summaryrefslogtreecommitdiff
path: root/usr/src/lib/libm/common/Q/expl.c
diff options
context:
space:
mode:
Diffstat (limited to 'usr/src/lib/libm/common/Q/expl.c')
-rw-r--r--usr/src/lib/libm/common/Q/expl.c126
1 files changed, 126 insertions, 0 deletions
diff --git a/usr/src/lib/libm/common/Q/expl.c b/usr/src/lib/libm/common/Q/expl.c
new file mode 100644
index 0000000000..92ace61d75
--- /dev/null
+++ b/usr/src/lib/libm/common/Q/expl.c
@@ -0,0 +1,126 @@
+/*
+ * CDDL HEADER START
+ *
+ * The contents of this file are subject to the terms of the
+ * Common Development and Distribution License (the "License").
+ * You may not use this file except in compliance with the License.
+ *
+ * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
+ * or http://www.opensolaris.org/os/licensing.
+ * See the License for the specific language governing permissions
+ * and limitations under the License.
+ *
+ * When distributing Covered Code, include this CDDL HEADER in each
+ * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
+ * If applicable, add the following below this CDDL HEADER, with the
+ * fields enclosed by brackets "[]" replaced with your own identifying
+ * information: Portions Copyright [yyyy] [name of copyright owner]
+ *
+ * CDDL HEADER END
+ */
+
+/*
+ * Copyright 2011 Nexenta Systems, Inc. All rights reserved.
+ */
+/*
+ * Copyright 2006 Sun Microsystems, Inc. All rights reserved.
+ * Use is subject to license terms.
+ */
+
+/*
+ * expl(x)
+ * Table driven method
+ * Written by K.C. Ng, November 1988.
+ * Algorithm :
+ * 1. Argument Reduction: given the input x, find r and integer k
+ * and j such that
+ * x = (32k+j)*ln2 + r, |r| <= (1/64)*ln2 .
+ *
+ * 2. expl(x) = 2^k * (2^(j/32) + 2^(j/32)*expm1(r))
+ * Note:
+ * a. expm1(r) = (2r)/(2-R), R = r - r^2*(t1 + t2*r^2)
+ * b. 2^(j/32) is represented as
+ * _TBL_expl_hi[j]+_TBL_expl_lo[j]
+ * where
+ * _TBL_expl_hi[j] = 2^(j/32) rounded
+ * _TBL_expl_lo[j] = 2^(j/32) - _TBL_expl_hi[j].
+ *
+ * Special cases:
+ * expl(INF) is INF, expl(NaN) is NaN;
+ * expl(-INF)= 0;
+ * for finite argument, only expl(0)=1 is exact.
+ *
+ * Accuracy:
+ * according to an error analysis, the error is always less than
+ * an ulp (unit in the last place).
+ *
+ * Misc. info.
+ * For 113 bit long double
+ * if x > 1.135652340629414394949193107797076342845e+4
+ * then expl(x) overflow;
+ * if x < -1.143346274333629787883724384345262150341e+4
+ * then expl(x) underflow
+ *
+ * Constants:
+ * Only decimal values are given. We assume that the compiler will convert
+ * from decimal to binary accurately enough to produce the correct
+ * hexadecimal values.
+ */
+
+#pragma weak expl = __expl
+
+#include "libm.h"
+
+extern const long double _TBL_expl_hi[], _TBL_expl_lo[];
+
+static const long double
+one = 1.0L,
+two = 2.0L,
+ln2_64 = 1.083042469624914545964425189778400898568e-2L,
+ovflthreshold = 1.135652340629414394949193107797076342845e+4L,
+unflthreshold = -1.143346274333629787883724384345262150341e+4L,
+invln2_32 = 4.616624130844682903551758979206054839765e+1L,
+ln2_32hi = 2.166084939249829091928849858592451515688e-2L,
+ln2_32lo = 5.209643502595475652782654157501186731779e-27L;
+
+/* rational approximation coeffs for [-(ln2)/64,(ln2)/64] */
+static const long double
+t1 = 1.666666666666666666666666666660876387437e-1L,
+t2 = -2.777777777777777777777707812093173478756e-3L,
+t3 = 6.613756613756613482074280932874221202424e-5L,
+t4 = -1.653439153392139954169609822742235851120e-6L,
+t5 = 4.175314851769539751387852116610973796053e-8L;
+
+long double
+expl(long double x) {
+ int *px = (int *) &x, ix, j, k, m;
+ long double t, r;
+
+ ix = px[0]; /* high word of x */
+ if (ix >= 0x7fff0000)
+ return (x + x); /* NaN of +inf */
+ if (((unsigned) ix) >= 0xffff0000)
+ return (-one / x); /* NaN or -inf */
+ if ((ix & 0x7fffffff) < 0x3fc30000) {
+ if ((int) x < 1)
+ return (one + x); /* |x|<2^-60 */
+ }
+ if (ix > 0) {
+ if (x > ovflthreshold)
+ return (scalbnl(x, 20000));
+ k = (int) (invln2_32 * (x + ln2_64));
+ } else {
+ if (x < unflthreshold)
+ return (scalbnl(-x, -40000));
+ k = (int) (invln2_32 * (x - ln2_64));
+ }
+ j = k&0x1f;
+ m = k>>5;
+ t = (long double) k;
+ x = (x - t * ln2_32hi) - t * ln2_32lo;
+ t = x * x;
+ r = (x - t * (t1 + t * (t2 + t * (t3 + t * (t4 + t * t5))))) - two;
+ x = _TBL_expl_hi[j] - ((_TBL_expl_hi[j] * (x + x)) / r -
+ _TBL_expl_lo[j]);
+ return (scalbnl(x, m));
+}