summaryrefslogtreecommitdiff
path: root/usr/src/uts/common/fs/zfs/vdev_queue.c
diff options
context:
space:
mode:
Diffstat (limited to 'usr/src/uts/common/fs/zfs/vdev_queue.c')
-rw-r--r--usr/src/uts/common/fs/zfs/vdev_queue.c676
1 files changed, 202 insertions, 474 deletions
diff --git a/usr/src/uts/common/fs/zfs/vdev_queue.c b/usr/src/uts/common/fs/zfs/vdev_queue.c
index ebf87cdb7f..8de4b324a2 100644
--- a/usr/src/uts/common/fs/zfs/vdev_queue.c
+++ b/usr/src/uts/common/fs/zfs/vdev_queue.c
@@ -25,7 +25,7 @@
*/
/*
- * Copyright (c) 2013 by Delphix. All rights reserved.
+ * Copyright (c) 2012 by Delphix. All rights reserved.
*/
#include <sys/zfs_context.h>
@@ -33,130 +33,29 @@
#include <sys/spa_impl.h>
#include <sys/zio.h>
#include <sys/avl.h>
-#include <sys/dsl_pool.h>
#include <sys/zfs_zone.h>
/*
- * ZFS I/O Scheduler
- * ---------------
- *
- * ZFS issues I/O operations to leaf vdevs to satisfy and complete zios. The
- * I/O scheduler determines when and in what order those operations are
- * issued. The I/O scheduler divides operations into five I/O classes
- * prioritized in the following order: sync read, sync write, async read,
- * async write, and scrub/resilver. Each queue defines the minimum and
- * maximum number of concurrent operations that may be issued to the device.
- * In addition, the device has an aggregate maximum. Note that the sum of the
- * per-queue minimums must not exceed the aggregate maximum, and if the
- * aggregate maximum is equal to or greater than the sum of the per-queue
- * maximums, the per-queue minimum has no effect.
- *
- * For many physical devices, throughput increases with the number of
- * concurrent operations, but latency typically suffers. Further, physical
- * devices typically have a limit at which more concurrent operations have no
- * effect on throughput or can actually cause it to decrease.
- *
- * The scheduler selects the next operation to issue by first looking for an
- * I/O class whose minimum has not been satisfied. Once all are satisfied and
- * the aggregate maximum has not been hit, the scheduler looks for classes
- * whose maximum has not been satisfied. Iteration through the I/O classes is
- * done in the order specified above. No further operations are issued if the
- * aggregate maximum number of concurrent operations has been hit or if there
- * are no operations queued for an I/O class that has not hit its maximum.
- * Every time an i/o is queued or an operation completes, the I/O scheduler
- * looks for new operations to issue.
- *
- * All I/O classes have a fixed maximum number of outstanding operations
- * except for the async write class. Asynchronous writes represent the data
- * that is committed to stable storage during the syncing stage for
- * transaction groups (see txg.c). Transaction groups enter the syncing state
- * periodically so the number of queued async writes will quickly burst up and
- * then bleed down to zero. Rather than servicing them as quickly as possible,
- * the I/O scheduler changes the maximum number of active async write i/os
- * according to the amount of dirty data in the pool (see dsl_pool.c). Since
- * both throughput and latency typically increase with the number of
- * concurrent operations issued to physical devices, reducing the burstiness
- * in the number of concurrent operations also stabilizes the response time of
- * operations from other -- and in particular synchronous -- queues. In broad
- * strokes, the I/O scheduler will issue more concurrent operations from the
- * async write queue as there's more dirty data in the pool.
- *
- * Async Writes
- *
- * The number of concurrent operations issued for the async write I/O class
- * follows a piece-wise linear function defined by a few adjustable points.
- *
- * | o---------| <-- zfs_vdev_async_write_max_active
- * ^ | /^ |
- * | | / | |
- * active | / | |
- * I/O | / | |
- * count | / | |
- * | / | |
- * |------------o | | <-- zfs_vdev_async_write_min_active
- * 0|____________^______|_________|
- * 0% | | 100% of zfs_dirty_data_max
- * | |
- * | `-- zfs_vdev_async_write_active_max_dirty_percent
- * `--------- zfs_vdev_async_write_active_min_dirty_percent
- *
- * Until the amount of dirty data exceeds a minimum percentage of the dirty
- * data allowed in the pool, the I/O scheduler will limit the number of
- * concurrent operations to the minimum. As that threshold is crossed, the
- * number of concurrent operations issued increases linearly to the maximum at
- * the specified maximum percentage of the dirty data allowed in the pool.
- *
- * Ideally, the amount of dirty data on a busy pool will stay in the sloped
- * part of the function between zfs_vdev_async_write_active_min_dirty_percent
- * and zfs_vdev_async_write_active_max_dirty_percent. If it exceeds the
- * maximum percentage, this indicates that the rate of incoming data is
- * greater than the rate that the backend storage can handle. In this case, we
- * must further throttle incoming writes (see dmu_tx_delay() for details).
+ * These tunables are for performance analysis.
*/
-/*
- * The maximum number of i/os active to each device. Ideally, this will be >=
- * the sum of each queue's max_active. It must be at least the sum of each
- * queue's min_active.
- */
-uint32_t zfs_vdev_max_active = 1000;
+/* The maximum number of I/Os concurrently pending to each device. */
+int zfs_vdev_max_pending = 10;
/*
- * Per-queue limits on the number of i/os active to each device. If the
- * sum of the queue's max_active is < zfs_vdev_max_active, then the
- * min_active comes into play. We will send min_active from each queue,
- * and then select from queues in the order defined by zio_priority_t.
- *
- * In general, smaller max_active's will lead to lower latency of synchronous
- * operations. Larger max_active's may lead to higher overall throughput,
- * depending on underlying storage.
- *
- * The ratio of the queues' max_actives determines the balance of performance
- * between reads, writes, and scrubs. E.g., increasing
- * zfs_vdev_scrub_max_active will cause the scrub or resilver to complete
- * more quickly, but reads and writes to have higher latency and lower
- * throughput.
+ * The initial number of I/Os pending to each device, before it starts ramping
+ * up to zfs_vdev_max_pending.
*/
-uint32_t zfs_vdev_sync_read_min_active = 10;
-uint32_t zfs_vdev_sync_read_max_active = 10;
-uint32_t zfs_vdev_sync_write_min_active = 10;
-uint32_t zfs_vdev_sync_write_max_active = 10;
-uint32_t zfs_vdev_async_read_min_active = 1;
-uint32_t zfs_vdev_async_read_max_active = 3;
-uint32_t zfs_vdev_async_write_min_active = 1;
-uint32_t zfs_vdev_async_write_max_active = 10;
-uint32_t zfs_vdev_scrub_min_active = 1;
-uint32_t zfs_vdev_scrub_max_active = 2;
+int zfs_vdev_min_pending = 4;
/*
- * When the pool has less than zfs_vdev_async_write_active_min_dirty_percent
- * dirty data, use zfs_vdev_async_write_min_active. When it has more than
- * zfs_vdev_async_write_active_max_dirty_percent, use
- * zfs_vdev_async_write_max_active. The value is linearly interpolated
- * between min and max.
+ * The deadlines are grouped into buckets based on zfs_vdev_time_shift:
+ * deadline = pri + gethrtime() >> time_shift)
*/
-int zfs_vdev_async_write_active_min_dirty_percent = 30;
-int zfs_vdev_async_write_active_max_dirty_percent = 60;
+int zfs_vdev_time_shift = 29; /* each bucket is 0.537 seconds */
+
+/* exponential I/O issue ramp-up rate */
+int zfs_vdev_ramp_rate = 2;
/*
* To reduce IOPs, we aggregate small adjacent I/Os into one large I/O.
@@ -168,12 +67,20 @@ int zfs_vdev_aggregation_limit = SPA_MAXBLOCKSIZE;
int zfs_vdev_read_gap_limit = 32 << 10;
int zfs_vdev_write_gap_limit = 4 << 10;
+/*
+ * Virtual device vector for disk I/O scheduling.
+ */
int
-vdev_queue_offset_compare(const void *x1, const void *x2)
+vdev_queue_deadline_compare(const void *x1, const void *x2)
{
const zio_t *z1 = x1;
const zio_t *z2 = x2;
+ if (z1->io_deadline < z2->io_deadline)
+ return (-1);
+ if (z1->io_deadline > z2->io_deadline)
+ return (1);
+
if (z1->io_offset < z2->io_offset)
return (-1);
if (z1->io_offset > z2->io_offset)
@@ -188,14 +95,14 @@ vdev_queue_offset_compare(const void *x1, const void *x2)
}
int
-vdev_queue_timestamp_compare(const void *x1, const void *x2)
+vdev_queue_offset_compare(const void *x1, const void *x2)
{
const zio_t *z1 = x1;
const zio_t *z2 = x2;
- if (z1->io_timestamp < z2->io_timestamp)
+ if (z1->io_offset < z2->io_offset)
return (-1);
- if (z1->io_timestamp > z2->io_timestamp)
+ if (z1->io_offset > z2->io_offset)
return (1);
if (z1 < z2)
@@ -212,10 +119,12 @@ vdev_queue_init(vdev_t *vd)
vdev_queue_t *vq = &vd->vdev_queue;
mutex_init(&vq->vq_lock, NULL, MUTEX_DEFAULT, NULL);
- vq->vq_vdev = vd;
- avl_create(&vq->vq_active_tree, vdev_queue_offset_compare,
- sizeof (zio_t), offsetof(struct zio, io_queue_node));
+ avl_create(&vq->vq_deadline_tree, vdev_queue_deadline_compare,
+ sizeof (zio_t), offsetof(struct zio, io_deadline_node));
+
+ avl_create(&vq->vq_read_tree, vdev_queue_offset_compare,
+ sizeof (zio_t), offsetof(struct zio, io_offset_node));
avl_create(&vq->vq_write_tree, vdev_queue_offset_compare,
sizeof (zio_t), offsetof(struct zio, io_offset_node));
@@ -224,21 +133,6 @@ vdev_queue_init(vdev_t *vd)
sizeof (zio_t), offsetof(struct zio, io_offset_node));
vq->vq_last_zone_id = 0;
-
- for (zio_priority_t p = 0; p < ZIO_PRIORITY_NUM_QUEUEABLE; p++) {
- /*
- * The synchronous i/o queues are FIFO rather than LBA ordered.
- * This provides more consistent latency for these i/os, and
- * they tend to not be tightly clustered anyway so there is
- * little to no throughput loss.
- */
- boolean_t fifo = (p == ZIO_PRIORITY_SYNC_READ ||
- p == ZIO_PRIORITY_SYNC_WRITE);
- avl_create(&vq->vq_class[p].vqc_queued_tree,
- fifo ? vdev_queue_timestamp_compare :
- vdev_queue_offset_compare,
- sizeof (zio_t), offsetof(struct zio, io_queue_node));
- }
}
void
@@ -246,9 +140,10 @@ vdev_queue_fini(vdev_t *vd)
{
vdev_queue_t *vq = &vd->vdev_queue;
- for (zio_priority_t p = 0; p < ZIO_PRIORITY_NUM_QUEUEABLE; p++)
- avl_destroy(&vq->vq_class[p].vqc_queued_tree);
- avl_destroy(&vq->vq_active_tree);
+ avl_destroy(&vq->vq_deadline_tree);
+ avl_destroy(&vq->vq_read_tree);
+ avl_destroy(&vq->vq_write_tree);
+ avl_destroy(&vq->vq_pending_tree);
mutex_destroy(&vq->vq_lock);
}
@@ -261,14 +156,11 @@ vdev_queue_io_add(vdev_queue_t *vq, zio_t *zio)
zfs_zone_zio_enqueue(zio);
avl_add(zio->io_vdev_tree, zio);
- ASSERT3U(zio->io_priority, <, ZIO_PRIORITY_NUM_QUEUEABLE);
- avl_add(&vq->vq_class[zio->io_priority].vqc_queued_tree, zio);
-
- mutex_enter(&spa->spa_iokstat_lock);
- spa->spa_queue_stats[zio->io_priority].spa_queued++;
- if (spa->spa_iokstat != NULL)
+ if (spa->spa_iokstat != NULL) {
+ mutex_enter(&spa->spa_iokstat_lock);
kstat_waitq_enter(spa->spa_iokstat->ks_data);
- mutex_exit(&spa->spa_iokstat_lock);
+ mutex_exit(&spa->spa_iokstat_lock);
+ }
}
static void
@@ -279,48 +171,34 @@ vdev_queue_io_remove(vdev_queue_t *vq, zio_t *zio)
zfs_zone_zio_dequeue(zio);
avl_remove(zio->io_vdev_tree, zio);
- ASSERT3U(zio->io_priority, <, ZIO_PRIORITY_NUM_QUEUEABLE);
- avl_remove(&vq->vq_class[zio->io_priority].vqc_queued_tree, zio);
-
- mutex_enter(&spa->spa_iokstat_lock);
- ASSERT3U(spa->spa_queue_stats[zio->io_priority].spa_queued, >, 0);
- spa->spa_queue_stats[zio->io_priority].spa_queued--;
- if (spa->spa_iokstat != NULL)
+ if (spa->spa_iokstat != NULL) {
+ mutex_enter(&spa->spa_iokstat_lock);
kstat_waitq_exit(spa->spa_iokstat->ks_data);
- mutex_exit(&spa->spa_iokstat_lock);
+ mutex_exit(&spa->spa_iokstat_lock);
+ }
}
static void
vdev_queue_pending_add(vdev_queue_t *vq, zio_t *zio)
{
spa_t *spa = zio->io_spa;
- ASSERT(MUTEX_HELD(&vq->vq_lock));
- ASSERT3U(zio->io_priority, <, ZIO_PRIORITY_NUM_QUEUEABLE);
- vq->vq_class[zio->io_priority].vqc_active++;
- avl_add(&vq->vq_active_tree, zio);
-
- mutex_enter(&spa->spa_iokstat_lock);
- spa->spa_queue_stats[zio->io_priority].spa_active++;
- if (spa->spa_iokstat != NULL)
+ avl_add(&vq->vq_pending_tree, zio);
+ if (spa->spa_iokstat != NULL) {
+ mutex_enter(&spa->spa_iokstat_lock);
kstat_runq_enter(spa->spa_iokstat->ks_data);
- mutex_exit(&spa->spa_iokstat_lock);
+ mutex_exit(&spa->spa_iokstat_lock);
+ }
}
static void
vdev_queue_pending_remove(vdev_queue_t *vq, zio_t *zio)
{
spa_t *spa = zio->io_spa;
- ASSERT(MUTEX_HELD(&vq->vq_lock));
- ASSERT3U(zio->io_priority, <, ZIO_PRIORITY_NUM_QUEUEABLE);
- vq->vq_class[zio->io_priority].vqc_active--;
- avl_remove(&vq->vq_active_tree, zio);
-
- mutex_enter(&spa->spa_iokstat_lock);
- ASSERT3U(spa->spa_queue_stats[zio->io_priority].spa_active, >, 0);
- spa->spa_queue_stats[zio->io_priority].spa_active--;
+ avl_remove(&vq->vq_pending_tree, zio);
if (spa->spa_iokstat != NULL) {
kstat_io_t *ksio = spa->spa_iokstat->ks_data;
+ mutex_enter(&spa->spa_iokstat_lock);
kstat_runq_exit(spa->spa_iokstat->ks_data);
if (zio->io_type == ZIO_TYPE_READ) {
ksio->reads++;
@@ -329,131 +207,23 @@ vdev_queue_pending_remove(vdev_queue_t *vq, zio_t *zio)
ksio->writes++;
ksio->nwritten += zio->io_size;
}
+ mutex_exit(&spa->spa_iokstat_lock);
}
- mutex_exit(&spa->spa_iokstat_lock);
}
static void
vdev_queue_agg_io_done(zio_t *aio)
{
- if (aio->io_type == ZIO_TYPE_READ) {
- zio_t *pio;
- while ((pio = zio_walk_parents(aio)) != NULL) {
+ zio_t *pio;
+
+ while ((pio = zio_walk_parents(aio)) != NULL)
+ if (aio->io_type == ZIO_TYPE_READ)
bcopy((char *)aio->io_data + (pio->io_offset -
aio->io_offset), pio->io_data, pio->io_size);
- }
- }
zio_buf_free(aio->io_data, aio->io_size);
}
-static int
-vdev_queue_class_min_active(zio_priority_t p)
-{
- switch (p) {
- case ZIO_PRIORITY_SYNC_READ:
- return (zfs_vdev_sync_read_min_active);
- case ZIO_PRIORITY_SYNC_WRITE:
- return (zfs_vdev_sync_write_min_active);
- case ZIO_PRIORITY_ASYNC_READ:
- return (zfs_vdev_async_read_min_active);
- case ZIO_PRIORITY_ASYNC_WRITE:
- return (zfs_vdev_async_write_min_active);
- case ZIO_PRIORITY_SCRUB:
- return (zfs_vdev_scrub_min_active);
- default:
- panic("invalid priority %u", p);
- return (0);
- }
-}
-
-static int
-vdev_queue_max_async_writes(uint64_t dirty)
-{
- int writes;
- uint64_t min_bytes = zfs_dirty_data_max *
- zfs_vdev_async_write_active_min_dirty_percent / 100;
- uint64_t max_bytes = zfs_dirty_data_max *
- zfs_vdev_async_write_active_max_dirty_percent / 100;
-
- if (dirty < min_bytes)
- return (zfs_vdev_async_write_min_active);
- if (dirty > max_bytes)
- return (zfs_vdev_async_write_max_active);
-
- /*
- * linear interpolation:
- * slope = (max_writes - min_writes) / (max_bytes - min_bytes)
- * move right by min_bytes
- * move up by min_writes
- */
- writes = (dirty - min_bytes) *
- (zfs_vdev_async_write_max_active -
- zfs_vdev_async_write_min_active) /
- (max_bytes - min_bytes) +
- zfs_vdev_async_write_min_active;
- ASSERT3U(writes, >=, zfs_vdev_async_write_min_active);
- ASSERT3U(writes, <=, zfs_vdev_async_write_max_active);
- return (writes);
-}
-
-static int
-vdev_queue_class_max_active(spa_t *spa, zio_priority_t p)
-{
- switch (p) {
- case ZIO_PRIORITY_SYNC_READ:
- return (zfs_vdev_sync_read_max_active);
- case ZIO_PRIORITY_SYNC_WRITE:
- return (zfs_vdev_sync_write_max_active);
- case ZIO_PRIORITY_ASYNC_READ:
- return (zfs_vdev_async_read_max_active);
- case ZIO_PRIORITY_ASYNC_WRITE:
- return (vdev_queue_max_async_writes(
- spa->spa_dsl_pool->dp_dirty_total));
- case ZIO_PRIORITY_SCRUB:
- return (zfs_vdev_scrub_max_active);
- default:
- panic("invalid priority %u", p);
- return (0);
- }
-}
-
-/*
- * Return the i/o class to issue from, or ZIO_PRIORITY_MAX_QUEUEABLE if
- * there is no eligible class.
- */
-static zio_priority_t
-vdev_queue_class_to_issue(vdev_queue_t *vq)
-{
- spa_t *spa = vq->vq_vdev->vdev_spa;
- zio_priority_t p;
-
- if (avl_numnodes(&vq->vq_active_tree) >= zfs_vdev_max_active)
- return (ZIO_PRIORITY_NUM_QUEUEABLE);
-
- /* find a queue that has not reached its minimum # outstanding i/os */
- for (p = 0; p < ZIO_PRIORITY_NUM_QUEUEABLE; p++) {
- if (avl_numnodes(&vq->vq_class[p].vqc_queued_tree) > 0 &&
- vq->vq_class[p].vqc_active <
- vdev_queue_class_min_active(p))
- return (p);
- }
-
- /*
- * If we haven't found a queue, look for one that hasn't reached its
- * maximum # outstanding i/os.
- */
- for (p = 0; p < ZIO_PRIORITY_NUM_QUEUEABLE; p++) {
- if (avl_numnodes(&vq->vq_class[p].vqc_queued_tree) > 0 &&
- vq->vq_class[p].vqc_active <
- vdev_queue_class_max_active(spa, p))
- return (p);
- }
-
- /* No eligible queued i/os */
- return (ZIO_PRIORITY_NUM_QUEUEABLE);
-}
-
/*
* Compute the range spanned by two i/os, which is the endpoint of the last
* (lio->io_offset + lio->io_size) minus start of the first (fio->io_offset).
@@ -464,26 +234,20 @@ vdev_queue_class_to_issue(vdev_queue_t *vq)
#define IO_GAP(fio, lio) (-IO_SPAN(lio, fio))
static zio_t *
-vdev_queue_aggregate(vdev_queue_t *vq, zio_t *zio)
+vdev_queue_io_to_issue(vdev_queue_t *vq, uint64_t pending_limit)
{
- zio_t *first, *last, *aio, *dio, *mandatory, *nio;
- uint64_t maxgap = 0;
- uint64_t size;
- boolean_t stretch = B_FALSE;
- vdev_queue_class_t *vqc = &vq->vq_class[zio->io_priority];
- avl_tree_t *t = &vqc->vqc_queued_tree;
- enum zio_flag flags = zio->io_flags & ZIO_FLAG_AGG_INHERIT;
-
- if (zio->io_flags & ZIO_FLAG_DONT_AGGREGATE)
- return (NULL);
+ zio_t *fio, *lio, *aio, *dio, *nio, *mio;
+ avl_tree_t *t;
+ int flags;
+ uint64_t maxspan = zfs_vdev_aggregation_limit;
+ uint64_t maxgap;
+ int stretch;
- /*
- * The synchronous i/o queues are not sorted by LBA, so we can't
- * find adjacent i/os. These i/os tend to not be tightly clustered,
- * or too large to aggregate, so this has little impact on performance.
- */
- if (zio->io_priority == ZIO_PRIORITY_SYNC_READ ||
- zio->io_priority == ZIO_PRIORITY_SYNC_WRITE)
+again:
+ ASSERT(MUTEX_HELD(&vq->vq_lock));
+
+ if (avl_numnodes(&vq->vq_pending_tree) >= pending_limit ||
+ avl_numnodes(&vq->vq_deadline_tree) == 0)
return (NULL);
#ifdef _KERNEL
@@ -492,170 +256,136 @@ vdev_queue_aggregate(vdev_queue_t *vq, zio_t *zio)
fio = lio = avl_first(&vq->vq_deadline_tree);
#endif
- first = last = zio;
-
- if (zio->io_type == ZIO_TYPE_READ)
- maxgap = zfs_vdev_read_gap_limit;
+ t = fio->io_vdev_tree;
+ flags = fio->io_flags & ZIO_FLAG_AGG_INHERIT;
+ maxgap = (t == &vq->vq_read_tree) ? zfs_vdev_read_gap_limit : 0;
- /*
- * We can aggregate I/Os that are sufficiently adjacent and of
- * the same flavor, as expressed by the AGG_INHERIT flags.
- * The latter requirement is necessary so that certain
- * attributes of the I/O, such as whether it's a normal I/O
- * or a scrub/resilver, can be preserved in the aggregate.
- * We can include optional I/Os, but don't allow them
- * to begin a range as they add no benefit in that situation.
- */
+ if (!(flags & ZIO_FLAG_DONT_AGGREGATE)) {
+ /*
+ * We can aggregate I/Os that are sufficiently adjacent and of
+ * the same flavor, as expressed by the AGG_INHERIT flags.
+ * The latter requirement is necessary so that certain
+ * attributes of the I/O, such as whether it's a normal I/O
+ * or a scrub/resilver, can be preserved in the aggregate.
+ * We can include optional I/Os, but don't allow them
+ * to begin a range as they add no benefit in that situation.
+ */
- /*
- * We keep track of the last non-optional I/O.
- */
- mandatory = (first->io_flags & ZIO_FLAG_OPTIONAL) ? NULL : first;
+ /*
+ * We keep track of the last non-optional I/O.
+ */
+ mio = (fio->io_flags & ZIO_FLAG_OPTIONAL) ? NULL : fio;
- /*
- * Walk backwards through sufficiently contiguous I/Os
- * recording the last non-option I/O.
- */
- while ((dio = AVL_PREV(t, first)) != NULL &&
- (dio->io_flags & ZIO_FLAG_AGG_INHERIT) == flags &&
- IO_SPAN(dio, last) <= zfs_vdev_aggregation_limit &&
- IO_GAP(dio, first) <= maxgap) {
- first = dio;
- if (mandatory == NULL && !(first->io_flags & ZIO_FLAG_OPTIONAL))
- mandatory = first;
- }
+ /*
+ * Walk backwards through sufficiently contiguous I/Os
+ * recording the last non-option I/O.
+ */
+ while ((dio = AVL_PREV(t, fio)) != NULL &&
+ (dio->io_flags & ZIO_FLAG_AGG_INHERIT) == flags &&
+ IO_SPAN(dio, lio) <= maxspan &&
+ IO_GAP(dio, fio) <= maxgap) {
+ fio = dio;
+ if (mio == NULL && !(fio->io_flags & ZIO_FLAG_OPTIONAL))
+ mio = fio;
+ }
- /*
- * Skip any initial optional I/Os.
- */
- while ((first->io_flags & ZIO_FLAG_OPTIONAL) && first != last) {
- first = AVL_NEXT(t, first);
- ASSERT(first != NULL);
- }
+ /*
+ * Skip any initial optional I/Os.
+ */
+ while ((fio->io_flags & ZIO_FLAG_OPTIONAL) && fio != lio) {
+ fio = AVL_NEXT(t, fio);
+ ASSERT(fio != NULL);
+ }
- /*
- * Walk forward through sufficiently contiguous I/Os.
- */
- while ((dio = AVL_NEXT(t, last)) != NULL &&
- (dio->io_flags & ZIO_FLAG_AGG_INHERIT) == flags &&
- IO_SPAN(first, dio) <= zfs_vdev_aggregation_limit &&
- IO_GAP(last, dio) <= maxgap) {
- last = dio;
- if (!(last->io_flags & ZIO_FLAG_OPTIONAL))
- mandatory = last;
- }
+ /*
+ * Walk forward through sufficiently contiguous I/Os.
+ */
+ while ((dio = AVL_NEXT(t, lio)) != NULL &&
+ (dio->io_flags & ZIO_FLAG_AGG_INHERIT) == flags &&
+ IO_SPAN(fio, dio) <= maxspan &&
+ IO_GAP(lio, dio) <= maxgap) {
+ lio = dio;
+ if (!(lio->io_flags & ZIO_FLAG_OPTIONAL))
+ mio = lio;
+ }
- /*
- * Now that we've established the range of the I/O aggregation
- * we must decide what to do with trailing optional I/Os.
- * For reads, there's nothing to do. While we are unable to
- * aggregate further, it's possible that a trailing optional
- * I/O would allow the underlying device to aggregate with
- * subsequent I/Os. We must therefore determine if the next
- * non-optional I/O is close enough to make aggregation
- * worthwhile.
- */
- if (zio->io_type == ZIO_TYPE_WRITE && mandatory != NULL) {
- zio_t *nio = last;
- while ((dio = AVL_NEXT(t, nio)) != NULL &&
- IO_GAP(nio, dio) == 0 &&
- IO_GAP(mandatory, dio) <= zfs_vdev_write_gap_limit) {
- nio = dio;
- if (!(nio->io_flags & ZIO_FLAG_OPTIONAL)) {
- stretch = B_TRUE;
- break;
+ /*
+ * Now that we've established the range of the I/O aggregation
+ * we must decide what to do with trailing optional I/Os.
+ * For reads, there's nothing to do. While we are unable to
+ * aggregate further, it's possible that a trailing optional
+ * I/O would allow the underlying device to aggregate with
+ * subsequent I/Os. We must therefore determine if the next
+ * non-optional I/O is close enough to make aggregation
+ * worthwhile.
+ */
+ stretch = B_FALSE;
+ if (t != &vq->vq_read_tree && mio != NULL) {
+ nio = lio;
+ while ((dio = AVL_NEXT(t, nio)) != NULL &&
+ IO_GAP(nio, dio) == 0 &&
+ IO_GAP(mio, dio) <= zfs_vdev_write_gap_limit) {
+ nio = dio;
+ if (!(nio->io_flags & ZIO_FLAG_OPTIONAL)) {
+ stretch = B_TRUE;
+ break;
+ }
}
}
- }
- if (stretch) {
- /* This may be a no-op. */
- dio = AVL_NEXT(t, last);
- dio->io_flags &= ~ZIO_FLAG_OPTIONAL;
- } else {
- while (last != mandatory && last != first) {
- ASSERT(last->io_flags & ZIO_FLAG_OPTIONAL);
- last = AVL_PREV(t, last);
- ASSERT(last != NULL);
+ if (stretch) {
+ /* This may be a no-op. */
+ VERIFY((dio = AVL_NEXT(t, lio)) != NULL);
+ dio->io_flags &= ~ZIO_FLAG_OPTIONAL;
+ } else {
+ while (lio != mio && lio != fio) {
+ ASSERT(lio->io_flags & ZIO_FLAG_OPTIONAL);
+ lio = AVL_PREV(t, lio);
+ ASSERT(lio != NULL);
+ }
}
}
- if (first == last)
- return (NULL);
-
- size = IO_SPAN(first, last);
- ASSERT3U(size, <=, zfs_vdev_aggregation_limit);
-
- aio = zio_vdev_delegated_io(first->io_vd, first->io_offset,
- zio_buf_alloc(size), size, first->io_type, zio->io_priority,
- flags | ZIO_FLAG_DONT_CACHE | ZIO_FLAG_DONT_QUEUE,
- vdev_queue_agg_io_done, NULL);
- aio->io_timestamp = first->io_timestamp;
-
- nio = first;
- do {
- dio = nio;
- nio = AVL_NEXT(t, dio);
- ASSERT3U(dio->io_type, ==, aio->io_type);
-
- if (dio->io_flags & ZIO_FLAG_NODATA) {
- ASSERT3U(dio->io_type, ==, ZIO_TYPE_WRITE);
- bzero((char *)aio->io_data + (dio->io_offset -
- aio->io_offset), dio->io_size);
- } else if (dio->io_type == ZIO_TYPE_WRITE) {
- bcopy(dio->io_data, (char *)aio->io_data +
- (dio->io_offset - aio->io_offset),
- dio->io_size);
- }
-
- zio_add_child(dio, aio);
- vdev_queue_io_remove(vq, dio);
- zio_vdev_io_bypass(dio);
- zio_execute(dio);
- } while (dio != last);
-
- return (aio);
-}
-
-static zio_t *
-vdev_queue_io_to_issue(vdev_queue_t *vq)
-{
- zio_t *zio, *aio;
- zio_priority_t p;
- avl_index_t idx;
- vdev_queue_class_t *vqc;
- zio_t search;
+ if (fio != lio) {
+ uint64_t size = IO_SPAN(fio, lio);
+ ASSERT(size <= zfs_vdev_aggregation_limit);
+
+ aio = zio_vdev_delegated_io(fio->io_vd, fio->io_offset,
+ zio_buf_alloc(size), size, fio->io_type, ZIO_PRIORITY_AGG,
+ flags | ZIO_FLAG_DONT_CACHE | ZIO_FLAG_DONT_QUEUE,
+ vdev_queue_agg_io_done, NULL);
+ aio->io_timestamp = fio->io_timestamp;
+
+ nio = fio;
+ do {
+ dio = nio;
+ nio = AVL_NEXT(t, dio);
+ ASSERT(dio->io_type == aio->io_type);
+ ASSERT(dio->io_vdev_tree == t);
+
+ if (dio->io_flags & ZIO_FLAG_NODATA) {
+ ASSERT(dio->io_type == ZIO_TYPE_WRITE);
+ bzero((char *)aio->io_data + (dio->io_offset -
+ aio->io_offset), dio->io_size);
+ } else if (dio->io_type == ZIO_TYPE_WRITE) {
+ bcopy(dio->io_data, (char *)aio->io_data +
+ (dio->io_offset - aio->io_offset),
+ dio->io_size);
+ }
-again:
- ASSERT(MUTEX_HELD(&vq->vq_lock));
+ zio_add_child(dio, aio);
+ vdev_queue_io_remove(vq, dio);
+ zio_vdev_io_bypass(dio);
+ zio_execute(dio);
+ } while (dio != lio);
- p = vdev_queue_class_to_issue(vq);
+ vdev_queue_pending_add(vq, aio);
- if (p == ZIO_PRIORITY_NUM_QUEUEABLE) {
- /* No eligible queued i/os */
- return (NULL);
+ return (aio);
}
- /*
- * For LBA-ordered queues (async / scrub), issue the i/o which follows
- * the most recently issued i/o in LBA (offset) order.
- *
- * For FIFO queues (sync), issue the i/o with the lowest timestamp.
- */
- vqc = &vq->vq_class[p];
- search.io_timestamp = 0;
- search.io_offset = vq->vq_last_offset + 1;
- VERIFY3P(avl_find(&vqc->vqc_queued_tree, &search, &idx), ==, NULL);
- zio = avl_nearest(&vqc->vqc_queued_tree, idx, AVL_AFTER);
- if (zio == NULL)
- zio = avl_first(&vqc->vqc_queued_tree);
- ASSERT3U(zio->io_priority, ==, p);
-
- aio = vdev_queue_aggregate(vq, zio);
- if (aio != NULL)
- zio = aio;
- else
- vdev_queue_io_remove(vq, zio);
+ ASSERT(fio->io_vdev_tree == t);
+ vdev_queue_io_remove(vq, fio);
/*
* If the I/O is or was optional and therefore has no data, we need to
@@ -663,18 +393,17 @@ again:
* deadlock that we could encounter since this I/O will complete
* immediately.
*/
- if (zio->io_flags & ZIO_FLAG_NODATA) {
+ if (fio->io_flags & ZIO_FLAG_NODATA) {
mutex_exit(&vq->vq_lock);
- zio_vdev_io_bypass(zio);
- zio_execute(zio);
+ zio_vdev_io_bypass(fio);
+ zio_execute(fio);
mutex_enter(&vq->vq_lock);
goto again;
}
- vdev_queue_pending_add(vq, zio);
- vq->vq_last_offset = zio->io_offset;
+ vdev_queue_pending_add(vq, fio);
- return (zio);
+ return (fio);
}
zio_t *
@@ -683,31 +412,28 @@ vdev_queue_io(zio_t *zio)
vdev_queue_t *vq = &zio->io_vd->vdev_queue;
zio_t *nio;
+ ASSERT(zio->io_type == ZIO_TYPE_READ || zio->io_type == ZIO_TYPE_WRITE);
+
if (zio->io_flags & ZIO_FLAG_DONT_QUEUE)
return (zio);
- /*
- * Children i/os inherent their parent's priority, which might
- * not match the child's i/o type. Fix it up here.
- */
- if (zio->io_type == ZIO_TYPE_READ) {
- if (zio->io_priority != ZIO_PRIORITY_SYNC_READ &&
- zio->io_priority != ZIO_PRIORITY_ASYNC_READ &&
- zio->io_priority != ZIO_PRIORITY_SCRUB)
- zio->io_priority = ZIO_PRIORITY_ASYNC_READ;
- } else {
- ASSERT(zio->io_type == ZIO_TYPE_WRITE);
- if (zio->io_priority != ZIO_PRIORITY_SYNC_WRITE &&
- zio->io_priority != ZIO_PRIORITY_ASYNC_WRITE)
- zio->io_priority = ZIO_PRIORITY_ASYNC_WRITE;
- }
-
zio->io_flags |= ZIO_FLAG_DONT_CACHE | ZIO_FLAG_DONT_QUEUE;
+ if (zio->io_type == ZIO_TYPE_READ)
+ zio->io_vdev_tree = &vq->vq_read_tree;
+ else
+ zio->io_vdev_tree = &vq->vq_write_tree;
+
mutex_enter(&vq->vq_lock);
+
zio->io_timestamp = gethrtime();
+ zio->io_deadline = (zio->io_timestamp >> zfs_vdev_time_shift) +
+ zio->io_priority;
+
vdev_queue_io_add(vq, zio);
- nio = vdev_queue_io_to_issue(vq);
+
+ nio = vdev_queue_io_to_issue(vq, zfs_vdev_min_pending);
+
mutex_exit(&vq->vq_lock);
if (nio == NULL)
@@ -725,7 +451,6 @@ void
vdev_queue_io_done(zio_t *zio)
{
vdev_queue_t *vq = &zio->io_vd->vdev_queue;
- zio_t *nio;
if (zio_injection_enabled)
delay(SEC_TO_TICK(zio_handle_io_delay(zio)));
@@ -736,7 +461,10 @@ vdev_queue_io_done(zio_t *zio)
vq->vq_io_complete_ts = gethrtime();
- while ((nio = vdev_queue_io_to_issue(vq)) != NULL) {
+ for (int i = 0; i < zfs_vdev_ramp_rate; i++) {
+ zio_t *nio = vdev_queue_io_to_issue(vq, zfs_vdev_max_pending);
+ if (nio == NULL)
+ break;
mutex_exit(&vq->vq_lock);
if (nio->io_done == vdev_queue_agg_io_done) {
zio_nowait(nio);