_enter(&pidlock);
- t = first = curthread;
- do {
- t->t_pre_sys = 1;
- t->t_post_sys = 1;
- } while ((t = t->t_next) != first);
- mutex_exit(&pidlock);
-}
-
-/*
- * set_all_zone_usr_proc_sys - set pre- and post-syscall processing flags for
- * all user processes running in the zone of the current process
- *
- * This is needed when auditing, tracing, or other facilities which affect
- * all processes are turned on.
- */
-void
-set_all_zone_usr_proc_sys(zoneid_t zoneid)
-{
- proc_t *p;
- kthread_t *t;
-
- mutex_enter(&pidlock);
- for (p = practive; p != NULL; p = p->p_next) {
- /* skip kernel and incomplete processes */
- if (p->p_exec == NULLVP || p->p_as == &kas ||
- p->p_stat == SIDL || p->p_stat == SZOMB ||
- (p->p_flag & (SSYS | SEXITING | SEXITLWPS)))
- continue;
- /*
- * Only processes in the given zone (eventually in
- * all zones) are taken into account
- */
- if (zoneid == ALL_ZONES || p->p_zone->zone_id == zoneid) {
- mutex_enter(&p->p_lock);
- if ((t = p->p_tlist) == NULL) {
- mutex_exit(&p->p_lock);
- continue;
- }
- /*
- * Set pre- and post-syscall processing flags
- * for all threads of the process
- */
- do {
- t->t_pre_sys = 1;
- t->t_post_sys = 1;
- } while (p->p_tlist != (t = t->t_forw));
- mutex_exit(&p->p_lock);
- }
- }
- mutex_exit(&pidlock);
-}
-
-/*
- * set_proc_ast - Set asynchronous service trap (AST) flag for all
- * threads in process.
- */
-void
-set_proc_ast(proc_t *p)
-{
- kthread_t *t;
- kthread_t *first;
-
- ASSERT(MUTEX_HELD(&p->p_lock));
-
- t = first = p->p_tlist;
- do {
- aston(t);
- } while ((t = t->t_forw) != first);
-}
diff --git a/usr/src/uts/intel/ia32/os/sysi86.c b/usr/src/uts/intel/ia32/os/sysi86.c
deleted file mode 100644
index b107afddfb..0000000000
--- a/usr/src/uts/intel/ia32/os/sysi86.c
+++ /dev/null
@@ -1,850 +0,0 @@
-/*
- * CDDL HEADER START
- *
- * The contents of this file are subject to the terms of the
- * Common Development and Distribution License (the "License").
- * You may not use this file except in compliance with the License.
- *
- * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
- * or http://www.opensolaris.org/os/licensing.
- * See the License for the specific language governing permissions
- * and limitations under the License.
- *
- * When distributing Covered Code, include this CDDL HEADER in each
- * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
- * If applicable, add the following below this CDDL HEADER, with the
- * fields enclosed by brackets "[]" replaced with your own identifying
- * information: Portions Copyright [yyyy] [name of copyright owner]
- *
- * CDDL HEADER END
- */
-/*
- * Copyright (c) 1992, 2010, Oracle and/or its affiliates. All rights reserved.
- * Copyright 2021 Joyent, Inc.
- */
-
-/* Copyright (c) 1990, 1991 UNIX System Laboratories, Inc. */
-/* Copyright (c) 1984, 1986, 1987, 1988, 1989, 1990 AT&T */
-/* All Rights Reserved */
-
-/* Copyright (c) 1987, 1988 Microsoft Corporation */
-/* All Rights Reserved */
-
-#include <sys/param.h>
-#include <sys/types.h>
-#include <sys/sysmacros.h>
-#include <sys/systm.h>
-#include <sys/signal.h>
-#include <sys/errno.h>
-#include <sys/fault.h>
-#include <sys/syscall.h>
-#include <sys/cpuvar.h>
-#include <sys/sysi86.h>
-#include <sys/psw.h>
-#include <sys/cred.h>
-#include <sys/policy.h>
-#include <sys/thread.h>
-#include <sys/debug.h>
-#include <sys/ontrap.h>
-#include <sys/privregs.h>
-#include <sys/x86_archext.h>
-#include <sys/vmem.h>
-#include <sys/kmem.h>
-#include <sys/mman.h>
-#include <sys/archsystm.h>
-#include <vm/hat.h>
-#include <vm/as.h>
-#include <vm/seg.h>
-#include <vm/seg_kmem.h>
-#include <vm/faultcode.h>
-#include <sys/fp.h>
-#include <sys/cmn_err.h>
-#include <sys/segments.h>
-#include <sys/clock.h>
-#include <vm/hat_i86.h>
-#if defined(__xpv)
-#include <sys/hypervisor.h>
-#include <sys/note.h>
-#endif
-
-static void ldt_alloc(proc_t *, uint_t);
-static void ldt_free(proc_t *);
-static void ldt_dup(proc_t *, proc_t *);
-static void ldt_grow(proc_t *, uint_t);
-
-/*
- * sysi86 System Call
- */
-
-/* ARGSUSED */
-int
-sysi86(short cmd, uintptr_t arg1, uintptr_t arg2, uintptr_t arg3)
-{
- struct ssd ssd;
- int error = 0;
- int c;
- proc_t *pp = curproc;
-
- switch (cmd) {
-
- /*
- * The SI86V86 subsystem call of the SYSI86 system call
- * supports only one subcode -- V86SC_IOPL.
- */
- case SI86V86:
- if (arg1 == V86SC_IOPL) {
-#if defined(__xpv)
- struct ctxop *ctx;
-#endif
- struct regs *rp = lwptoregs(ttolwp(curthread));
- greg_t oldpl = rp->r_ps & PS_IOPL;
- greg_t newpl = arg2 & PS_IOPL;
-
- /*
- * Must be privileged to run this system call
- * if giving more io privilege.
- */
- if (newpl > oldpl && (error =
- secpolicy_sys_config(CRED(), B_FALSE)) != 0)
- return (set_errno(error));
-#if defined(__xpv)
- ctx = installctx_preallocate();
- kpreempt_disable();
- installctx(curthread, NULL, xen_disable_user_iopl,
- xen_enable_user_iopl, NULL, NULL,
- xen_disable_user_iopl, NULL, ctx);
- xen_enable_user_iopl();
- kpreempt_enable();
-#else
- rp->r_ps ^= oldpl ^ newpl;
-#endif
- } else
- error = EINVAL;
- break;
-
- /*
- * Set a segment descriptor
- */
- case SI86DSCR:
- /*
- * There are considerable problems here manipulating
- * resources shared by many running lwps. Get everyone
- * into a safe state before changing the LDT.
- */
- if (curthread != pp->p_agenttp && !holdlwps(SHOLDFORK1)) {
- error = EINTR;
- break;
- }
-
- if (get_udatamodel() == DATAMODEL_LP64) {
- error = EINVAL;
- break;
- }
-
- if (copyin((caddr_t)arg1, &ssd, sizeof (ssd)) < 0) {
- error = EFAULT;
- break;
- }
-
- error = setdscr(&ssd);
-
- mutex_enter(&pp->p_lock);
- if (curthread != pp->p_agenttp)
- continuelwps(pp);
- mutex_exit(&pp->p_lock);
- break;
-
- case SI86FPHW:
- c = fp_kind & 0xff;
- if (suword32((void *)arg1, c) == -1)
- error = EFAULT;
- break;
-
- case SI86FPSTART:
- /*
- * arg1 is the address of _fp_hw
- * arg2 is the desired x87 FCW value
- * arg3 is the desired SSE MXCSR value
- * a return value of one means SSE hardware, else none.
- */
- c = fp_kind & 0xff;
- if (suword32((void *)arg1, c) == -1) {
- error = EFAULT;
- break;
- }
- fpsetcw((uint16_t)arg2, (uint32_t)arg3);
- return ((fp_kind & __FP_SSE) ? 1 : 0);
-
- /* real time clock management commands */
-
- case WTODC:
- if ((error = secpolicy_settime(CRED())) == 0) {
- timestruc_t ts;
- mutex_enter(&tod_lock);
- gethrestime(&ts);
- tod_set(ts);
- mutex_exit(&tod_lock);
- }
- break;
-
-/* Give some timezone playing room */
-#define ONEWEEK (7 * 24 * 60 * 60)
-
- case SGMTL:
- /*
- * Called from 32 bit land, negative values
- * are not sign extended, so we do that here
- * by casting it to an int and back. We also
- * clamp the value to within reason and detect
- * when a 64 bit call overflows an int.
- */
- if ((error = secpolicy_settime(CRED())) == 0) {
- int newlag = (int)arg1;
-
-#ifdef _SYSCALL32_IMPL
- if (get_udatamodel() == DATAMODEL_NATIVE &&
- (long)newlag != (long)arg1) {
- error = EOVERFLOW;
- } else
-#endif
- if (newlag >= -ONEWEEK && newlag <= ONEWEEK)
- sgmtl(newlag);
- else
- error = EOVERFLOW;
- }
- break;
-
- case GGMTL:
- if (get_udatamodel() == DATAMODEL_NATIVE) {
- if (sulword((void *)arg1, ggmtl()) == -1)
- error = EFAULT;
-#ifdef _SYSCALL32_IMPL
- } else {
- time_t gmtl;
-
- if ((gmtl = ggmtl()) > INT32_MAX) {
- /*
- * Since gmt_lag can at most be
- * +/- 12 hours, something is
- * *seriously* messed up here.
- */
- error = EOVERFLOW;
- } else if (suword32((void *)arg1, (int32_t)gmtl) == -1)
- error = EFAULT;
-#endif
- }
- break;
-
- case RTCSYNC:
- if ((error = secpolicy_settime(CRED())) == 0)
- rtcsync();
- break;
-
- /* END OF real time clock management commands */
-
- default:
- error = EINVAL;
- break;
- }
- return (error == 0 ? 0 : set_errno(error));
-}
-
-void
-usd_to_ssd(user_desc_t *usd, struct ssd *ssd, selector_t sel)
-{
- ssd->bo = USEGD_GETBASE(usd);
- ssd->ls = USEGD_GETLIMIT(usd);
- ssd->sel = sel;
-
- /*
- * set type, dpl and present bits.
- */
- ssd->acc1 = usd->usd_type;
- ssd->acc1 |= usd->usd_dpl << 5;
- ssd->acc1 |= usd->usd_p << (5 + 2);
-
- /*
- * set avl, DB and granularity bits.
- */
- ssd->acc2 = usd->usd_avl;
-
- ssd->acc2 |= usd->usd_long << 1;
-
- ssd->acc2 |= usd->usd_def32 << (1 + 1);
- ssd->acc2 |= usd->usd_gran << (1 + 1 + 1);
-}
-
-static void
-ssd_to_usd(struct ssd *ssd, user_desc_t *usd)
-{
-
- ASSERT(bcmp(usd, &null_udesc, sizeof (*usd)) == 0);
-
- USEGD_SETBASE(usd, ssd->bo);
- USEGD_SETLIMIT(usd, ssd->ls);
-
- /*
- * Set type, dpl and present bits.
- *
- * Force the "accessed" bit to on so that we don't run afoul of
- * KPTI.
- */
- usd->usd_type = ssd->acc1 | SDT_A;
- usd->usd_dpl = ssd->acc1 >> 5;
- usd->usd_p = ssd->acc1 >> (5 + 2);
-
- ASSERT(usd->usd_type >= SDT_MEMRO);
- ASSERT(usd->usd_dpl == SEL_UPL);
-
- /*
- * 64-bit code selectors are never allowed in the LDT.
- * Reserved bit is always 0 on 32-bit systems.
- */
- usd->usd_long = 0;
-
- /*
- * set avl, DB and granularity bits.
- */
- usd->usd_avl = ssd->acc2;
- usd->usd_def32 = ssd->acc2 >> (1 + 1);
- usd->usd_gran = ssd->acc2 >> (1 + 1 + 1);
-}
-
-
-
-/*
- * Load LDT register with the current process's LDT.
- */
-static void
-ldt_load(void)
-{
-#if defined(__xpv)
- xen_set_ldt(curproc->p_ldt, curproc->p_ldtlimit + 1);
-#else
- size_t len;
- system_desc_t desc;
-
- /*
- * Before we can use the LDT on this CPU, we must install the LDT in the
- * user mapping table.
- */
- len = (curproc->p_ldtlimit + 1) * sizeof (user_desc_t);
- bcopy(curproc->p_ldt, CPU->cpu_m.mcpu_ldt, len);
- CPU->cpu_m.mcpu_ldt_len = len;
- set_syssegd(&desc, CPU->cpu_m.mcpu_ldt, len - 1, SDT_SYSLDT, SEL_KPL);
- *((system_desc_t *)&CPU->cpu_gdt[GDT_LDT]) = desc;
-
- wr_ldtr(ULDT_SEL);
-#endif
-}
-
-/*
- * Store a NULL selector in the LDTR. All subsequent illegal references to
- * the LDT will result in a #gp.
- */
-void
-ldt_unload(void)
-{
-#if defined(__xpv)
- xen_set_ldt(NULL, 0);
-#else
- *((system_desc_t *)&CPU->cpu_gdt[GDT_LDT]) = null_sdesc;
- wr_ldtr(0);
-
- bzero(CPU->cpu_m.mcpu_ldt, CPU->cpu_m.mcpu_ldt_len);
- CPU->cpu_m.mcpu_ldt_len = 0;
-#endif
-}
-
-/*ARGSUSED*/
-static void
-ldt_savectx(proc_t *p)
-{
- ASSERT(p->p_ldt != NULL);
- ASSERT(p == curproc);
-
- /*
- * The 64-bit kernel must be sure to clear any stale ldt
- * selectors when context switching away from a process that
- * has a private ldt. Consider the following example:
- *
- * Wine creats a ldt descriptor and points a segment register
- * to it.
- *
- * We then context switch away from wine lwp to kernel
- * thread and hit breakpoint in kernel with kmdb
- *
- * When we continue and resume from kmdb we will #gp
- * fault since kmdb will have saved the stale ldt selector
- * from wine and will try to restore it but we are no longer in
- * the context of the wine process and do not have our
- * ldtr register pointing to the private ldt.
- */
- reset_sregs();
-
- ldt_unload();
- cpu_fast_syscall_enable();
-}
-
-static void
-ldt_restorectx(proc_t *p)
-{
- ASSERT(p->p_ldt != NULL);
- ASSERT(p == curproc);
-
- ldt_load();
- cpu_fast_syscall_disable();
-}
-
-/*
- * At exec time, we need to clear up our LDT context and re-enable fast syscalls
- * for the new process image.
- *
- * The same is true for the other case, where we have:
- *
- * proc_exit()
- * ->exitpctx()->ldt_savectx()
- * ->freepctx()->ldt_freectx()
- *
- * Because pre-emption is not prevented between the two callbacks, we could have
- * come off CPU, and brought back LDT context when coming back on CPU via
- * ldt_restorectx().
- */
-/* ARGSUSED */
-static void
-ldt_freectx(proc_t *p, int isexec)
-{
- ASSERT(p->p_ldt != NULL);
- ASSERT(p == curproc);
-
- kpreempt_disable();
- ldt_free(p);
- cpu_fast_syscall_enable();
- kpreempt_enable();
-}
-
-/*
- * Install ctx op that ensures syscall/sysenter are disabled.
- * See comments below.
- *
- * When a thread with a private LDT forks, the new process
- * must have the LDT context ops installed.
- */
-/* ARGSUSED */
-static void
-ldt_installctx(proc_t *p, proc_t *cp)
-{
- proc_t *targ = p;
- kthread_t *t;
-
- /*
- * If this is a fork, operate on the child process.
- */
- if (cp != NULL) {
- targ = cp;
- ldt_dup(p, cp);
- }
-
- /*
- * The process context ops expect the target process as their argument.
- */
- ASSERT(removepctx(targ, targ, ldt_savectx, ldt_restorectx,
- ldt_installctx, ldt_savectx, ldt_freectx) == 0);
-
- installpctx(targ, targ, ldt_savectx, ldt_restorectx,
- ldt_installctx, ldt_savectx, ldt_freectx);
-
- /*
- * We've just disabled fast system call and return instructions; take
- * the slow path out to make sure we don't try to use one to return
- * back to user. We must set t_post_sys for every thread in the
- * process to make sure none of them escape out via fast return.
- */
-
- mutex_enter(&targ->p_lock);
- t = targ->p_tlist;
- do {
- t->t_post_sys = 1;
- } while ((t = t->t_forw) != targ->p_tlist);
- mutex_exit(&targ->p_lock);
-}
-
-int
-setdscr(struct ssd *ssd)
-{
- ushort_t seli; /* selector index */
- user_desc_t *ldp; /* descriptor pointer */
- user_desc_t ndesc; /* new descriptor */
- proc_t *pp = curproc;
- int rc = 0;
-
- /*
- * LDT segments: executable and data at DPL 3 only.
- */
- if (!SELISLDT(ssd->sel) || !SELISUPL(ssd->sel))
- return (EINVAL);
-
- /*
- * check the selector index.
- */
- seli = SELTOIDX(ssd->sel);
- if (seli >= MAXNLDT || seli < LDT_UDBASE)
- return (EINVAL);
-
- ndesc = null_udesc;
- mutex_enter(&pp->p_ldtlock);
-
- /*
- * If this is the first time for this process then setup a
- * private LDT for it.
- */
- if (pp->p_ldt == NULL) {
- ldt_alloc(pp, seli);
-
- /*
- * Now that this process has a private LDT, the use of
- * the syscall/sysret and sysenter/sysexit instructions
- * is forbidden for this processes because they destroy
- * the contents of %cs and %ss segment registers.
- *
- * Explicity disable them here and add a context handler
- * to the process. Note that disabling
- * them here means we can't use sysret or sysexit on
- * the way out of this system call - so we force this
- * thread to take the slow path (which doesn't make use
- * of sysenter or sysexit) back out.
- */
- kpreempt_disable();
- ldt_installctx(pp, NULL);
- cpu_fast_syscall_disable();
- ASSERT(curthread->t_post_sys != 0);
- kpreempt_enable();
-
- } else if (seli > pp->p_ldtlimit) {
- ASSERT(pp->p_pctx != NULL);
-
- /*
- * Increase size of ldt to include seli.
- */
- ldt_grow(pp, seli);
- }
-
- ASSERT(seli <= pp->p_ldtlimit);
- ldp = &pp->p_ldt[seli];
-
- /*
- * On the 64-bit kernel, this is where things get more subtle.
- * Recall that in the 64-bit kernel, when we enter the kernel we
- * deliberately -don't- reload the segment selectors we came in on
- * for %ds, %es, %fs or %gs. Messing with selectors is expensive,
- * and the underlying descriptors are essentially ignored by the
- * hardware in long mode - except for the base that we override with
- * the gsbase MSRs.
- *
- * However, there's one unfortunate issue with this rosy picture --
- * a descriptor that's not marked as 'present' will still generate
- * an #np when loading a segment register.
- *
- * Consider this case. An lwp creates a harmless LDT entry, points
- * one of it's segment registers at it, then tells the kernel (here)
- * to delete it. In the 32-bit kernel, the #np will happen on the
- * way back to userland where we reload the segment registers, and be
- * handled in kern_gpfault(). In the 64-bit kernel, the same thing
- * will happen in the normal case too. However, if we're trying to
- * use a debugger that wants to save and restore the segment registers,
- * and the debugger things that we have valid segment registers, we
- * have the problem that the debugger will try and restore the
- * segment register that points at the now 'not present' descriptor
- * and will take a #np right there.
- *
- * We should obviously fix the debugger to be paranoid about
- * -not- restoring segment registers that point to bad descriptors;
- * however we can prevent the problem here if we check to see if any
- * of the segment registers are still pointing at the thing we're
- * destroying; if they are, return an error instead. (That also seems
- * a lot better failure mode than SIGKILL and a core file
- * from kern_gpfault() too.)
- */
- if (SI86SSD_PRES(ssd) == 0) {
- kthread_t *t;
- int bad = 0;
-
- /*
- * Look carefully at the segment registers of every lwp
- * in the process (they're all stopped by our caller).
- * If we're about to invalidate a descriptor that's still
- * being referenced by *any* of them, return an error,
- * rather than having them #gp on their way out of the kernel.
- */
- ASSERT(pp->p_lwprcnt == 1);
-
- mutex_enter(&pp->p_lock);
- t = pp->p_tlist;
- do {
- klwp_t *lwp = ttolwp(t);
- struct regs *rp = lwp->lwp_regs;
- pcb_t *pcb = &lwp->lwp_pcb;
-
- if (ssd->sel == rp->r_cs || ssd->sel == rp->r_ss) {
- bad = 1;
- break;
- }
-
- if (PCB_NEED_UPDATE_SEGS(pcb)) {
- if (ssd->sel == pcb->pcb_ds ||
- ssd->sel == pcb->pcb_es ||
- ssd->sel == pcb->pcb_fs ||
- ssd->sel == pcb->pcb_gs) {
- bad = 1;
- break;
- }
- } else {
- if (ssd->sel == rp->r_ds ||
- ssd->sel == rp->r_es ||
- ssd->sel == rp->r_fs ||
- ssd->sel == rp->r_gs) {
- bad = 1;
- break;
- }
- }
-
- } while ((t = t->t_forw) != pp->p_tlist);
- mutex_exit(&pp->p_lock);
-
- if (bad) {
- mutex_exit(&pp->p_ldtlock);
- return (EBUSY);
- }
- }
-
- /*
- * If acc1 is zero, clear the descriptor (including the 'present' bit).
- * Make sure we update the CPU-private copy of the LDT.
- */
- if (ssd->acc1 == 0) {
- rc = ldt_update_segd(ldp, &null_udesc);
- kpreempt_disable();
- ldt_load();
- kpreempt_enable();
- mutex_exit(&pp->p_ldtlock);
- return (rc);
- }
-
- /*
- * Check segment type, allow segment not present and
- * only user DPL (3).
- */
- if (SI86SSD_DPL(ssd) != SEL_UPL) {
- mutex_exit(&pp->p_ldtlock);
- return (EINVAL);
- }
-
- /*
- * Do not allow 32-bit applications to create 64-bit mode code
- * segments.
- */
- if (SI86SSD_ISUSEG(ssd) && ((SI86SSD_TYPE(ssd) >> 3) & 1) == 1 &&
- SI86SSD_ISLONG(ssd)) {
- mutex_exit(&pp->p_ldtlock);
- return (EINVAL);
- }
-
- /*
- * Set up a code or data user segment descriptor, making sure to update
- * the CPU-private copy of the LDT.
- */
- if (SI86SSD_ISUSEG(ssd)) {
- ssd_to_usd(ssd, &ndesc);
- rc = ldt_update_segd(ldp, &ndesc);
- kpreempt_disable();
- ldt_load();
- kpreempt_enable();
- mutex_exit(&pp->p_ldtlock);
- return (rc);
- }
-
- mutex_exit(&pp->p_ldtlock);
- return (EINVAL);
-}
-
-/*
- * Allocate new LDT for process just large enough to contain seli. Note we
- * allocate and grow LDT in PAGESIZE chunks. We do this to simplify the
- * implementation and because on the hypervisor it's required, since the LDT
- * must live on pages that have PROT_WRITE removed and which are given to the
- * hypervisor.
- *
- * Note that we don't actually load the LDT into the current CPU here: it's done
- * later by our caller.
- */
-static void
-ldt_alloc(proc_t *pp, uint_t seli)
-{
- user_desc_t *ldt;
- size_t ldtsz;
- uint_t nsels;
-
- ASSERT(MUTEX_HELD(&pp->p_ldtlock));
- ASSERT(pp->p_ldt == NULL);
- ASSERT(pp->p_ldtlimit == 0);
-
- /*
- * Allocate new LDT just large enough to contain seli. The LDT must
- * always be allocated in units of pages for KPTI.
- */
- ldtsz = P2ROUNDUP((seli + 1) * sizeof (user_desc_t), PAGESIZE);
- nsels = ldtsz / sizeof (user_desc_t);
- ASSERT(nsels >= MINNLDT && nsels <= MAXNLDT);
-
- ldt = kmem_zalloc(ldtsz, KM_SLEEP);
- ASSERT(IS_P2ALIGNED(ldt, PAGESIZE));
-
-#if defined(__xpv)
- if (xen_ldt_setprot(ldt, ldtsz, PROT_READ))
- panic("ldt_alloc:xen_ldt_setprot(PROT_READ) failed");
-#endif
-
- pp->p_ldt = ldt;
- pp->p_ldtlimit = nsels - 1;
-}
-
-static void
-ldt_free(proc_t *pp)
-{
- user_desc_t *ldt;
- size_t ldtsz;
-
- ASSERT(pp->p_ldt != NULL);
-
- mutex_enter(&pp->p_ldtlock);
- ldt = pp->p_ldt;
- ldtsz = (pp->p_ldtlimit + 1) * sizeof (user_desc_t);
-
- ASSERT(IS_P2ALIGNED(ldtsz, PAGESIZE));
-
- pp->p_ldt = NULL;
- pp->p_ldtlimit = 0;
- mutex_exit(&pp->p_ldtlock);
-
- if (pp == curproc) {
- kpreempt_disable();
- ldt_unload();
- kpreempt_enable();
- }
-
-#if defined(__xpv)
- /*
- * We are not allowed to make the ldt writable until after
- * we tell the hypervisor to unload it.
- */
- if (xen_ldt_setprot(ldt, ldtsz, PROT_READ | PROT_WRITE))
- panic("ldt_free:xen_ldt_setprot(PROT_READ|PROT_WRITE) failed");
-#endif
-
- kmem_free(ldt, ldtsz);
-}
-
-/*
- * On fork copy new ldt for child.
- */
-static void
-ldt_dup(proc_t *pp, proc_t *cp)
-{
- size_t ldtsz;
-
- ASSERT(pp->p_ldt != NULL);
- ASSERT(cp != curproc);
-
- /*
- * I assume the parent's ldt can't increase since we're in a fork.
- */
- mutex_enter(&pp->p_ldtlock);
- mutex_enter(&cp->p_ldtlock);
-
- ldtsz = (pp->p_ldtlimit + 1) * sizeof (user_desc_t);
-
- ldt_alloc(cp, pp->p_ldtlimit);
-
-#if defined(__xpv)
- /*
- * Make child's ldt writable so it can be copied into from
- * parent's ldt. This works since ldt_alloc above did not load
- * the ldt since its for the child process. If we tried to make
- * an LDT writable that is loaded in hw the setprot operation
- * would fail.
- */
- if (xen_ldt_setprot(cp->p_ldt, ldtsz, PROT_READ | PROT_WRITE))
- panic("ldt_dup:xen_ldt_setprot(PROT_READ|PROT_WRITE) failed");
-#endif
-
- bcopy(pp->p_ldt, cp->p_ldt, ldtsz);
-
-#if defined(__xpv)
- if (xen_ldt_setprot(cp->p_ldt, ldtsz, PROT_READ))
- panic("ldt_dup:xen_ldt_setprot(PROT_READ) failed");
-#endif
- mutex_exit(&cp->p_ldtlock);
- mutex_exit(&pp->p_ldtlock);
-
-}
-
-/*
- * Note that we don't actually load the LDT into the current CPU here: it's done
- * later by our caller - unless we take an error. This works out because
- * ldt_load() does a copy of ->p_ldt instead of directly loading it into the GDT
- * (and therefore can't be using the freed old LDT), and by definition if the
- * new entry didn't pass validation, then the proc shouldn't be referencing an
- * entry in the extended region.
- */
-static void
-ldt_grow(proc_t *pp, uint_t seli)
-{
- user_desc_t *oldt, *nldt;
- uint_t nsels;
- size_t oldtsz, nldtsz;
-
- ASSERT(MUTEX_HELD(&pp->p_ldtlock));
- ASSERT(pp->p_ldt != NULL);
- ASSERT(pp->p_ldtlimit != 0);
-
- /*
- * Allocate larger LDT just large enough to contain seli. The LDT must
- * always be allocated in units of pages for KPTI.
- */
- nldtsz = P2ROUNDUP((seli + 1) * sizeof (user_desc_t), PAGESIZE);
- nsels = nldtsz / sizeof (user_desc_t);
- ASSERT(nsels >= MINNLDT && nsels <= MAXNLDT);
- ASSERT(nsels > pp->p_ldtlimit);
-
- oldt = pp->p_ldt;
- oldtsz = (pp->p_ldtlimit + 1) * sizeof (user_desc_t);
-
- nldt = kmem_zalloc(nldtsz, KM_SLEEP);
- ASSERT(IS_P2ALIGNED(nldt, PAGESIZE));
-
- bcopy(oldt, nldt, oldtsz);
-
- /*
- * unload old ldt.
- */
- kpreempt_disable();
- ldt_unload();
- kpreempt_enable();
-
-#if defined(__xpv)
-
- /*
- * Make old ldt writable and new ldt read only.
- */
- if (xen_ldt_setprot(oldt, oldtsz, PROT_READ | PROT_WRITE))
- panic("ldt_grow:xen_ldt_setprot(PROT_READ|PROT_WRITE) failed");
-
- if (xen_ldt_setprot(nldt, nldtsz, PROT_READ))
- panic("ldt_grow:xen_ldt_setprot(PROT_READ) failed");
-#endif
-
- pp->p_ldt = nldt;
- pp->p_ldtlimit = nsels - 1;
-
- kmem_free(oldt, oldtsz);
-}