diff options
Diffstat (limited to 'usr/src/lib/libm/common/Q/expm1l.c')
-rw-r--r-- | usr/src/lib/libm/common/Q/expm1l.c | 185 |
1 files changed, 185 insertions, 0 deletions
diff --git a/usr/src/lib/libm/common/Q/expm1l.c b/usr/src/lib/libm/common/Q/expm1l.c new file mode 100644 index 0000000000..155acbdc54 --- /dev/null +++ b/usr/src/lib/libm/common/Q/expm1l.c @@ -0,0 +1,185 @@ +/* + * CDDL HEADER START + * + * The contents of this file are subject to the terms of the + * Common Development and Distribution License (the "License"). + * You may not use this file except in compliance with the License. + * + * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE + * or http://www.opensolaris.org/os/licensing. + * See the License for the specific language governing permissions + * and limitations under the License. + * + * When distributing Covered Code, include this CDDL HEADER in each + * file and include the License file at usr/src/OPENSOLARIS.LICENSE. + * If applicable, add the following below this CDDL HEADER, with the + * fields enclosed by brackets "[]" replaced with your own identifying + * information: Portions Copyright [yyyy] [name of copyright owner] + * + * CDDL HEADER END + */ + +/* + * Copyright 2011 Nexenta Systems, Inc. All rights reserved. + */ +/* + * Copyright 2006 Sun Microsystems, Inc. All rights reserved. + * Use is subject to license terms. + */ + +#if defined(ELFOBJ) +#pragma weak expm1l = __expm1l +#endif +#if !defined(__sparc) +#error Unsupported architecture +#endif + +/* + * expm1l(x) + * + * Table driven method + * Written by K.C. Ng, June 1995. + * Algorithm : + * 1. expm1(x) = x if x<2**-114 + * 2. if |x| <= 0.0625 = 1/16, use approximation + * expm1(x) = x + x*P/(2-P) + * where + * P = x - z*(P1+z*(P2+z*(P3+z*(P4+z*(P5+z*P6+z*P7))))), z = x*x; + * (this formula is derived from + * 2-P+x = R = x*(exp(x)+1)/(exp(x)-1) ~ 2 + x*x/6 - x^4/360 + ...) + * + * P1 = 1.66666666666666666666666666666638500528074603030e-0001 + * P2 = -2.77777777777777777777777759668391122822266551158e-0003 + * P3 = 6.61375661375661375657437408890138814721051293054e-0005 + * P4 = -1.65343915343915303310185228411892601606669528828e-0006 + * P5 = 4.17535139755122945763580609663414647067443411178e-0008 + * P6 = -1.05683795988668526689182102605260986731620026832e-0009 + * P7 = 2.67544168821852702827123344217198187229611470514e-0011 + * + * Accuracy: |R-x*(exp(x)+1)/(exp(x)-1)|<=2**-119.13 + * + * 3. For 1/16 < |x| < 1.125, choose x(+-i) ~ +-(i+4.5)/64, i=0,..,67 + * since + * exp(x) = exp(xi+(x-xi))= exp(xi)*exp((x-xi)) + * we have + * expm1(x) = expm1(xi)+(exp(xi))*(expm1(x-xi)) + * where + * |s=x-xi| <= 1/128 + * and + * expm1(s)=2s/(2-R), R= s-s^2*(T1+s^2*(T2+s^2*(T3+s^2*(T4+s^2*T5)))) + * + * T1 = 1.666666666666666666666666666660876387437e-1L, + * T2 = -2.777777777777777777777707812093173478756e-3L, + * T3 = 6.613756613756613482074280932874221202424e-5L, + * T4 = -1.653439153392139954169609822742235851120e-6L, + * T5 = 4.175314851769539751387852116610973796053e-8L; + * + * 4. For |x| >= 1.125, return exp(x)-1. + * (see algorithm for exp) + * + * Special cases: + * expm1l(INF) is INF, expm1l(NaN) is NaN; + * expm1l(-INF)= -1; + * for finite argument, only expm1l(0)=0 is exact. + * + * Accuracy: + * according to an error analysis, the error is always less than + * 2 ulp (unit in the last place). + * + * Misc. info. + * For 113 bit long double + * if x > 1.135652340629414394949193107797076342845e+4 + * then expm1l(x) overflow; + * + * Constants: + * Only decimal values are given. We assume that the compiler will convert + * from decimal to binary accurately enough to produce the correct + * hexadecimal values. + */ + +#include "libm.h" + +extern const long double _TBL_expl_hi[], _TBL_expl_lo[]; +extern const long double _TBL_expm1lx[], _TBL_expm1l[]; + +static const long double + zero = +0.0L, + one = +1.0L, + two = +2.0L, + ln2_64 = +1.083042469624914545964425189778400898568e-2L, + ovflthreshold = +1.135652340629414394949193107797076342845e+4L, + invln2_32 = +4.616624130844682903551758979206054839765e+1L, + ln2_32hi = +2.166084939249829091928849858592451515688e-2L, + ln2_32lo = +5.209643502595475652782654157501186731779e-27L, + huge = +1.0e4000L, + tiny = +1.0e-4000L, + P1 = +1.66666666666666666666666666666638500528074603030e-0001L, + P2 = -2.77777777777777777777777759668391122822266551158e-0003L, + P3 = +6.61375661375661375657437408890138814721051293054e-0005L, + P4 = -1.65343915343915303310185228411892601606669528828e-0006L, + P5 = +4.17535139755122945763580609663414647067443411178e-0008L, + P6 = -1.05683795988668526689182102605260986731620026832e-0009L, + P7 = +2.67544168821852702827123344217198187229611470514e-0011L, +/* rational approximation coeffs for [-(ln2)/64,(ln2)/64] */ + T1 = +1.666666666666666666666666666660876387437e-1L, + T2 = -2.777777777777777777777707812093173478756e-3L, + T3 = +6.613756613756613482074280932874221202424e-5L, + T4 = -1.653439153392139954169609822742235851120e-6L, + T5 = +4.175314851769539751387852116610973796053e-8L; + +long double +expm1l(long double x) { + int hx, ix, j, k, m; + long double t, r, s, w; + + hx = ((int *) &x)[HIXWORD]; + ix = hx & ~0x80000000; + if (ix >= 0x7fff0000) { + if (x != x) + return (x + x); /* NaN */ + if (x < zero) + return (-one); /* -inf */ + return (x); /* +inf */ + } + if (ix < 0x3fff4000) { /* |x| < 1.25 */ + if (ix < 0x3ffb0000) { /* |x| < 0.0625 */ + if (ix < 0x3f8d0000) { + if ((int) x == 0) + return (x); /* |x|<2^-114 */ + } + t = x * x; + r = (x - t * (P1 + t * (P2 + t * (P3 + t * (P4 + t * + (P5 + t * (P6 + t * P7))))))); + return (x + (x * r) / (two - r)); + } + /* compute i = [64*x] */ + m = 0x4009 - (ix >> 16); + j = ((ix & 0x0000ffff) | 0x10000) >> m; /* j=4,...,67 */ + if (hx < 0) + j += 82; /* negative */ + s = x - _TBL_expm1lx[j]; + t = s * s; + r = s - t * (T1 + t * (T2 + t * (T3 + t * (T4 + t * T5)))); + r = (s + s) / (two - r); + w = _TBL_expm1l[j]; + return (w + (w + one) * r); + } + if (hx > 0) { + if (x > ovflthreshold) + return (huge * huge); + k = (int) (invln2_32 * (x + ln2_64)); + } else { + if (x < -80.0) + return (tiny - x / x); + k = (int) (invln2_32 * (x - ln2_64)); + } + j = k & 0x1f; + m = k >> 5; + t = (long double) k; + x = (x - t * ln2_32hi) - t * ln2_32lo; + t = x * x; + r = (x - t * (T1 + t * (T2 + t * (T3 + t * (T4 + t * T5))))) - two; + x = _TBL_expl_hi[j] - ((_TBL_expl_hi[j] * (x + x)) / r - + _TBL_expl_lo[j]); + return (scalbnl(x, m) - one); +} |