diff options
Diffstat (limited to 'usr/src/uts/common/fs/zfs/vdev_queue.c')
| -rw-r--r-- | usr/src/uts/common/fs/zfs/vdev_queue.c | 676 |
1 files changed, 202 insertions, 474 deletions
diff --git a/usr/src/uts/common/fs/zfs/vdev_queue.c b/usr/src/uts/common/fs/zfs/vdev_queue.c index ebf87cdb7f..8de4b324a2 100644 --- a/usr/src/uts/common/fs/zfs/vdev_queue.c +++ b/usr/src/uts/common/fs/zfs/vdev_queue.c @@ -25,7 +25,7 @@ */ /* - * Copyright (c) 2013 by Delphix. All rights reserved. + * Copyright (c) 2012 by Delphix. All rights reserved. */ #include <sys/zfs_context.h> @@ -33,130 +33,29 @@ #include <sys/spa_impl.h> #include <sys/zio.h> #include <sys/avl.h> -#include <sys/dsl_pool.h> #include <sys/zfs_zone.h> /* - * ZFS I/O Scheduler - * --------------- - * - * ZFS issues I/O operations to leaf vdevs to satisfy and complete zios. The - * I/O scheduler determines when and in what order those operations are - * issued. The I/O scheduler divides operations into five I/O classes - * prioritized in the following order: sync read, sync write, async read, - * async write, and scrub/resilver. Each queue defines the minimum and - * maximum number of concurrent operations that may be issued to the device. - * In addition, the device has an aggregate maximum. Note that the sum of the - * per-queue minimums must not exceed the aggregate maximum, and if the - * aggregate maximum is equal to or greater than the sum of the per-queue - * maximums, the per-queue minimum has no effect. - * - * For many physical devices, throughput increases with the number of - * concurrent operations, but latency typically suffers. Further, physical - * devices typically have a limit at which more concurrent operations have no - * effect on throughput or can actually cause it to decrease. - * - * The scheduler selects the next operation to issue by first looking for an - * I/O class whose minimum has not been satisfied. Once all are satisfied and - * the aggregate maximum has not been hit, the scheduler looks for classes - * whose maximum has not been satisfied. Iteration through the I/O classes is - * done in the order specified above. No further operations are issued if the - * aggregate maximum number of concurrent operations has been hit or if there - * are no operations queued for an I/O class that has not hit its maximum. - * Every time an i/o is queued or an operation completes, the I/O scheduler - * looks for new operations to issue. - * - * All I/O classes have a fixed maximum number of outstanding operations - * except for the async write class. Asynchronous writes represent the data - * that is committed to stable storage during the syncing stage for - * transaction groups (see txg.c). Transaction groups enter the syncing state - * periodically so the number of queued async writes will quickly burst up and - * then bleed down to zero. Rather than servicing them as quickly as possible, - * the I/O scheduler changes the maximum number of active async write i/os - * according to the amount of dirty data in the pool (see dsl_pool.c). Since - * both throughput and latency typically increase with the number of - * concurrent operations issued to physical devices, reducing the burstiness - * in the number of concurrent operations also stabilizes the response time of - * operations from other -- and in particular synchronous -- queues. In broad - * strokes, the I/O scheduler will issue more concurrent operations from the - * async write queue as there's more dirty data in the pool. - * - * Async Writes - * - * The number of concurrent operations issued for the async write I/O class - * follows a piece-wise linear function defined by a few adjustable points. - * - * | o---------| <-- zfs_vdev_async_write_max_active - * ^ | /^ | - * | | / | | - * active | / | | - * I/O | / | | - * count | / | | - * | / | | - * |------------o | | <-- zfs_vdev_async_write_min_active - * 0|____________^______|_________| - * 0% | | 100% of zfs_dirty_data_max - * | | - * | `-- zfs_vdev_async_write_active_max_dirty_percent - * `--------- zfs_vdev_async_write_active_min_dirty_percent - * - * Until the amount of dirty data exceeds a minimum percentage of the dirty - * data allowed in the pool, the I/O scheduler will limit the number of - * concurrent operations to the minimum. As that threshold is crossed, the - * number of concurrent operations issued increases linearly to the maximum at - * the specified maximum percentage of the dirty data allowed in the pool. - * - * Ideally, the amount of dirty data on a busy pool will stay in the sloped - * part of the function between zfs_vdev_async_write_active_min_dirty_percent - * and zfs_vdev_async_write_active_max_dirty_percent. If it exceeds the - * maximum percentage, this indicates that the rate of incoming data is - * greater than the rate that the backend storage can handle. In this case, we - * must further throttle incoming writes (see dmu_tx_delay() for details). + * These tunables are for performance analysis. */ -/* - * The maximum number of i/os active to each device. Ideally, this will be >= - * the sum of each queue's max_active. It must be at least the sum of each - * queue's min_active. - */ -uint32_t zfs_vdev_max_active = 1000; +/* The maximum number of I/Os concurrently pending to each device. */ +int zfs_vdev_max_pending = 10; /* - * Per-queue limits on the number of i/os active to each device. If the - * sum of the queue's max_active is < zfs_vdev_max_active, then the - * min_active comes into play. We will send min_active from each queue, - * and then select from queues in the order defined by zio_priority_t. - * - * In general, smaller max_active's will lead to lower latency of synchronous - * operations. Larger max_active's may lead to higher overall throughput, - * depending on underlying storage. - * - * The ratio of the queues' max_actives determines the balance of performance - * between reads, writes, and scrubs. E.g., increasing - * zfs_vdev_scrub_max_active will cause the scrub or resilver to complete - * more quickly, but reads and writes to have higher latency and lower - * throughput. + * The initial number of I/Os pending to each device, before it starts ramping + * up to zfs_vdev_max_pending. */ -uint32_t zfs_vdev_sync_read_min_active = 10; -uint32_t zfs_vdev_sync_read_max_active = 10; -uint32_t zfs_vdev_sync_write_min_active = 10; -uint32_t zfs_vdev_sync_write_max_active = 10; -uint32_t zfs_vdev_async_read_min_active = 1; -uint32_t zfs_vdev_async_read_max_active = 3; -uint32_t zfs_vdev_async_write_min_active = 1; -uint32_t zfs_vdev_async_write_max_active = 10; -uint32_t zfs_vdev_scrub_min_active = 1; -uint32_t zfs_vdev_scrub_max_active = 2; +int zfs_vdev_min_pending = 4; /* - * When the pool has less than zfs_vdev_async_write_active_min_dirty_percent - * dirty data, use zfs_vdev_async_write_min_active. When it has more than - * zfs_vdev_async_write_active_max_dirty_percent, use - * zfs_vdev_async_write_max_active. The value is linearly interpolated - * between min and max. + * The deadlines are grouped into buckets based on zfs_vdev_time_shift: + * deadline = pri + gethrtime() >> time_shift) */ -int zfs_vdev_async_write_active_min_dirty_percent = 30; -int zfs_vdev_async_write_active_max_dirty_percent = 60; +int zfs_vdev_time_shift = 29; /* each bucket is 0.537 seconds */ + +/* exponential I/O issue ramp-up rate */ +int zfs_vdev_ramp_rate = 2; /* * To reduce IOPs, we aggregate small adjacent I/Os into one large I/O. @@ -168,12 +67,20 @@ int zfs_vdev_aggregation_limit = SPA_MAXBLOCKSIZE; int zfs_vdev_read_gap_limit = 32 << 10; int zfs_vdev_write_gap_limit = 4 << 10; +/* + * Virtual device vector for disk I/O scheduling. + */ int -vdev_queue_offset_compare(const void *x1, const void *x2) +vdev_queue_deadline_compare(const void *x1, const void *x2) { const zio_t *z1 = x1; const zio_t *z2 = x2; + if (z1->io_deadline < z2->io_deadline) + return (-1); + if (z1->io_deadline > z2->io_deadline) + return (1); + if (z1->io_offset < z2->io_offset) return (-1); if (z1->io_offset > z2->io_offset) @@ -188,14 +95,14 @@ vdev_queue_offset_compare(const void *x1, const void *x2) } int -vdev_queue_timestamp_compare(const void *x1, const void *x2) +vdev_queue_offset_compare(const void *x1, const void *x2) { const zio_t *z1 = x1; const zio_t *z2 = x2; - if (z1->io_timestamp < z2->io_timestamp) + if (z1->io_offset < z2->io_offset) return (-1); - if (z1->io_timestamp > z2->io_timestamp) + if (z1->io_offset > z2->io_offset) return (1); if (z1 < z2) @@ -212,10 +119,12 @@ vdev_queue_init(vdev_t *vd) vdev_queue_t *vq = &vd->vdev_queue; mutex_init(&vq->vq_lock, NULL, MUTEX_DEFAULT, NULL); - vq->vq_vdev = vd; - avl_create(&vq->vq_active_tree, vdev_queue_offset_compare, - sizeof (zio_t), offsetof(struct zio, io_queue_node)); + avl_create(&vq->vq_deadline_tree, vdev_queue_deadline_compare, + sizeof (zio_t), offsetof(struct zio, io_deadline_node)); + + avl_create(&vq->vq_read_tree, vdev_queue_offset_compare, + sizeof (zio_t), offsetof(struct zio, io_offset_node)); avl_create(&vq->vq_write_tree, vdev_queue_offset_compare, sizeof (zio_t), offsetof(struct zio, io_offset_node)); @@ -224,21 +133,6 @@ vdev_queue_init(vdev_t *vd) sizeof (zio_t), offsetof(struct zio, io_offset_node)); vq->vq_last_zone_id = 0; - - for (zio_priority_t p = 0; p < ZIO_PRIORITY_NUM_QUEUEABLE; p++) { - /* - * The synchronous i/o queues are FIFO rather than LBA ordered. - * This provides more consistent latency for these i/os, and - * they tend to not be tightly clustered anyway so there is - * little to no throughput loss. - */ - boolean_t fifo = (p == ZIO_PRIORITY_SYNC_READ || - p == ZIO_PRIORITY_SYNC_WRITE); - avl_create(&vq->vq_class[p].vqc_queued_tree, - fifo ? vdev_queue_timestamp_compare : - vdev_queue_offset_compare, - sizeof (zio_t), offsetof(struct zio, io_queue_node)); - } } void @@ -246,9 +140,10 @@ vdev_queue_fini(vdev_t *vd) { vdev_queue_t *vq = &vd->vdev_queue; - for (zio_priority_t p = 0; p < ZIO_PRIORITY_NUM_QUEUEABLE; p++) - avl_destroy(&vq->vq_class[p].vqc_queued_tree); - avl_destroy(&vq->vq_active_tree); + avl_destroy(&vq->vq_deadline_tree); + avl_destroy(&vq->vq_read_tree); + avl_destroy(&vq->vq_write_tree); + avl_destroy(&vq->vq_pending_tree); mutex_destroy(&vq->vq_lock); } @@ -261,14 +156,11 @@ vdev_queue_io_add(vdev_queue_t *vq, zio_t *zio) zfs_zone_zio_enqueue(zio); avl_add(zio->io_vdev_tree, zio); - ASSERT3U(zio->io_priority, <, ZIO_PRIORITY_NUM_QUEUEABLE); - avl_add(&vq->vq_class[zio->io_priority].vqc_queued_tree, zio); - - mutex_enter(&spa->spa_iokstat_lock); - spa->spa_queue_stats[zio->io_priority].spa_queued++; - if (spa->spa_iokstat != NULL) + if (spa->spa_iokstat != NULL) { + mutex_enter(&spa->spa_iokstat_lock); kstat_waitq_enter(spa->spa_iokstat->ks_data); - mutex_exit(&spa->spa_iokstat_lock); + mutex_exit(&spa->spa_iokstat_lock); + } } static void @@ -279,48 +171,34 @@ vdev_queue_io_remove(vdev_queue_t *vq, zio_t *zio) zfs_zone_zio_dequeue(zio); avl_remove(zio->io_vdev_tree, zio); - ASSERT3U(zio->io_priority, <, ZIO_PRIORITY_NUM_QUEUEABLE); - avl_remove(&vq->vq_class[zio->io_priority].vqc_queued_tree, zio); - - mutex_enter(&spa->spa_iokstat_lock); - ASSERT3U(spa->spa_queue_stats[zio->io_priority].spa_queued, >, 0); - spa->spa_queue_stats[zio->io_priority].spa_queued--; - if (spa->spa_iokstat != NULL) + if (spa->spa_iokstat != NULL) { + mutex_enter(&spa->spa_iokstat_lock); kstat_waitq_exit(spa->spa_iokstat->ks_data); - mutex_exit(&spa->spa_iokstat_lock); + mutex_exit(&spa->spa_iokstat_lock); + } } static void vdev_queue_pending_add(vdev_queue_t *vq, zio_t *zio) { spa_t *spa = zio->io_spa; - ASSERT(MUTEX_HELD(&vq->vq_lock)); - ASSERT3U(zio->io_priority, <, ZIO_PRIORITY_NUM_QUEUEABLE); - vq->vq_class[zio->io_priority].vqc_active++; - avl_add(&vq->vq_active_tree, zio); - - mutex_enter(&spa->spa_iokstat_lock); - spa->spa_queue_stats[zio->io_priority].spa_active++; - if (spa->spa_iokstat != NULL) + avl_add(&vq->vq_pending_tree, zio); + if (spa->spa_iokstat != NULL) { + mutex_enter(&spa->spa_iokstat_lock); kstat_runq_enter(spa->spa_iokstat->ks_data); - mutex_exit(&spa->spa_iokstat_lock); + mutex_exit(&spa->spa_iokstat_lock); + } } static void vdev_queue_pending_remove(vdev_queue_t *vq, zio_t *zio) { spa_t *spa = zio->io_spa; - ASSERT(MUTEX_HELD(&vq->vq_lock)); - ASSERT3U(zio->io_priority, <, ZIO_PRIORITY_NUM_QUEUEABLE); - vq->vq_class[zio->io_priority].vqc_active--; - avl_remove(&vq->vq_active_tree, zio); - - mutex_enter(&spa->spa_iokstat_lock); - ASSERT3U(spa->spa_queue_stats[zio->io_priority].spa_active, >, 0); - spa->spa_queue_stats[zio->io_priority].spa_active--; + avl_remove(&vq->vq_pending_tree, zio); if (spa->spa_iokstat != NULL) { kstat_io_t *ksio = spa->spa_iokstat->ks_data; + mutex_enter(&spa->spa_iokstat_lock); kstat_runq_exit(spa->spa_iokstat->ks_data); if (zio->io_type == ZIO_TYPE_READ) { ksio->reads++; @@ -329,131 +207,23 @@ vdev_queue_pending_remove(vdev_queue_t *vq, zio_t *zio) ksio->writes++; ksio->nwritten += zio->io_size; } + mutex_exit(&spa->spa_iokstat_lock); } - mutex_exit(&spa->spa_iokstat_lock); } static void vdev_queue_agg_io_done(zio_t *aio) { - if (aio->io_type == ZIO_TYPE_READ) { - zio_t *pio; - while ((pio = zio_walk_parents(aio)) != NULL) { + zio_t *pio; + + while ((pio = zio_walk_parents(aio)) != NULL) + if (aio->io_type == ZIO_TYPE_READ) bcopy((char *)aio->io_data + (pio->io_offset - aio->io_offset), pio->io_data, pio->io_size); - } - } zio_buf_free(aio->io_data, aio->io_size); } -static int -vdev_queue_class_min_active(zio_priority_t p) -{ - switch (p) { - case ZIO_PRIORITY_SYNC_READ: - return (zfs_vdev_sync_read_min_active); - case ZIO_PRIORITY_SYNC_WRITE: - return (zfs_vdev_sync_write_min_active); - case ZIO_PRIORITY_ASYNC_READ: - return (zfs_vdev_async_read_min_active); - case ZIO_PRIORITY_ASYNC_WRITE: - return (zfs_vdev_async_write_min_active); - case ZIO_PRIORITY_SCRUB: - return (zfs_vdev_scrub_min_active); - default: - panic("invalid priority %u", p); - return (0); - } -} - -static int -vdev_queue_max_async_writes(uint64_t dirty) -{ - int writes; - uint64_t min_bytes = zfs_dirty_data_max * - zfs_vdev_async_write_active_min_dirty_percent / 100; - uint64_t max_bytes = zfs_dirty_data_max * - zfs_vdev_async_write_active_max_dirty_percent / 100; - - if (dirty < min_bytes) - return (zfs_vdev_async_write_min_active); - if (dirty > max_bytes) - return (zfs_vdev_async_write_max_active); - - /* - * linear interpolation: - * slope = (max_writes - min_writes) / (max_bytes - min_bytes) - * move right by min_bytes - * move up by min_writes - */ - writes = (dirty - min_bytes) * - (zfs_vdev_async_write_max_active - - zfs_vdev_async_write_min_active) / - (max_bytes - min_bytes) + - zfs_vdev_async_write_min_active; - ASSERT3U(writes, >=, zfs_vdev_async_write_min_active); - ASSERT3U(writes, <=, zfs_vdev_async_write_max_active); - return (writes); -} - -static int -vdev_queue_class_max_active(spa_t *spa, zio_priority_t p) -{ - switch (p) { - case ZIO_PRIORITY_SYNC_READ: - return (zfs_vdev_sync_read_max_active); - case ZIO_PRIORITY_SYNC_WRITE: - return (zfs_vdev_sync_write_max_active); - case ZIO_PRIORITY_ASYNC_READ: - return (zfs_vdev_async_read_max_active); - case ZIO_PRIORITY_ASYNC_WRITE: - return (vdev_queue_max_async_writes( - spa->spa_dsl_pool->dp_dirty_total)); - case ZIO_PRIORITY_SCRUB: - return (zfs_vdev_scrub_max_active); - default: - panic("invalid priority %u", p); - return (0); - } -} - -/* - * Return the i/o class to issue from, or ZIO_PRIORITY_MAX_QUEUEABLE if - * there is no eligible class. - */ -static zio_priority_t -vdev_queue_class_to_issue(vdev_queue_t *vq) -{ - spa_t *spa = vq->vq_vdev->vdev_spa; - zio_priority_t p; - - if (avl_numnodes(&vq->vq_active_tree) >= zfs_vdev_max_active) - return (ZIO_PRIORITY_NUM_QUEUEABLE); - - /* find a queue that has not reached its minimum # outstanding i/os */ - for (p = 0; p < ZIO_PRIORITY_NUM_QUEUEABLE; p++) { - if (avl_numnodes(&vq->vq_class[p].vqc_queued_tree) > 0 && - vq->vq_class[p].vqc_active < - vdev_queue_class_min_active(p)) - return (p); - } - - /* - * If we haven't found a queue, look for one that hasn't reached its - * maximum # outstanding i/os. - */ - for (p = 0; p < ZIO_PRIORITY_NUM_QUEUEABLE; p++) { - if (avl_numnodes(&vq->vq_class[p].vqc_queued_tree) > 0 && - vq->vq_class[p].vqc_active < - vdev_queue_class_max_active(spa, p)) - return (p); - } - - /* No eligible queued i/os */ - return (ZIO_PRIORITY_NUM_QUEUEABLE); -} - /* * Compute the range spanned by two i/os, which is the endpoint of the last * (lio->io_offset + lio->io_size) minus start of the first (fio->io_offset). @@ -464,26 +234,20 @@ vdev_queue_class_to_issue(vdev_queue_t *vq) #define IO_GAP(fio, lio) (-IO_SPAN(lio, fio)) static zio_t * -vdev_queue_aggregate(vdev_queue_t *vq, zio_t *zio) +vdev_queue_io_to_issue(vdev_queue_t *vq, uint64_t pending_limit) { - zio_t *first, *last, *aio, *dio, *mandatory, *nio; - uint64_t maxgap = 0; - uint64_t size; - boolean_t stretch = B_FALSE; - vdev_queue_class_t *vqc = &vq->vq_class[zio->io_priority]; - avl_tree_t *t = &vqc->vqc_queued_tree; - enum zio_flag flags = zio->io_flags & ZIO_FLAG_AGG_INHERIT; - - if (zio->io_flags & ZIO_FLAG_DONT_AGGREGATE) - return (NULL); + zio_t *fio, *lio, *aio, *dio, *nio, *mio; + avl_tree_t *t; + int flags; + uint64_t maxspan = zfs_vdev_aggregation_limit; + uint64_t maxgap; + int stretch; - /* - * The synchronous i/o queues are not sorted by LBA, so we can't - * find adjacent i/os. These i/os tend to not be tightly clustered, - * or too large to aggregate, so this has little impact on performance. - */ - if (zio->io_priority == ZIO_PRIORITY_SYNC_READ || - zio->io_priority == ZIO_PRIORITY_SYNC_WRITE) +again: + ASSERT(MUTEX_HELD(&vq->vq_lock)); + + if (avl_numnodes(&vq->vq_pending_tree) >= pending_limit || + avl_numnodes(&vq->vq_deadline_tree) == 0) return (NULL); #ifdef _KERNEL @@ -492,170 +256,136 @@ vdev_queue_aggregate(vdev_queue_t *vq, zio_t *zio) fio = lio = avl_first(&vq->vq_deadline_tree); #endif - first = last = zio; - - if (zio->io_type == ZIO_TYPE_READ) - maxgap = zfs_vdev_read_gap_limit; + t = fio->io_vdev_tree; + flags = fio->io_flags & ZIO_FLAG_AGG_INHERIT; + maxgap = (t == &vq->vq_read_tree) ? zfs_vdev_read_gap_limit : 0; - /* - * We can aggregate I/Os that are sufficiently adjacent and of - * the same flavor, as expressed by the AGG_INHERIT flags. - * The latter requirement is necessary so that certain - * attributes of the I/O, such as whether it's a normal I/O - * or a scrub/resilver, can be preserved in the aggregate. - * We can include optional I/Os, but don't allow them - * to begin a range as they add no benefit in that situation. - */ + if (!(flags & ZIO_FLAG_DONT_AGGREGATE)) { + /* + * We can aggregate I/Os that are sufficiently adjacent and of + * the same flavor, as expressed by the AGG_INHERIT flags. + * The latter requirement is necessary so that certain + * attributes of the I/O, such as whether it's a normal I/O + * or a scrub/resilver, can be preserved in the aggregate. + * We can include optional I/Os, but don't allow them + * to begin a range as they add no benefit in that situation. + */ - /* - * We keep track of the last non-optional I/O. - */ - mandatory = (first->io_flags & ZIO_FLAG_OPTIONAL) ? NULL : first; + /* + * We keep track of the last non-optional I/O. + */ + mio = (fio->io_flags & ZIO_FLAG_OPTIONAL) ? NULL : fio; - /* - * Walk backwards through sufficiently contiguous I/Os - * recording the last non-option I/O. - */ - while ((dio = AVL_PREV(t, first)) != NULL && - (dio->io_flags & ZIO_FLAG_AGG_INHERIT) == flags && - IO_SPAN(dio, last) <= zfs_vdev_aggregation_limit && - IO_GAP(dio, first) <= maxgap) { - first = dio; - if (mandatory == NULL && !(first->io_flags & ZIO_FLAG_OPTIONAL)) - mandatory = first; - } + /* + * Walk backwards through sufficiently contiguous I/Os + * recording the last non-option I/O. + */ + while ((dio = AVL_PREV(t, fio)) != NULL && + (dio->io_flags & ZIO_FLAG_AGG_INHERIT) == flags && + IO_SPAN(dio, lio) <= maxspan && + IO_GAP(dio, fio) <= maxgap) { + fio = dio; + if (mio == NULL && !(fio->io_flags & ZIO_FLAG_OPTIONAL)) + mio = fio; + } - /* - * Skip any initial optional I/Os. - */ - while ((first->io_flags & ZIO_FLAG_OPTIONAL) && first != last) { - first = AVL_NEXT(t, first); - ASSERT(first != NULL); - } + /* + * Skip any initial optional I/Os. + */ + while ((fio->io_flags & ZIO_FLAG_OPTIONAL) && fio != lio) { + fio = AVL_NEXT(t, fio); + ASSERT(fio != NULL); + } - /* - * Walk forward through sufficiently contiguous I/Os. - */ - while ((dio = AVL_NEXT(t, last)) != NULL && - (dio->io_flags & ZIO_FLAG_AGG_INHERIT) == flags && - IO_SPAN(first, dio) <= zfs_vdev_aggregation_limit && - IO_GAP(last, dio) <= maxgap) { - last = dio; - if (!(last->io_flags & ZIO_FLAG_OPTIONAL)) - mandatory = last; - } + /* + * Walk forward through sufficiently contiguous I/Os. + */ + while ((dio = AVL_NEXT(t, lio)) != NULL && + (dio->io_flags & ZIO_FLAG_AGG_INHERIT) == flags && + IO_SPAN(fio, dio) <= maxspan && + IO_GAP(lio, dio) <= maxgap) { + lio = dio; + if (!(lio->io_flags & ZIO_FLAG_OPTIONAL)) + mio = lio; + } - /* - * Now that we've established the range of the I/O aggregation - * we must decide what to do with trailing optional I/Os. - * For reads, there's nothing to do. While we are unable to - * aggregate further, it's possible that a trailing optional - * I/O would allow the underlying device to aggregate with - * subsequent I/Os. We must therefore determine if the next - * non-optional I/O is close enough to make aggregation - * worthwhile. - */ - if (zio->io_type == ZIO_TYPE_WRITE && mandatory != NULL) { - zio_t *nio = last; - while ((dio = AVL_NEXT(t, nio)) != NULL && - IO_GAP(nio, dio) == 0 && - IO_GAP(mandatory, dio) <= zfs_vdev_write_gap_limit) { - nio = dio; - if (!(nio->io_flags & ZIO_FLAG_OPTIONAL)) { - stretch = B_TRUE; - break; + /* + * Now that we've established the range of the I/O aggregation + * we must decide what to do with trailing optional I/Os. + * For reads, there's nothing to do. While we are unable to + * aggregate further, it's possible that a trailing optional + * I/O would allow the underlying device to aggregate with + * subsequent I/Os. We must therefore determine if the next + * non-optional I/O is close enough to make aggregation + * worthwhile. + */ + stretch = B_FALSE; + if (t != &vq->vq_read_tree && mio != NULL) { + nio = lio; + while ((dio = AVL_NEXT(t, nio)) != NULL && + IO_GAP(nio, dio) == 0 && + IO_GAP(mio, dio) <= zfs_vdev_write_gap_limit) { + nio = dio; + if (!(nio->io_flags & ZIO_FLAG_OPTIONAL)) { + stretch = B_TRUE; + break; + } } } - } - if (stretch) { - /* This may be a no-op. */ - dio = AVL_NEXT(t, last); - dio->io_flags &= ~ZIO_FLAG_OPTIONAL; - } else { - while (last != mandatory && last != first) { - ASSERT(last->io_flags & ZIO_FLAG_OPTIONAL); - last = AVL_PREV(t, last); - ASSERT(last != NULL); + if (stretch) { + /* This may be a no-op. */ + VERIFY((dio = AVL_NEXT(t, lio)) != NULL); + dio->io_flags &= ~ZIO_FLAG_OPTIONAL; + } else { + while (lio != mio && lio != fio) { + ASSERT(lio->io_flags & ZIO_FLAG_OPTIONAL); + lio = AVL_PREV(t, lio); + ASSERT(lio != NULL); + } } } - if (first == last) - return (NULL); - - size = IO_SPAN(first, last); - ASSERT3U(size, <=, zfs_vdev_aggregation_limit); - - aio = zio_vdev_delegated_io(first->io_vd, first->io_offset, - zio_buf_alloc(size), size, first->io_type, zio->io_priority, - flags | ZIO_FLAG_DONT_CACHE | ZIO_FLAG_DONT_QUEUE, - vdev_queue_agg_io_done, NULL); - aio->io_timestamp = first->io_timestamp; - - nio = first; - do { - dio = nio; - nio = AVL_NEXT(t, dio); - ASSERT3U(dio->io_type, ==, aio->io_type); - - if (dio->io_flags & ZIO_FLAG_NODATA) { - ASSERT3U(dio->io_type, ==, ZIO_TYPE_WRITE); - bzero((char *)aio->io_data + (dio->io_offset - - aio->io_offset), dio->io_size); - } else if (dio->io_type == ZIO_TYPE_WRITE) { - bcopy(dio->io_data, (char *)aio->io_data + - (dio->io_offset - aio->io_offset), - dio->io_size); - } - - zio_add_child(dio, aio); - vdev_queue_io_remove(vq, dio); - zio_vdev_io_bypass(dio); - zio_execute(dio); - } while (dio != last); - - return (aio); -} - -static zio_t * -vdev_queue_io_to_issue(vdev_queue_t *vq) -{ - zio_t *zio, *aio; - zio_priority_t p; - avl_index_t idx; - vdev_queue_class_t *vqc; - zio_t search; + if (fio != lio) { + uint64_t size = IO_SPAN(fio, lio); + ASSERT(size <= zfs_vdev_aggregation_limit); + + aio = zio_vdev_delegated_io(fio->io_vd, fio->io_offset, + zio_buf_alloc(size), size, fio->io_type, ZIO_PRIORITY_AGG, + flags | ZIO_FLAG_DONT_CACHE | ZIO_FLAG_DONT_QUEUE, + vdev_queue_agg_io_done, NULL); + aio->io_timestamp = fio->io_timestamp; + + nio = fio; + do { + dio = nio; + nio = AVL_NEXT(t, dio); + ASSERT(dio->io_type == aio->io_type); + ASSERT(dio->io_vdev_tree == t); + + if (dio->io_flags & ZIO_FLAG_NODATA) { + ASSERT(dio->io_type == ZIO_TYPE_WRITE); + bzero((char *)aio->io_data + (dio->io_offset - + aio->io_offset), dio->io_size); + } else if (dio->io_type == ZIO_TYPE_WRITE) { + bcopy(dio->io_data, (char *)aio->io_data + + (dio->io_offset - aio->io_offset), + dio->io_size); + } -again: - ASSERT(MUTEX_HELD(&vq->vq_lock)); + zio_add_child(dio, aio); + vdev_queue_io_remove(vq, dio); + zio_vdev_io_bypass(dio); + zio_execute(dio); + } while (dio != lio); - p = vdev_queue_class_to_issue(vq); + vdev_queue_pending_add(vq, aio); - if (p == ZIO_PRIORITY_NUM_QUEUEABLE) { - /* No eligible queued i/os */ - return (NULL); + return (aio); } - /* - * For LBA-ordered queues (async / scrub), issue the i/o which follows - * the most recently issued i/o in LBA (offset) order. - * - * For FIFO queues (sync), issue the i/o with the lowest timestamp. - */ - vqc = &vq->vq_class[p]; - search.io_timestamp = 0; - search.io_offset = vq->vq_last_offset + 1; - VERIFY3P(avl_find(&vqc->vqc_queued_tree, &search, &idx), ==, NULL); - zio = avl_nearest(&vqc->vqc_queued_tree, idx, AVL_AFTER); - if (zio == NULL) - zio = avl_first(&vqc->vqc_queued_tree); - ASSERT3U(zio->io_priority, ==, p); - - aio = vdev_queue_aggregate(vq, zio); - if (aio != NULL) - zio = aio; - else - vdev_queue_io_remove(vq, zio); + ASSERT(fio->io_vdev_tree == t); + vdev_queue_io_remove(vq, fio); /* * If the I/O is or was optional and therefore has no data, we need to @@ -663,18 +393,17 @@ again: * deadlock that we could encounter since this I/O will complete * immediately. */ - if (zio->io_flags & ZIO_FLAG_NODATA) { + if (fio->io_flags & ZIO_FLAG_NODATA) { mutex_exit(&vq->vq_lock); - zio_vdev_io_bypass(zio); - zio_execute(zio); + zio_vdev_io_bypass(fio); + zio_execute(fio); mutex_enter(&vq->vq_lock); goto again; } - vdev_queue_pending_add(vq, zio); - vq->vq_last_offset = zio->io_offset; + vdev_queue_pending_add(vq, fio); - return (zio); + return (fio); } zio_t * @@ -683,31 +412,28 @@ vdev_queue_io(zio_t *zio) vdev_queue_t *vq = &zio->io_vd->vdev_queue; zio_t *nio; + ASSERT(zio->io_type == ZIO_TYPE_READ || zio->io_type == ZIO_TYPE_WRITE); + if (zio->io_flags & ZIO_FLAG_DONT_QUEUE) return (zio); - /* - * Children i/os inherent their parent's priority, which might - * not match the child's i/o type. Fix it up here. - */ - if (zio->io_type == ZIO_TYPE_READ) { - if (zio->io_priority != ZIO_PRIORITY_SYNC_READ && - zio->io_priority != ZIO_PRIORITY_ASYNC_READ && - zio->io_priority != ZIO_PRIORITY_SCRUB) - zio->io_priority = ZIO_PRIORITY_ASYNC_READ; - } else { - ASSERT(zio->io_type == ZIO_TYPE_WRITE); - if (zio->io_priority != ZIO_PRIORITY_SYNC_WRITE && - zio->io_priority != ZIO_PRIORITY_ASYNC_WRITE) - zio->io_priority = ZIO_PRIORITY_ASYNC_WRITE; - } - zio->io_flags |= ZIO_FLAG_DONT_CACHE | ZIO_FLAG_DONT_QUEUE; + if (zio->io_type == ZIO_TYPE_READ) + zio->io_vdev_tree = &vq->vq_read_tree; + else + zio->io_vdev_tree = &vq->vq_write_tree; + mutex_enter(&vq->vq_lock); + zio->io_timestamp = gethrtime(); + zio->io_deadline = (zio->io_timestamp >> zfs_vdev_time_shift) + + zio->io_priority; + vdev_queue_io_add(vq, zio); - nio = vdev_queue_io_to_issue(vq); + + nio = vdev_queue_io_to_issue(vq, zfs_vdev_min_pending); + mutex_exit(&vq->vq_lock); if (nio == NULL) @@ -725,7 +451,6 @@ void vdev_queue_io_done(zio_t *zio) { vdev_queue_t *vq = &zio->io_vd->vdev_queue; - zio_t *nio; if (zio_injection_enabled) delay(SEC_TO_TICK(zio_handle_io_delay(zio))); @@ -736,7 +461,10 @@ vdev_queue_io_done(zio_t *zio) vq->vq_io_complete_ts = gethrtime(); - while ((nio = vdev_queue_io_to_issue(vq)) != NULL) { + for (int i = 0; i < zfs_vdev_ramp_rate; i++) { + zio_t *nio = vdev_queue_io_to_issue(vq, zfs_vdev_max_pending); + if (nio == NULL) + break; mutex_exit(&vq->vq_lock); if (nio->io_done == vdev_queue_agg_io_done) { zio_nowait(nio); |
