summaryrefslogtreecommitdiff
path: root/usr/src/uts/common/fs/zfs/dsl_pool.c
diff options
context:
space:
mode:
Diffstat (limited to 'usr/src/uts/common/fs/zfs/dsl_pool.c')
-rw-r--r--usr/src/uts/common/fs/zfs/dsl_pool.c321
1 files changed, 153 insertions, 168 deletions
diff --git a/usr/src/uts/common/fs/zfs/dsl_pool.c b/usr/src/uts/common/fs/zfs/dsl_pool.c
index ecaff5e9c7..8d079c6f13 100644
--- a/usr/src/uts/common/fs/zfs/dsl_pool.c
+++ b/usr/src/uts/common/fs/zfs/dsl_pool.c
@@ -47,90 +47,18 @@
#include <sys/zil_impl.h>
#include <sys/dsl_userhold.h>
-/*
- * ZFS Write Throttle
- * ------------------
- *
- * ZFS must limit the rate of incoming writes to the rate at which it is able
- * to sync data modifications to the backend storage. Throttling by too much
- * creates an artificial limit; throttling by too little can only be sustained
- * for short periods and would lead to highly lumpy performance. On a per-pool
- * basis, ZFS tracks the amount of modified (dirty) data. As operations change
- * data, the amount of dirty data increases; as ZFS syncs out data, the amount
- * of dirty data decreases. When the amount of dirty data exceeds a
- * predetermined threshold further modifications are blocked until the amount
- * of dirty data decreases (as data is synced out).
- *
- * The limit on dirty data is tunable, and should be adjusted according to
- * both the IO capacity and available memory of the system. The larger the
- * window, the more ZFS is able to aggregate and amortize metadata (and data)
- * changes. However, memory is a limited resource, and allowing for more dirty
- * data comes at the cost of keeping other useful data in memory (for example
- * ZFS data cached by the ARC).
- *
- * Implementation
- *
- * As buffers are modified dsl_pool_willuse_space() increments both the per-
- * txg (dp_dirty_pertxg[]) and poolwide (dp_dirty_total) accounting of
- * dirty space used; dsl_pool_dirty_space() decrements those values as data
- * is synced out from dsl_pool_sync(). While only the poolwide value is
- * relevant, the per-txg value is useful for debugging. The tunable
- * zfs_dirty_data_max determines the dirty space limit. Once that value is
- * exceeded, new writes are halted until space frees up.
- *
- * The zfs_dirty_data_sync tunable dictates the threshold at which we
- * ensure that there is a txg syncing (see the comment in txg.c for a full
- * description of transaction group stages).
- *
- * The IO scheduler uses both the dirty space limit and current amount of
- * dirty data as inputs. Those values affect the number of concurrent IOs ZFS
- * issues. See the comment in vdev_queue.c for details of the IO scheduler.
- *
- * The delay is also calculated based on the amount of dirty data. See the
- * comment above dmu_tx_delay() for details.
- */
-
-/*
- * zfs_dirty_data_max will be set to zfs_dirty_data_max_percent% of all memory,
- * capped at zfs_dirty_data_max_max. It can also be overridden in /etc/system.
- */
-uint64_t zfs_dirty_data_max;
-uint64_t zfs_dirty_data_max_max = 4ULL * 1024 * 1024 * 1024;
-int zfs_dirty_data_max_percent = 10;
-
-/*
- * If there is at least this much dirty data, push out a txg.
- */
-uint64_t zfs_dirty_data_sync = 64 * 1024 * 1024;
-
-/*
- * Once there is this amount of dirty data, the dmu_tx_delay() will kick in
- * and delay each transaction.
- * This value should be >= zfs_vdev_async_write_active_max_dirty_percent.
- */
-int zfs_delay_min_dirty_percent = 60;
-
-/*
- * This controls how quickly the delay approaches infinity.
- * Larger values cause it to delay less for a given amount of dirty data.
- * Therefore larger values will cause there to be more dirty data for a
- * given throughput.
- *
- * For the smoothest delay, this value should be about 1 billion divided
- * by the maximum number of operations per second. This will smoothly
- * handle between 10x and 1/10th this number.
- *
- * Note: zfs_delay_scale * zfs_dirty_data_max must be < 2^64, due to the
- * multiply in dmu_tx_delay().
- */
-uint64_t zfs_delay_scale = 1000 * 1000 * 1000 / 2000;
+int zfs_no_write_throttle = 0;
+int zfs_write_limit_shift = 3; /* 1/8th of physical memory */
+int zfs_txg_synctime_ms = 1000; /* target millisecs to sync a txg */
+uint64_t zfs_write_limit_min = 32 << 20; /* min write limit is 32MB */
+uint64_t zfs_write_limit_max = 0; /* max data payload per txg */
+uint64_t zfs_write_limit_inflated = 0;
+uint64_t zfs_write_limit_override = 0;
-/*
- * XXX someday maybe turn these into #defines, and you have to tune it on a
- * per-pool basis using zfs.conf.
- */
+kmutex_t zfs_write_limit_lock;
+static pgcnt_t old_physmem = 0;
hrtime_t zfs_throttle_resolution = MSEC2NSEC(10);
@@ -159,6 +87,7 @@ dsl_pool_open_impl(spa_t *spa, uint64_t txg)
dp->dp_spa = spa;
dp->dp_meta_rootbp = *bp;
rrw_init(&dp->dp_config_rwlock, B_TRUE);
+ dp->dp_write_limit = zfs_write_limit_min;
txg_init(dp, txg);
txg_list_create(&dp->dp_dirty_datasets,
@@ -171,7 +100,6 @@ dsl_pool_open_impl(spa_t *spa, uint64_t txg)
offsetof(dsl_sync_task_t, dst_node));
mutex_init(&dp->dp_lock, NULL, MUTEX_DEFAULT, NULL);
- cv_init(&dp->dp_spaceavail_cv, NULL, CV_DEFAULT, NULL);
dp->dp_vnrele_taskq = taskq_create("zfs_vn_rele_taskq", 1, minclsyspri,
1, 4, 0);
@@ -286,9 +214,9 @@ out:
void
dsl_pool_close(dsl_pool_t *dp)
{
+ /* drop our references from dsl_pool_open() */
+
/*
- * Drop our references from dsl_pool_open().
- *
* Since we held the origin_snap from "syncing" context (which
* includes pool-opening context), it actually only got a "ref"
* and not a hold, so just drop that here.
@@ -418,34 +346,6 @@ deadlist_enqueue_cb(void *arg, const blkptr_t *bp, dmu_tx_t *tx)
return (0);
}
-static void
-dsl_pool_sync_mos(dsl_pool_t *dp, dmu_tx_t *tx)
-{
- zio_t *zio = zio_root(dp->dp_spa, NULL, NULL, ZIO_FLAG_MUSTSUCCEED);
- dmu_objset_sync(dp->dp_meta_objset, zio, tx);
- VERIFY0(zio_wait(zio));
- dprintf_bp(&dp->dp_meta_rootbp, "meta objset rootbp is %s", "");
- spa_set_rootblkptr(dp->dp_spa, &dp->dp_meta_rootbp);
-}
-
-static void
-dsl_pool_dirty_delta(dsl_pool_t *dp, int64_t delta)
-{
- ASSERT(MUTEX_HELD(&dp->dp_lock));
-
- if (delta < 0)
- ASSERT3U(-delta, <=, dp->dp_dirty_total);
-
- dp->dp_dirty_total += delta;
-
- /*
- * Note: we signal even when increasing dp_dirty_total.
- * This ensures forward progress -- each thread wakes the next waiter.
- */
- if (dp->dp_dirty_total <= zfs_dirty_data_max)
- cv_signal(&dp->dp_spaceavail_cv);
-}
-
void
dsl_pool_sync(dsl_pool_t *dp, uint64_t txg)
{
@@ -454,18 +354,29 @@ dsl_pool_sync(dsl_pool_t *dp, uint64_t txg)
dsl_dir_t *dd;
dsl_dataset_t *ds;
objset_t *mos = dp->dp_meta_objset;
+ hrtime_t start, write_time;
+ uint64_t data_written;
+ int err;
list_t synced_datasets;
list_create(&synced_datasets, sizeof (dsl_dataset_t),
offsetof(dsl_dataset_t, ds_synced_link));
- tx = dmu_tx_create_assigned(dp, txg);
-
/*
- * Write out all dirty blocks of dirty datasets.
+ * We need to copy dp_space_towrite() before doing
+ * dsl_sync_task_sync(), because
+ * dsl_dataset_snapshot_reserve_space() will increase
+ * dp_space_towrite but not actually write anything.
*/
+ data_written = dp->dp_space_towrite[txg & TXG_MASK];
+
+ tx = dmu_tx_create_assigned(dp, txg);
+
+ dp->dp_read_overhead = 0;
+ start = gethrtime();
+
zio = zio_root(dp->dp_spa, NULL, NULL, ZIO_FLAG_MUSTSUCCEED);
- while ((ds = txg_list_remove(&dp->dp_dirty_datasets, txg)) != NULL) {
+ while (ds = txg_list_remove(&dp->dp_dirty_datasets, txg)) {
/*
* We must not sync any non-MOS datasets twice, because
* we may have taken a snapshot of them. However, we
@@ -475,25 +386,20 @@ dsl_pool_sync(dsl_pool_t *dp, uint64_t txg)
list_insert_tail(&synced_datasets, ds);
dsl_dataset_sync(ds, zio, tx);
}
- VERIFY0(zio_wait(zio));
+ DTRACE_PROBE(pool_sync__1setup);
+ err = zio_wait(zio);
- /*
- * We have written all of the accounted dirty data, so our
- * dp_space_towrite should now be zero. However, some seldom-used
- * code paths do not adhere to this (e.g. dbuf_undirty(), also
- * rounding error in dbuf_write_physdone).
- * Shore up the accounting of any dirtied space now.
- */
- dsl_pool_undirty_space(dp, dp->dp_dirty_pertxg[txg & TXG_MASK], txg);
+ write_time = gethrtime() - start;
+ ASSERT(err == 0);
+ DTRACE_PROBE(pool_sync__2rootzio);
/*
* After the data blocks have been written (ensured by the zio_wait()
* above), update the user/group space accounting.
*/
- for (ds = list_head(&synced_datasets); ds != NULL;
- ds = list_next(&synced_datasets, ds)) {
+ for (ds = list_head(&synced_datasets); ds;
+ ds = list_next(&synced_datasets, ds))
dmu_objset_do_userquota_updates(ds->ds_objset, tx);
- }
/*
* Sync the datasets again to push out the changes due to
@@ -503,12 +409,12 @@ dsl_pool_sync(dsl_pool_t *dp, uint64_t txg)
* about which blocks are part of the snapshot).
*/
zio = zio_root(dp->dp_spa, NULL, NULL, ZIO_FLAG_MUSTSUCCEED);
- while ((ds = txg_list_remove(&dp->dp_dirty_datasets, txg)) != NULL) {
+ while (ds = txg_list_remove(&dp->dp_dirty_datasets, txg)) {
ASSERT(list_link_active(&ds->ds_synced_link));
dmu_buf_rele(ds->ds_dbuf, ds);
dsl_dataset_sync(ds, zio, tx);
}
- VERIFY0(zio_wait(zio));
+ err = zio_wait(zio);
/*
* Now that the datasets have been completely synced, we can
@@ -517,16 +423,18 @@ dsl_pool_sync(dsl_pool_t *dp, uint64_t txg)
* - move dead blocks from the pending deadlist to the on-disk deadlist
* - release hold from dsl_dataset_dirty()
*/
- while ((ds = list_remove_head(&synced_datasets)) != NULL) {
+ while (ds = list_remove_head(&synced_datasets)) {
objset_t *os = ds->ds_objset;
bplist_iterate(&ds->ds_pending_deadlist,
deadlist_enqueue_cb, &ds->ds_deadlist, tx);
ASSERT(!dmu_objset_is_dirty(os, txg));
dmu_buf_rele(ds->ds_dbuf, ds);
}
- while ((dd = txg_list_remove(&dp->dp_dirty_dirs, txg)) != NULL) {
+
+ start = gethrtime();
+ while (dd = txg_list_remove(&dp->dp_dirty_dirs, txg))
dsl_dir_sync(dd, tx);
- }
+ write_time += gethrtime() - start;
/*
* The MOS's space is accounted for in the pool/$MOS
@@ -544,10 +452,20 @@ dsl_pool_sync(dsl_pool_t *dp, uint64_t txg)
dp->dp_mos_uncompressed_delta = 0;
}
+ start = gethrtime();
if (list_head(&mos->os_dirty_dnodes[txg & TXG_MASK]) != NULL ||
list_head(&mos->os_free_dnodes[txg & TXG_MASK]) != NULL) {
- dsl_pool_sync_mos(dp, tx);
+ zio = zio_root(dp->dp_spa, NULL, NULL, ZIO_FLAG_MUSTSUCCEED);
+ dmu_objset_sync(mos, zio, tx);
+ err = zio_wait(zio);
+ ASSERT(err == 0);
+ dprintf_bp(&dp->dp_meta_rootbp, "meta objset rootbp is %s", "");
+ spa_set_rootblkptr(dp->dp_spa, &dp->dp_meta_rootbp);
}
+ write_time += gethrtime() - start;
+ DTRACE_PROBE2(pool_sync__4io, hrtime_t, write_time,
+ hrtime_t, dp->dp_read_overhead);
+ write_time -= dp->dp_read_overhead;
/*
* If we modify a dataset in the same txg that we want to destroy it,
@@ -558,29 +476,72 @@ dsl_pool_sync(dsl_pool_t *dp, uint64_t txg)
* The MOS data dirtied by the sync_tasks will be synced on the next
* pass.
*/
+ DTRACE_PROBE(pool_sync__3task);
if (!txg_list_empty(&dp->dp_sync_tasks, txg)) {
dsl_sync_task_t *dst;
/*
* No more sync tasks should have been added while we
* were syncing.
*/
- ASSERT3U(spa_sync_pass(dp->dp_spa), ==, 1);
- while ((dst = txg_list_remove(&dp->dp_sync_tasks, txg)) != NULL)
+ ASSERT(spa_sync_pass(dp->dp_spa) == 1);
+ while (dst = txg_list_remove(&dp->dp_sync_tasks, txg))
dsl_sync_task_sync(dst, tx);
}
dmu_tx_commit(tx);
- DTRACE_PROBE2(dsl_pool_sync__done, dsl_pool_t *dp, dp, uint64_t, txg);
+ dp->dp_space_towrite[txg & TXG_MASK] = 0;
+ ASSERT(dp->dp_tempreserved[txg & TXG_MASK] == 0);
+
+ /*
+ * If the write limit max has not been explicitly set, set it
+ * to a fraction of available physical memory (default 1/8th).
+ * Note that we must inflate the limit because the spa
+ * inflates write sizes to account for data replication.
+ * Check this each sync phase to catch changing memory size.
+ */
+ if (physmem != old_physmem && zfs_write_limit_shift) {
+ mutex_enter(&zfs_write_limit_lock);
+ old_physmem = physmem;
+ zfs_write_limit_max = ptob(physmem) >> zfs_write_limit_shift;
+ zfs_write_limit_inflated = MAX(zfs_write_limit_min,
+ spa_get_asize(dp->dp_spa, zfs_write_limit_max));
+ mutex_exit(&zfs_write_limit_lock);
+ }
+
+ /*
+ * Attempt to keep the sync time consistent by adjusting the
+ * amount of write traffic allowed into each transaction group.
+ * Weight the throughput calculation towards the current value:
+ * thru = 3/4 old_thru + 1/4 new_thru
+ *
+ * Note: write_time is in nanosecs while dp_throughput is expressed in
+ * bytes per millisecond.
+ */
+ ASSERT(zfs_write_limit_min > 0);
+ if (data_written > zfs_write_limit_min / 8 &&
+ write_time > MSEC2NSEC(1)) {
+ uint64_t throughput = data_written / NSEC2MSEC(write_time);
+
+ if (dp->dp_throughput)
+ dp->dp_throughput = throughput / 4 +
+ 3 * dp->dp_throughput / 4;
+ else
+ dp->dp_throughput = throughput;
+ dp->dp_write_limit = MIN(zfs_write_limit_inflated,
+ MAX(zfs_write_limit_min,
+ dp->dp_throughput * zfs_txg_synctime_ms));
+ }
}
void
dsl_pool_sync_done(dsl_pool_t *dp, uint64_t txg)
{
zilog_t *zilog;
+ dsl_dataset_t *ds;
while (zilog = txg_list_remove(&dp->dp_dirty_zilogs, txg)) {
- dsl_dataset_t *ds = dmu_objset_ds(zilog->zl_os);
+ ds = dmu_objset_ds(zilog->zl_os);
zil_clean(zilog, txg);
ASSERT(!dmu_objset_is_dirty(zilog->zl_os, txg));
dmu_buf_rele(ds->ds_dbuf, zilog);
@@ -622,12 +583,36 @@ dsl_pool_adjustedsize(dsl_pool_t *dp, boolean_t netfree)
return (space - resv);
}
-boolean_t
-dsl_pool_need_dirty_delay(dsl_pool_t *dp)
+int
+dsl_pool_tempreserve_space(dsl_pool_t *dp, uint64_t space, dmu_tx_t *tx)
{
- uint64_t delay_min_bytes =
- zfs_dirty_data_max * zfs_delay_min_dirty_percent / 100;
- boolean_t rv;
+ uint64_t reserved = 0;
+ uint64_t write_limit = (zfs_write_limit_override ?
+ zfs_write_limit_override : dp->dp_write_limit);
+
+ if (zfs_no_write_throttle) {
+ atomic_add_64(&dp->dp_tempreserved[tx->tx_txg & TXG_MASK],
+ space);
+ return (0);
+ }
+
+ /*
+ * Check to see if we have exceeded the maximum allowed IO for
+ * this transaction group. We can do this without locks since
+ * a little slop here is ok. Note that we do the reserved check
+ * with only half the requested reserve: this is because the
+ * reserve requests are worst-case, and we really don't want to
+ * throttle based off of worst-case estimates.
+ */
+ if (write_limit > 0) {
+ reserved = dp->dp_space_towrite[tx->tx_txg & TXG_MASK]
+ + dp->dp_tempreserved[tx->tx_txg & TXG_MASK] / 2;
+
+ if (reserved && reserved > write_limit)
+ return (SET_ERROR(ERESTART));
+ }
+
+ atomic_add_64(&dp->dp_tempreserved[tx->tx_txg & TXG_MASK], space);
/*
* If this transaction group is over 7/8ths capacity, delay
@@ -639,41 +624,41 @@ dsl_pool_need_dirty_delay(dsl_pool_t *dp)
zfs_throttle_resolution);
}
- mutex_enter(&dp->dp_lock);
- if (dp->dp_dirty_total > zfs_dirty_data_sync)
- txg_kick(dp);
- rv = (dp->dp_dirty_total > delay_min_bytes);
- mutex_exit(&dp->dp_lock);
- return (rv);
+ return (0);
}
void
-dsl_pool_dirty_space(dsl_pool_t *dp, int64_t space, dmu_tx_t *tx)
+dsl_pool_tempreserve_clear(dsl_pool_t *dp, int64_t space, dmu_tx_t *tx)
{
- if (space > 0) {
- mutex_enter(&dp->dp_lock);
- dp->dp_dirty_pertxg[tx->tx_txg & TXG_MASK] += space;
- dsl_pool_dirty_delta(dp, space);
- mutex_exit(&dp->dp_lock);
- }
+ ASSERT(dp->dp_tempreserved[tx->tx_txg & TXG_MASK] >= space);
+ atomic_add_64(&dp->dp_tempreserved[tx->tx_txg & TXG_MASK], -space);
}
void
-dsl_pool_undirty_space(dsl_pool_t *dp, int64_t space, uint64_t txg)
+dsl_pool_memory_pressure(dsl_pool_t *dp)
{
- ASSERT3S(space, >=, 0);
- if (space == 0)
+ uint64_t space_inuse = 0;
+ int i;
+
+ if (dp->dp_write_limit == zfs_write_limit_min)
return;
- mutex_enter(&dp->dp_lock);
- if (dp->dp_dirty_pertxg[txg & TXG_MASK] < space) {
- /* XXX writing something we didn't dirty? */
- space = dp->dp_dirty_pertxg[txg & TXG_MASK];
+
+ for (i = 0; i < TXG_SIZE; i++) {
+ space_inuse += dp->dp_space_towrite[i];
+ space_inuse += dp->dp_tempreserved[i];
+ }
+ dp->dp_write_limit = MAX(zfs_write_limit_min,
+ MIN(dp->dp_write_limit, space_inuse / 4));
+}
+
+void
+dsl_pool_willuse_space(dsl_pool_t *dp, int64_t space, dmu_tx_t *tx)
+{
+ if (space > 0) {
+ mutex_enter(&dp->dp_lock);
+ dp->dp_space_towrite[tx->tx_txg & TXG_MASK] += space;
+ mutex_exit(&dp->dp_lock);
}
- ASSERT3U(dp->dp_dirty_pertxg[txg & TXG_MASK], >=, space);
- dp->dp_dirty_pertxg[txg & TXG_MASK] -= space;
- ASSERT3U(dp->dp_dirty_total, >=, space);
- dsl_pool_dirty_delta(dp, -space);
- mutex_exit(&dp->dp_lock);
}
/* ARGSUSED */