diff options
Diffstat (limited to 'usr/src/uts/common/fs/zfs/dsl_pool.c')
-rw-r--r-- | usr/src/uts/common/fs/zfs/dsl_pool.c | 321 |
1 files changed, 153 insertions, 168 deletions
diff --git a/usr/src/uts/common/fs/zfs/dsl_pool.c b/usr/src/uts/common/fs/zfs/dsl_pool.c index ecaff5e9c7..8d079c6f13 100644 --- a/usr/src/uts/common/fs/zfs/dsl_pool.c +++ b/usr/src/uts/common/fs/zfs/dsl_pool.c @@ -47,90 +47,18 @@ #include <sys/zil_impl.h> #include <sys/dsl_userhold.h> -/* - * ZFS Write Throttle - * ------------------ - * - * ZFS must limit the rate of incoming writes to the rate at which it is able - * to sync data modifications to the backend storage. Throttling by too much - * creates an artificial limit; throttling by too little can only be sustained - * for short periods and would lead to highly lumpy performance. On a per-pool - * basis, ZFS tracks the amount of modified (dirty) data. As operations change - * data, the amount of dirty data increases; as ZFS syncs out data, the amount - * of dirty data decreases. When the amount of dirty data exceeds a - * predetermined threshold further modifications are blocked until the amount - * of dirty data decreases (as data is synced out). - * - * The limit on dirty data is tunable, and should be adjusted according to - * both the IO capacity and available memory of the system. The larger the - * window, the more ZFS is able to aggregate and amortize metadata (and data) - * changes. However, memory is a limited resource, and allowing for more dirty - * data comes at the cost of keeping other useful data in memory (for example - * ZFS data cached by the ARC). - * - * Implementation - * - * As buffers are modified dsl_pool_willuse_space() increments both the per- - * txg (dp_dirty_pertxg[]) and poolwide (dp_dirty_total) accounting of - * dirty space used; dsl_pool_dirty_space() decrements those values as data - * is synced out from dsl_pool_sync(). While only the poolwide value is - * relevant, the per-txg value is useful for debugging. The tunable - * zfs_dirty_data_max determines the dirty space limit. Once that value is - * exceeded, new writes are halted until space frees up. - * - * The zfs_dirty_data_sync tunable dictates the threshold at which we - * ensure that there is a txg syncing (see the comment in txg.c for a full - * description of transaction group stages). - * - * The IO scheduler uses both the dirty space limit and current amount of - * dirty data as inputs. Those values affect the number of concurrent IOs ZFS - * issues. See the comment in vdev_queue.c for details of the IO scheduler. - * - * The delay is also calculated based on the amount of dirty data. See the - * comment above dmu_tx_delay() for details. - */ - -/* - * zfs_dirty_data_max will be set to zfs_dirty_data_max_percent% of all memory, - * capped at zfs_dirty_data_max_max. It can also be overridden in /etc/system. - */ -uint64_t zfs_dirty_data_max; -uint64_t zfs_dirty_data_max_max = 4ULL * 1024 * 1024 * 1024; -int zfs_dirty_data_max_percent = 10; - -/* - * If there is at least this much dirty data, push out a txg. - */ -uint64_t zfs_dirty_data_sync = 64 * 1024 * 1024; - -/* - * Once there is this amount of dirty data, the dmu_tx_delay() will kick in - * and delay each transaction. - * This value should be >= zfs_vdev_async_write_active_max_dirty_percent. - */ -int zfs_delay_min_dirty_percent = 60; - -/* - * This controls how quickly the delay approaches infinity. - * Larger values cause it to delay less for a given amount of dirty data. - * Therefore larger values will cause there to be more dirty data for a - * given throughput. - * - * For the smoothest delay, this value should be about 1 billion divided - * by the maximum number of operations per second. This will smoothly - * handle between 10x and 1/10th this number. - * - * Note: zfs_delay_scale * zfs_dirty_data_max must be < 2^64, due to the - * multiply in dmu_tx_delay(). - */ -uint64_t zfs_delay_scale = 1000 * 1000 * 1000 / 2000; +int zfs_no_write_throttle = 0; +int zfs_write_limit_shift = 3; /* 1/8th of physical memory */ +int zfs_txg_synctime_ms = 1000; /* target millisecs to sync a txg */ +uint64_t zfs_write_limit_min = 32 << 20; /* min write limit is 32MB */ +uint64_t zfs_write_limit_max = 0; /* max data payload per txg */ +uint64_t zfs_write_limit_inflated = 0; +uint64_t zfs_write_limit_override = 0; -/* - * XXX someday maybe turn these into #defines, and you have to tune it on a - * per-pool basis using zfs.conf. - */ +kmutex_t zfs_write_limit_lock; +static pgcnt_t old_physmem = 0; hrtime_t zfs_throttle_resolution = MSEC2NSEC(10); @@ -159,6 +87,7 @@ dsl_pool_open_impl(spa_t *spa, uint64_t txg) dp->dp_spa = spa; dp->dp_meta_rootbp = *bp; rrw_init(&dp->dp_config_rwlock, B_TRUE); + dp->dp_write_limit = zfs_write_limit_min; txg_init(dp, txg); txg_list_create(&dp->dp_dirty_datasets, @@ -171,7 +100,6 @@ dsl_pool_open_impl(spa_t *spa, uint64_t txg) offsetof(dsl_sync_task_t, dst_node)); mutex_init(&dp->dp_lock, NULL, MUTEX_DEFAULT, NULL); - cv_init(&dp->dp_spaceavail_cv, NULL, CV_DEFAULT, NULL); dp->dp_vnrele_taskq = taskq_create("zfs_vn_rele_taskq", 1, minclsyspri, 1, 4, 0); @@ -286,9 +214,9 @@ out: void dsl_pool_close(dsl_pool_t *dp) { + /* drop our references from dsl_pool_open() */ + /* - * Drop our references from dsl_pool_open(). - * * Since we held the origin_snap from "syncing" context (which * includes pool-opening context), it actually only got a "ref" * and not a hold, so just drop that here. @@ -418,34 +346,6 @@ deadlist_enqueue_cb(void *arg, const blkptr_t *bp, dmu_tx_t *tx) return (0); } -static void -dsl_pool_sync_mos(dsl_pool_t *dp, dmu_tx_t *tx) -{ - zio_t *zio = zio_root(dp->dp_spa, NULL, NULL, ZIO_FLAG_MUSTSUCCEED); - dmu_objset_sync(dp->dp_meta_objset, zio, tx); - VERIFY0(zio_wait(zio)); - dprintf_bp(&dp->dp_meta_rootbp, "meta objset rootbp is %s", ""); - spa_set_rootblkptr(dp->dp_spa, &dp->dp_meta_rootbp); -} - -static void -dsl_pool_dirty_delta(dsl_pool_t *dp, int64_t delta) -{ - ASSERT(MUTEX_HELD(&dp->dp_lock)); - - if (delta < 0) - ASSERT3U(-delta, <=, dp->dp_dirty_total); - - dp->dp_dirty_total += delta; - - /* - * Note: we signal even when increasing dp_dirty_total. - * This ensures forward progress -- each thread wakes the next waiter. - */ - if (dp->dp_dirty_total <= zfs_dirty_data_max) - cv_signal(&dp->dp_spaceavail_cv); -} - void dsl_pool_sync(dsl_pool_t *dp, uint64_t txg) { @@ -454,18 +354,29 @@ dsl_pool_sync(dsl_pool_t *dp, uint64_t txg) dsl_dir_t *dd; dsl_dataset_t *ds; objset_t *mos = dp->dp_meta_objset; + hrtime_t start, write_time; + uint64_t data_written; + int err; list_t synced_datasets; list_create(&synced_datasets, sizeof (dsl_dataset_t), offsetof(dsl_dataset_t, ds_synced_link)); - tx = dmu_tx_create_assigned(dp, txg); - /* - * Write out all dirty blocks of dirty datasets. + * We need to copy dp_space_towrite() before doing + * dsl_sync_task_sync(), because + * dsl_dataset_snapshot_reserve_space() will increase + * dp_space_towrite but not actually write anything. */ + data_written = dp->dp_space_towrite[txg & TXG_MASK]; + + tx = dmu_tx_create_assigned(dp, txg); + + dp->dp_read_overhead = 0; + start = gethrtime(); + zio = zio_root(dp->dp_spa, NULL, NULL, ZIO_FLAG_MUSTSUCCEED); - while ((ds = txg_list_remove(&dp->dp_dirty_datasets, txg)) != NULL) { + while (ds = txg_list_remove(&dp->dp_dirty_datasets, txg)) { /* * We must not sync any non-MOS datasets twice, because * we may have taken a snapshot of them. However, we @@ -475,25 +386,20 @@ dsl_pool_sync(dsl_pool_t *dp, uint64_t txg) list_insert_tail(&synced_datasets, ds); dsl_dataset_sync(ds, zio, tx); } - VERIFY0(zio_wait(zio)); + DTRACE_PROBE(pool_sync__1setup); + err = zio_wait(zio); - /* - * We have written all of the accounted dirty data, so our - * dp_space_towrite should now be zero. However, some seldom-used - * code paths do not adhere to this (e.g. dbuf_undirty(), also - * rounding error in dbuf_write_physdone). - * Shore up the accounting of any dirtied space now. - */ - dsl_pool_undirty_space(dp, dp->dp_dirty_pertxg[txg & TXG_MASK], txg); + write_time = gethrtime() - start; + ASSERT(err == 0); + DTRACE_PROBE(pool_sync__2rootzio); /* * After the data blocks have been written (ensured by the zio_wait() * above), update the user/group space accounting. */ - for (ds = list_head(&synced_datasets); ds != NULL; - ds = list_next(&synced_datasets, ds)) { + for (ds = list_head(&synced_datasets); ds; + ds = list_next(&synced_datasets, ds)) dmu_objset_do_userquota_updates(ds->ds_objset, tx); - } /* * Sync the datasets again to push out the changes due to @@ -503,12 +409,12 @@ dsl_pool_sync(dsl_pool_t *dp, uint64_t txg) * about which blocks are part of the snapshot). */ zio = zio_root(dp->dp_spa, NULL, NULL, ZIO_FLAG_MUSTSUCCEED); - while ((ds = txg_list_remove(&dp->dp_dirty_datasets, txg)) != NULL) { + while (ds = txg_list_remove(&dp->dp_dirty_datasets, txg)) { ASSERT(list_link_active(&ds->ds_synced_link)); dmu_buf_rele(ds->ds_dbuf, ds); dsl_dataset_sync(ds, zio, tx); } - VERIFY0(zio_wait(zio)); + err = zio_wait(zio); /* * Now that the datasets have been completely synced, we can @@ -517,16 +423,18 @@ dsl_pool_sync(dsl_pool_t *dp, uint64_t txg) * - move dead blocks from the pending deadlist to the on-disk deadlist * - release hold from dsl_dataset_dirty() */ - while ((ds = list_remove_head(&synced_datasets)) != NULL) { + while (ds = list_remove_head(&synced_datasets)) { objset_t *os = ds->ds_objset; bplist_iterate(&ds->ds_pending_deadlist, deadlist_enqueue_cb, &ds->ds_deadlist, tx); ASSERT(!dmu_objset_is_dirty(os, txg)); dmu_buf_rele(ds->ds_dbuf, ds); } - while ((dd = txg_list_remove(&dp->dp_dirty_dirs, txg)) != NULL) { + + start = gethrtime(); + while (dd = txg_list_remove(&dp->dp_dirty_dirs, txg)) dsl_dir_sync(dd, tx); - } + write_time += gethrtime() - start; /* * The MOS's space is accounted for in the pool/$MOS @@ -544,10 +452,20 @@ dsl_pool_sync(dsl_pool_t *dp, uint64_t txg) dp->dp_mos_uncompressed_delta = 0; } + start = gethrtime(); if (list_head(&mos->os_dirty_dnodes[txg & TXG_MASK]) != NULL || list_head(&mos->os_free_dnodes[txg & TXG_MASK]) != NULL) { - dsl_pool_sync_mos(dp, tx); + zio = zio_root(dp->dp_spa, NULL, NULL, ZIO_FLAG_MUSTSUCCEED); + dmu_objset_sync(mos, zio, tx); + err = zio_wait(zio); + ASSERT(err == 0); + dprintf_bp(&dp->dp_meta_rootbp, "meta objset rootbp is %s", ""); + spa_set_rootblkptr(dp->dp_spa, &dp->dp_meta_rootbp); } + write_time += gethrtime() - start; + DTRACE_PROBE2(pool_sync__4io, hrtime_t, write_time, + hrtime_t, dp->dp_read_overhead); + write_time -= dp->dp_read_overhead; /* * If we modify a dataset in the same txg that we want to destroy it, @@ -558,29 +476,72 @@ dsl_pool_sync(dsl_pool_t *dp, uint64_t txg) * The MOS data dirtied by the sync_tasks will be synced on the next * pass. */ + DTRACE_PROBE(pool_sync__3task); if (!txg_list_empty(&dp->dp_sync_tasks, txg)) { dsl_sync_task_t *dst; /* * No more sync tasks should have been added while we * were syncing. */ - ASSERT3U(spa_sync_pass(dp->dp_spa), ==, 1); - while ((dst = txg_list_remove(&dp->dp_sync_tasks, txg)) != NULL) + ASSERT(spa_sync_pass(dp->dp_spa) == 1); + while (dst = txg_list_remove(&dp->dp_sync_tasks, txg)) dsl_sync_task_sync(dst, tx); } dmu_tx_commit(tx); - DTRACE_PROBE2(dsl_pool_sync__done, dsl_pool_t *dp, dp, uint64_t, txg); + dp->dp_space_towrite[txg & TXG_MASK] = 0; + ASSERT(dp->dp_tempreserved[txg & TXG_MASK] == 0); + + /* + * If the write limit max has not been explicitly set, set it + * to a fraction of available physical memory (default 1/8th). + * Note that we must inflate the limit because the spa + * inflates write sizes to account for data replication. + * Check this each sync phase to catch changing memory size. + */ + if (physmem != old_physmem && zfs_write_limit_shift) { + mutex_enter(&zfs_write_limit_lock); + old_physmem = physmem; + zfs_write_limit_max = ptob(physmem) >> zfs_write_limit_shift; + zfs_write_limit_inflated = MAX(zfs_write_limit_min, + spa_get_asize(dp->dp_spa, zfs_write_limit_max)); + mutex_exit(&zfs_write_limit_lock); + } + + /* + * Attempt to keep the sync time consistent by adjusting the + * amount of write traffic allowed into each transaction group. + * Weight the throughput calculation towards the current value: + * thru = 3/4 old_thru + 1/4 new_thru + * + * Note: write_time is in nanosecs while dp_throughput is expressed in + * bytes per millisecond. + */ + ASSERT(zfs_write_limit_min > 0); + if (data_written > zfs_write_limit_min / 8 && + write_time > MSEC2NSEC(1)) { + uint64_t throughput = data_written / NSEC2MSEC(write_time); + + if (dp->dp_throughput) + dp->dp_throughput = throughput / 4 + + 3 * dp->dp_throughput / 4; + else + dp->dp_throughput = throughput; + dp->dp_write_limit = MIN(zfs_write_limit_inflated, + MAX(zfs_write_limit_min, + dp->dp_throughput * zfs_txg_synctime_ms)); + } } void dsl_pool_sync_done(dsl_pool_t *dp, uint64_t txg) { zilog_t *zilog; + dsl_dataset_t *ds; while (zilog = txg_list_remove(&dp->dp_dirty_zilogs, txg)) { - dsl_dataset_t *ds = dmu_objset_ds(zilog->zl_os); + ds = dmu_objset_ds(zilog->zl_os); zil_clean(zilog, txg); ASSERT(!dmu_objset_is_dirty(zilog->zl_os, txg)); dmu_buf_rele(ds->ds_dbuf, zilog); @@ -622,12 +583,36 @@ dsl_pool_adjustedsize(dsl_pool_t *dp, boolean_t netfree) return (space - resv); } -boolean_t -dsl_pool_need_dirty_delay(dsl_pool_t *dp) +int +dsl_pool_tempreserve_space(dsl_pool_t *dp, uint64_t space, dmu_tx_t *tx) { - uint64_t delay_min_bytes = - zfs_dirty_data_max * zfs_delay_min_dirty_percent / 100; - boolean_t rv; + uint64_t reserved = 0; + uint64_t write_limit = (zfs_write_limit_override ? + zfs_write_limit_override : dp->dp_write_limit); + + if (zfs_no_write_throttle) { + atomic_add_64(&dp->dp_tempreserved[tx->tx_txg & TXG_MASK], + space); + return (0); + } + + /* + * Check to see if we have exceeded the maximum allowed IO for + * this transaction group. We can do this without locks since + * a little slop here is ok. Note that we do the reserved check + * with only half the requested reserve: this is because the + * reserve requests are worst-case, and we really don't want to + * throttle based off of worst-case estimates. + */ + if (write_limit > 0) { + reserved = dp->dp_space_towrite[tx->tx_txg & TXG_MASK] + + dp->dp_tempreserved[tx->tx_txg & TXG_MASK] / 2; + + if (reserved && reserved > write_limit) + return (SET_ERROR(ERESTART)); + } + + atomic_add_64(&dp->dp_tempreserved[tx->tx_txg & TXG_MASK], space); /* * If this transaction group is over 7/8ths capacity, delay @@ -639,41 +624,41 @@ dsl_pool_need_dirty_delay(dsl_pool_t *dp) zfs_throttle_resolution); } - mutex_enter(&dp->dp_lock); - if (dp->dp_dirty_total > zfs_dirty_data_sync) - txg_kick(dp); - rv = (dp->dp_dirty_total > delay_min_bytes); - mutex_exit(&dp->dp_lock); - return (rv); + return (0); } void -dsl_pool_dirty_space(dsl_pool_t *dp, int64_t space, dmu_tx_t *tx) +dsl_pool_tempreserve_clear(dsl_pool_t *dp, int64_t space, dmu_tx_t *tx) { - if (space > 0) { - mutex_enter(&dp->dp_lock); - dp->dp_dirty_pertxg[tx->tx_txg & TXG_MASK] += space; - dsl_pool_dirty_delta(dp, space); - mutex_exit(&dp->dp_lock); - } + ASSERT(dp->dp_tempreserved[tx->tx_txg & TXG_MASK] >= space); + atomic_add_64(&dp->dp_tempreserved[tx->tx_txg & TXG_MASK], -space); } void -dsl_pool_undirty_space(dsl_pool_t *dp, int64_t space, uint64_t txg) +dsl_pool_memory_pressure(dsl_pool_t *dp) { - ASSERT3S(space, >=, 0); - if (space == 0) + uint64_t space_inuse = 0; + int i; + + if (dp->dp_write_limit == zfs_write_limit_min) return; - mutex_enter(&dp->dp_lock); - if (dp->dp_dirty_pertxg[txg & TXG_MASK] < space) { - /* XXX writing something we didn't dirty? */ - space = dp->dp_dirty_pertxg[txg & TXG_MASK]; + + for (i = 0; i < TXG_SIZE; i++) { + space_inuse += dp->dp_space_towrite[i]; + space_inuse += dp->dp_tempreserved[i]; + } + dp->dp_write_limit = MAX(zfs_write_limit_min, + MIN(dp->dp_write_limit, space_inuse / 4)); +} + +void +dsl_pool_willuse_space(dsl_pool_t *dp, int64_t space, dmu_tx_t *tx) +{ + if (space > 0) { + mutex_enter(&dp->dp_lock); + dp->dp_space_towrite[tx->tx_txg & TXG_MASK] += space; + mutex_exit(&dp->dp_lock); } - ASSERT3U(dp->dp_dirty_pertxg[txg & TXG_MASK], >=, space); - dp->dp_dirty_pertxg[txg & TXG_MASK] -= space; - ASSERT3U(dp->dp_dirty_total, >=, space); - dsl_pool_dirty_delta(dp, -space); - mutex_exit(&dp->dp_lock); } /* ARGSUSED */ |