summaryrefslogtreecommitdiff
path: root/usr/src/uts/common/disp
diff options
context:
space:
mode:
Diffstat (limited to 'usr/src/uts/common/disp')
-rw-r--r--usr/src/uts/common/disp/cmt.c8
-rw-r--r--usr/src/uts/common/disp/cpucaps.c285
-rw-r--r--usr/src/uts/common/disp/disp.c2
-rw-r--r--usr/src/uts/common/disp/fx.c12
-rw-r--r--usr/src/uts/common/disp/priocntl.c4
-rw-r--r--usr/src/uts/common/disp/rt.c9
-rw-r--r--usr/src/uts/common/disp/rt_dptbl.c2
-rw-r--r--usr/src/uts/common/disp/thread.c118
8 files changed, 383 insertions, 57 deletions
diff --git a/usr/src/uts/common/disp/cmt.c b/usr/src/uts/common/disp/cmt.c
index fd734bd229..30a69a23f0 100644
--- a/usr/src/uts/common/disp/cmt.c
+++ b/usr/src/uts/common/disp/cmt.c
@@ -201,13 +201,15 @@ pg_cmt_cpu_startup(cpu_t *cp)
/*
* Return non-zero if thread can migrate between "from" and "to"
- * without a performance penalty
+ * without a performance penalty. This is true only if we share a core on
+ * virtually any CPU; sharing the last-level cache is insufficient to make
+ * migration possible without penalty.
*/
int
pg_cmt_can_migrate(cpu_t *from, cpu_t *to)
{
- if (from->cpu_physid->cpu_cacheid ==
- to->cpu_physid->cpu_cacheid)
+ if (from->cpu_physid->cpu_coreid ==
+ to->cpu_physid->cpu_coreid)
return (1);
return (0);
}
diff --git a/usr/src/uts/common/disp/cpucaps.c b/usr/src/uts/common/disp/cpucaps.c
index 46f53faab6..2a4365ff73 100644
--- a/usr/src/uts/common/disp/cpucaps.c
+++ b/usr/src/uts/common/disp/cpucaps.c
@@ -22,6 +22,7 @@
/*
* Copyright 2009 Sun Microsystems, Inc. All rights reserved.
* Use is subject to license terms.
+ * Copyright 2013 Joyent, Inc. All rights reserved.
*/
#include <sys/disp.h>
@@ -74,6 +75,32 @@
* Putting threads on wait queues in random places while running in the
* kernel might lead to all kinds of locking problems.
*
+ * Bursting
+ * ========
+ *
+ * CPU bursting occurs when the CPU usage is over the baseline but under the
+ * cap. The baseline CPU (zone.cpu-baseline) is set in a multi-tenant
+ * environment so that we know how much CPU is allocated for a tenant under
+ * normal utilization. We can then track how much time a zone is spending
+ * over the "normal" CPU utilization expected for that zone using the
+ * "above_base_sec" kstat. This kstat is cumulative.
+ *
+ * If the zone has a burst limit (zone.cpu-burst-time) then the zone can
+ * burst for that period of time (in seconds) before the effective cap is
+ * lowered to the baseline. Once the effective cap is lowered, the zone
+ * will run at the baseline for the burst limit before the effective cap is
+ * raised again to the full value. This will allow the zone to burst again.
+ * We can watch this behavior using the kstats. The "effective" kstat shows
+ * which cap is being used, the baseline value or the burst value. The
+ * "burst_limit_sec" shows the value of the zone.cpu-burst-time rctl and the
+ * "bursting_sec" kstat shows how many seconds the zone has currently been
+ * bursting. When the CPU load is continuously greater than the baseline,
+ * bursting_sec will increase, up to the burst_limit_sec value, then the
+ * effective kstat will drop to the baseline and the bursting_sec value will
+ * decrease until it hits 0, at which time the effective kstat will return to
+ * the full burst value and the bursting_sec value will begin to increase
+ * again.
+ *
* Accounting
* ==========
*
@@ -203,18 +230,28 @@ static void caps_update();
*/
struct cap_kstat {
kstat_named_t cap_value;
+ kstat_named_t cap_baseline;
+ kstat_named_t cap_effective;
+ kstat_named_t cap_burst_limit;
+ kstat_named_t cap_bursting;
kstat_named_t cap_usage;
kstat_named_t cap_nwait;
kstat_named_t cap_below;
kstat_named_t cap_above;
+ kstat_named_t cap_above_base;
kstat_named_t cap_maxusage;
kstat_named_t cap_zonename;
} cap_kstat = {
{ "value", KSTAT_DATA_UINT64 },
+ { "baseline", KSTAT_DATA_UINT64 },
+ { "effective", KSTAT_DATA_UINT64 },
+ { "burst_limit_sec", KSTAT_DATA_UINT64 },
+ { "bursting_sec", KSTAT_DATA_UINT64 },
{ "usage", KSTAT_DATA_UINT64 },
{ "nwait", KSTAT_DATA_UINT64 },
{ "below_sec", KSTAT_DATA_UINT64 },
{ "above_sec", KSTAT_DATA_UINT64 },
+ { "above_base_sec", KSTAT_DATA_UINT64 },
{ "maxusage", KSTAT_DATA_UINT64 },
{ "zonename", KSTAT_DATA_STRING },
};
@@ -311,7 +348,7 @@ cap_enable(list_t *l, cpucap_t *cap, hrtime_t value)
cap->cap_below = cap->cap_above = 0;
cap->cap_maxusage = 0;
cap->cap_usage = 0;
- cap->cap_value = value;
+ cap->cap_value = cap->cap_chk_value = value;
waitq_unblock(&cap->cap_waitq);
if (CPUCAPS_OFF()) {
cpucaps_enabled = B_TRUE;
@@ -340,19 +377,21 @@ cap_disable(list_t *l, cpucap_t *cap)
ASSERT(CAP_ENABLED(cap));
waitq_block(&cap->cap_waitq);
+
+ /* do this first to avoid race with cap_kstat_update */
+ if (cap->cap_kstat != NULL) {
+ kstat_delete(cap->cap_kstat);
+ cap->cap_kstat = NULL;
+ }
+
list_remove(l, cap);
if (list_is_empty(&capped_projects) && list_is_empty(&capped_zones)) {
cpucaps_enabled = B_FALSE;
cpucaps_clock_callout = NULL;
}
- cap->cap_value = 0;
+ cap->cap_value = cap->cap_chk_value = 0;
cap->cap_project = NULL;
cap->cap_zone = NULL;
- if (cap->cap_kstat != NULL) {
- kstat_delete(cap->cap_kstat);
- cap->cap_kstat = NULL;
- }
-
}
/*
@@ -487,6 +526,8 @@ cap_walk(list_t *l, void (*cb)(cpucap_t *, int64_t))
* The waitq_isempty check is performed without the waitq lock. If a new thread
* is placed on the waitq right after the check, it will be picked up during the
* next invocation of cap_poke_waitq().
+ *
+ * Called once per tick for zones.
*/
/* ARGSUSED */
static void
@@ -494,15 +535,92 @@ cap_poke_waitq(cpucap_t *cap, int64_t gen)
{
ASSERT(MUTEX_HELD(&caps_lock));
- if (cap->cap_usage >= cap->cap_value) {
+ if (cap->cap_base != 0) {
+ /*
+ * Because of the way usage is calculated and decayed, its
+ * possible for the zone to be slightly over its cap, but we
+ * don't want to count that after we have reduced the effective
+ * cap to the baseline. That way the zone will be able to
+ * burst again after the burst_limit has expired.
+ */
+ if (cap->cap_usage > cap->cap_base &&
+ cap->cap_chk_value == cap->cap_value) {
+ cap->cap_above_base++;
+
+ /*
+ * If bursting is limited and we've been bursting
+ * longer than we're supposed to, then set the
+ * effective cap to the baseline.
+ */
+ if (cap->cap_burst_limit != 0) {
+ cap->cap_bursting++;
+ if (cap->cap_bursting >= cap->cap_burst_limit)
+ cap->cap_chk_value = cap->cap_base;
+ }
+ } else if (cap->cap_bursting > 0) {
+ /*
+ * We're not bursting now, but we were, decay the
+ * bursting timer.
+ */
+ cap->cap_bursting--;
+ /*
+ * Reset the effective cap once we decay to 0 so we
+ * can burst again.
+ */
+ if (cap->cap_bursting == 0 &&
+ cap->cap_chk_value != cap->cap_value)
+ cap->cap_chk_value = cap->cap_value;
+ }
+ }
+
+ if (cap->cap_usage >= cap->cap_chk_value) {
cap->cap_above++;
} else {
waitq_t *wq = &cap->cap_waitq;
cap->cap_below++;
- if (!waitq_isempty(wq))
- waitq_runone(wq);
+ if (!waitq_isempty(wq)) {
+ int i, ndequeue, p;
+
+ /*
+ * Since this function is only called once per tick,
+ * we can hit a situation where we have artificially
+ * limited the project/zone below its cap. This would
+ * happen if we have multiple threads queued up but
+ * only dequeued one thread/tick. To avoid this we
+ * dequeue multiple threads, calculated based on the
+ * usage percentage of the cap. It is possible that we
+ * could dequeue too many threads and some of them
+ * might be put back on the wait queue quickly, but
+ * since we know that threads are on the wait queue
+ * because we're capping, we know that there is unused
+ * CPU cycles anyway, so this extra work would not
+ * hurt. Also, the ndequeue number is only an upper
+ * bound and we might dequeue less, depending on how
+ * many threads are actually in the wait queue. The
+ * ndequeue values are empirically derived and could be
+ * adjusted or calculated in another way if necessary.
+ */
+ p = (int)((100 * cap->cap_usage) / cap->cap_chk_value);
+ if (p >= 98)
+ ndequeue = 10;
+ else if (p >= 95)
+ ndequeue = 20;
+ else if (p >= 90)
+ ndequeue = 40;
+ else if (p >= 85)
+ ndequeue = 80;
+ else
+ ndequeue = 160;
+
+ for (i = 0; i < ndequeue; i++) {
+ waitq_runone(wq);
+ if (waitq_isempty(wq))
+ break;
+ }
+ DTRACE_PROBE2(cpucaps__pokeq, int, p, int, i);
+ }
}
}
@@ -629,14 +747,14 @@ cap_project_zone_modify_walker(kproject_t *kpj, void *arg)
* Remove all projects in this zone without caps
* from the capped_projects list.
*/
- if (project_cap->cap_value == MAX_USAGE) {
+ if (project_cap->cap_chk_value == MAX_USAGE) {
cap_project_disable(kpj);
}
} else if (CAP_DISABLED(project_cap)) {
/*
* Add the project to capped_projects list.
*/
- ASSERT(project_cap->cap_value == 0);
+ ASSERT(project_cap->cap_chk_value == 0);
cap_project_enable(kpj, MAX_USAGE);
}
mutex_exit(&caps_lock);
@@ -746,7 +864,7 @@ cpucaps_zone_set(zone_t *zone, rctl_qty_t cap_val)
/*
* No state transitions, just change the value
*/
- cap->cap_value = value;
+ cap->cap_value = cap->cap_chk_value = value;
}
ASSERT(MUTEX_HELD(&caps_lock));
@@ -757,6 +875,108 @@ cpucaps_zone_set(zone_t *zone, rctl_qty_t cap_val)
}
/*
+ * Set zone's base cpu value to base_val
+ */
+int
+cpucaps_zone_set_base(zone_t *zone, rctl_qty_t base_val)
+{
+ cpucap_t *cap = NULL;
+ hrtime_t value;
+
+ ASSERT(base_val <= MAXCAP);
+ if (base_val > MAXCAP)
+ base_val = MAXCAP;
+
+ if (CPUCAPS_OFF() || !ZONE_IS_CAPPED(zone))
+ return (0);
+
+ if (zone->zone_cpucap == NULL)
+ cap = cap_alloc();
+
+ mutex_enter(&caps_lock);
+
+ if (cpucaps_busy) {
+ mutex_exit(&caps_lock);
+ return (EBUSY);
+ }
+
+ /*
+ * Double-check whether zone->zone_cpucap is NULL, now with caps_lock
+ * held. If it is still NULL, assign a newly allocated cpucap to it.
+ */
+ if (zone->zone_cpucap == NULL) {
+ zone->zone_cpucap = cap;
+ } else if (cap != NULL) {
+ cap_free(cap);
+ }
+
+ cap = zone->zone_cpucap;
+
+ value = base_val * cap_tick_cost;
+ if (value < 0 || value > cap->cap_value)
+ value = 0;
+
+ cap->cap_base = value;
+
+ mutex_exit(&caps_lock);
+
+ return (0);
+}
+
+/*
+ * Set zone's maximum burst time in seconds. A burst time of 0 means that
+ * the zone can run over its baseline indefinitely.
+ */
+int
+cpucaps_zone_set_burst_time(zone_t *zone, rctl_qty_t base_val)
+{
+ cpucap_t *cap = NULL;
+ hrtime_t value;
+
+ ASSERT(base_val <= INT_MAX);
+ /* Treat the default as 0 - no limit */
+ if (base_val == INT_MAX)
+ base_val = 0;
+ if (base_val > INT_MAX)
+ base_val = INT_MAX;
+
+ if (CPUCAPS_OFF() || !ZONE_IS_CAPPED(zone))
+ return (0);
+
+ if (zone->zone_cpucap == NULL)
+ cap = cap_alloc();
+
+ mutex_enter(&caps_lock);
+
+ if (cpucaps_busy) {
+ mutex_exit(&caps_lock);
+ return (EBUSY);
+ }
+
+ /*
+ * Double-check whether zone->zone_cpucap is NULL, now with caps_lock
+ * held. If it is still NULL, assign a newly allocated cpucap to it.
+ */
+ if (zone->zone_cpucap == NULL) {
+ zone->zone_cpucap = cap;
+ } else if (cap != NULL) {
+ cap_free(cap);
+ }
+
+ cap = zone->zone_cpucap;
+
+ value = SEC_TO_TICK(base_val);
+ if (value < 0)
+ value = 0;
+
+ cap->cap_burst_limit = value;
+
+ mutex_exit(&caps_lock);
+
+ return (0);
+}
+
+/*
* The project is going away so disable its cap.
*/
void
@@ -902,7 +1122,7 @@ cpucaps_project_set(kproject_t *kpj, rctl_qty_t cap_val)
if (CAP_DISABLED(cap))
cap_project_enable(kpj, value);
else
- cap->cap_value = value;
+ cap->cap_value = cap->cap_chk_value = value;
} else if (CAP_ENABLED(cap)) {
/*
* User requested to drop a cap on the project. If it is part of
@@ -910,7 +1130,7 @@ cpucaps_project_set(kproject_t *kpj, rctl_qty_t cap_val)
* otherwise disable the cap.
*/
if (ZONE_IS_CAPPED(kpj->kpj_zone)) {
- cap->cap_value = MAX_USAGE;
+ cap->cap_value = cap->cap_chk_value = MAX_USAGE;
} else {
cap_project_disable(kpj);
}
@@ -948,6 +1168,26 @@ cpucaps_zone_get(zone_t *zone)
}
/*
+ * Get current zone baseline.
+ */
+rctl_qty_t
+cpucaps_zone_get_base(zone_t *zone)
+{
+ return (zone->zone_cpucap != NULL ?
+ (rctl_qty_t)(zone->zone_cpucap->cap_base / cap_tick_cost) : 0);
+}
+
+/*
+ * Get current zone maximum burst time.
+ */
+rctl_qty_t
+cpucaps_zone_get_burst_time(zone_t *zone)
+{
+ return (zone->zone_cpucap != NULL ?
+ (rctl_qty_t)(TICK_TO_SEC(zone->zone_cpucap->cap_burst_limit)) : 0);
+}
+
+/*
* Charge project of thread t the time thread t spent on CPU since previously
* adjusted.
*
@@ -1045,7 +1285,7 @@ cpucaps_charge(kthread_id_t t, caps_sc_t *csc, cpucaps_charge_t charge_type)
project_cap = kpj->kpj_cpucap;
- if (project_cap->cap_usage >= project_cap->cap_value) {
+ if (project_cap->cap_usage >= project_cap->cap_chk_value) {
t->t_schedflag |= TS_PROJWAITQ;
rc = B_TRUE;
} else if (t->t_schedflag & TS_PROJWAITQ) {
@@ -1059,7 +1299,7 @@ cpucaps_charge(kthread_id_t t, caps_sc_t *csc, cpucaps_charge_t charge_type)
} else {
cpucap_t *zone_cap = zone->zone_cpucap;
- if (zone_cap->cap_usage >= zone_cap->cap_value) {
+ if (zone_cap->cap_usage >= zone_cap->cap_chk_value) {
t->t_schedflag |= TS_ZONEWAITQ;
rc = B_TRUE;
} else if (t->t_schedflag & TS_ZONEWAITQ) {
@@ -1119,6 +1359,7 @@ cpucaps_enforce(kthread_t *t)
/*
* Convert internal cap statistics into values exported by cap kstat.
+ * Note that the kstat is held throughout this function but caps_lock is not.
*/
static int
cap_kstat_update(kstat_t *ksp, int rw)
@@ -1133,6 +1374,12 @@ cap_kstat_update(kstat_t *ksp, int rw)
capsp->cap_value.value.ui64 =
ROUND_SCALE(cap->cap_value, cap_tick_cost);
+ capsp->cap_baseline.value.ui64 =
+ ROUND_SCALE(cap->cap_base, cap_tick_cost);
+ capsp->cap_effective.value.ui64 =
+ ROUND_SCALE(cap->cap_chk_value, cap_tick_cost);
+ capsp->cap_burst_limit.value.ui64 =
+ ROUND_SCALE(cap->cap_burst_limit, tick_sec);
capsp->cap_usage.value.ui64 =
ROUND_SCALE(cap->cap_usage, cap_tick_cost);
capsp->cap_maxusage.value.ui64 =
@@ -1140,6 +1387,10 @@ cap_kstat_update(kstat_t *ksp, int rw)
capsp->cap_nwait.value.ui64 = cap->cap_waitq.wq_count;
capsp->cap_below.value.ui64 = ROUND_SCALE(cap->cap_below, tick_sec);
capsp->cap_above.value.ui64 = ROUND_SCALE(cap->cap_above, tick_sec);
+ capsp->cap_above_base.value.ui64 =
+ ROUND_SCALE(cap->cap_above_base, tick_sec);
+ capsp->cap_bursting.value.ui64 =
+ ROUND_SCALE(cap->cap_bursting, tick_sec);
kstat_named_setstr(&capsp->cap_zonename, zonename);
return (0);
diff --git a/usr/src/uts/common/disp/disp.c b/usr/src/uts/common/disp/disp.c
index a9d5f969dc..f0e4aaecab 100644
--- a/usr/src/uts/common/disp/disp.c
+++ b/usr/src/uts/common/disp/disp.c
@@ -2256,7 +2256,7 @@ disp_getbest(disp_t *dp)
* placed earlier.
*/
if (tcp == NULL ||
- pri >= minclsyspri ||
+ (pri >= minclsyspri && tp->t_procp == &p0) ||
tp->t_cpu != tcp)
break;
diff --git a/usr/src/uts/common/disp/fx.c b/usr/src/uts/common/disp/fx.c
index 7fc81e7815..191075e032 100644
--- a/usr/src/uts/common/disp/fx.c
+++ b/usr/src/uts/common/disp/fx.c
@@ -21,7 +21,7 @@
/*
* Copyright (c) 1994, 2010, Oracle and/or its affiliates. All rights reserved.
- * Copyright 2013, Joyent, Inc. All rights reserved.
+ * Copyright 2015, Joyent, Inc.
*/
#include <sys/types.h>
@@ -70,16 +70,6 @@ static struct modlinkage modlinkage = {
};
-/*
- * control flags (kparms->fx_cflags).
- */
-#define FX_DOUPRILIM 0x01 /* change user priority limit */
-#define FX_DOUPRI 0x02 /* change user priority */
-#define FX_DOTQ 0x04 /* change FX time quantum */
-
-
-#define FXMAXUPRI 60 /* maximum user priority setting */
-
#define FX_MAX_UNPRIV_PRI 0 /* maximum unpriviledge priority */
/*
diff --git a/usr/src/uts/common/disp/priocntl.c b/usr/src/uts/common/disp/priocntl.c
index 5412df83f5..60e870ba28 100644
--- a/usr/src/uts/common/disp/priocntl.c
+++ b/usr/src/uts/common/disp/priocntl.c
@@ -114,7 +114,7 @@ copyin_vaparms32(caddr_t arg, pc_vaparms_t *vap, uio_seg_t seg)
#endif
-static int donice(procset_t *, pcnice_t *);
+int donice(procset_t *, pcnice_t *);
static int doprio(procset_t *, pcprio_t *);
static int proccmp(proc_t *, struct pcmpargs *);
static int setparms(proc_t *, struct stprmargs *);
@@ -991,7 +991,7 @@ setprocnice(proc_t *pp, pcnice_t *pcnice)
/*
* Update the nice value of the specified LWP or set of processes.
*/
-static int
+int
donice(procset_t *procset, pcnice_t *pcnice)
{
int err_proc = 0;
diff --git a/usr/src/uts/common/disp/rt.c b/usr/src/uts/common/disp/rt.c
index f87f8c56ce..115e42ccb8 100644
--- a/usr/src/uts/common/disp/rt.c
+++ b/usr/src/uts/common/disp/rt.c
@@ -22,7 +22,7 @@
/*
* Copyright 2008 Sun Microsystems, Inc. All rights reserved.
* Use is subject to license terms.
- * Copyright 2013 Joyent, Inc. All rights reserved.
+ * Copyright 2015 Joyent, Inc.
*/
/* Copyright (c) 1984, 1986, 1987, 1988, 1989 AT&T */
@@ -103,13 +103,6 @@ _info(struct modinfo *modinfop)
pri_t rt_maxpri = RTMAXPRI; /* maximum real-time priority */
rtdpent_t *rt_dptbl; /* real-time dispatcher parameter table */
-/*
- * control flags (kparms->rt_cflags).
- */
-#define RT_DOPRI 0x01 /* change priority */
-#define RT_DOTQ 0x02 /* change RT time quantum */
-#define RT_DOSIG 0x04 /* change RT time quantum signal */
-
static int rt_admin(caddr_t, cred_t *);
static int rt_enterclass(kthread_t *, id_t, void *, cred_t *, void *);
static int rt_fork(kthread_t *, kthread_t *, void *);
diff --git a/usr/src/uts/common/disp/rt_dptbl.c b/usr/src/uts/common/disp/rt_dptbl.c
index 1012b5aef2..a5c8836518 100644
--- a/usr/src/uts/common/disp/rt_dptbl.c
+++ b/usr/src/uts/common/disp/rt_dptbl.c
@@ -68,8 +68,6 @@ _info(struct modinfo *modinfop)
return (mod_info(&modlinkage, modinfop));
}
-#define RTGPPRIO0 100 /* Global priority for RT priority 0 */
-
rtdpent_t config_rt_dptbl[] = {
/* prilevel Time quantum */
diff --git a/usr/src/uts/common/disp/thread.c b/usr/src/uts/common/disp/thread.c
index 764942d4df..b2b28ec06f 100644
--- a/usr/src/uts/common/disp/thread.c
+++ b/usr/src/uts/common/disp/thread.c
@@ -77,6 +77,10 @@
#include <sys/ctype.h>
#include <sys/smt.h>
+#ifndef STACK_GROWTH_DOWN
+#error Stacks do not grow downward; 3b2 zombie attack detected!
+#endif
+
struct kmem_cache *thread_cache; /* cache of free threads */
struct kmem_cache *lwp_cache; /* cache of free lwps */
struct kmem_cache *turnstile_cache; /* cache of free turnstiles */
@@ -374,7 +378,7 @@ thread_create(
if (stksize <= sizeof (kthread_t) + PTR24_ALIGN)
cmn_err(CE_PANIC, "thread_create: proposed stack size"
" too small to hold thread.");
-#ifdef STACK_GROWTH_DOWN
+
stksize -= SA(sizeof (kthread_t) + PTR24_ALIGN - 1);
stksize &= -PTR24_ALIGN; /* make thread aligned */
t = (kthread_t *)(stk + stksize);
@@ -383,13 +387,6 @@ thread_create(
audit_thread_create(t);
t->t_stk = stk + stksize;
t->t_stkbase = stk;
-#else /* stack grows to larger addresses */
- stksize -= SA(sizeof (kthread_t));
- t = (kthread_t *)(stk);
- bzero(t, sizeof (kthread_t));
- t->t_stk = stk + sizeof (kthread_t);
- t->t_stkbase = stk + stksize + sizeof (kthread_t);
-#endif /* STACK_GROWTH_DOWN */
t->t_flag |= T_TALLOCSTK;
t->t_swap = stk;
} else {
@@ -402,13 +399,8 @@ thread_create(
* Initialize t_stk to the kernel stack pointer to use
* upon entry to the kernel
*/
-#ifdef STACK_GROWTH_DOWN
t->t_stk = stk + stksize;
t->t_stkbase = stk;
-#else
- t->t_stk = stk; /* 3b2-like */
- t->t_stkbase = stk + stksize;
-#endif /* STACK_GROWTH_DOWN */
}
if (kmem_stackinfo != 0) {
@@ -584,6 +576,9 @@ thread_exit(void)
if ((t->t_proc_flag & TP_ZTHREAD) != 0)
cmn_err(CE_PANIC, "thread_exit: zthread_exit() not called");
+ if ((t->t_flag & T_SPLITSTK) != 0)
+ cmn_err(CE_PANIC, "thread_exit: called when stack is split");
+
tsd_exit(); /* Clean up this thread's TSD */
kcpc_passivate(); /* clean up performance counter state */
@@ -2050,6 +2045,103 @@ thread_change_pri(kthread_t *t, pri_t disp_pri, int front)
return (on_rq);
}
+
+/*
+ * There are occasions in the kernel when we need much more stack than we
+ * allocate by default, but we do not wish to have that work done
+ * asynchronously by another thread. To accommodate these scenarios, we allow
+ * for a split stack (also known as a "segmented stack") whereby a new stack
+ * is dynamically allocated and the current thread jumps onto it for purposes
+ * of executing the specified function. After the specified function returns,
+ * the stack is deallocated and control is returned to the caller. This
+ * functionality is implemented by thread_splitstack(), below; there are a few
+ * constraints on its use:
+ *
+ * - The caller must be in a context where it is safe to block for memory.
+ * - The caller cannot be in a t_onfault context
+ * - The called function must not call thread_exit() while on the split stack
+ *
+ * The code will explicitly panic if these constraints are violated. Notably,
+ * however, thread_splitstack() _can_ be called on a split stack -- there
+ * is no limit to the level that split stacks can nest.
+ *
+ * When the stack is split, it is constructed such that stack backtraces
+ * from kernel debuggers continue to function -- though note that DTrace's
+ * stack() action and stackdepth function will only show the stack up to and
+ * including thread_splitstack_run(); DTrace explicitly bounds itself to
+ * pointers that exist within the current declared stack as a safety
+ * mechanism.
+ */
+void
+thread_splitstack(void (*func)(void *), void *arg, size_t stksize)
+{
+ kthread_t *t = curthread;
+ caddr_t ostk, ostkbase, stk;
+ ushort_t otflag;
+
+ if (t->t_onfault != NULL)
+ panic("thread_splitstack: called with non-NULL t_onfault");
+
+ ostk = t->t_stk;
+ ostkbase = t->t_stkbase;
+ otflag = t->t_flag;
+
+ stksize = roundup(stksize, PAGESIZE);
+
+ if (stksize < default_stksize)
+ stksize = default_stksize;
+
+ if (stksize == default_stksize) {
+ stk = (caddr_t)segkp_cache_get(segkp_thread);
+ } else {
+ stksize = roundup(stksize, PAGESIZE);
+ stk = (caddr_t)segkp_get(segkp, stksize,
+ (KPD_HASREDZONE | KPD_NO_ANON | KPD_LOCKED));
+ }
+
+ /*
+ * We're going to lock ourselves before we set T_SPLITSTK to assure
+ * that we're not swapped out in the meantime. (Note that we don't
+ * bother to set t_swap, as we're not going to be swapped out.)
+ */
+ thread_lock(t);
+
+ if (!(otflag & T_SPLITSTK))
+ t->t_flag |= T_SPLITSTK;
+
+ t->t_stk = stk + stksize;
+ t->t_stkbase = stk;
+
+ thread_unlock(t);
+
+ /*
+ * Now actually run on the new (split) stack...
+ */
+ thread_splitstack_run(t->t_stk, func, arg);
+
+ /*
+ * We're back onto our own stack; lock ourselves and restore our
+ * pre-split state.
+ */
+ thread_lock(t);
+
+ t->t_stk = ostk;
+ t->t_stkbase = ostkbase;
+
+ if (!(otflag & T_SPLITSTK))
+ t->t_flag &= ~T_SPLITSTK;
+
+ thread_unlock(t);
+
+ /*
+ * Now that we are entirely back on our own stack, call back into
+ * the platform layer to perform any platform-specific cleanup.
+ */
+ thread_splitstack_cleanup();
+
+ segkp_release(segkp, stk);
+}
+
/*
* Tunable kmem_stackinfo is set, fill the kernel thread stack with a
* specific pattern.