summaryrefslogtreecommitdiff
path: root/usr/src/lib/libm/common/Q/expm1l.c
diff options
context:
space:
mode:
Diffstat (limited to 'usr/src/lib/libm/common/Q/expm1l.c')
-rw-r--r--usr/src/lib/libm/common/Q/expm1l.c185
1 files changed, 185 insertions, 0 deletions
diff --git a/usr/src/lib/libm/common/Q/expm1l.c b/usr/src/lib/libm/common/Q/expm1l.c
new file mode 100644
index 0000000000..155acbdc54
--- /dev/null
+++ b/usr/src/lib/libm/common/Q/expm1l.c
@@ -0,0 +1,185 @@
+/*
+ * CDDL HEADER START
+ *
+ * The contents of this file are subject to the terms of the
+ * Common Development and Distribution License (the "License").
+ * You may not use this file except in compliance with the License.
+ *
+ * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
+ * or http://www.opensolaris.org/os/licensing.
+ * See the License for the specific language governing permissions
+ * and limitations under the License.
+ *
+ * When distributing Covered Code, include this CDDL HEADER in each
+ * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
+ * If applicable, add the following below this CDDL HEADER, with the
+ * fields enclosed by brackets "[]" replaced with your own identifying
+ * information: Portions Copyright [yyyy] [name of copyright owner]
+ *
+ * CDDL HEADER END
+ */
+
+/*
+ * Copyright 2011 Nexenta Systems, Inc. All rights reserved.
+ */
+/*
+ * Copyright 2006 Sun Microsystems, Inc. All rights reserved.
+ * Use is subject to license terms.
+ */
+
+#if defined(ELFOBJ)
+#pragma weak expm1l = __expm1l
+#endif
+#if !defined(__sparc)
+#error Unsupported architecture
+#endif
+
+/*
+ * expm1l(x)
+ *
+ * Table driven method
+ * Written by K.C. Ng, June 1995.
+ * Algorithm :
+ * 1. expm1(x) = x if x<2**-114
+ * 2. if |x| <= 0.0625 = 1/16, use approximation
+ * expm1(x) = x + x*P/(2-P)
+ * where
+ * P = x - z*(P1+z*(P2+z*(P3+z*(P4+z*(P5+z*P6+z*P7))))), z = x*x;
+ * (this formula is derived from
+ * 2-P+x = R = x*(exp(x)+1)/(exp(x)-1) ~ 2 + x*x/6 - x^4/360 + ...)
+ *
+ * P1 = 1.66666666666666666666666666666638500528074603030e-0001
+ * P2 = -2.77777777777777777777777759668391122822266551158e-0003
+ * P3 = 6.61375661375661375657437408890138814721051293054e-0005
+ * P4 = -1.65343915343915303310185228411892601606669528828e-0006
+ * P5 = 4.17535139755122945763580609663414647067443411178e-0008
+ * P6 = -1.05683795988668526689182102605260986731620026832e-0009
+ * P7 = 2.67544168821852702827123344217198187229611470514e-0011
+ *
+ * Accuracy: |R-x*(exp(x)+1)/(exp(x)-1)|<=2**-119.13
+ *
+ * 3. For 1/16 < |x| < 1.125, choose x(+-i) ~ +-(i+4.5)/64, i=0,..,67
+ * since
+ * exp(x) = exp(xi+(x-xi))= exp(xi)*exp((x-xi))
+ * we have
+ * expm1(x) = expm1(xi)+(exp(xi))*(expm1(x-xi))
+ * where
+ * |s=x-xi| <= 1/128
+ * and
+ * expm1(s)=2s/(2-R), R= s-s^2*(T1+s^2*(T2+s^2*(T3+s^2*(T4+s^2*T5))))
+ *
+ * T1 = 1.666666666666666666666666666660876387437e-1L,
+ * T2 = -2.777777777777777777777707812093173478756e-3L,
+ * T3 = 6.613756613756613482074280932874221202424e-5L,
+ * T4 = -1.653439153392139954169609822742235851120e-6L,
+ * T5 = 4.175314851769539751387852116610973796053e-8L;
+ *
+ * 4. For |x| >= 1.125, return exp(x)-1.
+ * (see algorithm for exp)
+ *
+ * Special cases:
+ * expm1l(INF) is INF, expm1l(NaN) is NaN;
+ * expm1l(-INF)= -1;
+ * for finite argument, only expm1l(0)=0 is exact.
+ *
+ * Accuracy:
+ * according to an error analysis, the error is always less than
+ * 2 ulp (unit in the last place).
+ *
+ * Misc. info.
+ * For 113 bit long double
+ * if x > 1.135652340629414394949193107797076342845e+4
+ * then expm1l(x) overflow;
+ *
+ * Constants:
+ * Only decimal values are given. We assume that the compiler will convert
+ * from decimal to binary accurately enough to produce the correct
+ * hexadecimal values.
+ */
+
+#include "libm.h"
+
+extern const long double _TBL_expl_hi[], _TBL_expl_lo[];
+extern const long double _TBL_expm1lx[], _TBL_expm1l[];
+
+static const long double
+ zero = +0.0L,
+ one = +1.0L,
+ two = +2.0L,
+ ln2_64 = +1.083042469624914545964425189778400898568e-2L,
+ ovflthreshold = +1.135652340629414394949193107797076342845e+4L,
+ invln2_32 = +4.616624130844682903551758979206054839765e+1L,
+ ln2_32hi = +2.166084939249829091928849858592451515688e-2L,
+ ln2_32lo = +5.209643502595475652782654157501186731779e-27L,
+ huge = +1.0e4000L,
+ tiny = +1.0e-4000L,
+ P1 = +1.66666666666666666666666666666638500528074603030e-0001L,
+ P2 = -2.77777777777777777777777759668391122822266551158e-0003L,
+ P3 = +6.61375661375661375657437408890138814721051293054e-0005L,
+ P4 = -1.65343915343915303310185228411892601606669528828e-0006L,
+ P5 = +4.17535139755122945763580609663414647067443411178e-0008L,
+ P6 = -1.05683795988668526689182102605260986731620026832e-0009L,
+ P7 = +2.67544168821852702827123344217198187229611470514e-0011L,
+/* rational approximation coeffs for [-(ln2)/64,(ln2)/64] */
+ T1 = +1.666666666666666666666666666660876387437e-1L,
+ T2 = -2.777777777777777777777707812093173478756e-3L,
+ T3 = +6.613756613756613482074280932874221202424e-5L,
+ T4 = -1.653439153392139954169609822742235851120e-6L,
+ T5 = +4.175314851769539751387852116610973796053e-8L;
+
+long double
+expm1l(long double x) {
+ int hx, ix, j, k, m;
+ long double t, r, s, w;
+
+ hx = ((int *) &x)[HIXWORD];
+ ix = hx & ~0x80000000;
+ if (ix >= 0x7fff0000) {
+ if (x != x)
+ return (x + x); /* NaN */
+ if (x < zero)
+ return (-one); /* -inf */
+ return (x); /* +inf */
+ }
+ if (ix < 0x3fff4000) { /* |x| < 1.25 */
+ if (ix < 0x3ffb0000) { /* |x| < 0.0625 */
+ if (ix < 0x3f8d0000) {
+ if ((int) x == 0)
+ return (x); /* |x|<2^-114 */
+ }
+ t = x * x;
+ r = (x - t * (P1 + t * (P2 + t * (P3 + t * (P4 + t *
+ (P5 + t * (P6 + t * P7)))))));
+ return (x + (x * r) / (two - r));
+ }
+ /* compute i = [64*x] */
+ m = 0x4009 - (ix >> 16);
+ j = ((ix & 0x0000ffff) | 0x10000) >> m; /* j=4,...,67 */
+ if (hx < 0)
+ j += 82; /* negative */
+ s = x - _TBL_expm1lx[j];
+ t = s * s;
+ r = s - t * (T1 + t * (T2 + t * (T3 + t * (T4 + t * T5))));
+ r = (s + s) / (two - r);
+ w = _TBL_expm1l[j];
+ return (w + (w + one) * r);
+ }
+ if (hx > 0) {
+ if (x > ovflthreshold)
+ return (huge * huge);
+ k = (int) (invln2_32 * (x + ln2_64));
+ } else {
+ if (x < -80.0)
+ return (tiny - x / x);
+ k = (int) (invln2_32 * (x - ln2_64));
+ }
+ j = k & 0x1f;
+ m = k >> 5;
+ t = (long double) k;
+ x = (x - t * ln2_32hi) - t * ln2_32lo;
+ t = x * x;
+ r = (x - t * (T1 + t * (T2 + t * (T3 + t * (T4 + t * T5))))) - two;
+ x = _TBL_expl_hi[j] - ((_TBL_expl_hi[j] * (x + x)) / r -
+ _TBL_expl_lo[j]);
+ return (scalbnl(x, m) - one);
+}