summaryrefslogtreecommitdiff
path: root/usr/src/uts/common/inet/tcp/tcp_input.c
diff options
context:
space:
mode:
Diffstat (limited to 'usr/src/uts/common/inet/tcp/tcp_input.c')
-rw-r--r--usr/src/uts/common/inet/tcp/tcp_input.c5648
1 files changed, 5648 insertions, 0 deletions
diff --git a/usr/src/uts/common/inet/tcp/tcp_input.c b/usr/src/uts/common/inet/tcp/tcp_input.c
new file mode 100644
index 0000000000..0741a8292f
--- /dev/null
+++ b/usr/src/uts/common/inet/tcp/tcp_input.c
@@ -0,0 +1,5648 @@
+/*
+ * CDDL HEADER START
+ *
+ * The contents of this file are subject to the terms of the
+ * Common Development and Distribution License (the "License").
+ * You may not use this file except in compliance with the License.
+ *
+ * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
+ * or http://www.opensolaris.org/os/licensing.
+ * See the License for the specific language governing permissions
+ * and limitations under the License.
+ *
+ * When distributing Covered Code, include this CDDL HEADER in each
+ * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
+ * If applicable, add the following below this CDDL HEADER, with the
+ * fields enclosed by brackets "[]" replaced with your own identifying
+ * information: Portions Copyright [yyyy] [name of copyright owner]
+ *
+ * CDDL HEADER END
+ */
+
+/*
+ * Copyright 2010 Sun Microsystems, Inc. All rights reserved.
+ * Use is subject to license terms.
+ */
+
+/* This file contains all TCP input processing functions. */
+
+#include <sys/types.h>
+#include <sys/stream.h>
+#include <sys/strsun.h>
+#include <sys/strsubr.h>
+#include <sys/stropts.h>
+#include <sys/strlog.h>
+#define _SUN_TPI_VERSION 2
+#include <sys/tihdr.h>
+#include <sys/suntpi.h>
+#include <sys/xti_inet.h>
+#include <sys/squeue_impl.h>
+#include <sys/squeue.h>
+#include <sys/tsol/tnet.h>
+
+#include <inet/common.h>
+#include <inet/ip.h>
+#include <inet/tcp.h>
+#include <inet/tcp_impl.h>
+#include <inet/tcp_cluster.h>
+#include <inet/proto_set.h>
+#include <inet/ipsec_impl.h>
+
+/*
+ * RFC1323-recommended phrasing of TSTAMP option, for easier parsing
+ */
+
+#ifdef _BIG_ENDIAN
+#define TCPOPT_NOP_NOP_TSTAMP ((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16) | \
+ (TCPOPT_TSTAMP << 8) | 10)
+#else
+#define TCPOPT_NOP_NOP_TSTAMP ((10 << 24) | (TCPOPT_TSTAMP << 16) | \
+ (TCPOPT_NOP << 8) | TCPOPT_NOP)
+#endif
+
+/*
+ * Flags returned from tcp_parse_options.
+ */
+#define TCP_OPT_MSS_PRESENT 1
+#define TCP_OPT_WSCALE_PRESENT 2
+#define TCP_OPT_TSTAMP_PRESENT 4
+#define TCP_OPT_SACK_OK_PRESENT 8
+#define TCP_OPT_SACK_PRESENT 16
+
+/*
+ * PAWS needs a timer for 24 days. This is the number of ticks in 24 days
+ */
+#define PAWS_TIMEOUT ((clock_t)(24*24*60*60*hz))
+
+/*
+ * Since tcp_listener is not cleared atomically with tcp_detached
+ * being cleared we need this extra bit to tell a detached connection
+ * apart from one that is in the process of being accepted.
+ */
+#define TCP_IS_DETACHED_NONEAGER(tcp) \
+ (TCP_IS_DETACHED(tcp) && \
+ (!(tcp)->tcp_hard_binding))
+
+/*
+ * Steps to do when a tcp_t moves to TIME-WAIT state.
+ *
+ * This connection is done, we don't need to account for it. Decrement
+ * the listener connection counter if needed.
+ *
+ * Decrement the connection counter of the stack. Note that this counter
+ * is per CPU. So the total number of connections in a stack is the sum of all
+ * of them. Since there is no lock for handling all of them exclusively, the
+ * resulting sum is only an approximation.
+ *
+ * Unconditionally clear the exclusive binding bit so this TIME-WAIT
+ * connection won't interfere with new ones.
+ *
+ * Start the TIME-WAIT timer. If upper layer has not closed the connection,
+ * the timer is handled within the context of this tcp_t. When the timer
+ * fires, tcp_clean_death() is called. If upper layer closes the connection
+ * during this period, tcp_time_wait_append() will be called to add this
+ * tcp_t to the global TIME-WAIT list. Note that this means that the
+ * actual wait time in TIME-WAIT state will be longer than the
+ * tcps_time_wait_interval since the period before upper layer closes the
+ * connection is not accounted for when tcp_time_wait_append() is called.
+ *
+ * If uppser layer has closed the connection, call tcp_time_wait_append()
+ * directly.
+ *
+ */
+#define SET_TIME_WAIT(tcps, tcp, connp) \
+{ \
+ (tcp)->tcp_state = TCPS_TIME_WAIT; \
+ if ((tcp)->tcp_listen_cnt != NULL) \
+ TCP_DECR_LISTEN_CNT(tcp); \
+ atomic_dec_64( \
+ (uint64_t *)&(tcps)->tcps_sc[CPU->cpu_seqid]->tcp_sc_conn_cnt); \
+ (connp)->conn_exclbind = 0; \
+ if (!TCP_IS_DETACHED(tcp)) { \
+ TCP_TIMER_RESTART(tcp, (tcps)->tcps_time_wait_interval); \
+ } else { \
+ tcp_time_wait_append(tcp); \
+ TCP_DBGSTAT(tcps, tcp_rput_time_wait); \
+ } \
+}
+
+/*
+ * If tcp_drop_ack_unsent_cnt is greater than 0, when TCP receives more
+ * than tcp_drop_ack_unsent_cnt number of ACKs which acknowledge unsent
+ * data, TCP will not respond with an ACK. RFC 793 requires that
+ * TCP responds with an ACK for such a bogus ACK. By not following
+ * the RFC, we prevent TCP from getting into an ACK storm if somehow
+ * an attacker successfully spoofs an acceptable segment to our
+ * peer; or when our peer is "confused."
+ */
+static uint32_t tcp_drop_ack_unsent_cnt = 10;
+
+/*
+ * The shift factor applied to tcp_mss to decide if the peer sends us a
+ * valid initial receive window. By default, if the peer receive window
+ * is smaller than 1 MSS (shift factor is 0), it is considered as invalid.
+ */
+static uint32_t tcp_init_wnd_shft = 0;
+
+/* Process ICMP source quench message or not. */
+static boolean_t tcp_icmp_source_quench = B_FALSE;
+
+static boolean_t tcp_outbound_squeue_switch = B_FALSE;
+
+static mblk_t *tcp_conn_create_v4(conn_t *, conn_t *, mblk_t *,
+ ip_recv_attr_t *);
+static mblk_t *tcp_conn_create_v6(conn_t *, conn_t *, mblk_t *,
+ ip_recv_attr_t *);
+static boolean_t tcp_drop_q0(tcp_t *);
+static void tcp_icmp_error_ipv6(tcp_t *, mblk_t *, ip_recv_attr_t *);
+static mblk_t *tcp_input_add_ancillary(tcp_t *, mblk_t *, ip_pkt_t *,
+ ip_recv_attr_t *);
+static void tcp_input_listener(void *, mblk_t *, void *, ip_recv_attr_t *);
+static int tcp_parse_options(tcpha_t *, tcp_opt_t *);
+static void tcp_process_options(tcp_t *, tcpha_t *);
+static mblk_t *tcp_reass(tcp_t *, mblk_t *, uint32_t);
+static void tcp_reass_elim_overlap(tcp_t *, mblk_t *);
+static void tcp_rsrv_input(void *, mblk_t *, void *, ip_recv_attr_t *);
+static void tcp_set_rto(tcp_t *, time_t);
+static void tcp_setcred_data(mblk_t *, ip_recv_attr_t *);
+
+extern void tcp_kssl_input(tcp_t *, mblk_t *, cred_t *);
+
+/*
+ * Set the MSS associated with a particular tcp based on its current value,
+ * and a new one passed in. Observe minimums and maximums, and reset other
+ * state variables that we want to view as multiples of MSS.
+ *
+ * The value of MSS could be either increased or descreased.
+ */
+void
+tcp_mss_set(tcp_t *tcp, uint32_t mss)
+{
+ uint32_t mss_max;
+ tcp_stack_t *tcps = tcp->tcp_tcps;
+ conn_t *connp = tcp->tcp_connp;
+
+ if (connp->conn_ipversion == IPV4_VERSION)
+ mss_max = tcps->tcps_mss_max_ipv4;
+ else
+ mss_max = tcps->tcps_mss_max_ipv6;
+
+ if (mss < tcps->tcps_mss_min)
+ mss = tcps->tcps_mss_min;
+ if (mss > mss_max)
+ mss = mss_max;
+ /*
+ * Unless naglim has been set by our client to
+ * a non-mss value, force naglim to track mss.
+ * This can help to aggregate small writes.
+ */
+ if (mss < tcp->tcp_naglim || tcp->tcp_mss == tcp->tcp_naglim)
+ tcp->tcp_naglim = mss;
+ /*
+ * TCP should be able to buffer at least 4 MSS data for obvious
+ * performance reason.
+ */
+ if ((mss << 2) > connp->conn_sndbuf)
+ connp->conn_sndbuf = mss << 2;
+
+ /*
+ * Set the send lowater to at least twice of MSS.
+ */
+ if ((mss << 1) > connp->conn_sndlowat)
+ connp->conn_sndlowat = mss << 1;
+
+ /*
+ * Update tcp_cwnd according to the new value of MSS. Keep the
+ * previous ratio to preserve the transmit rate.
+ */
+ tcp->tcp_cwnd = (tcp->tcp_cwnd / tcp->tcp_mss) * mss;
+ tcp->tcp_cwnd_cnt = 0;
+
+ tcp->tcp_mss = mss;
+ (void) tcp_maxpsz_set(tcp, B_TRUE);
+}
+
+/*
+ * Extract option values from a tcp header. We put any found values into the
+ * tcpopt struct and return a bitmask saying which options were found.
+ */
+static int
+tcp_parse_options(tcpha_t *tcpha, tcp_opt_t *tcpopt)
+{
+ uchar_t *endp;
+ int len;
+ uint32_t mss;
+ uchar_t *up = (uchar_t *)tcpha;
+ int found = 0;
+ int32_t sack_len;
+ tcp_seq sack_begin, sack_end;
+ tcp_t *tcp;
+
+ endp = up + TCP_HDR_LENGTH(tcpha);
+ up += TCP_MIN_HEADER_LENGTH;
+ while (up < endp) {
+ len = endp - up;
+ switch (*up) {
+ case TCPOPT_EOL:
+ break;
+
+ case TCPOPT_NOP:
+ up++;
+ continue;
+
+ case TCPOPT_MAXSEG:
+ if (len < TCPOPT_MAXSEG_LEN ||
+ up[1] != TCPOPT_MAXSEG_LEN)
+ break;
+
+ mss = BE16_TO_U16(up+2);
+ /* Caller must handle tcp_mss_min and tcp_mss_max_* */
+ tcpopt->tcp_opt_mss = mss;
+ found |= TCP_OPT_MSS_PRESENT;
+
+ up += TCPOPT_MAXSEG_LEN;
+ continue;
+
+ case TCPOPT_WSCALE:
+ if (len < TCPOPT_WS_LEN || up[1] != TCPOPT_WS_LEN)
+ break;
+
+ if (up[2] > TCP_MAX_WINSHIFT)
+ tcpopt->tcp_opt_wscale = TCP_MAX_WINSHIFT;
+ else
+ tcpopt->tcp_opt_wscale = up[2];
+ found |= TCP_OPT_WSCALE_PRESENT;
+
+ up += TCPOPT_WS_LEN;
+ continue;
+
+ case TCPOPT_SACK_PERMITTED:
+ if (len < TCPOPT_SACK_OK_LEN ||
+ up[1] != TCPOPT_SACK_OK_LEN)
+ break;
+ found |= TCP_OPT_SACK_OK_PRESENT;
+ up += TCPOPT_SACK_OK_LEN;
+ continue;
+
+ case TCPOPT_SACK:
+ if (len <= 2 || up[1] <= 2 || len < up[1])
+ break;
+
+ /* If TCP is not interested in SACK blks... */
+ if ((tcp = tcpopt->tcp) == NULL) {
+ up += up[1];
+ continue;
+ }
+ sack_len = up[1] - TCPOPT_HEADER_LEN;
+ up += TCPOPT_HEADER_LEN;
+
+ /*
+ * If the list is empty, allocate one and assume
+ * nothing is sack'ed.
+ */
+ ASSERT(tcp->tcp_sack_info != NULL);
+ if (tcp->tcp_notsack_list == NULL) {
+ tcp_notsack_update(&(tcp->tcp_notsack_list),
+ tcp->tcp_suna, tcp->tcp_snxt,
+ &(tcp->tcp_num_notsack_blk),
+ &(tcp->tcp_cnt_notsack_list));
+
+ /*
+ * Make sure tcp_notsack_list is not NULL.
+ * This happens when kmem_alloc(KM_NOSLEEP)
+ * returns NULL.
+ */
+ if (tcp->tcp_notsack_list == NULL) {
+ up += sack_len;
+ continue;
+ }
+ tcp->tcp_fack = tcp->tcp_suna;
+ }
+
+ while (sack_len > 0) {
+ if (up + 8 > endp) {
+ up = endp;
+ break;
+ }
+ sack_begin = BE32_TO_U32(up);
+ up += 4;
+ sack_end = BE32_TO_U32(up);
+ up += 4;
+ sack_len -= 8;
+ /*
+ * Bounds checking. Make sure the SACK
+ * info is within tcp_suna and tcp_snxt.
+ * If this SACK blk is out of bound, ignore
+ * it but continue to parse the following
+ * blks.
+ */
+ if (SEQ_LEQ(sack_end, sack_begin) ||
+ SEQ_LT(sack_begin, tcp->tcp_suna) ||
+ SEQ_GT(sack_end, tcp->tcp_snxt)) {
+ continue;
+ }
+ tcp_notsack_insert(&(tcp->tcp_notsack_list),
+ sack_begin, sack_end,
+ &(tcp->tcp_num_notsack_blk),
+ &(tcp->tcp_cnt_notsack_list));
+ if (SEQ_GT(sack_end, tcp->tcp_fack)) {
+ tcp->tcp_fack = sack_end;
+ }
+ }
+ found |= TCP_OPT_SACK_PRESENT;
+ continue;
+
+ case TCPOPT_TSTAMP:
+ if (len < TCPOPT_TSTAMP_LEN ||
+ up[1] != TCPOPT_TSTAMP_LEN)
+ break;
+
+ tcpopt->tcp_opt_ts_val = BE32_TO_U32(up+2);
+ tcpopt->tcp_opt_ts_ecr = BE32_TO_U32(up+6);
+
+ found |= TCP_OPT_TSTAMP_PRESENT;
+
+ up += TCPOPT_TSTAMP_LEN;
+ continue;
+
+ default:
+ if (len <= 1 || len < (int)up[1] || up[1] == 0)
+ break;
+ up += up[1];
+ continue;
+ }
+ break;
+ }
+ return (found);
+}
+
+/*
+ * Process all TCP option in SYN segment. Note that this function should
+ * be called after tcp_set_destination() is called so that the necessary info
+ * from IRE is already set in the tcp structure.
+ *
+ * This function sets up the correct tcp_mss value according to the
+ * MSS option value and our header size. It also sets up the window scale
+ * and timestamp values, and initialize SACK info blocks. But it does not
+ * change receive window size after setting the tcp_mss value. The caller
+ * should do the appropriate change.
+ */
+static void
+tcp_process_options(tcp_t *tcp, tcpha_t *tcpha)
+{
+ int options;
+ tcp_opt_t tcpopt;
+ uint32_t mss_max;
+ char *tmp_tcph;
+ tcp_stack_t *tcps = tcp->tcp_tcps;
+ conn_t *connp = tcp->tcp_connp;
+
+ tcpopt.tcp = NULL;
+ options = tcp_parse_options(tcpha, &tcpopt);
+
+ /*
+ * Process MSS option. Note that MSS option value does not account
+ * for IP or TCP options. This means that it is equal to MTU - minimum
+ * IP+TCP header size, which is 40 bytes for IPv4 and 60 bytes for
+ * IPv6.
+ */
+ if (!(options & TCP_OPT_MSS_PRESENT)) {
+ if (connp->conn_ipversion == IPV4_VERSION)
+ tcpopt.tcp_opt_mss = tcps->tcps_mss_def_ipv4;
+ else
+ tcpopt.tcp_opt_mss = tcps->tcps_mss_def_ipv6;
+ } else {
+ if (connp->conn_ipversion == IPV4_VERSION)
+ mss_max = tcps->tcps_mss_max_ipv4;
+ else
+ mss_max = tcps->tcps_mss_max_ipv6;
+ if (tcpopt.tcp_opt_mss < tcps->tcps_mss_min)
+ tcpopt.tcp_opt_mss = tcps->tcps_mss_min;
+ else if (tcpopt.tcp_opt_mss > mss_max)
+ tcpopt.tcp_opt_mss = mss_max;
+ }
+
+ /* Process Window Scale option. */
+ if (options & TCP_OPT_WSCALE_PRESENT) {
+ tcp->tcp_snd_ws = tcpopt.tcp_opt_wscale;
+ tcp->tcp_snd_ws_ok = B_TRUE;
+ } else {
+ tcp->tcp_snd_ws = B_FALSE;
+ tcp->tcp_snd_ws_ok = B_FALSE;
+ tcp->tcp_rcv_ws = B_FALSE;
+ }
+
+ /* Process Timestamp option. */
+ if ((options & TCP_OPT_TSTAMP_PRESENT) &&
+ (tcp->tcp_snd_ts_ok || TCP_IS_DETACHED(tcp))) {
+ tmp_tcph = (char *)tcp->tcp_tcpha;
+
+ tcp->tcp_snd_ts_ok = B_TRUE;
+ tcp->tcp_ts_recent = tcpopt.tcp_opt_ts_val;
+ tcp->tcp_last_rcv_lbolt = ddi_get_lbolt64();
+ ASSERT(OK_32PTR(tmp_tcph));
+ ASSERT(connp->conn_ht_ulp_len == TCP_MIN_HEADER_LENGTH);
+
+ /* Fill in our template header with basic timestamp option. */
+ tmp_tcph += connp->conn_ht_ulp_len;
+ tmp_tcph[0] = TCPOPT_NOP;
+ tmp_tcph[1] = TCPOPT_NOP;
+ tmp_tcph[2] = TCPOPT_TSTAMP;
+ tmp_tcph[3] = TCPOPT_TSTAMP_LEN;
+ connp->conn_ht_iphc_len += TCPOPT_REAL_TS_LEN;
+ connp->conn_ht_ulp_len += TCPOPT_REAL_TS_LEN;
+ tcp->tcp_tcpha->tha_offset_and_reserved += (3 << 4);
+ } else {
+ tcp->tcp_snd_ts_ok = B_FALSE;
+ }
+
+ /*
+ * Process SACK options. If SACK is enabled for this connection,
+ * then allocate the SACK info structure. Note the following ways
+ * when tcp_snd_sack_ok is set to true.
+ *
+ * For active connection: in tcp_set_destination() called in
+ * tcp_connect().
+ *
+ * For passive connection: in tcp_set_destination() called in
+ * tcp_input_listener().
+ *
+ * That's the reason why the extra TCP_IS_DETACHED() check is there.
+ * That check makes sure that if we did not send a SACK OK option,
+ * we will not enable SACK for this connection even though the other
+ * side sends us SACK OK option. For active connection, the SACK
+ * info structure has already been allocated. So we need to free
+ * it if SACK is disabled.
+ */
+ if ((options & TCP_OPT_SACK_OK_PRESENT) &&
+ (tcp->tcp_snd_sack_ok ||
+ (tcps->tcps_sack_permitted != 0 && TCP_IS_DETACHED(tcp)))) {
+ /* This should be true only in the passive case. */
+ if (tcp->tcp_sack_info == NULL) {
+ ASSERT(TCP_IS_DETACHED(tcp));
+ tcp->tcp_sack_info =
+ kmem_cache_alloc(tcp_sack_info_cache, KM_NOSLEEP);
+ }
+ if (tcp->tcp_sack_info == NULL) {
+ tcp->tcp_snd_sack_ok = B_FALSE;
+ } else {
+ tcp->tcp_snd_sack_ok = B_TRUE;
+ if (tcp->tcp_snd_ts_ok) {
+ tcp->tcp_max_sack_blk = 3;
+ } else {
+ tcp->tcp_max_sack_blk = 4;
+ }
+ }
+ } else {
+ /*
+ * Resetting tcp_snd_sack_ok to B_FALSE so that
+ * no SACK info will be used for this
+ * connection. This assumes that SACK usage
+ * permission is negotiated. This may need
+ * to be changed once this is clarified.
+ */
+ if (tcp->tcp_sack_info != NULL) {
+ ASSERT(tcp->tcp_notsack_list == NULL);
+ kmem_cache_free(tcp_sack_info_cache,
+ tcp->tcp_sack_info);
+ tcp->tcp_sack_info = NULL;
+ }
+ tcp->tcp_snd_sack_ok = B_FALSE;
+ }
+
+ /*
+ * Now we know the exact TCP/IP header length, subtract
+ * that from tcp_mss to get our side's MSS.
+ */
+ tcp->tcp_mss -= connp->conn_ht_iphc_len;
+
+ /*
+ * Here we assume that the other side's header size will be equal to
+ * our header size. We calculate the real MSS accordingly. Need to
+ * take into additional stuffs IPsec puts in.
+ *
+ * Real MSS = Opt.MSS - (our TCP/IP header - min TCP/IP header)
+ */
+ tcpopt.tcp_opt_mss -= connp->conn_ht_iphc_len +
+ tcp->tcp_ipsec_overhead -
+ ((connp->conn_ipversion == IPV4_VERSION ?
+ IP_SIMPLE_HDR_LENGTH : IPV6_HDR_LEN) + TCP_MIN_HEADER_LENGTH);
+
+ /*
+ * Set MSS to the smaller one of both ends of the connection.
+ * We should not have called tcp_mss_set() before, but our
+ * side of the MSS should have been set to a proper value
+ * by tcp_set_destination(). tcp_mss_set() will also set up the
+ * STREAM head parameters properly.
+ *
+ * If we have a larger-than-16-bit window but the other side
+ * didn't want to do window scale, tcp_rwnd_set() will take
+ * care of that.
+ */
+ tcp_mss_set(tcp, MIN(tcpopt.tcp_opt_mss, tcp->tcp_mss));
+
+ /*
+ * Initialize tcp_cwnd value. After tcp_mss_set(), tcp_mss has been
+ * updated properly.
+ */
+ TCP_SET_INIT_CWND(tcp, tcp->tcp_mss, tcps->tcps_slow_start_initial);
+}
+
+/*
+ * Add a new piece to the tcp reassembly queue. If the gap at the beginning
+ * is filled, return as much as we can. The message passed in may be
+ * multi-part, chained using b_cont. "start" is the starting sequence
+ * number for this piece.
+ */
+static mblk_t *
+tcp_reass(tcp_t *tcp, mblk_t *mp, uint32_t start)
+{
+ uint32_t end;
+ mblk_t *mp1;
+ mblk_t *mp2;
+ mblk_t *next_mp;
+ uint32_t u1;
+ tcp_stack_t *tcps = tcp->tcp_tcps;
+
+
+ /* Walk through all the new pieces. */
+ do {
+ ASSERT((uintptr_t)(mp->b_wptr - mp->b_rptr) <=
+ (uintptr_t)INT_MAX);
+ end = start + (int)(mp->b_wptr - mp->b_rptr);
+ next_mp = mp->b_cont;
+ if (start == end) {
+ /* Empty. Blast it. */
+ freeb(mp);
+ continue;
+ }
+ mp->b_cont = NULL;
+ TCP_REASS_SET_SEQ(mp, start);
+ TCP_REASS_SET_END(mp, end);
+ mp1 = tcp->tcp_reass_tail;
+ if (!mp1) {
+ tcp->tcp_reass_tail = mp;
+ tcp->tcp_reass_head = mp;
+ TCPS_BUMP_MIB(tcps, tcpInDataUnorderSegs);
+ TCPS_UPDATE_MIB(tcps, tcpInDataUnorderBytes,
+ end - start);
+ continue;
+ }
+ /* New stuff completely beyond tail? */
+ if (SEQ_GEQ(start, TCP_REASS_END(mp1))) {
+ /* Link it on end. */
+ mp1->b_cont = mp;
+ tcp->tcp_reass_tail = mp;
+ TCPS_BUMP_MIB(tcps, tcpInDataUnorderSegs);
+ TCPS_UPDATE_MIB(tcps, tcpInDataUnorderBytes,
+ end - start);
+ continue;
+ }
+ mp1 = tcp->tcp_reass_head;
+ u1 = TCP_REASS_SEQ(mp1);
+ /* New stuff at the front? */
+ if (SEQ_LT(start, u1)) {
+ /* Yes... Check for overlap. */
+ mp->b_cont = mp1;
+ tcp->tcp_reass_head = mp;
+ tcp_reass_elim_overlap(tcp, mp);
+ continue;
+ }
+ /*
+ * The new piece fits somewhere between the head and tail.
+ * We find our slot, where mp1 precedes us and mp2 trails.
+ */
+ for (; (mp2 = mp1->b_cont) != NULL; mp1 = mp2) {
+ u1 = TCP_REASS_SEQ(mp2);
+ if (SEQ_LEQ(start, u1))
+ break;
+ }
+ /* Link ourselves in */
+ mp->b_cont = mp2;
+ mp1->b_cont = mp;
+
+ /* Trim overlap with following mblk(s) first */
+ tcp_reass_elim_overlap(tcp, mp);
+
+ /* Trim overlap with preceding mblk */
+ tcp_reass_elim_overlap(tcp, mp1);
+
+ } while (start = end, mp = next_mp);
+ mp1 = tcp->tcp_reass_head;
+ /* Anything ready to go? */
+ if (TCP_REASS_SEQ(mp1) != tcp->tcp_rnxt)
+ return (NULL);
+ /* Eat what we can off the queue */
+ for (;;) {
+ mp = mp1->b_cont;
+ end = TCP_REASS_END(mp1);
+ TCP_REASS_SET_SEQ(mp1, 0);
+ TCP_REASS_SET_END(mp1, 0);
+ if (!mp) {
+ tcp->tcp_reass_tail = NULL;
+ break;
+ }
+ if (end != TCP_REASS_SEQ(mp)) {
+ mp1->b_cont = NULL;
+ break;
+ }
+ mp1 = mp;
+ }
+ mp1 = tcp->tcp_reass_head;
+ tcp->tcp_reass_head = mp;
+ return (mp1);
+}
+
+/* Eliminate any overlap that mp may have over later mblks */
+static void
+tcp_reass_elim_overlap(tcp_t *tcp, mblk_t *mp)
+{
+ uint32_t end;
+ mblk_t *mp1;
+ uint32_t u1;
+ tcp_stack_t *tcps = tcp->tcp_tcps;
+
+ end = TCP_REASS_END(mp);
+ while ((mp1 = mp->b_cont) != NULL) {
+ u1 = TCP_REASS_SEQ(mp1);
+ if (!SEQ_GT(end, u1))
+ break;
+ if (!SEQ_GEQ(end, TCP_REASS_END(mp1))) {
+ mp->b_wptr -= end - u1;
+ TCP_REASS_SET_END(mp, u1);
+ TCPS_BUMP_MIB(tcps, tcpInDataPartDupSegs);
+ TCPS_UPDATE_MIB(tcps, tcpInDataPartDupBytes,
+ end - u1);
+ break;
+ }
+ mp->b_cont = mp1->b_cont;
+ TCP_REASS_SET_SEQ(mp1, 0);
+ TCP_REASS_SET_END(mp1, 0);
+ freeb(mp1);
+ TCPS_BUMP_MIB(tcps, tcpInDataDupSegs);
+ TCPS_UPDATE_MIB(tcps, tcpInDataDupBytes, end - u1);
+ }
+ if (!mp1)
+ tcp->tcp_reass_tail = mp;
+}
+
+/*
+ * This function does PAWS protection check. Returns B_TRUE if the
+ * segment passes the PAWS test, else returns B_FALSE.
+ */
+boolean_t
+tcp_paws_check(tcp_t *tcp, tcpha_t *tcpha, tcp_opt_t *tcpoptp)
+{
+ uint8_t flags;
+ int options;
+ uint8_t *up;
+ conn_t *connp = tcp->tcp_connp;
+
+ flags = (unsigned int)tcpha->tha_flags & 0xFF;
+ /*
+ * If timestamp option is aligned nicely, get values inline,
+ * otherwise call general routine to parse. Only do that
+ * if timestamp is the only option.
+ */
+ if (TCP_HDR_LENGTH(tcpha) == (uint32_t)TCP_MIN_HEADER_LENGTH +
+ TCPOPT_REAL_TS_LEN &&
+ OK_32PTR((up = ((uint8_t *)tcpha) +
+ TCP_MIN_HEADER_LENGTH)) &&
+ *(uint32_t *)up == TCPOPT_NOP_NOP_TSTAMP) {
+ tcpoptp->tcp_opt_ts_val = ABE32_TO_U32((up+4));
+ tcpoptp->tcp_opt_ts_ecr = ABE32_TO_U32((up+8));
+
+ options = TCP_OPT_TSTAMP_PRESENT;
+ } else {
+ if (tcp->tcp_snd_sack_ok) {
+ tcpoptp->tcp = tcp;
+ } else {
+ tcpoptp->tcp = NULL;
+ }
+ options = tcp_parse_options(tcpha, tcpoptp);
+ }
+
+ if (options & TCP_OPT_TSTAMP_PRESENT) {
+ /*
+ * Do PAWS per RFC 1323 section 4.2. Accept RST
+ * regardless of the timestamp, page 18 RFC 1323.bis.
+ */
+ if ((flags & TH_RST) == 0 &&
+ TSTMP_LT(tcpoptp->tcp_opt_ts_val,
+ tcp->tcp_ts_recent)) {
+ if (TSTMP_LT(LBOLT_FASTPATH64,
+ tcp->tcp_last_rcv_lbolt + PAWS_TIMEOUT)) {
+ /* This segment is not acceptable. */
+ return (B_FALSE);
+ } else {
+ /*
+ * Connection has been idle for
+ * too long. Reset the timestamp
+ * and assume the segment is valid.
+ */
+ tcp->tcp_ts_recent =
+ tcpoptp->tcp_opt_ts_val;
+ }
+ }
+ } else {
+ /*
+ * If we don't get a timestamp on every packet, we
+ * figure we can't really trust 'em, so we stop sending
+ * and parsing them.
+ */
+ tcp->tcp_snd_ts_ok = B_FALSE;
+
+ connp->conn_ht_iphc_len -= TCPOPT_REAL_TS_LEN;
+ connp->conn_ht_ulp_len -= TCPOPT_REAL_TS_LEN;
+ tcp->tcp_tcpha->tha_offset_and_reserved -= (3 << 4);
+ /*
+ * Adjust the tcp_mss and tcp_cwnd accordingly. We avoid
+ * doing a slow start here so as to not to lose on the
+ * transfer rate built up so far.
+ */
+ tcp_mss_set(tcp, tcp->tcp_mss + TCPOPT_REAL_TS_LEN);
+ if (tcp->tcp_snd_sack_ok) {
+ ASSERT(tcp->tcp_sack_info != NULL);
+ tcp->tcp_max_sack_blk = 4;
+ }
+ }
+ return (B_TRUE);
+}
+
+/*
+ * Defense for the SYN attack -
+ * 1. When q0 is full, drop from the tail (tcp_eager_prev_drop_q0) the oldest
+ * one from the list of droppable eagers. This list is a subset of q0.
+ * see comments before the definition of MAKE_DROPPABLE().
+ * 2. Don't drop a SYN request before its first timeout. This gives every
+ * request at least til the first timeout to complete its 3-way handshake.
+ * 3. Maintain tcp_syn_rcvd_timeout as an accurate count of how many
+ * requests currently on the queue that has timed out. This will be used
+ * as an indicator of whether an attack is under way, so that appropriate
+ * actions can be taken. (It's incremented in tcp_timer() and decremented
+ * either when eager goes into ESTABLISHED, or gets freed up.)
+ * 4. The current threshold is - # of timeout > q0len/4 => SYN alert on
+ * # of timeout drops back to <= q0len/32 => SYN alert off
+ */
+static boolean_t
+tcp_drop_q0(tcp_t *tcp)
+{
+ tcp_t *eager;
+ mblk_t *mp;
+ tcp_stack_t *tcps = tcp->tcp_tcps;
+
+ ASSERT(MUTEX_HELD(&tcp->tcp_eager_lock));
+ ASSERT(tcp->tcp_eager_next_q0 != tcp->tcp_eager_prev_q0);
+
+ /* Pick oldest eager from the list of droppable eagers */
+ eager = tcp->tcp_eager_prev_drop_q0;
+
+ /* If list is empty. return B_FALSE */
+ if (eager == tcp) {
+ return (B_FALSE);
+ }
+
+ /* If allocated, the mp will be freed in tcp_clean_death_wrapper() */
+ if ((mp = allocb(0, BPRI_HI)) == NULL)
+ return (B_FALSE);
+
+ /*
+ * Take this eager out from the list of droppable eagers since we are
+ * going to drop it.
+ */
+ MAKE_UNDROPPABLE(eager);
+
+ if (tcp->tcp_connp->conn_debug) {
+ (void) strlog(TCP_MOD_ID, 0, 3, SL_TRACE,
+ "tcp_drop_q0: listen half-open queue (max=%d) overflow"
+ " (%d pending) on %s, drop one", tcps->tcps_conn_req_max_q0,
+ tcp->tcp_conn_req_cnt_q0,
+ tcp_display(tcp, NULL, DISP_PORT_ONLY));
+ }
+
+ TCPS_BUMP_MIB(tcps, tcpHalfOpenDrop);
+
+ /* Put a reference on the conn as we are enqueueing it in the sqeue */
+ CONN_INC_REF(eager->tcp_connp);
+
+ SQUEUE_ENTER_ONE(eager->tcp_connp->conn_sqp, mp,
+ tcp_clean_death_wrapper, eager->tcp_connp, NULL,
+ SQ_FILL, SQTAG_TCP_DROP_Q0);
+
+ return (B_TRUE);
+}
+
+/*
+ * Handle a SYN on an AF_INET6 socket; can be either IPv4 or IPv6
+ */
+static mblk_t *
+tcp_conn_create_v6(conn_t *lconnp, conn_t *connp, mblk_t *mp,
+ ip_recv_attr_t *ira)
+{
+ tcp_t *ltcp = lconnp->conn_tcp;
+ tcp_t *tcp = connp->conn_tcp;
+ mblk_t *tpi_mp;
+ ipha_t *ipha;
+ ip6_t *ip6h;
+ sin6_t sin6;
+ uint_t ifindex = ira->ira_ruifindex;
+ tcp_stack_t *tcps = tcp->tcp_tcps;
+
+ if (ira->ira_flags & IRAF_IS_IPV4) {
+ ipha = (ipha_t *)mp->b_rptr;
+
+ connp->conn_ipversion = IPV4_VERSION;
+ IN6_IPADDR_TO_V4MAPPED(ipha->ipha_dst, &connp->conn_laddr_v6);
+ IN6_IPADDR_TO_V4MAPPED(ipha->ipha_src, &connp->conn_faddr_v6);
+ connp->conn_saddr_v6 = connp->conn_laddr_v6;
+
+ sin6 = sin6_null;
+ sin6.sin6_addr = connp->conn_faddr_v6;
+ sin6.sin6_port = connp->conn_fport;
+ sin6.sin6_family = AF_INET6;
+ sin6.__sin6_src_id = ip_srcid_find_addr(&connp->conn_laddr_v6,
+ IPCL_ZONEID(lconnp), tcps->tcps_netstack);
+
+ if (connp->conn_recv_ancillary.crb_recvdstaddr) {
+ sin6_t sin6d;
+
+ sin6d = sin6_null;
+ sin6d.sin6_addr = connp->conn_laddr_v6;
+ sin6d.sin6_port = connp->conn_lport;
+ sin6d.sin6_family = AF_INET;
+ tpi_mp = mi_tpi_extconn_ind(NULL,
+ (char *)&sin6d, sizeof (sin6_t),
+ (char *)&tcp,
+ (t_scalar_t)sizeof (intptr_t),
+ (char *)&sin6d, sizeof (sin6_t),
+ (t_scalar_t)ltcp->tcp_conn_req_seqnum);
+ } else {
+ tpi_mp = mi_tpi_conn_ind(NULL,
+ (char *)&sin6, sizeof (sin6_t),
+ (char *)&tcp, (t_scalar_t)sizeof (intptr_t),
+ (t_scalar_t)ltcp->tcp_conn_req_seqnum);
+ }
+ } else {
+ ip6h = (ip6_t *)mp->b_rptr;
+
+ connp->conn_ipversion = IPV6_VERSION;
+ connp->conn_laddr_v6 = ip6h->ip6_dst;
+ connp->conn_faddr_v6 = ip6h->ip6_src;
+ connp->conn_saddr_v6 = connp->conn_laddr_v6;
+
+ sin6 = sin6_null;
+ sin6.sin6_addr = connp->conn_faddr_v6;
+ sin6.sin6_port = connp->conn_fport;
+ sin6.sin6_family = AF_INET6;
+ sin6.sin6_flowinfo = ip6h->ip6_vcf & ~IPV6_VERS_AND_FLOW_MASK;
+ sin6.__sin6_src_id = ip_srcid_find_addr(&connp->conn_laddr_v6,
+ IPCL_ZONEID(lconnp), tcps->tcps_netstack);
+
+ if (IN6_IS_ADDR_LINKSCOPE(&ip6h->ip6_src)) {
+ /* Pass up the scope_id of remote addr */
+ sin6.sin6_scope_id = ifindex;
+ } else {
+ sin6.sin6_scope_id = 0;
+ }
+ if (connp->conn_recv_ancillary.crb_recvdstaddr) {
+ sin6_t sin6d;
+
+ sin6d = sin6_null;
+ sin6.sin6_addr = connp->conn_laddr_v6;
+ sin6d.sin6_port = connp->conn_lport;
+ sin6d.sin6_family = AF_INET6;
+ if (IN6_IS_ADDR_LINKSCOPE(&connp->conn_laddr_v6))
+ sin6d.sin6_scope_id = ifindex;
+
+ tpi_mp = mi_tpi_extconn_ind(NULL,
+ (char *)&sin6d, sizeof (sin6_t),
+ (char *)&tcp, (t_scalar_t)sizeof (intptr_t),
+ (char *)&sin6d, sizeof (sin6_t),
+ (t_scalar_t)ltcp->tcp_conn_req_seqnum);
+ } else {
+ tpi_mp = mi_tpi_conn_ind(NULL,
+ (char *)&sin6, sizeof (sin6_t),
+ (char *)&tcp, (t_scalar_t)sizeof (intptr_t),
+ (t_scalar_t)ltcp->tcp_conn_req_seqnum);
+ }
+ }
+
+ tcp->tcp_mss = tcps->tcps_mss_def_ipv6;
+ return (tpi_mp);
+}
+
+/* Handle a SYN on an AF_INET socket */
+static mblk_t *
+tcp_conn_create_v4(conn_t *lconnp, conn_t *connp, mblk_t *mp,
+ ip_recv_attr_t *ira)
+{
+ tcp_t *ltcp = lconnp->conn_tcp;
+ tcp_t *tcp = connp->conn_tcp;
+ sin_t sin;
+ mblk_t *tpi_mp = NULL;
+ tcp_stack_t *tcps = tcp->tcp_tcps;
+ ipha_t *ipha;
+
+ ASSERT(ira->ira_flags & IRAF_IS_IPV4);
+ ipha = (ipha_t *)mp->b_rptr;
+
+ connp->conn_ipversion = IPV4_VERSION;
+ IN6_IPADDR_TO_V4MAPPED(ipha->ipha_dst, &connp->conn_laddr_v6);
+ IN6_IPADDR_TO_V4MAPPED(ipha->ipha_src, &connp->conn_faddr_v6);
+ connp->conn_saddr_v6 = connp->conn_laddr_v6;
+
+ sin = sin_null;
+ sin.sin_addr.s_addr = connp->conn_faddr_v4;
+ sin.sin_port = connp->conn_fport;
+ sin.sin_family = AF_INET;
+ if (lconnp->conn_recv_ancillary.crb_recvdstaddr) {
+ sin_t sind;
+
+ sind = sin_null;
+ sind.sin_addr.s_addr = connp->conn_laddr_v4;
+ sind.sin_port = connp->conn_lport;
+ sind.sin_family = AF_INET;
+ tpi_mp = mi_tpi_extconn_ind(NULL,
+ (char *)&sind, sizeof (sin_t), (char *)&tcp,
+ (t_scalar_t)sizeof (intptr_t), (char *)&sind,
+ sizeof (sin_t), (t_scalar_t)ltcp->tcp_conn_req_seqnum);
+ } else {
+ tpi_mp = mi_tpi_conn_ind(NULL,
+ (char *)&sin, sizeof (sin_t),
+ (char *)&tcp, (t_scalar_t)sizeof (intptr_t),
+ (t_scalar_t)ltcp->tcp_conn_req_seqnum);
+ }
+
+ tcp->tcp_mss = tcps->tcps_mss_def_ipv4;
+ return (tpi_mp);
+}
+
+/*
+ * Called via squeue to get on to eager's perimeter. It sends a
+ * TH_RST if eager is in the fanout table. The listener wants the
+ * eager to disappear either by means of tcp_eager_blowoff() or
+ * tcp_eager_cleanup() being called. tcp_eager_kill() can also be
+ * called (via squeue) if the eager cannot be inserted in the
+ * fanout table in tcp_input_listener().
+ */
+/* ARGSUSED */
+void
+tcp_eager_kill(void *arg, mblk_t *mp, void *arg2, ip_recv_attr_t *dummy)
+{
+ conn_t *econnp = (conn_t *)arg;
+ tcp_t *eager = econnp->conn_tcp;
+ tcp_t *listener = eager->tcp_listener;
+
+ /*
+ * We could be called because listener is closing. Since
+ * the eager was using listener's queue's, we avoid
+ * using the listeners queues from now on.
+ */
+ ASSERT(eager->tcp_detached);
+ econnp->conn_rq = NULL;
+ econnp->conn_wq = NULL;
+
+ /*
+ * An eager's conn_fanout will be NULL if it's a duplicate
+ * for an existing 4-tuples in the conn fanout table.
+ * We don't want to send an RST out in such case.
+ */
+ if (econnp->conn_fanout != NULL && eager->tcp_state > TCPS_LISTEN) {
+ tcp_xmit_ctl("tcp_eager_kill, can't wait",
+ eager, eager->tcp_snxt, 0, TH_RST);
+ }
+
+ /* We are here because listener wants this eager gone */
+ if (listener != NULL) {
+ mutex_enter(&listener->tcp_eager_lock);
+ tcp_eager_unlink(eager);
+ if (eager->tcp_tconnind_started) {
+ /*
+ * The eager has sent a conn_ind up to the
+ * listener but listener decides to close
+ * instead. We need to drop the extra ref
+ * placed on eager in tcp_input_data() before
+ * sending the conn_ind to listener.
+ */
+ CONN_DEC_REF(econnp);
+ }
+ mutex_exit(&listener->tcp_eager_lock);
+ CONN_DEC_REF(listener->tcp_connp);
+ }
+
+ if (eager->tcp_state != TCPS_CLOSED)
+ tcp_close_detached(eager);
+}
+
+/*
+ * Reset any eager connection hanging off this listener marked
+ * with 'seqnum' and then reclaim it's resources.
+ */
+boolean_t
+tcp_eager_blowoff(tcp_t *listener, t_scalar_t seqnum)
+{
+ tcp_t *eager;
+ mblk_t *mp;
+
+ eager = listener;
+ mutex_enter(&listener->tcp_eager_lock);
+ do {
+ eager = eager->tcp_eager_next_q;
+ if (eager == NULL) {
+ mutex_exit(&listener->tcp_eager_lock);
+ return (B_FALSE);
+ }
+ } while (eager->tcp_conn_req_seqnum != seqnum);
+
+ if (eager->tcp_closemp_used) {
+ mutex_exit(&listener->tcp_eager_lock);
+ return (B_TRUE);
+ }
+ eager->tcp_closemp_used = B_TRUE;
+ TCP_DEBUG_GETPCSTACK(eager->tcmp_stk, 15);
+ CONN_INC_REF(eager->tcp_connp);
+ mutex_exit(&listener->tcp_eager_lock);
+ mp = &eager->tcp_closemp;
+ SQUEUE_ENTER_ONE(eager->tcp_connp->conn_sqp, mp, tcp_eager_kill,
+ eager->tcp_connp, NULL, SQ_FILL, SQTAG_TCP_EAGER_BLOWOFF);
+ return (B_TRUE);
+}
+
+/*
+ * Reset any eager connection hanging off this listener
+ * and then reclaim it's resources.
+ */
+void
+tcp_eager_cleanup(tcp_t *listener, boolean_t q0_only)
+{
+ tcp_t *eager;
+ mblk_t *mp;
+ tcp_stack_t *tcps = listener->tcp_tcps;
+
+ ASSERT(MUTEX_HELD(&listener->tcp_eager_lock));
+
+ if (!q0_only) {
+ /* First cleanup q */
+ TCP_STAT(tcps, tcp_eager_blowoff_q);
+ eager = listener->tcp_eager_next_q;
+ while (eager != NULL) {
+ if (!eager->tcp_closemp_used) {
+ eager->tcp_closemp_used = B_TRUE;
+ TCP_DEBUG_GETPCSTACK(eager->tcmp_stk, 15);
+ CONN_INC_REF(eager->tcp_connp);
+ mp = &eager->tcp_closemp;
+ SQUEUE_ENTER_ONE(eager->tcp_connp->conn_sqp, mp,
+ tcp_eager_kill, eager->tcp_connp, NULL,
+ SQ_FILL, SQTAG_TCP_EAGER_CLEANUP);
+ }
+ eager = eager->tcp_eager_next_q;
+ }
+ }
+ /* Then cleanup q0 */
+ TCP_STAT(tcps, tcp_eager_blowoff_q0);
+ eager = listener->tcp_eager_next_q0;
+ while (eager != listener) {
+ if (!eager->tcp_closemp_used) {
+ eager->tcp_closemp_used = B_TRUE;
+ TCP_DEBUG_GETPCSTACK(eager->tcmp_stk, 15);
+ CONN_INC_REF(eager->tcp_connp);
+ mp = &eager->tcp_closemp;
+ SQUEUE_ENTER_ONE(eager->tcp_connp->conn_sqp, mp,
+ tcp_eager_kill, eager->tcp_connp, NULL, SQ_FILL,
+ SQTAG_TCP_EAGER_CLEANUP_Q0);
+ }
+ eager = eager->tcp_eager_next_q0;
+ }
+}
+
+/*
+ * If we are an eager connection hanging off a listener that hasn't
+ * formally accepted the connection yet, get off his list and blow off
+ * any data that we have accumulated.
+ */
+void
+tcp_eager_unlink(tcp_t *tcp)
+{
+ tcp_t *listener = tcp->tcp_listener;
+
+ ASSERT(listener != NULL);
+ ASSERT(MUTEX_HELD(&listener->tcp_eager_lock));
+ if (tcp->tcp_eager_next_q0 != NULL) {
+ ASSERT(tcp->tcp_eager_prev_q0 != NULL);
+
+ /* Remove the eager tcp from q0 */
+ tcp->tcp_eager_next_q0->tcp_eager_prev_q0 =
+ tcp->tcp_eager_prev_q0;
+ tcp->tcp_eager_prev_q0->tcp_eager_next_q0 =
+ tcp->tcp_eager_next_q0;
+ ASSERT(listener->tcp_conn_req_cnt_q0 > 0);
+ listener->tcp_conn_req_cnt_q0--;
+
+ tcp->tcp_eager_next_q0 = NULL;
+ tcp->tcp_eager_prev_q0 = NULL;
+
+ /*
+ * Take the eager out, if it is in the list of droppable
+ * eagers.
+ */
+ MAKE_UNDROPPABLE(tcp);
+
+ if (tcp->tcp_syn_rcvd_timeout != 0) {
+ /* we have timed out before */
+ ASSERT(listener->tcp_syn_rcvd_timeout > 0);
+ listener->tcp_syn_rcvd_timeout--;
+ }
+ } else {
+ tcp_t **tcpp = &listener->tcp_eager_next_q;
+ tcp_t *prev = NULL;
+
+ for (; tcpp[0]; tcpp = &tcpp[0]->tcp_eager_next_q) {
+ if (tcpp[0] == tcp) {
+ if (listener->tcp_eager_last_q == tcp) {
+ /*
+ * If we are unlinking the last
+ * element on the list, adjust
+ * tail pointer. Set tail pointer
+ * to nil when list is empty.
+ */
+ ASSERT(tcp->tcp_eager_next_q == NULL);
+ if (listener->tcp_eager_last_q ==
+ listener->tcp_eager_next_q) {
+ listener->tcp_eager_last_q =
+ NULL;
+ } else {
+ /*
+ * We won't get here if there
+ * is only one eager in the
+ * list.
+ */
+ ASSERT(prev != NULL);
+ listener->tcp_eager_last_q =
+ prev;
+ }
+ }
+ tcpp[0] = tcp->tcp_eager_next_q;
+ tcp->tcp_eager_next_q = NULL;
+ tcp->tcp_eager_last_q = NULL;
+ ASSERT(listener->tcp_conn_req_cnt_q > 0);
+ listener->tcp_conn_req_cnt_q--;
+ break;
+ }
+ prev = tcpp[0];
+ }
+ }
+ tcp->tcp_listener = NULL;
+}
+
+/* BEGIN CSTYLED */
+/*
+ *
+ * The sockfs ACCEPT path:
+ * =======================
+ *
+ * The eager is now established in its own perimeter as soon as SYN is
+ * received in tcp_input_listener(). When sockfs receives conn_ind, it
+ * completes the accept processing on the acceptor STREAM. The sending
+ * of conn_ind part is common for both sockfs listener and a TLI/XTI
+ * listener but a TLI/XTI listener completes the accept processing
+ * on the listener perimeter.
+ *
+ * Common control flow for 3 way handshake:
+ * ----------------------------------------
+ *
+ * incoming SYN (listener perimeter) -> tcp_input_listener()
+ *
+ * incoming SYN-ACK-ACK (eager perim) -> tcp_input_data()
+ * send T_CONN_IND (listener perim) -> tcp_send_conn_ind()
+ *
+ * Sockfs ACCEPT Path:
+ * -------------------
+ *
+ * open acceptor stream (tcp_open allocates tcp_tli_accept()
+ * as STREAM entry point)
+ *
+ * soaccept() sends T_CONN_RES on the acceptor STREAM to tcp_tli_accept()
+ *
+ * tcp_tli_accept() extracts the eager and makes the q->q_ptr <-> eager
+ * association (we are not behind eager's squeue but sockfs is protecting us
+ * and no one knows about this stream yet. The STREAMS entry point q->q_info
+ * is changed to point at tcp_wput().
+ *
+ * tcp_accept_common() sends any deferred eagers via tcp_send_pending() to
+ * listener (done on listener's perimeter).
+ *
+ * tcp_tli_accept() calls tcp_accept_finish() on eagers perimeter to finish
+ * accept.
+ *
+ * TLI/XTI client ACCEPT path:
+ * ---------------------------
+ *
+ * soaccept() sends T_CONN_RES on the listener STREAM.
+ *
+ * tcp_tli_accept() -> tcp_accept_swap() complete the processing and send
+ * a M_SETOPS mblk to eager perimeter to finish accept (tcp_accept_finish()).
+ *
+ * Locks:
+ * ======
+ *
+ * listener->tcp_eager_lock protects the listeners->tcp_eager_next_q0 and
+ * and listeners->tcp_eager_next_q.
+ *
+ * Referencing:
+ * ============
+ *
+ * 1) We start out in tcp_input_listener by eager placing a ref on
+ * listener and listener adding eager to listeners->tcp_eager_next_q0.
+ *
+ * 2) When a SYN-ACK-ACK arrives, we send the conn_ind to listener. Before
+ * doing so we place a ref on the eager. This ref is finally dropped at the
+ * end of tcp_accept_finish() while unwinding from the squeue, i.e. the
+ * reference is dropped by the squeue framework.
+ *
+ * 3) The ref on listener placed in 1 above is dropped in tcp_accept_finish
+ *
+ * The reference must be released by the same entity that added the reference
+ * In the above scheme, the eager is the entity that adds and releases the
+ * references. Note that tcp_accept_finish executes in the squeue of the eager
+ * (albeit after it is attached to the acceptor stream). Though 1. executes
+ * in the listener's squeue, the eager is nascent at this point and the
+ * reference can be considered to have been added on behalf of the eager.
+ *
+ * Eager getting a Reset or listener closing:
+ * ==========================================
+ *
+ * Once the listener and eager are linked, the listener never does the unlink.
+ * If the listener needs to close, tcp_eager_cleanup() is called which queues
+ * a message on all eager perimeter. The eager then does the unlink, clears
+ * any pointers to the listener's queue and drops the reference to the
+ * listener. The listener waits in tcp_close outside the squeue until its
+ * refcount has dropped to 1. This ensures that the listener has waited for
+ * all eagers to clear their association with the listener.
+ *
+ * Similarly, if eager decides to go away, it can unlink itself and close.
+ * When the T_CONN_RES comes down, we check if eager has closed. Note that
+ * the reference to eager is still valid because of the extra ref we put
+ * in tcp_send_conn_ind.
+ *
+ * Listener can always locate the eager under the protection
+ * of the listener->tcp_eager_lock, and then do a refhold
+ * on the eager during the accept processing.
+ *
+ * The acceptor stream accesses the eager in the accept processing
+ * based on the ref placed on eager before sending T_conn_ind.
+ * The only entity that can negate this refhold is a listener close
+ * which is mutually exclusive with an active acceptor stream.
+ *
+ * Eager's reference on the listener
+ * ===================================
+ *
+ * If the accept happens (even on a closed eager) the eager drops its
+ * reference on the listener at the start of tcp_accept_finish. If the
+ * eager is killed due to an incoming RST before the T_conn_ind is sent up,
+ * the reference is dropped in tcp_closei_local. If the listener closes,
+ * the reference is dropped in tcp_eager_kill. In all cases the reference
+ * is dropped while executing in the eager's context (squeue).
+ */
+/* END CSTYLED */
+
+/* Process the SYN packet, mp, directed at the listener 'tcp' */
+
+/*
+ * THIS FUNCTION IS DIRECTLY CALLED BY IP VIA SQUEUE FOR SYN.
+ * tcp_input_data will not see any packets for listeners since the listener
+ * has conn_recv set to tcp_input_listener.
+ */
+/* ARGSUSED */
+static void
+tcp_input_listener(void *arg, mblk_t *mp, void *arg2, ip_recv_attr_t *ira)
+{
+ tcpha_t *tcpha;
+ uint32_t seg_seq;
+ tcp_t *eager;
+ int err;
+ conn_t *econnp = NULL;
+ squeue_t *new_sqp;
+ mblk_t *mp1;
+ uint_t ip_hdr_len;
+ conn_t *lconnp = (conn_t *)arg;
+ tcp_t *listener = lconnp->conn_tcp;
+ tcp_stack_t *tcps = listener->tcp_tcps;
+ ip_stack_t *ipst = tcps->tcps_netstack->netstack_ip;
+ uint_t flags;
+ mblk_t *tpi_mp;
+ uint_t ifindex = ira->ira_ruifindex;
+ boolean_t tlc_set = B_FALSE;
+
+ ip_hdr_len = ira->ira_ip_hdr_length;
+ tcpha = (tcpha_t *)&mp->b_rptr[ip_hdr_len];
+ flags = (unsigned int)tcpha->tha_flags & 0xFF;
+
+ if (!(flags & TH_SYN)) {
+ if ((flags & TH_RST) || (flags & TH_URG)) {
+ freemsg(mp);
+ return;
+ }
+ if (flags & TH_ACK) {
+ /* Note this executes in listener's squeue */
+ tcp_xmit_listeners_reset(mp, ira, ipst, lconnp);
+ return;
+ }
+
+ freemsg(mp);
+ return;
+ }
+
+ if (listener->tcp_state != TCPS_LISTEN)
+ goto error2;
+
+ ASSERT(IPCL_IS_BOUND(lconnp));
+
+ mutex_enter(&listener->tcp_eager_lock);
+
+ /*
+ * The system is under memory pressure, so we need to do our part
+ * to relieve the pressure. So we only accept new request if there
+ * is nothing waiting to be accepted or waiting to complete the 3-way
+ * handshake. This means that busy listener will not get too many
+ * new requests which they cannot handle in time while non-busy
+ * listener is still functioning properly.
+ */
+ if (tcps->tcps_reclaim && (listener->tcp_conn_req_cnt_q > 0 ||
+ listener->tcp_conn_req_cnt_q0 > 0)) {
+ mutex_exit(&listener->tcp_eager_lock);
+ TCP_STAT(tcps, tcp_listen_mem_drop);
+ goto error2;
+ }
+
+ if (listener->tcp_conn_req_cnt_q >= listener->tcp_conn_req_max) {
+ mutex_exit(&listener->tcp_eager_lock);
+ TCP_STAT(tcps, tcp_listendrop);
+ TCPS_BUMP_MIB(tcps, tcpListenDrop);
+ if (lconnp->conn_debug) {
+ (void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE|SL_ERROR,
+ "tcp_input_listener: listen backlog (max=%d) "
+ "overflow (%d pending) on %s",
+ listener->tcp_conn_req_max,
+ listener->tcp_conn_req_cnt_q,
+ tcp_display(listener, NULL, DISP_PORT_ONLY));
+ }
+ goto error2;
+ }
+
+ if (listener->tcp_conn_req_cnt_q0 >=
+ listener->tcp_conn_req_max + tcps->tcps_conn_req_max_q0) {
+ /*
+ * Q0 is full. Drop a pending half-open req from the queue
+ * to make room for the new SYN req. Also mark the time we
+ * drop a SYN.
+ *
+ * A more aggressive defense against SYN attack will
+ * be to set the "tcp_syn_defense" flag now.
+ */
+ TCP_STAT(tcps, tcp_listendropq0);
+ listener->tcp_last_rcv_lbolt = ddi_get_lbolt64();
+ if (!tcp_drop_q0(listener)) {
+ mutex_exit(&listener->tcp_eager_lock);
+ TCPS_BUMP_MIB(tcps, tcpListenDropQ0);
+ if (lconnp->conn_debug) {
+ (void) strlog(TCP_MOD_ID, 0, 3, SL_TRACE,
+ "tcp_input_listener: listen half-open "
+ "queue (max=%d) full (%d pending) on %s",
+ tcps->tcps_conn_req_max_q0,
+ listener->tcp_conn_req_cnt_q0,
+ tcp_display(listener, NULL,
+ DISP_PORT_ONLY));
+ }
+ goto error2;
+ }
+ }
+
+ /*
+ * Enforce the limit set on the number of connections per listener.
+ * Note that tlc_cnt starts with 1. So need to add 1 to tlc_max
+ * for comparison.
+ */
+ if (listener->tcp_listen_cnt != NULL) {
+ tcp_listen_cnt_t *tlc = listener->tcp_listen_cnt;
+ int64_t now;
+
+ if (atomic_add_32_nv(&tlc->tlc_cnt, 1) > tlc->tlc_max + 1) {
+ mutex_exit(&listener->tcp_eager_lock);
+ now = ddi_get_lbolt64();
+ atomic_add_32(&tlc->tlc_cnt, -1);
+ TCP_STAT(tcps, tcp_listen_cnt_drop);
+ tlc->tlc_drop++;
+ if (now - tlc->tlc_report_time >
+ MSEC_TO_TICK(TCP_TLC_REPORT_INTERVAL)) {
+ zcmn_err(lconnp->conn_zoneid, CE_WARN,
+ "Listener (port %d) connection max (%u) "
+ "reached: %u attempts dropped total\n",
+ ntohs(listener->tcp_connp->conn_lport),
+ tlc->tlc_max, tlc->tlc_drop);
+ tlc->tlc_report_time = now;
+ }
+ goto error2;
+ }
+ tlc_set = B_TRUE;
+ }
+
+ mutex_exit(&listener->tcp_eager_lock);
+
+ /*
+ * IP sets ira_sqp to either the senders conn_sqp (for loopback)
+ * or based on the ring (for packets from GLD). Otherwise it is
+ * set based on lbolt i.e., a somewhat random number.
+ */
+ ASSERT(ira->ira_sqp != NULL);
+ new_sqp = ira->ira_sqp;
+
+ econnp = (conn_t *)tcp_get_conn(arg2, tcps);
+ if (econnp == NULL)
+ goto error2;
+
+ ASSERT(econnp->conn_netstack == lconnp->conn_netstack);
+ econnp->conn_sqp = new_sqp;
+ econnp->conn_initial_sqp = new_sqp;
+ econnp->conn_ixa->ixa_sqp = new_sqp;
+
+ econnp->conn_fport = tcpha->tha_lport;
+ econnp->conn_lport = tcpha->tha_fport;
+
+ err = conn_inherit_parent(lconnp, econnp);
+ if (err != 0)
+ goto error3;
+
+ /* We already know the laddr of the new connection is ours */
+ econnp->conn_ixa->ixa_src_generation = ipst->ips_src_generation;
+
+ ASSERT(OK_32PTR(mp->b_rptr));
+ ASSERT(IPH_HDR_VERSION(mp->b_rptr) == IPV4_VERSION ||
+ IPH_HDR_VERSION(mp->b_rptr) == IPV6_VERSION);
+
+ if (lconnp->conn_family == AF_INET) {
+ ASSERT(IPH_HDR_VERSION(mp->b_rptr) == IPV4_VERSION);
+ tpi_mp = tcp_conn_create_v4(lconnp, econnp, mp, ira);
+ } else {
+ tpi_mp = tcp_conn_create_v6(lconnp, econnp, mp, ira);
+ }
+
+ if (tpi_mp == NULL)
+ goto error3;
+
+ eager = econnp->conn_tcp;
+ eager->tcp_detached = B_TRUE;
+ SOCK_CONNID_INIT(eager->tcp_connid);
+
+ tcp_init_values(eager);
+
+ ASSERT((econnp->conn_ixa->ixa_flags &
+ (IXAF_SET_ULP_CKSUM | IXAF_VERIFY_SOURCE |
+ IXAF_VERIFY_PMTU | IXAF_VERIFY_LSO)) ==
+ (IXAF_SET_ULP_CKSUM | IXAF_VERIFY_SOURCE |
+ IXAF_VERIFY_PMTU | IXAF_VERIFY_LSO));
+
+ if (!tcps->tcps_dev_flow_ctl)
+ econnp->conn_ixa->ixa_flags |= IXAF_NO_DEV_FLOW_CTL;
+
+ /* Prepare for diffing against previous packets */
+ eager->tcp_recvifindex = 0;
+ eager->tcp_recvhops = 0xffffffffU;
+
+ if (!(ira->ira_flags & IRAF_IS_IPV4) && econnp->conn_bound_if == 0) {
+ if (IN6_IS_ADDR_LINKSCOPE(&econnp->conn_faddr_v6) ||
+ IN6_IS_ADDR_LINKSCOPE(&econnp->conn_laddr_v6)) {
+ econnp->conn_incoming_ifindex = ifindex;
+ econnp->conn_ixa->ixa_flags |= IXAF_SCOPEID_SET;
+ econnp->conn_ixa->ixa_scopeid = ifindex;
+ }
+ }
+
+ if ((ira->ira_flags & (IRAF_IS_IPV4|IRAF_IPV4_OPTIONS)) ==
+ (IRAF_IS_IPV4|IRAF_IPV4_OPTIONS) &&
+ tcps->tcps_rev_src_routes) {
+ ipha_t *ipha = (ipha_t *)mp->b_rptr;
+ ip_pkt_t *ipp = &econnp->conn_xmit_ipp;
+
+ /* Source routing option copyover (reverse it) */
+ err = ip_find_hdr_v4(ipha, ipp, B_TRUE);
+ if (err != 0) {
+ freemsg(tpi_mp);
+ goto error3;
+ }
+ ip_pkt_source_route_reverse_v4(ipp);
+ }
+
+ ASSERT(eager->tcp_conn.tcp_eager_conn_ind == NULL);
+ ASSERT(!eager->tcp_tconnind_started);
+ /*
+ * If the SYN came with a credential, it's a loopback packet or a
+ * labeled packet; attach the credential to the TPI message.
+ */
+ if (ira->ira_cred != NULL)
+ mblk_setcred(tpi_mp, ira->ira_cred, ira->ira_cpid);
+
+ eager->tcp_conn.tcp_eager_conn_ind = tpi_mp;
+
+ /* Inherit the listener's SSL protection state */
+ if ((eager->tcp_kssl_ent = listener->tcp_kssl_ent) != NULL) {
+ kssl_hold_ent(eager->tcp_kssl_ent);
+ eager->tcp_kssl_pending = B_TRUE;
+ }
+
+ /* Inherit the listener's non-STREAMS flag */
+ if (IPCL_IS_NONSTR(lconnp)) {
+ econnp->conn_flags |= IPCL_NONSTR;
+ }
+
+ ASSERT(eager->tcp_ordrel_mp == NULL);
+
+ if (!IPCL_IS_NONSTR(econnp)) {
+ /*
+ * Pre-allocate the T_ordrel_ind mblk for TPI socket so that
+ * at close time, we will always have that to send up.
+ * Otherwise, we need to do special handling in case the
+ * allocation fails at that time.
+ */
+ if ((eager->tcp_ordrel_mp = mi_tpi_ordrel_ind()) == NULL)
+ goto error3;
+ }
+ /*
+ * Now that the IP addresses and ports are setup in econnp we
+ * can do the IPsec policy work.
+ */
+ if (ira->ira_flags & IRAF_IPSEC_SECURE) {
+ if (lconnp->conn_policy != NULL) {
+ /*
+ * Inherit the policy from the listener; use
+ * actions from ira
+ */
+ if (!ip_ipsec_policy_inherit(econnp, lconnp, ira)) {
+ CONN_DEC_REF(econnp);
+ freemsg(mp);
+ goto error3;
+ }
+ }
+ }
+
+ /* Inherit various TCP parameters from the listener */
+ eager->tcp_naglim = listener->tcp_naglim;
+ eager->tcp_first_timer_threshold = listener->tcp_first_timer_threshold;
+ eager->tcp_second_timer_threshold =
+ listener->tcp_second_timer_threshold;
+ eager->tcp_first_ctimer_threshold =
+ listener->tcp_first_ctimer_threshold;
+ eager->tcp_second_ctimer_threshold =
+ listener->tcp_second_ctimer_threshold;
+
+ /*
+ * tcp_set_destination() may set tcp_rwnd according to the route
+ * metrics. If it does not, the eager's receive window will be set
+ * to the listener's receive window later in this function.
+ */
+ eager->tcp_rwnd = 0;
+
+ /*
+ * Inherit listener's tcp_init_cwnd. Need to do this before
+ * calling tcp_process_options() which set the initial cwnd.
+ */
+ eager->tcp_init_cwnd = listener->tcp_init_cwnd;
+
+ if (is_system_labeled()) {
+ ip_xmit_attr_t *ixa = econnp->conn_ixa;
+
+ ASSERT(ira->ira_tsl != NULL);
+ /* Discard any old label */
+ if (ixa->ixa_free_flags & IXA_FREE_TSL) {
+ ASSERT(ixa->ixa_tsl != NULL);
+ label_rele(ixa->ixa_tsl);
+ ixa->ixa_free_flags &= ~IXA_FREE_TSL;
+ ixa->ixa_tsl = NULL;
+ }
+ if ((lconnp->conn_mlp_type != mlptSingle ||
+ lconnp->conn_mac_mode != CONN_MAC_DEFAULT) &&
+ ira->ira_tsl != NULL) {
+ /*
+ * If this is an MLP connection or a MAC-Exempt
+ * connection with an unlabeled node, packets are to be
+ * exchanged using the security label of the received
+ * SYN packet instead of the server application's label.
+ * tsol_check_dest called from ip_set_destination
+ * might later update TSF_UNLABELED by replacing
+ * ixa_tsl with a new label.
+ */
+ label_hold(ira->ira_tsl);
+ ip_xmit_attr_replace_tsl(ixa, ira->ira_tsl);
+ DTRACE_PROBE2(mlp_syn_accept, conn_t *,
+ econnp, ts_label_t *, ixa->ixa_tsl)
+ } else {
+ ixa->ixa_tsl = crgetlabel(econnp->conn_cred);
+ DTRACE_PROBE2(syn_accept, conn_t *,
+ econnp, ts_label_t *, ixa->ixa_tsl)
+ }
+ /*
+ * conn_connect() called from tcp_set_destination will verify
+ * the destination is allowed to receive packets at the
+ * security label of the SYN-ACK we are generating. As part of
+ * that, tsol_check_dest() may create a new effective label for
+ * this connection.
+ * Finally conn_connect() will call conn_update_label.
+ * All that remains for TCP to do is to call
+ * conn_build_hdr_template which is done as part of
+ * tcp_set_destination.
+ */
+ }
+
+ /*
+ * Since we will clear tcp_listener before we clear tcp_detached
+ * in the accept code we need tcp_hard_binding aka tcp_accept_inprogress
+ * so we can tell a TCP_DETACHED_NONEAGER apart.
+ */
+ eager->tcp_hard_binding = B_TRUE;
+
+ tcp_bind_hash_insert(&tcps->tcps_bind_fanout[
+ TCP_BIND_HASH(econnp->conn_lport)], eager, 0);
+
+ CL_INET_CONNECT(econnp, B_FALSE, err);
+ if (err != 0) {
+ tcp_bind_hash_remove(eager);
+ goto error3;
+ }
+
+ /*
+ * No need to check for multicast destination since ip will only pass
+ * up multicasts to those that have expressed interest
+ * TODO: what about rejecting broadcasts?
+ * Also check that source is not a multicast or broadcast address.
+ */
+ eager->tcp_state = TCPS_SYN_RCVD;
+ SOCK_CONNID_BUMP(eager->tcp_connid);
+
+ /*
+ * Adapt our mss, ttl, ... based on the remote address.
+ */
+
+ if (tcp_set_destination(eager) != 0) {
+ TCPS_BUMP_MIB(tcps, tcpAttemptFails);
+ /* Undo the bind_hash_insert */
+ tcp_bind_hash_remove(eager);
+ goto error3;
+ }
+
+ /* Process all TCP options. */
+ tcp_process_options(eager, tcpha);
+
+ /* Is the other end ECN capable? */
+ if (tcps->tcps_ecn_permitted >= 1 &&
+ (tcpha->tha_flags & (TH_ECE|TH_CWR)) == (TH_ECE|TH_CWR)) {
+ eager->tcp_ecn_ok = B_TRUE;
+ }
+
+ /*
+ * The listener's conn_rcvbuf should be the default window size or a
+ * window size changed via SO_RCVBUF option. First round up the
+ * eager's tcp_rwnd to the nearest MSS. Then find out the window
+ * scale option value if needed. Call tcp_rwnd_set() to finish the
+ * setting.
+ *
+ * Note if there is a rpipe metric associated with the remote host,
+ * we should not inherit receive window size from listener.
+ */
+ eager->tcp_rwnd = MSS_ROUNDUP(
+ (eager->tcp_rwnd == 0 ? econnp->conn_rcvbuf :
+ eager->tcp_rwnd), eager->tcp_mss);
+ if (eager->tcp_snd_ws_ok)
+ tcp_set_ws_value(eager);
+ /*
+ * Note that this is the only place tcp_rwnd_set() is called for
+ * accepting a connection. We need to call it here instead of
+ * after the 3-way handshake because we need to tell the other
+ * side our rwnd in the SYN-ACK segment.
+ */
+ (void) tcp_rwnd_set(eager, eager->tcp_rwnd);
+
+ ASSERT(eager->tcp_connp->conn_rcvbuf != 0 &&
+ eager->tcp_connp->conn_rcvbuf == eager->tcp_rwnd);
+
+ ASSERT(econnp->conn_rcvbuf != 0 &&
+ econnp->conn_rcvbuf == eager->tcp_rwnd);
+
+ /* Put a ref on the listener for the eager. */
+ CONN_INC_REF(lconnp);
+ mutex_enter(&listener->tcp_eager_lock);
+ listener->tcp_eager_next_q0->tcp_eager_prev_q0 = eager;
+ eager->tcp_eager_next_q0 = listener->tcp_eager_next_q0;
+ listener->tcp_eager_next_q0 = eager;
+ eager->tcp_eager_prev_q0 = listener;
+
+ /* Set tcp_listener before adding it to tcp_conn_fanout */
+ eager->tcp_listener = listener;
+ eager->tcp_saved_listener = listener;
+
+ /*
+ * Set tcp_listen_cnt so that when the connection is done, the counter
+ * is decremented.
+ */
+ eager->tcp_listen_cnt = listener->tcp_listen_cnt;
+
+ /*
+ * Tag this detached tcp vector for later retrieval
+ * by our listener client in tcp_accept().
+ */
+ eager->tcp_conn_req_seqnum = listener->tcp_conn_req_seqnum;
+ listener->tcp_conn_req_cnt_q0++;
+ if (++listener->tcp_conn_req_seqnum == -1) {
+ /*
+ * -1 is "special" and defined in TPI as something
+ * that should never be used in T_CONN_IND
+ */
+ ++listener->tcp_conn_req_seqnum;
+ }
+ mutex_exit(&listener->tcp_eager_lock);
+
+ if (listener->tcp_syn_defense) {
+ /* Don't drop the SYN that comes from a good IP source */
+ ipaddr_t *addr_cache;
+
+ addr_cache = (ipaddr_t *)(listener->tcp_ip_addr_cache);
+ if (addr_cache != NULL && econnp->conn_faddr_v4 ==
+ addr_cache[IP_ADDR_CACHE_HASH(econnp->conn_faddr_v4)]) {
+ eager->tcp_dontdrop = B_TRUE;
+ }
+ }
+
+ /*
+ * We need to insert the eager in its own perimeter but as soon
+ * as we do that, we expose the eager to the classifier and
+ * should not touch any field outside the eager's perimeter.
+ * So do all the work necessary before inserting the eager
+ * in its own perimeter. Be optimistic that conn_connect()
+ * will succeed but undo everything if it fails.
+ */
+ seg_seq = ntohl(tcpha->tha_seq);
+ eager->tcp_irs = seg_seq;
+ eager->tcp_rack = seg_seq;
+ eager->tcp_rnxt = seg_seq + 1;
+ eager->tcp_tcpha->tha_ack = htonl(eager->tcp_rnxt);
+ TCPS_BUMP_MIB(tcps, tcpPassiveOpens);
+ eager->tcp_state = TCPS_SYN_RCVD;
+ mp1 = tcp_xmit_mp(eager, eager->tcp_xmit_head, eager->tcp_mss,
+ NULL, NULL, eager->tcp_iss, B_FALSE, NULL, B_FALSE);
+ if (mp1 == NULL) {
+ /*
+ * Increment the ref count as we are going to
+ * enqueueing an mp in squeue
+ */
+ CONN_INC_REF(econnp);
+ goto error;
+ }
+
+ /*
+ * We need to start the rto timer. In normal case, we start
+ * the timer after sending the packet on the wire (or at
+ * least believing that packet was sent by waiting for
+ * conn_ip_output() to return). Since this is the first packet
+ * being sent on the wire for the eager, our initial tcp_rto
+ * is at least tcp_rexmit_interval_min which is a fairly
+ * large value to allow the algorithm to adjust slowly to large
+ * fluctuations of RTT during first few transmissions.
+ *
+ * Starting the timer first and then sending the packet in this
+ * case shouldn't make much difference since tcp_rexmit_interval_min
+ * is of the order of several 100ms and starting the timer
+ * first and then sending the packet will result in difference
+ * of few micro seconds.
+ *
+ * Without this optimization, we are forced to hold the fanout
+ * lock across the ipcl_bind_insert() and sending the packet
+ * so that we don't race against an incoming packet (maybe RST)
+ * for this eager.
+ *
+ * It is necessary to acquire an extra reference on the eager
+ * at this point and hold it until after tcp_send_data() to
+ * ensure against an eager close race.
+ */
+
+ CONN_INC_REF(econnp);
+
+ TCP_TIMER_RESTART(eager, eager->tcp_rto);
+
+ /*
+ * Insert the eager in its own perimeter now. We are ready to deal
+ * with any packets on eager.
+ */
+ if (ipcl_conn_insert(econnp) != 0)
+ goto error;
+
+ ASSERT(econnp->conn_ixa->ixa_notify_cookie == econnp->conn_tcp);
+ freemsg(mp);
+ /*
+ * Send the SYN-ACK. Use the right squeue so that conn_ixa is
+ * only used by one thread at a time.
+ */
+ if (econnp->conn_sqp == lconnp->conn_sqp) {
+ (void) conn_ip_output(mp1, econnp->conn_ixa);
+ CONN_DEC_REF(econnp);
+ } else {
+ SQUEUE_ENTER_ONE(econnp->conn_sqp, mp1, tcp_send_synack,
+ econnp, NULL, SQ_PROCESS, SQTAG_TCP_SEND_SYNACK);
+ }
+ return;
+error:
+ freemsg(mp1);
+ eager->tcp_closemp_used = B_TRUE;
+ TCP_DEBUG_GETPCSTACK(eager->tcmp_stk, 15);
+ mp1 = &eager->tcp_closemp;
+ SQUEUE_ENTER_ONE(econnp->conn_sqp, mp1, tcp_eager_kill,
+ econnp, NULL, SQ_FILL, SQTAG_TCP_CONN_REQ_2);
+
+ /*
+ * If a connection already exists, send the mp to that connections so
+ * that it can be appropriately dealt with.
+ */
+ ipst = tcps->tcps_netstack->netstack_ip;
+
+ if ((econnp = ipcl_classify(mp, ira, ipst)) != NULL) {
+ if (!IPCL_IS_CONNECTED(econnp)) {
+ /*
+ * Something bad happened. ipcl_conn_insert()
+ * failed because a connection already existed
+ * in connected hash but we can't find it
+ * anymore (someone blew it away). Just
+ * free this message and hopefully remote
+ * will retransmit at which time the SYN can be
+ * treated as a new connection or dealth with
+ * a TH_RST if a connection already exists.
+ */
+ CONN_DEC_REF(econnp);
+ freemsg(mp);
+ } else {
+ SQUEUE_ENTER_ONE(econnp->conn_sqp, mp, tcp_input_data,
+ econnp, ira, SQ_FILL, SQTAG_TCP_CONN_REQ_1);
+ }
+ } else {
+ /* Nobody wants this packet */
+ freemsg(mp);
+ }
+ return;
+error3:
+ CONN_DEC_REF(econnp);
+error2:
+ freemsg(mp);
+ if (tlc_set)
+ atomic_add_32(&listener->tcp_listen_cnt->tlc_cnt, -1);
+}
+
+/*
+ * In an ideal case of vertical partition in NUMA architecture, its
+ * beneficial to have the listener and all the incoming connections
+ * tied to the same squeue. The other constraint is that incoming
+ * connections should be tied to the squeue attached to interrupted
+ * CPU for obvious locality reason so this leaves the listener to
+ * be tied to the same squeue. Our only problem is that when listener
+ * is binding, the CPU that will get interrupted by the NIC whose
+ * IP address the listener is binding to is not even known. So
+ * the code below allows us to change that binding at the time the
+ * CPU is interrupted by virtue of incoming connection's squeue.
+ *
+ * This is usefull only in case of a listener bound to a specific IP
+ * address. For other kind of listeners, they get bound the
+ * very first time and there is no attempt to rebind them.
+ */
+void
+tcp_input_listener_unbound(void *arg, mblk_t *mp, void *arg2,
+ ip_recv_attr_t *ira)
+{
+ conn_t *connp = (conn_t *)arg;
+ squeue_t *sqp = (squeue_t *)arg2;
+ squeue_t *new_sqp;
+ uint32_t conn_flags;
+
+ /*
+ * IP sets ira_sqp to either the senders conn_sqp (for loopback)
+ * or based on the ring (for packets from GLD). Otherwise it is
+ * set based on lbolt i.e., a somewhat random number.
+ */
+ ASSERT(ira->ira_sqp != NULL);
+ new_sqp = ira->ira_sqp;
+
+ if (connp->conn_fanout == NULL)
+ goto done;
+
+ if (!(connp->conn_flags & IPCL_FULLY_BOUND)) {
+ mutex_enter(&connp->conn_fanout->connf_lock);
+ mutex_enter(&connp->conn_lock);
+ /*
+ * No one from read or write side can access us now
+ * except for already queued packets on this squeue.
+ * But since we haven't changed the squeue yet, they
+ * can't execute. If they are processed after we have
+ * changed the squeue, they are sent back to the
+ * correct squeue down below.
+ * But a listner close can race with processing of
+ * incoming SYN. If incoming SYN processing changes
+ * the squeue then the listener close which is waiting
+ * to enter the squeue would operate on the wrong
+ * squeue. Hence we don't change the squeue here unless
+ * the refcount is exactly the minimum refcount. The
+ * minimum refcount of 4 is counted as - 1 each for
+ * TCP and IP, 1 for being in the classifier hash, and
+ * 1 for the mblk being processed.
+ */
+
+ if (connp->conn_ref != 4 ||
+ connp->conn_tcp->tcp_state != TCPS_LISTEN) {
+ mutex_exit(&connp->conn_lock);
+ mutex_exit(&connp->conn_fanout->connf_lock);
+ goto done;
+ }
+ if (connp->conn_sqp != new_sqp) {
+ while (connp->conn_sqp != new_sqp)
+ (void) casptr(&connp->conn_sqp, sqp, new_sqp);
+ /* No special MT issues for outbound ixa_sqp hint */
+ connp->conn_ixa->ixa_sqp = new_sqp;
+ }
+
+ do {
+ conn_flags = connp->conn_flags;
+ conn_flags |= IPCL_FULLY_BOUND;
+ (void) cas32(&connp->conn_flags, connp->conn_flags,
+ conn_flags);
+ } while (!(connp->conn_flags & IPCL_FULLY_BOUND));
+
+ mutex_exit(&connp->conn_fanout->connf_lock);
+ mutex_exit(&connp->conn_lock);
+
+ /*
+ * Assume we have picked a good squeue for the listener. Make
+ * subsequent SYNs not try to change the squeue.
+ */
+ connp->conn_recv = tcp_input_listener;
+ }
+
+done:
+ if (connp->conn_sqp != sqp) {
+ CONN_INC_REF(connp);
+ SQUEUE_ENTER_ONE(connp->conn_sqp, mp, connp->conn_recv, connp,
+ ira, SQ_FILL, SQTAG_TCP_CONN_REQ_UNBOUND);
+ } else {
+ tcp_input_listener(connp, mp, sqp, ira);
+ }
+}
+
+/*
+ * Send up all messages queued on tcp_rcv_list.
+ */
+uint_t
+tcp_rcv_drain(tcp_t *tcp)
+{
+ mblk_t *mp;
+ uint_t ret = 0;
+#ifdef DEBUG
+ uint_t cnt = 0;
+#endif
+ queue_t *q = tcp->tcp_connp->conn_rq;
+
+ /* Can't drain on an eager connection */
+ if (tcp->tcp_listener != NULL)
+ return (ret);
+
+ /* Can't be a non-STREAMS connection */
+ ASSERT(!IPCL_IS_NONSTR(tcp->tcp_connp));
+
+ /* No need for the push timer now. */
+ if (tcp->tcp_push_tid != 0) {
+ (void) TCP_TIMER_CANCEL(tcp, tcp->tcp_push_tid);
+ tcp->tcp_push_tid = 0;
+ }
+
+ /*
+ * Handle two cases here: we are currently fused or we were
+ * previously fused and have some urgent data to be delivered
+ * upstream. The latter happens because we either ran out of
+ * memory or were detached and therefore sending the SIGURG was
+ * deferred until this point. In either case we pass control
+ * over to tcp_fuse_rcv_drain() since it may need to complete
+ * some work.
+ */
+ if ((tcp->tcp_fused || tcp->tcp_fused_sigurg)) {
+ ASSERT(IPCL_IS_NONSTR(tcp->tcp_connp) ||
+ tcp->tcp_fused_sigurg_mp != NULL);
+ if (tcp_fuse_rcv_drain(q, tcp, tcp->tcp_fused ? NULL :
+ &tcp->tcp_fused_sigurg_mp))
+ return (ret);
+ }
+
+ while ((mp = tcp->tcp_rcv_list) != NULL) {
+ tcp->tcp_rcv_list = mp->b_next;
+ mp->b_next = NULL;
+#ifdef DEBUG
+ cnt += msgdsize(mp);
+#endif
+ /* Does this need SSL processing first? */
+ if ((tcp->tcp_kssl_ctx != NULL) && (DB_TYPE(mp) == M_DATA)) {
+ DTRACE_PROBE1(kssl_mblk__ksslinput_rcvdrain,
+ mblk_t *, mp);
+ tcp_kssl_input(tcp, mp, NULL);
+ continue;
+ }
+ putnext(q, mp);
+ }
+#ifdef DEBUG
+ ASSERT(cnt == tcp->tcp_rcv_cnt);
+#endif
+ tcp->tcp_rcv_last_head = NULL;
+ tcp->tcp_rcv_last_tail = NULL;
+ tcp->tcp_rcv_cnt = 0;
+
+ if (canputnext(q))
+ return (tcp_rwnd_reopen(tcp));
+
+ return (ret);
+}
+
+/*
+ * Queue data on tcp_rcv_list which is a b_next chain.
+ * tcp_rcv_last_head/tail is the last element of this chain.
+ * Each element of the chain is a b_cont chain.
+ *
+ * M_DATA messages are added to the current element.
+ * Other messages are added as new (b_next) elements.
+ */
+void
+tcp_rcv_enqueue(tcp_t *tcp, mblk_t *mp, uint_t seg_len, cred_t *cr)
+{
+ ASSERT(seg_len == msgdsize(mp));
+ ASSERT(tcp->tcp_rcv_list == NULL || tcp->tcp_rcv_last_head != NULL);
+
+ if (is_system_labeled()) {
+ ASSERT(cr != NULL || msg_getcred(mp, NULL) != NULL);
+ /*
+ * Provide for protocols above TCP such as RPC. NOPID leaves
+ * db_cpid unchanged.
+ * The cred could have already been set.
+ */
+ if (cr != NULL)
+ mblk_setcred(mp, cr, NOPID);
+ }
+
+ if (tcp->tcp_rcv_list == NULL) {
+ ASSERT(tcp->tcp_rcv_last_head == NULL);
+ tcp->tcp_rcv_list = mp;
+ tcp->tcp_rcv_last_head = mp;
+ } else if (DB_TYPE(mp) == DB_TYPE(tcp->tcp_rcv_last_head)) {
+ tcp->tcp_rcv_last_tail->b_cont = mp;
+ } else {
+ tcp->tcp_rcv_last_head->b_next = mp;
+ tcp->tcp_rcv_last_head = mp;
+ }
+
+ while (mp->b_cont)
+ mp = mp->b_cont;
+
+ tcp->tcp_rcv_last_tail = mp;
+ tcp->tcp_rcv_cnt += seg_len;
+ tcp->tcp_rwnd -= seg_len;
+}
+
+/* Generate an ACK-only (no data) segment for a TCP endpoint */
+mblk_t *
+tcp_ack_mp(tcp_t *tcp)
+{
+ uint32_t seq_no;
+ tcp_stack_t *tcps = tcp->tcp_tcps;
+ conn_t *connp = tcp->tcp_connp;
+
+ /*
+ * There are a few cases to be considered while setting the sequence no.
+ * Essentially, we can come here while processing an unacceptable pkt
+ * in the TCPS_SYN_RCVD state, in which case we set the sequence number
+ * to snxt (per RFC 793), note the swnd wouldn't have been set yet.
+ * If we are here for a zero window probe, stick with suna. In all
+ * other cases, we check if suna + swnd encompasses snxt and set
+ * the sequence number to snxt, if so. If snxt falls outside the
+ * window (the receiver probably shrunk its window), we will go with
+ * suna + swnd, otherwise the sequence no will be unacceptable to the
+ * receiver.
+ */
+ if (tcp->tcp_zero_win_probe) {
+ seq_no = tcp->tcp_suna;
+ } else if (tcp->tcp_state == TCPS_SYN_RCVD) {
+ ASSERT(tcp->tcp_swnd == 0);
+ seq_no = tcp->tcp_snxt;
+ } else {
+ seq_no = SEQ_GT(tcp->tcp_snxt,
+ (tcp->tcp_suna + tcp->tcp_swnd)) ?
+ (tcp->tcp_suna + tcp->tcp_swnd) : tcp->tcp_snxt;
+ }
+
+ if (tcp->tcp_valid_bits) {
+ /*
+ * For the complex case where we have to send some
+ * controls (FIN or SYN), let tcp_xmit_mp do it.
+ */
+ return (tcp_xmit_mp(tcp, NULL, 0, NULL, NULL, seq_no, B_FALSE,
+ NULL, B_FALSE));
+ } else {
+ /* Generate a simple ACK */
+ int data_length;
+ uchar_t *rptr;
+ tcpha_t *tcpha;
+ mblk_t *mp1;
+ int32_t total_hdr_len;
+ int32_t tcp_hdr_len;
+ int32_t num_sack_blk = 0;
+ int32_t sack_opt_len;
+ ip_xmit_attr_t *ixa = connp->conn_ixa;
+
+ /*
+ * Allocate space for TCP + IP headers
+ * and link-level header
+ */
+ if (tcp->tcp_snd_sack_ok && tcp->tcp_num_sack_blk > 0) {
+ num_sack_blk = MIN(tcp->tcp_max_sack_blk,
+ tcp->tcp_num_sack_blk);
+ sack_opt_len = num_sack_blk * sizeof (sack_blk_t) +
+ TCPOPT_NOP_LEN * 2 + TCPOPT_HEADER_LEN;
+ total_hdr_len = connp->conn_ht_iphc_len + sack_opt_len;
+ tcp_hdr_len = connp->conn_ht_ulp_len + sack_opt_len;
+ } else {
+ total_hdr_len = connp->conn_ht_iphc_len;
+ tcp_hdr_len = connp->conn_ht_ulp_len;
+ }
+ mp1 = allocb(total_hdr_len + tcps->tcps_wroff_xtra, BPRI_MED);
+ if (!mp1)
+ return (NULL);
+
+ /* Update the latest receive window size in TCP header. */
+ tcp->tcp_tcpha->tha_win =
+ htons(tcp->tcp_rwnd >> tcp->tcp_rcv_ws);
+ /* copy in prototype TCP + IP header */
+ rptr = mp1->b_rptr + tcps->tcps_wroff_xtra;
+ mp1->b_rptr = rptr;
+ mp1->b_wptr = rptr + total_hdr_len;
+ bcopy(connp->conn_ht_iphc, rptr, connp->conn_ht_iphc_len);
+
+ tcpha = (tcpha_t *)&rptr[ixa->ixa_ip_hdr_length];
+
+ /* Set the TCP sequence number. */
+ tcpha->tha_seq = htonl(seq_no);
+
+ /* Set up the TCP flag field. */
+ tcpha->tha_flags = (uchar_t)TH_ACK;
+ if (tcp->tcp_ecn_echo_on)
+ tcpha->tha_flags |= TH_ECE;
+
+ tcp->tcp_rack = tcp->tcp_rnxt;
+ tcp->tcp_rack_cnt = 0;
+
+ /* fill in timestamp option if in use */
+ if (tcp->tcp_snd_ts_ok) {
+ uint32_t llbolt = (uint32_t)LBOLT_FASTPATH;
+
+ U32_TO_BE32(llbolt,
+ (char *)tcpha + TCP_MIN_HEADER_LENGTH+4);
+ U32_TO_BE32(tcp->tcp_ts_recent,
+ (char *)tcpha + TCP_MIN_HEADER_LENGTH+8);
+ }
+
+ /* Fill in SACK options */
+ if (num_sack_blk > 0) {
+ uchar_t *wptr = (uchar_t *)tcpha +
+ connp->conn_ht_ulp_len;
+ sack_blk_t *tmp;
+ int32_t i;
+
+ wptr[0] = TCPOPT_NOP;
+ wptr[1] = TCPOPT_NOP;
+ wptr[2] = TCPOPT_SACK;
+ wptr[3] = TCPOPT_HEADER_LEN + num_sack_blk *
+ sizeof (sack_blk_t);
+ wptr += TCPOPT_REAL_SACK_LEN;
+
+ tmp = tcp->tcp_sack_list;
+ for (i = 0; i < num_sack_blk; i++) {
+ U32_TO_BE32(tmp[i].begin, wptr);
+ wptr += sizeof (tcp_seq);
+ U32_TO_BE32(tmp[i].end, wptr);
+ wptr += sizeof (tcp_seq);
+ }
+ tcpha->tha_offset_and_reserved +=
+ ((num_sack_blk * 2 + 1) << 4);
+ }
+
+ ixa->ixa_pktlen = total_hdr_len;
+
+ if (ixa->ixa_flags & IXAF_IS_IPV4) {
+ ((ipha_t *)rptr)->ipha_length = htons(total_hdr_len);
+ } else {
+ ip6_t *ip6 = (ip6_t *)rptr;
+
+ ip6->ip6_plen = htons(total_hdr_len - IPV6_HDR_LEN);
+ }
+
+ /*
+ * Prime pump for checksum calculation in IP. Include the
+ * adjustment for a source route if any.
+ */
+ data_length = tcp_hdr_len + connp->conn_sum;
+ data_length = (data_length >> 16) + (data_length & 0xFFFF);
+ tcpha->tha_sum = htons(data_length);
+
+ if (tcp->tcp_ip_forward_progress) {
+ tcp->tcp_ip_forward_progress = B_FALSE;
+ connp->conn_ixa->ixa_flags |= IXAF_REACH_CONF;
+ } else {
+ connp->conn_ixa->ixa_flags &= ~IXAF_REACH_CONF;
+ }
+ return (mp1);
+ }
+}
+
+/*
+ * Handle M_DATA messages from IP. Its called directly from IP via
+ * squeue for received IP packets.
+ *
+ * The first argument is always the connp/tcp to which the mp belongs.
+ * There are no exceptions to this rule. The caller has already put
+ * a reference on this connp/tcp and once tcp_input_data() returns,
+ * the squeue will do the refrele.
+ *
+ * The TH_SYN for the listener directly go to tcp_input_listener via
+ * squeue. ICMP errors go directly to tcp_icmp_input().
+ *
+ * sqp: NULL = recursive, sqp != NULL means called from squeue
+ */
+void
+tcp_input_data(void *arg, mblk_t *mp, void *arg2, ip_recv_attr_t *ira)
+{
+ int32_t bytes_acked;
+ int32_t gap;
+ mblk_t *mp1;
+ uint_t flags;
+ uint32_t new_swnd = 0;
+ uchar_t *iphdr;
+ uchar_t *rptr;
+ int32_t rgap;
+ uint32_t seg_ack;
+ int seg_len;
+ uint_t ip_hdr_len;
+ uint32_t seg_seq;
+ tcpha_t *tcpha;
+ int urp;
+ tcp_opt_t tcpopt;
+ ip_pkt_t ipp;
+ boolean_t ofo_seg = B_FALSE; /* Out of order segment */
+ uint32_t cwnd;
+ uint32_t add;
+ int npkt;
+ int mss;
+ conn_t *connp = (conn_t *)arg;
+ squeue_t *sqp = (squeue_t *)arg2;
+ tcp_t *tcp = connp->conn_tcp;
+ tcp_stack_t *tcps = tcp->tcp_tcps;
+
+ /*
+ * RST from fused tcp loopback peer should trigger an unfuse.
+ */
+ if (tcp->tcp_fused) {
+ TCP_STAT(tcps, tcp_fusion_aborted);
+ tcp_unfuse(tcp);
+ }
+
+ iphdr = mp->b_rptr;
+ rptr = mp->b_rptr;
+ ASSERT(OK_32PTR(rptr));
+
+ ip_hdr_len = ira->ira_ip_hdr_length;
+ if (connp->conn_recv_ancillary.crb_all != 0) {
+ /*
+ * Record packet information in the ip_pkt_t
+ */
+ ipp.ipp_fields = 0;
+ if (ira->ira_flags & IRAF_IS_IPV4) {
+ (void) ip_find_hdr_v4((ipha_t *)rptr, &ipp,
+ B_FALSE);
+ } else {
+ uint8_t nexthdrp;
+
+ /*
+ * IPv6 packets can only be received by applications
+ * that are prepared to receive IPv6 addresses.
+ * The IP fanout must ensure this.
+ */
+ ASSERT(connp->conn_family == AF_INET6);
+
+ (void) ip_find_hdr_v6(mp, (ip6_t *)rptr, B_TRUE, &ipp,
+ &nexthdrp);
+ ASSERT(nexthdrp == IPPROTO_TCP);
+
+ /* Could have caused a pullup? */
+ iphdr = mp->b_rptr;
+ rptr = mp->b_rptr;
+ }
+ }
+ ASSERT(DB_TYPE(mp) == M_DATA);
+ ASSERT(mp->b_next == NULL);
+
+ tcpha = (tcpha_t *)&rptr[ip_hdr_len];
+ seg_seq = ntohl(tcpha->tha_seq);
+ seg_ack = ntohl(tcpha->tha_ack);
+ ASSERT((uintptr_t)(mp->b_wptr - rptr) <= (uintptr_t)INT_MAX);
+ seg_len = (int)(mp->b_wptr - rptr) -
+ (ip_hdr_len + TCP_HDR_LENGTH(tcpha));
+ if ((mp1 = mp->b_cont) != NULL && mp1->b_datap->db_type == M_DATA) {
+ do {
+ ASSERT((uintptr_t)(mp1->b_wptr - mp1->b_rptr) <=
+ (uintptr_t)INT_MAX);
+ seg_len += (int)(mp1->b_wptr - mp1->b_rptr);
+ } while ((mp1 = mp1->b_cont) != NULL &&
+ mp1->b_datap->db_type == M_DATA);
+ }
+
+ if (tcp->tcp_state == TCPS_TIME_WAIT) {
+ tcp_time_wait_processing(tcp, mp, seg_seq, seg_ack,
+ seg_len, tcpha, ira);
+ return;
+ }
+
+ if (sqp != NULL) {
+ /*
+ * This is the correct place to update tcp_last_recv_time. Note
+ * that it is also updated for tcp structure that belongs to
+ * global and listener queues which do not really need updating.
+ * But that should not cause any harm. And it is updated for
+ * all kinds of incoming segments, not only for data segments.
+ */
+ tcp->tcp_last_recv_time = LBOLT_FASTPATH;
+ }
+
+ flags = (unsigned int)tcpha->tha_flags & 0xFF;
+
+ BUMP_LOCAL(tcp->tcp_ibsegs);
+ DTRACE_PROBE2(tcp__trace__recv, mblk_t *, mp, tcp_t *, tcp);
+
+ if ((flags & TH_URG) && sqp != NULL) {
+ /*
+ * TCP can't handle urgent pointers that arrive before
+ * the connection has been accept()ed since it can't
+ * buffer OOB data. Discard segment if this happens.
+ *
+ * We can't just rely on a non-null tcp_listener to indicate
+ * that the accept() has completed since unlinking of the
+ * eager and completion of the accept are not atomic.
+ * tcp_detached, when it is not set (B_FALSE) indicates
+ * that the accept() has completed.
+ *
+ * Nor can it reassemble urgent pointers, so discard
+ * if it's not the next segment expected.
+ *
+ * Otherwise, collapse chain into one mblk (discard if
+ * that fails). This makes sure the headers, retransmitted
+ * data, and new data all are in the same mblk.
+ */
+ ASSERT(mp != NULL);
+ if (tcp->tcp_detached || !pullupmsg(mp, -1)) {
+ freemsg(mp);
+ return;
+ }
+ /* Update pointers into message */
+ iphdr = rptr = mp->b_rptr;
+ tcpha = (tcpha_t *)&rptr[ip_hdr_len];
+ if (SEQ_GT(seg_seq, tcp->tcp_rnxt)) {
+ /*
+ * Since we can't handle any data with this urgent
+ * pointer that is out of sequence, we expunge
+ * the data. This allows us to still register
+ * the urgent mark and generate the M_PCSIG,
+ * which we can do.
+ */
+ mp->b_wptr = (uchar_t *)tcpha + TCP_HDR_LENGTH(tcpha);
+ seg_len = 0;
+ }
+ }
+
+ switch (tcp->tcp_state) {
+ case TCPS_SYN_SENT:
+ if (connp->conn_final_sqp == NULL &&
+ tcp_outbound_squeue_switch && sqp != NULL) {
+ ASSERT(connp->conn_initial_sqp == connp->conn_sqp);
+ connp->conn_final_sqp = sqp;
+ if (connp->conn_final_sqp != connp->conn_sqp) {
+ DTRACE_PROBE1(conn__final__sqp__switch,
+ conn_t *, connp);
+ CONN_INC_REF(connp);
+ SQUEUE_SWITCH(connp, connp->conn_final_sqp);
+ SQUEUE_ENTER_ONE(connp->conn_sqp, mp,
+ tcp_input_data, connp, ira, ip_squeue_flag,
+ SQTAG_CONNECT_FINISH);
+ return;
+ }
+ DTRACE_PROBE1(conn__final__sqp__same, conn_t *, connp);
+ }
+ if (flags & TH_ACK) {
+ /*
+ * Note that our stack cannot send data before a
+ * connection is established, therefore the
+ * following check is valid. Otherwise, it has
+ * to be changed.
+ */
+ if (SEQ_LEQ(seg_ack, tcp->tcp_iss) ||
+ SEQ_GT(seg_ack, tcp->tcp_snxt)) {
+ freemsg(mp);
+ if (flags & TH_RST)
+ return;
+ tcp_xmit_ctl("TCPS_SYN_SENT-Bad_seq",
+ tcp, seg_ack, 0, TH_RST);
+ return;
+ }
+ ASSERT(tcp->tcp_suna + 1 == seg_ack);
+ }
+ if (flags & TH_RST) {
+ freemsg(mp);
+ if (flags & TH_ACK)
+ (void) tcp_clean_death(tcp, ECONNREFUSED);
+ return;
+ }
+ if (!(flags & TH_SYN)) {
+ freemsg(mp);
+ return;
+ }
+
+ /* Process all TCP options. */
+ tcp_process_options(tcp, tcpha);
+ /*
+ * The following changes our rwnd to be a multiple of the
+ * MIN(peer MSS, our MSS) for performance reason.
+ */
+ (void) tcp_rwnd_set(tcp, MSS_ROUNDUP(connp->conn_rcvbuf,
+ tcp->tcp_mss));
+
+ /* Is the other end ECN capable? */
+ if (tcp->tcp_ecn_ok) {
+ if ((flags & (TH_ECE|TH_CWR)) != TH_ECE) {
+ tcp->tcp_ecn_ok = B_FALSE;
+ }
+ }
+ /*
+ * Clear ECN flags because it may interfere with later
+ * processing.
+ */
+ flags &= ~(TH_ECE|TH_CWR);
+
+ tcp->tcp_irs = seg_seq;
+ tcp->tcp_rack = seg_seq;
+ tcp->tcp_rnxt = seg_seq + 1;
+ tcp->tcp_tcpha->tha_ack = htonl(tcp->tcp_rnxt);
+ if (!TCP_IS_DETACHED(tcp)) {
+ /* Allocate room for SACK options if needed. */
+ connp->conn_wroff = connp->conn_ht_iphc_len;
+ if (tcp->tcp_snd_sack_ok)
+ connp->conn_wroff += TCPOPT_MAX_SACK_LEN;
+ if (!tcp->tcp_loopback)
+ connp->conn_wroff += tcps->tcps_wroff_xtra;
+
+ (void) proto_set_tx_wroff(connp->conn_rq, connp,
+ connp->conn_wroff);
+ }
+ if (flags & TH_ACK) {
+ /*
+ * If we can't get the confirmation upstream, pretend
+ * we didn't even see this one.
+ *
+ * XXX: how can we pretend we didn't see it if we
+ * have updated rnxt et. al.
+ *
+ * For loopback we defer sending up the T_CONN_CON
+ * until after some checks below.
+ */
+ mp1 = NULL;
+ /*
+ * tcp_sendmsg() checks tcp_state without entering
+ * the squeue so tcp_state should be updated before
+ * sending up connection confirmation
+ */
+ tcp->tcp_state = TCPS_ESTABLISHED;
+ if (!tcp_conn_con(tcp, iphdr, mp,
+ tcp->tcp_loopback ? &mp1 : NULL, ira)) {
+ tcp->tcp_state = TCPS_SYN_SENT;
+ freemsg(mp);
+ return;
+ }
+ TCPS_CONN_INC(tcps);
+ /* SYN was acked - making progress */
+ tcp->tcp_ip_forward_progress = B_TRUE;
+
+ /* One for the SYN */
+ tcp->tcp_suna = tcp->tcp_iss + 1;
+ tcp->tcp_valid_bits &= ~TCP_ISS_VALID;
+
+ /*
+ * If SYN was retransmitted, need to reset all
+ * retransmission info. This is because this
+ * segment will be treated as a dup ACK.
+ */
+ if (tcp->tcp_rexmit) {
+ tcp->tcp_rexmit = B_FALSE;
+ tcp->tcp_rexmit_nxt = tcp->tcp_snxt;
+ tcp->tcp_rexmit_max = tcp->tcp_snxt;
+ tcp->tcp_snd_burst = tcp->tcp_localnet ?
+ TCP_CWND_INFINITE : TCP_CWND_NORMAL;
+ tcp->tcp_ms_we_have_waited = 0;
+
+ /*
+ * Set tcp_cwnd back to 1 MSS, per
+ * recommendation from
+ * draft-floyd-incr-init-win-01.txt,
+ * Increasing TCP's Initial Window.
+ */
+ tcp->tcp_cwnd = tcp->tcp_mss;
+ }
+
+ tcp->tcp_swl1 = seg_seq;
+ tcp->tcp_swl2 = seg_ack;
+
+ new_swnd = ntohs(tcpha->tha_win);
+ tcp->tcp_swnd = new_swnd;
+ if (new_swnd > tcp->tcp_max_swnd)
+ tcp->tcp_max_swnd = new_swnd;
+
+ /*
+ * Always send the three-way handshake ack immediately
+ * in order to make the connection complete as soon as
+ * possible on the accepting host.
+ */
+ flags |= TH_ACK_NEEDED;
+
+ /*
+ * Special case for loopback. At this point we have
+ * received SYN-ACK from the remote endpoint. In
+ * order to ensure that both endpoints reach the
+ * fused state prior to any data exchange, the final
+ * ACK needs to be sent before we indicate T_CONN_CON
+ * to the module upstream.
+ */
+ if (tcp->tcp_loopback) {
+ mblk_t *ack_mp;
+
+ ASSERT(!tcp->tcp_unfusable);
+ ASSERT(mp1 != NULL);
+ /*
+ * For loopback, we always get a pure SYN-ACK
+ * and only need to send back the final ACK
+ * with no data (this is because the other
+ * tcp is ours and we don't do T/TCP). This
+ * final ACK triggers the passive side to
+ * perform fusion in ESTABLISHED state.
+ */
+ if ((ack_mp = tcp_ack_mp(tcp)) != NULL) {
+ if (tcp->tcp_ack_tid != 0) {
+ (void) TCP_TIMER_CANCEL(tcp,
+ tcp->tcp_ack_tid);
+ tcp->tcp_ack_tid = 0;
+ }
+ tcp_send_data(tcp, ack_mp);
+ BUMP_LOCAL(tcp->tcp_obsegs);
+ TCPS_BUMP_MIB(tcps, tcpOutAck);
+
+ if (!IPCL_IS_NONSTR(connp)) {
+ /* Send up T_CONN_CON */
+ if (ira->ira_cred != NULL) {
+ mblk_setcred(mp1,
+ ira->ira_cred,
+ ira->ira_cpid);
+ }
+ putnext(connp->conn_rq, mp1);
+ } else {
+ (*connp->conn_upcalls->
+ su_connected)
+ (connp->conn_upper_handle,
+ tcp->tcp_connid,
+ ira->ira_cred,
+ ira->ira_cpid);
+ freemsg(mp1);
+ }
+
+ freemsg(mp);
+ return;
+ }
+ /*
+ * Forget fusion; we need to handle more
+ * complex cases below. Send the deferred
+ * T_CONN_CON message upstream and proceed
+ * as usual. Mark this tcp as not capable
+ * of fusion.
+ */
+ TCP_STAT(tcps, tcp_fusion_unfusable);
+ tcp->tcp_unfusable = B_TRUE;
+ if (!IPCL_IS_NONSTR(connp)) {
+ if (ira->ira_cred != NULL) {
+ mblk_setcred(mp1, ira->ira_cred,
+ ira->ira_cpid);
+ }
+ putnext(connp->conn_rq, mp1);
+ } else {
+ (*connp->conn_upcalls->su_connected)
+ (connp->conn_upper_handle,
+ tcp->tcp_connid, ira->ira_cred,
+ ira->ira_cpid);
+ freemsg(mp1);
+ }
+ }
+
+ /*
+ * Check to see if there is data to be sent. If
+ * yes, set the transmit flag. Then check to see
+ * if received data processing needs to be done.
+ * If not, go straight to xmit_check. This short
+ * cut is OK as we don't support T/TCP.
+ */
+ if (tcp->tcp_unsent)
+ flags |= TH_XMIT_NEEDED;
+
+ if (seg_len == 0 && !(flags & TH_URG)) {
+ freemsg(mp);
+ goto xmit_check;
+ }
+
+ flags &= ~TH_SYN;
+ seg_seq++;
+ break;
+ }
+ tcp->tcp_state = TCPS_SYN_RCVD;
+ mp1 = tcp_xmit_mp(tcp, tcp->tcp_xmit_head, tcp->tcp_mss,
+ NULL, NULL, tcp->tcp_iss, B_FALSE, NULL, B_FALSE);
+ if (mp1 != NULL) {
+ tcp_send_data(tcp, mp1);
+ TCP_TIMER_RESTART(tcp, tcp->tcp_rto);
+ }
+ freemsg(mp);
+ return;
+ case TCPS_SYN_RCVD:
+ if (flags & TH_ACK) {
+ /*
+ * In this state, a SYN|ACK packet is either bogus
+ * because the other side must be ACKing our SYN which
+ * indicates it has seen the ACK for their SYN and
+ * shouldn't retransmit it or we're crossing SYNs
+ * on active open.
+ */
+ if ((flags & TH_SYN) && !tcp->tcp_active_open) {
+ freemsg(mp);
+ tcp_xmit_ctl("TCPS_SYN_RCVD-bad_syn",
+ tcp, seg_ack, 0, TH_RST);
+ return;
+ }
+ /*
+ * NOTE: RFC 793 pg. 72 says this should be
+ * tcp->tcp_suna <= seg_ack <= tcp->tcp_snxt
+ * but that would mean we have an ack that ignored
+ * our SYN.
+ */
+ if (SEQ_LEQ(seg_ack, tcp->tcp_suna) ||
+ SEQ_GT(seg_ack, tcp->tcp_snxt)) {
+ freemsg(mp);
+ tcp_xmit_ctl("TCPS_SYN_RCVD-bad_ack",
+ tcp, seg_ack, 0, TH_RST);
+ return;
+ }
+ /*
+ * No sane TCP stack will send such a small window
+ * without receiving any data. Just drop this invalid
+ * ACK. We also shorten the abort timeout in case
+ * this is an attack.
+ */
+ if ((ntohs(tcpha->tha_win) << tcp->tcp_snd_ws) <
+ (tcp->tcp_mss >> tcp_init_wnd_shft)) {
+ freemsg(mp);
+ TCP_STAT(tcps, tcp_zwin_ack_syn);
+ tcp->tcp_second_ctimer_threshold =
+ tcp_early_abort * SECONDS;
+ return;
+ }
+ }
+ break;
+ case TCPS_LISTEN:
+ /*
+ * Only a TLI listener can come through this path when a
+ * acceptor is going back to be a listener and a packet
+ * for the acceptor hits the classifier. For a socket
+ * listener, this can never happen because a listener
+ * can never accept connection on itself and hence a
+ * socket acceptor can not go back to being a listener.
+ */
+ ASSERT(!TCP_IS_SOCKET(tcp));
+ /*FALLTHRU*/
+ case TCPS_CLOSED:
+ case TCPS_BOUND: {
+ conn_t *new_connp;
+ ip_stack_t *ipst = tcps->tcps_netstack->netstack_ip;
+
+ /*
+ * Don't accept any input on a closed tcp as this TCP logically
+ * does not exist on the system. Don't proceed further with
+ * this TCP. For instance, this packet could trigger another
+ * close of this tcp which would be disastrous for tcp_refcnt.
+ * tcp_close_detached / tcp_clean_death / tcp_closei_local must
+ * be called at most once on a TCP. In this case we need to
+ * refeed the packet into the classifier and figure out where
+ * the packet should go.
+ */
+ new_connp = ipcl_classify(mp, ira, ipst);
+ if (new_connp != NULL) {
+ /* Drops ref on new_connp */
+ tcp_reinput(new_connp, mp, ira, ipst);
+ return;
+ }
+ /* We failed to classify. For now just drop the packet */
+ freemsg(mp);
+ return;
+ }
+ case TCPS_IDLE:
+ /*
+ * Handle the case where the tcp_clean_death() has happened
+ * on a connection (application hasn't closed yet) but a packet
+ * was already queued on squeue before tcp_clean_death()
+ * was processed. Calling tcp_clean_death() twice on same
+ * connection can result in weird behaviour.
+ */
+ freemsg(mp);
+ return;
+ default:
+ break;
+ }
+
+ /*
+ * Already on the correct queue/perimeter.
+ * If this is a detached connection and not an eager
+ * connection hanging off a listener then new data
+ * (past the FIN) will cause a reset.
+ * We do a special check here where it
+ * is out of the main line, rather than check
+ * if we are detached every time we see new
+ * data down below.
+ */
+ if (TCP_IS_DETACHED_NONEAGER(tcp) &&
+ (seg_len > 0 && SEQ_GT(seg_seq + seg_len, tcp->tcp_rnxt))) {
+ TCPS_BUMP_MIB(tcps, tcpInClosed);
+ DTRACE_PROBE2(tcp__trace__recv, mblk_t *, mp, tcp_t *, tcp);
+
+ freemsg(mp);
+ /*
+ * This could be an SSL closure alert. We're detached so just
+ * acknowledge it this last time.
+ */
+ if (tcp->tcp_kssl_ctx != NULL) {
+ kssl_release_ctx(tcp->tcp_kssl_ctx);
+ tcp->tcp_kssl_ctx = NULL;
+
+ tcp->tcp_rnxt += seg_len;
+ tcp->tcp_tcpha->tha_ack = htonl(tcp->tcp_rnxt);
+ flags |= TH_ACK_NEEDED;
+ goto ack_check;
+ }
+
+ tcp_xmit_ctl("new data when detached", tcp,
+ tcp->tcp_snxt, 0, TH_RST);
+ (void) tcp_clean_death(tcp, EPROTO);
+ return;
+ }
+
+ mp->b_rptr = (uchar_t *)tcpha + TCP_HDR_LENGTH(tcpha);
+ urp = ntohs(tcpha->tha_urp) - TCP_OLD_URP_INTERPRETATION;
+ new_swnd = ntohs(tcpha->tha_win) <<
+ ((tcpha->tha_flags & TH_SYN) ? 0 : tcp->tcp_snd_ws);
+
+ if (tcp->tcp_snd_ts_ok) {
+ if (!tcp_paws_check(tcp, tcpha, &tcpopt)) {
+ /*
+ * This segment is not acceptable.
+ * Drop it and send back an ACK.
+ */
+ freemsg(mp);
+ flags |= TH_ACK_NEEDED;
+ goto ack_check;
+ }
+ } else if (tcp->tcp_snd_sack_ok) {
+ ASSERT(tcp->tcp_sack_info != NULL);
+ tcpopt.tcp = tcp;
+ /*
+ * SACK info in already updated in tcp_parse_options. Ignore
+ * all other TCP options...
+ */
+ (void) tcp_parse_options(tcpha, &tcpopt);
+ }
+try_again:;
+ mss = tcp->tcp_mss;
+ gap = seg_seq - tcp->tcp_rnxt;
+ rgap = tcp->tcp_rwnd - (gap + seg_len);
+ /*
+ * gap is the amount of sequence space between what we expect to see
+ * and what we got for seg_seq. A positive value for gap means
+ * something got lost. A negative value means we got some old stuff.
+ */
+ if (gap < 0) {
+ /* Old stuff present. Is the SYN in there? */
+ if (seg_seq == tcp->tcp_irs && (flags & TH_SYN) &&
+ (seg_len != 0)) {
+ flags &= ~TH_SYN;
+ seg_seq++;
+ urp--;
+ /* Recompute the gaps after noting the SYN. */
+ goto try_again;
+ }
+ TCPS_BUMP_MIB(tcps, tcpInDataDupSegs);
+ TCPS_UPDATE_MIB(tcps, tcpInDataDupBytes,
+ (seg_len > -gap ? -gap : seg_len));
+ /* Remove the old stuff from seg_len. */
+ seg_len += gap;
+ /*
+ * Anything left?
+ * Make sure to check for unack'd FIN when rest of data
+ * has been previously ack'd.
+ */
+ if (seg_len < 0 || (seg_len == 0 && !(flags & TH_FIN))) {
+ /*
+ * Resets are only valid if they lie within our offered
+ * window. If the RST bit is set, we just ignore this
+ * segment.
+ */
+ if (flags & TH_RST) {
+ freemsg(mp);
+ return;
+ }
+
+ /*
+ * The arriving of dup data packets indicate that we
+ * may have postponed an ack for too long, or the other
+ * side's RTT estimate is out of shape. Start acking
+ * more often.
+ */
+ if (SEQ_GEQ(seg_seq + seg_len - gap, tcp->tcp_rack) &&
+ tcp->tcp_rack_cnt >= 1 &&
+ tcp->tcp_rack_abs_max > 2) {
+ tcp->tcp_rack_abs_max--;
+ }
+ tcp->tcp_rack_cur_max = 1;
+
+ /*
+ * This segment is "unacceptable". None of its
+ * sequence space lies within our advertized window.
+ *
+ * Adjust seg_len to the original value for tracing.
+ */
+ seg_len -= gap;
+ if (connp->conn_debug) {
+ (void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE,
+ "tcp_rput: unacceptable, gap %d, rgap %d, "
+ "flags 0x%x, seg_seq %u, seg_ack %u, "
+ "seg_len %d, rnxt %u, snxt %u, %s",
+ gap, rgap, flags, seg_seq, seg_ack,
+ seg_len, tcp->tcp_rnxt, tcp->tcp_snxt,
+ tcp_display(tcp, NULL,
+ DISP_ADDR_AND_PORT));
+ }
+
+ /*
+ * Arrange to send an ACK in response to the
+ * unacceptable segment per RFC 793 page 69. There
+ * is only one small difference between ours and the
+ * acceptability test in the RFC - we accept ACK-only
+ * packet with SEG.SEQ = RCV.NXT+RCV.WND and no ACK
+ * will be generated.
+ *
+ * Note that we have to ACK an ACK-only packet at least
+ * for stacks that send 0-length keep-alives with
+ * SEG.SEQ = SND.NXT-1 as recommended by RFC1122,
+ * section 4.2.3.6. As long as we don't ever generate
+ * an unacceptable packet in response to an incoming
+ * packet that is unacceptable, it should not cause
+ * "ACK wars".
+ */
+ flags |= TH_ACK_NEEDED;
+
+ /*
+ * Continue processing this segment in order to use the
+ * ACK information it contains, but skip all other
+ * sequence-number processing. Processing the ACK
+ * information is necessary in order to
+ * re-synchronize connections that may have lost
+ * synchronization.
+ *
+ * We clear seg_len and flag fields related to
+ * sequence number processing as they are not
+ * to be trusted for an unacceptable segment.
+ */
+ seg_len = 0;
+ flags &= ~(TH_SYN | TH_FIN | TH_URG);
+ goto process_ack;
+ }
+
+ /* Fix seg_seq, and chew the gap off the front. */
+ seg_seq = tcp->tcp_rnxt;
+ urp += gap;
+ do {
+ mblk_t *mp2;
+ ASSERT((uintptr_t)(mp->b_wptr - mp->b_rptr) <=
+ (uintptr_t)UINT_MAX);
+ gap += (uint_t)(mp->b_wptr - mp->b_rptr);
+ if (gap > 0) {
+ mp->b_rptr = mp->b_wptr - gap;
+ break;
+ }
+ mp2 = mp;
+ mp = mp->b_cont;
+ freeb(mp2);
+ } while (gap < 0);
+ /*
+ * If the urgent data has already been acknowledged, we
+ * should ignore TH_URG below
+ */
+ if (urp < 0)
+ flags &= ~TH_URG;
+ }
+ /*
+ * rgap is the amount of stuff received out of window. A negative
+ * value is the amount out of window.
+ */
+ if (rgap < 0) {
+ mblk_t *mp2;
+
+ if (tcp->tcp_rwnd == 0) {
+ TCPS_BUMP_MIB(tcps, tcpInWinProbe);
+ } else {
+ TCPS_BUMP_MIB(tcps, tcpInDataPastWinSegs);
+ TCPS_UPDATE_MIB(tcps, tcpInDataPastWinBytes, -rgap);
+ }
+
+ /*
+ * seg_len does not include the FIN, so if more than
+ * just the FIN is out of window, we act like we don't
+ * see it. (If just the FIN is out of window, rgap
+ * will be zero and we will go ahead and acknowledge
+ * the FIN.)
+ */
+ flags &= ~TH_FIN;
+
+ /* Fix seg_len and make sure there is something left. */
+ seg_len += rgap;
+ if (seg_len <= 0) {
+ /*
+ * Resets are only valid if they lie within our offered
+ * window. If the RST bit is set, we just ignore this
+ * segment.
+ */
+ if (flags & TH_RST) {
+ freemsg(mp);
+ return;
+ }
+
+ /* Per RFC 793, we need to send back an ACK. */
+ flags |= TH_ACK_NEEDED;
+
+ /*
+ * Send SIGURG as soon as possible i.e. even
+ * if the TH_URG was delivered in a window probe
+ * packet (which will be unacceptable).
+ *
+ * We generate a signal if none has been generated
+ * for this connection or if this is a new urgent
+ * byte. Also send a zero-length "unmarked" message
+ * to inform SIOCATMARK that this is not the mark.
+ *
+ * tcp_urp_last_valid is cleared when the T_exdata_ind
+ * is sent up. This plus the check for old data
+ * (gap >= 0) handles the wraparound of the sequence
+ * number space without having to always track the
+ * correct MAX(tcp_urp_last, tcp_rnxt). (BSD tracks
+ * this max in its rcv_up variable).
+ *
+ * This prevents duplicate SIGURGS due to a "late"
+ * zero-window probe when the T_EXDATA_IND has already
+ * been sent up.
+ */
+ if ((flags & TH_URG) &&
+ (!tcp->tcp_urp_last_valid || SEQ_GT(urp + seg_seq,
+ tcp->tcp_urp_last))) {
+ if (IPCL_IS_NONSTR(connp)) {
+ if (!TCP_IS_DETACHED(tcp)) {
+ (*connp->conn_upcalls->
+ su_signal_oob)
+ (connp->conn_upper_handle,
+ urp);
+ }
+ } else {
+ mp1 = allocb(0, BPRI_MED);
+ if (mp1 == NULL) {
+ freemsg(mp);
+ return;
+ }
+ if (!TCP_IS_DETACHED(tcp) &&
+ !putnextctl1(connp->conn_rq,
+ M_PCSIG, SIGURG)) {
+ /* Try again on the rexmit. */
+ freemsg(mp1);
+ freemsg(mp);
+ return;
+ }
+ /*
+ * If the next byte would be the mark
+ * then mark with MARKNEXT else mark
+ * with NOTMARKNEXT.
+ */
+ if (gap == 0 && urp == 0)
+ mp1->b_flag |= MSGMARKNEXT;
+ else
+ mp1->b_flag |= MSGNOTMARKNEXT;
+ freemsg(tcp->tcp_urp_mark_mp);
+ tcp->tcp_urp_mark_mp = mp1;
+ flags |= TH_SEND_URP_MARK;
+ }
+ tcp->tcp_urp_last_valid = B_TRUE;
+ tcp->tcp_urp_last = urp + seg_seq;
+ }
+ /*
+ * If this is a zero window probe, continue to
+ * process the ACK part. But we need to set seg_len
+ * to 0 to avoid data processing. Otherwise just
+ * drop the segment and send back an ACK.
+ */
+ if (tcp->tcp_rwnd == 0 && seg_seq == tcp->tcp_rnxt) {
+ flags &= ~(TH_SYN | TH_URG);
+ seg_len = 0;
+ goto process_ack;
+ } else {
+ freemsg(mp);
+ goto ack_check;
+ }
+ }
+ /* Pitch out of window stuff off the end. */
+ rgap = seg_len;
+ mp2 = mp;
+ do {
+ ASSERT((uintptr_t)(mp2->b_wptr - mp2->b_rptr) <=
+ (uintptr_t)INT_MAX);
+ rgap -= (int)(mp2->b_wptr - mp2->b_rptr);
+ if (rgap < 0) {
+ mp2->b_wptr += rgap;
+ if ((mp1 = mp2->b_cont) != NULL) {
+ mp2->b_cont = NULL;
+ freemsg(mp1);
+ }
+ break;
+ }
+ } while ((mp2 = mp2->b_cont) != NULL);
+ }
+ok:;
+ /*
+ * TCP should check ECN info for segments inside the window only.
+ * Therefore the check should be done here.
+ */
+ if (tcp->tcp_ecn_ok) {
+ if (flags & TH_CWR) {
+ tcp->tcp_ecn_echo_on = B_FALSE;
+ }
+ /*
+ * Note that both ECN_CE and CWR can be set in the
+ * same segment. In this case, we once again turn
+ * on ECN_ECHO.
+ */
+ if (connp->conn_ipversion == IPV4_VERSION) {
+ uchar_t tos = ((ipha_t *)rptr)->ipha_type_of_service;
+
+ if ((tos & IPH_ECN_CE) == IPH_ECN_CE) {
+ tcp->tcp_ecn_echo_on = B_TRUE;
+ }
+ } else {
+ uint32_t vcf = ((ip6_t *)rptr)->ip6_vcf;
+
+ if ((vcf & htonl(IPH_ECN_CE << 20)) ==
+ htonl(IPH_ECN_CE << 20)) {
+ tcp->tcp_ecn_echo_on = B_TRUE;
+ }
+ }
+ }
+
+ /*
+ * Check whether we can update tcp_ts_recent. This test is
+ * NOT the one in RFC 1323 3.4. It is from Braden, 1993, "TCP
+ * Extensions for High Performance: An Update", Internet Draft.
+ */
+ if (tcp->tcp_snd_ts_ok &&
+ TSTMP_GEQ(tcpopt.tcp_opt_ts_val, tcp->tcp_ts_recent) &&
+ SEQ_LEQ(seg_seq, tcp->tcp_rack)) {
+ tcp->tcp_ts_recent = tcpopt.tcp_opt_ts_val;
+ tcp->tcp_last_rcv_lbolt = LBOLT_FASTPATH64;
+ }
+
+ if (seg_seq != tcp->tcp_rnxt || tcp->tcp_reass_head) {
+ /*
+ * FIN in an out of order segment. We record this in
+ * tcp_valid_bits and the seq num of FIN in tcp_ofo_fin_seq.
+ * Clear the FIN so that any check on FIN flag will fail.
+ * Remember that FIN also counts in the sequence number
+ * space. So we need to ack out of order FIN only segments.
+ */
+ if (flags & TH_FIN) {
+ tcp->tcp_valid_bits |= TCP_OFO_FIN_VALID;
+ tcp->tcp_ofo_fin_seq = seg_seq + seg_len;
+ flags &= ~TH_FIN;
+ flags |= TH_ACK_NEEDED;
+ }
+ if (seg_len > 0) {
+ /* Fill in the SACK blk list. */
+ if (tcp->tcp_snd_sack_ok) {
+ ASSERT(tcp->tcp_sack_info != NULL);
+ tcp_sack_insert(tcp->tcp_sack_list,
+ seg_seq, seg_seq + seg_len,
+ &(tcp->tcp_num_sack_blk));
+ }
+
+ /*
+ * Attempt reassembly and see if we have something
+ * ready to go.
+ */
+ mp = tcp_reass(tcp, mp, seg_seq);
+ /* Always ack out of order packets */
+ flags |= TH_ACK_NEEDED | TH_PUSH;
+ if (mp) {
+ ASSERT((uintptr_t)(mp->b_wptr - mp->b_rptr) <=
+ (uintptr_t)INT_MAX);
+ seg_len = mp->b_cont ? msgdsize(mp) :
+ (int)(mp->b_wptr - mp->b_rptr);
+ seg_seq = tcp->tcp_rnxt;
+ /*
+ * A gap is filled and the seq num and len
+ * of the gap match that of a previously
+ * received FIN, put the FIN flag back in.
+ */
+ if ((tcp->tcp_valid_bits & TCP_OFO_FIN_VALID) &&
+ seg_seq + seg_len == tcp->tcp_ofo_fin_seq) {
+ flags |= TH_FIN;
+ tcp->tcp_valid_bits &=
+ ~TCP_OFO_FIN_VALID;
+ }
+ if (tcp->tcp_reass_tid != 0) {
+ (void) TCP_TIMER_CANCEL(tcp,
+ tcp->tcp_reass_tid);
+ /*
+ * Restart the timer if there is still
+ * data in the reassembly queue.
+ */
+ if (tcp->tcp_reass_head != NULL) {
+ tcp->tcp_reass_tid = TCP_TIMER(
+ tcp, tcp_reass_timer,
+ MSEC_TO_TICK(
+ tcps->tcps_reass_timeout));
+ } else {
+ tcp->tcp_reass_tid = 0;
+ }
+ }
+ } else {
+ /*
+ * Keep going even with NULL mp.
+ * There may be a useful ACK or something else
+ * we don't want to miss.
+ *
+ * But TCP should not perform fast retransmit
+ * because of the ack number. TCP uses
+ * seg_len == 0 to determine if it is a pure
+ * ACK. And this is not a pure ACK.
+ */
+ seg_len = 0;
+ ofo_seg = B_TRUE;
+
+ if (tcps->tcps_reass_timeout != 0 &&
+ tcp->tcp_reass_tid == 0) {
+ tcp->tcp_reass_tid = TCP_TIMER(tcp,
+ tcp_reass_timer, MSEC_TO_TICK(
+ tcps->tcps_reass_timeout));
+ }
+ }
+ }
+ } else if (seg_len > 0) {
+ TCPS_BUMP_MIB(tcps, tcpInDataInorderSegs);
+ TCPS_UPDATE_MIB(tcps, tcpInDataInorderBytes, seg_len);
+ /*
+ * If an out of order FIN was received before, and the seq
+ * num and len of the new segment match that of the FIN,
+ * put the FIN flag back in.
+ */
+ if ((tcp->tcp_valid_bits & TCP_OFO_FIN_VALID) &&
+ seg_seq + seg_len == tcp->tcp_ofo_fin_seq) {
+ flags |= TH_FIN;
+ tcp->tcp_valid_bits &= ~TCP_OFO_FIN_VALID;
+ }
+ }
+ if ((flags & (TH_RST | TH_SYN | TH_URG | TH_ACK)) != TH_ACK) {
+ if (flags & TH_RST) {
+ freemsg(mp);
+ switch (tcp->tcp_state) {
+ case TCPS_SYN_RCVD:
+ (void) tcp_clean_death(tcp, ECONNREFUSED);
+ break;
+ case TCPS_ESTABLISHED:
+ case TCPS_FIN_WAIT_1:
+ case TCPS_FIN_WAIT_2:
+ case TCPS_CLOSE_WAIT:
+ (void) tcp_clean_death(tcp, ECONNRESET);
+ break;
+ case TCPS_CLOSING:
+ case TCPS_LAST_ACK:
+ (void) tcp_clean_death(tcp, 0);
+ break;
+ default:
+ ASSERT(tcp->tcp_state != TCPS_TIME_WAIT);
+ (void) tcp_clean_death(tcp, ENXIO);
+ break;
+ }
+ return;
+ }
+ if (flags & TH_SYN) {
+ /*
+ * See RFC 793, Page 71
+ *
+ * The seq number must be in the window as it should
+ * be "fixed" above. If it is outside window, it should
+ * be already rejected. Note that we allow seg_seq to be
+ * rnxt + rwnd because we want to accept 0 window probe.
+ */
+ ASSERT(SEQ_GEQ(seg_seq, tcp->tcp_rnxt) &&
+ SEQ_LEQ(seg_seq, tcp->tcp_rnxt + tcp->tcp_rwnd));
+ freemsg(mp);
+ /*
+ * If the ACK flag is not set, just use our snxt as the
+ * seq number of the RST segment.
+ */
+ if (!(flags & TH_ACK)) {
+ seg_ack = tcp->tcp_snxt;
+ }
+ tcp_xmit_ctl("TH_SYN", tcp, seg_ack, seg_seq + 1,
+ TH_RST|TH_ACK);
+ ASSERT(tcp->tcp_state != TCPS_TIME_WAIT);
+ (void) tcp_clean_death(tcp, ECONNRESET);
+ return;
+ }
+ /*
+ * urp could be -1 when the urp field in the packet is 0
+ * and TCP_OLD_URP_INTERPRETATION is set. This implies that the urgent
+ * byte was at seg_seq - 1, in which case we ignore the urgent flag.
+ */
+ if (flags & TH_URG && urp >= 0) {
+ if (!tcp->tcp_urp_last_valid ||
+ SEQ_GT(urp + seg_seq, tcp->tcp_urp_last)) {
+ /*
+ * Non-STREAMS sockets handle the urgent data a litte
+ * differently from STREAMS based sockets. There is no
+ * need to mark any mblks with the MSG{NOT,}MARKNEXT
+ * flags to keep SIOCATMARK happy. Instead a
+ * su_signal_oob upcall is made to update the mark.
+ * Neither is a T_EXDATA_IND mblk needed to be
+ * prepended to the urgent data. The urgent data is
+ * delivered using the su_recv upcall, where we set
+ * the MSG_OOB flag to indicate that it is urg data.
+ *
+ * Neither TH_SEND_URP_MARK nor TH_MARKNEXT_NEEDED
+ * are used by non-STREAMS sockets.
+ */
+ if (IPCL_IS_NONSTR(connp)) {
+ if (!TCP_IS_DETACHED(tcp)) {
+ (*connp->conn_upcalls->su_signal_oob)
+ (connp->conn_upper_handle, urp);
+ }
+ } else {
+ /*
+ * If we haven't generated the signal yet for
+ * this urgent pointer value, do it now. Also,
+ * send up a zero-length M_DATA indicating
+ * whether or not this is the mark. The latter
+ * is not needed when a T_EXDATA_IND is sent up.
+ * However, if there are allocation failures
+ * this code relies on the sender retransmitting
+ * and the socket code for determining the mark
+ * should not block waiting for the peer to
+ * transmit. Thus, for simplicity we always
+ * send up the mark indication.
+ */
+ mp1 = allocb(0, BPRI_MED);
+ if (mp1 == NULL) {
+ freemsg(mp);
+ return;
+ }
+ if (!TCP_IS_DETACHED(tcp) &&
+ !putnextctl1(connp->conn_rq, M_PCSIG,
+ SIGURG)) {
+ /* Try again on the rexmit. */
+ freemsg(mp1);
+ freemsg(mp);
+ return;
+ }
+ /*
+ * Mark with NOTMARKNEXT for now.
+ * The code below will change this to MARKNEXT
+ * if we are at the mark.
+ *
+ * If there are allocation failures (e.g. in
+ * dupmsg below) the next time tcp_input_data
+ * sees the urgent segment it will send up the
+ * MSGMARKNEXT message.
+ */
+ mp1->b_flag |= MSGNOTMARKNEXT;
+ freemsg(tcp->tcp_urp_mark_mp);
+ tcp->tcp_urp_mark_mp = mp1;
+ flags |= TH_SEND_URP_MARK;
+#ifdef DEBUG
+ (void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE,
+ "tcp_rput: sent M_PCSIG 2 seq %x urp %x "
+ "last %x, %s",
+ seg_seq, urp, tcp->tcp_urp_last,
+ tcp_display(tcp, NULL, DISP_PORT_ONLY));
+#endif /* DEBUG */
+ }
+ tcp->tcp_urp_last_valid = B_TRUE;
+ tcp->tcp_urp_last = urp + seg_seq;
+ } else if (tcp->tcp_urp_mark_mp != NULL) {
+ /*
+ * An allocation failure prevented the previous
+ * tcp_input_data from sending up the allocated
+ * MSG*MARKNEXT message - send it up this time
+ * around.
+ */
+ flags |= TH_SEND_URP_MARK;
+ }
+
+ /*
+ * If the urgent byte is in this segment, make sure that it is
+ * all by itself. This makes it much easier to deal with the
+ * possibility of an allocation failure on the T_exdata_ind.
+ * Note that seg_len is the number of bytes in the segment, and
+ * urp is the offset into the segment of the urgent byte.
+ * urp < seg_len means that the urgent byte is in this segment.
+ */
+ if (urp < seg_len) {
+ if (seg_len != 1) {
+ uint32_t tmp_rnxt;
+ /*
+ * Break it up and feed it back in.
+ * Re-attach the IP header.
+ */
+ mp->b_rptr = iphdr;
+ if (urp > 0) {
+ /*
+ * There is stuff before the urgent
+ * byte.
+ */
+ mp1 = dupmsg(mp);
+ if (!mp1) {
+ /*
+ * Trim from urgent byte on.
+ * The rest will come back.
+ */
+ (void) adjmsg(mp,
+ urp - seg_len);
+ tcp_input_data(connp,
+ mp, NULL, ira);
+ return;
+ }
+ (void) adjmsg(mp1, urp - seg_len);
+ /* Feed this piece back in. */
+ tmp_rnxt = tcp->tcp_rnxt;
+ tcp_input_data(connp, mp1, NULL, ira);
+ /*
+ * If the data passed back in was not
+ * processed (ie: bad ACK) sending
+ * the remainder back in will cause a
+ * loop. In this case, drop the
+ * packet and let the sender try
+ * sending a good packet.
+ */
+ if (tmp_rnxt == tcp->tcp_rnxt) {
+ freemsg(mp);
+ return;
+ }
+ }
+ if (urp != seg_len - 1) {
+ uint32_t tmp_rnxt;
+ /*
+ * There is stuff after the urgent
+ * byte.
+ */
+ mp1 = dupmsg(mp);
+ if (!mp1) {
+ /*
+ * Trim everything beyond the
+ * urgent byte. The rest will
+ * come back.
+ */
+ (void) adjmsg(mp,
+ urp + 1 - seg_len);
+ tcp_input_data(connp,
+ mp, NULL, ira);
+ return;
+ }
+ (void) adjmsg(mp1, urp + 1 - seg_len);
+ tmp_rnxt = tcp->tcp_rnxt;
+ tcp_input_data(connp, mp1, NULL, ira);
+ /*
+ * If the data passed back in was not
+ * processed (ie: bad ACK) sending
+ * the remainder back in will cause a
+ * loop. In this case, drop the
+ * packet and let the sender try
+ * sending a good packet.
+ */
+ if (tmp_rnxt == tcp->tcp_rnxt) {
+ freemsg(mp);
+ return;
+ }
+ }
+ tcp_input_data(connp, mp, NULL, ira);
+ return;
+ }
+ /*
+ * This segment contains only the urgent byte. We
+ * have to allocate the T_exdata_ind, if we can.
+ */
+ if (IPCL_IS_NONSTR(connp)) {
+ int error;
+
+ (*connp->conn_upcalls->su_recv)
+ (connp->conn_upper_handle, mp, seg_len,
+ MSG_OOB, &error, NULL);
+ /*
+ * We should never be in middle of a
+ * fallback, the squeue guarantees that.
+ */
+ ASSERT(error != EOPNOTSUPP);
+ mp = NULL;
+ goto update_ack;
+ } else if (!tcp->tcp_urp_mp) {
+ struct T_exdata_ind *tei;
+ mp1 = allocb(sizeof (struct T_exdata_ind),
+ BPRI_MED);
+ if (!mp1) {
+ /*
+ * Sigh... It'll be back.
+ * Generate any MSG*MARK message now.
+ */
+ freemsg(mp);
+ seg_len = 0;
+ if (flags & TH_SEND_URP_MARK) {
+
+
+ ASSERT(tcp->tcp_urp_mark_mp);
+ tcp->tcp_urp_mark_mp->b_flag &=
+ ~MSGNOTMARKNEXT;
+ tcp->tcp_urp_mark_mp->b_flag |=
+ MSGMARKNEXT;
+ }
+ goto ack_check;
+ }
+ mp1->b_datap->db_type = M_PROTO;
+ tei = (struct T_exdata_ind *)mp1->b_rptr;
+ tei->PRIM_type = T_EXDATA_IND;
+ tei->MORE_flag = 0;
+ mp1->b_wptr = (uchar_t *)&tei[1];
+ tcp->tcp_urp_mp = mp1;
+#ifdef DEBUG
+ (void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE,
+ "tcp_rput: allocated exdata_ind %s",
+ tcp_display(tcp, NULL,
+ DISP_PORT_ONLY));
+#endif /* DEBUG */
+ /*
+ * There is no need to send a separate MSG*MARK
+ * message since the T_EXDATA_IND will be sent
+ * now.
+ */
+ flags &= ~TH_SEND_URP_MARK;
+ freemsg(tcp->tcp_urp_mark_mp);
+ tcp->tcp_urp_mark_mp = NULL;
+ }
+ /*
+ * Now we are all set. On the next putnext upstream,
+ * tcp_urp_mp will be non-NULL and will get prepended
+ * to what has to be this piece containing the urgent
+ * byte. If for any reason we abort this segment below,
+ * if it comes back, we will have this ready, or it
+ * will get blown off in close.
+ */
+ } else if (urp == seg_len) {
+ /*
+ * The urgent byte is the next byte after this sequence
+ * number. If this endpoint is non-STREAMS, then there
+ * is nothing to do here since the socket has already
+ * been notified about the urg pointer by the
+ * su_signal_oob call above.
+ *
+ * In case of STREAMS, some more work might be needed.
+ * If there is data it is marked with MSGMARKNEXT and
+ * and any tcp_urp_mark_mp is discarded since it is not
+ * needed. Otherwise, if the code above just allocated
+ * a zero-length tcp_urp_mark_mp message, that message
+ * is tagged with MSGMARKNEXT. Sending up these
+ * MSGMARKNEXT messages makes SIOCATMARK work correctly
+ * even though the T_EXDATA_IND will not be sent up
+ * until the urgent byte arrives.
+ */
+ if (!IPCL_IS_NONSTR(tcp->tcp_connp)) {
+ if (seg_len != 0) {
+ flags |= TH_MARKNEXT_NEEDED;
+ freemsg(tcp->tcp_urp_mark_mp);
+ tcp->tcp_urp_mark_mp = NULL;
+ flags &= ~TH_SEND_URP_MARK;
+ } else if (tcp->tcp_urp_mark_mp != NULL) {
+ flags |= TH_SEND_URP_MARK;
+ tcp->tcp_urp_mark_mp->b_flag &=
+ ~MSGNOTMARKNEXT;
+ tcp->tcp_urp_mark_mp->b_flag |=
+ MSGMARKNEXT;
+ }
+ }
+#ifdef DEBUG
+ (void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE,
+ "tcp_rput: AT MARK, len %d, flags 0x%x, %s",
+ seg_len, flags,
+ tcp_display(tcp, NULL, DISP_PORT_ONLY));
+#endif /* DEBUG */
+ }
+#ifdef DEBUG
+ else {
+ /* Data left until we hit mark */
+ (void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE,
+ "tcp_rput: URP %d bytes left, %s",
+ urp - seg_len, tcp_display(tcp, NULL,
+ DISP_PORT_ONLY));
+ }
+#endif /* DEBUG */
+ }
+
+process_ack:
+ if (!(flags & TH_ACK)) {
+ freemsg(mp);
+ goto xmit_check;
+ }
+ }
+ bytes_acked = (int)(seg_ack - tcp->tcp_suna);
+
+ if (bytes_acked > 0)
+ tcp->tcp_ip_forward_progress = B_TRUE;
+ if (tcp->tcp_state == TCPS_SYN_RCVD) {
+ if ((tcp->tcp_conn.tcp_eager_conn_ind != NULL) &&
+ ((tcp->tcp_kssl_ent == NULL) || !tcp->tcp_kssl_pending)) {
+ /* 3-way handshake complete - pass up the T_CONN_IND */
+ tcp_t *listener = tcp->tcp_listener;
+ mblk_t *mp = tcp->tcp_conn.tcp_eager_conn_ind;
+
+ tcp->tcp_tconnind_started = B_TRUE;
+ tcp->tcp_conn.tcp_eager_conn_ind = NULL;
+ /*
+ * We are here means eager is fine but it can
+ * get a TH_RST at any point between now and till
+ * accept completes and disappear. We need to
+ * ensure that reference to eager is valid after
+ * we get out of eager's perimeter. So we do
+ * an extra refhold.
+ */
+ CONN_INC_REF(connp);
+
+ /*
+ * The listener also exists because of the refhold
+ * done in tcp_input_listener. Its possible that it
+ * might have closed. We will check that once we
+ * get inside listeners context.
+ */
+ CONN_INC_REF(listener->tcp_connp);
+ if (listener->tcp_connp->conn_sqp ==
+ connp->conn_sqp) {
+ /*
+ * We optimize by not calling an SQUEUE_ENTER
+ * on the listener since we know that the
+ * listener and eager squeues are the same.
+ * We are able to make this check safely only
+ * because neither the eager nor the listener
+ * can change its squeue. Only an active connect
+ * can change its squeue
+ */
+ tcp_send_conn_ind(listener->tcp_connp, mp,
+ listener->tcp_connp->conn_sqp);
+ CONN_DEC_REF(listener->tcp_connp);
+ } else if (!tcp->tcp_loopback) {
+ SQUEUE_ENTER_ONE(listener->tcp_connp->conn_sqp,
+ mp, tcp_send_conn_ind,
+ listener->tcp_connp, NULL, SQ_FILL,
+ SQTAG_TCP_CONN_IND);
+ } else {
+ SQUEUE_ENTER_ONE(listener->tcp_connp->conn_sqp,
+ mp, tcp_send_conn_ind,
+ listener->tcp_connp, NULL, SQ_PROCESS,
+ SQTAG_TCP_CONN_IND);
+ }
+ }
+
+ /*
+ * We are seeing the final ack in the three way
+ * hand shake of a active open'ed connection
+ * so we must send up a T_CONN_CON
+ *
+ * tcp_sendmsg() checks tcp_state without entering
+ * the squeue so tcp_state should be updated before
+ * sending up connection confirmation.
+ */
+ tcp->tcp_state = TCPS_ESTABLISHED;
+
+ if (tcp->tcp_active_open) {
+ if (!tcp_conn_con(tcp, iphdr, mp, NULL, ira)) {
+ freemsg(mp);
+ tcp->tcp_state = TCPS_SYN_RCVD;
+ return;
+ }
+ /*
+ * Don't fuse the loopback endpoints for
+ * simultaneous active opens.
+ */
+ if (tcp->tcp_loopback) {
+ TCP_STAT(tcps, tcp_fusion_unfusable);
+ tcp->tcp_unfusable = B_TRUE;
+ }
+ }
+ TCPS_CONN_INC(tcps);
+
+ tcp->tcp_suna = tcp->tcp_iss + 1; /* One for the SYN */
+ bytes_acked--;
+ /* SYN was acked - making progress */
+ tcp->tcp_ip_forward_progress = B_TRUE;
+
+ /*
+ * If SYN was retransmitted, need to reset all
+ * retransmission info as this segment will be
+ * treated as a dup ACK.
+ */
+ if (tcp->tcp_rexmit) {
+ tcp->tcp_rexmit = B_FALSE;
+ tcp->tcp_rexmit_nxt = tcp->tcp_snxt;
+ tcp->tcp_rexmit_max = tcp->tcp_snxt;
+ tcp->tcp_snd_burst = tcp->tcp_localnet ?
+ TCP_CWND_INFINITE : TCP_CWND_NORMAL;
+ tcp->tcp_ms_we_have_waited = 0;
+ tcp->tcp_cwnd = mss;
+ }
+
+ /*
+ * We set the send window to zero here.
+ * This is needed if there is data to be
+ * processed already on the queue.
+ * Later (at swnd_update label), the
+ * "new_swnd > tcp_swnd" condition is satisfied
+ * the XMIT_NEEDED flag is set in the current
+ * (SYN_RCVD) state. This ensures tcp_wput_data() is
+ * called if there is already data on queue in
+ * this state.
+ */
+ tcp->tcp_swnd = 0;
+
+ if (new_swnd > tcp->tcp_max_swnd)
+ tcp->tcp_max_swnd = new_swnd;
+ tcp->tcp_swl1 = seg_seq;
+ tcp->tcp_swl2 = seg_ack;
+ tcp->tcp_valid_bits &= ~TCP_ISS_VALID;
+
+ /* Fuse when both sides are in ESTABLISHED state */
+ if (tcp->tcp_loopback && do_tcp_fusion)
+ tcp_fuse(tcp, iphdr, tcpha);
+
+ }
+ /* This code follows 4.4BSD-Lite2 mostly. */
+ if (bytes_acked < 0)
+ goto est;
+
+ /*
+ * If TCP is ECN capable and the congestion experience bit is
+ * set, reduce tcp_cwnd and tcp_ssthresh. But this should only be
+ * done once per window (or more loosely, per RTT).
+ */
+ if (tcp->tcp_cwr && SEQ_GT(seg_ack, tcp->tcp_cwr_snd_max))
+ tcp->tcp_cwr = B_FALSE;
+ if (tcp->tcp_ecn_ok && (flags & TH_ECE)) {
+ if (!tcp->tcp_cwr) {
+ npkt = ((tcp->tcp_snxt - tcp->tcp_suna) >> 1) / mss;
+ tcp->tcp_cwnd_ssthresh = MAX(npkt, 2) * mss;
+ tcp->tcp_cwnd = npkt * mss;
+ /*
+ * If the cwnd is 0, use the timer to clock out
+ * new segments. This is required by the ECN spec.
+ */
+ if (npkt == 0) {
+ TCP_TIMER_RESTART(tcp, tcp->tcp_rto);
+ /*
+ * This makes sure that when the ACK comes
+ * back, we will increase tcp_cwnd by 1 MSS.
+ */
+ tcp->tcp_cwnd_cnt = 0;
+ }
+ tcp->tcp_cwr = B_TRUE;
+ /*
+ * This marks the end of the current window of in
+ * flight data. That is why we don't use
+ * tcp_suna + tcp_swnd. Only data in flight can
+ * provide ECN info.
+ */
+ tcp->tcp_cwr_snd_max = tcp->tcp_snxt;
+ tcp->tcp_ecn_cwr_sent = B_FALSE;
+ }
+ }
+
+ mp1 = tcp->tcp_xmit_head;
+ if (bytes_acked == 0) {
+ if (!ofo_seg && seg_len == 0 && new_swnd == tcp->tcp_swnd) {
+ int dupack_cnt;
+
+ TCPS_BUMP_MIB(tcps, tcpInDupAck);
+ /*
+ * Fast retransmit. When we have seen exactly three
+ * identical ACKs while we have unacked data
+ * outstanding we take it as a hint that our peer
+ * dropped something.
+ *
+ * If TCP is retransmitting, don't do fast retransmit.
+ */
+ if (mp1 && tcp->tcp_suna != tcp->tcp_snxt &&
+ ! tcp->tcp_rexmit) {
+ /* Do Limited Transmit */
+ if ((dupack_cnt = ++tcp->tcp_dupack_cnt) <
+ tcps->tcps_dupack_fast_retransmit) {
+ /*
+ * RFC 3042
+ *
+ * What we need to do is temporarily
+ * increase tcp_cwnd so that new
+ * data can be sent if it is allowed
+ * by the receive window (tcp_rwnd).
+ * tcp_wput_data() will take care of
+ * the rest.
+ *
+ * If the connection is SACK capable,
+ * only do limited xmit when there
+ * is SACK info.
+ *
+ * Note how tcp_cwnd is incremented.
+ * The first dup ACK will increase
+ * it by 1 MSS. The second dup ACK
+ * will increase it by 2 MSS. This
+ * means that only 1 new segment will
+ * be sent for each dup ACK.
+ */
+ if (tcp->tcp_unsent > 0 &&
+ (!tcp->tcp_snd_sack_ok ||
+ (tcp->tcp_snd_sack_ok &&
+ tcp->tcp_notsack_list != NULL))) {
+ tcp->tcp_cwnd += mss <<
+ (tcp->tcp_dupack_cnt - 1);
+ flags |= TH_LIMIT_XMIT;
+ }
+ } else if (dupack_cnt ==
+ tcps->tcps_dupack_fast_retransmit) {
+
+ /*
+ * If we have reduced tcp_ssthresh
+ * because of ECN, do not reduce it again
+ * unless it is already one window of data
+ * away. After one window of data, tcp_cwr
+ * should then be cleared. Note that
+ * for non ECN capable connection, tcp_cwr
+ * should always be false.
+ *
+ * Adjust cwnd since the duplicate
+ * ack indicates that a packet was
+ * dropped (due to congestion.)
+ */
+ if (!tcp->tcp_cwr) {
+ npkt = ((tcp->tcp_snxt -
+ tcp->tcp_suna) >> 1) / mss;
+ tcp->tcp_cwnd_ssthresh = MAX(npkt, 2) *
+ mss;
+ tcp->tcp_cwnd = (npkt +
+ tcp->tcp_dupack_cnt) * mss;
+ }
+ if (tcp->tcp_ecn_ok) {
+ tcp->tcp_cwr = B_TRUE;
+ tcp->tcp_cwr_snd_max = tcp->tcp_snxt;
+ tcp->tcp_ecn_cwr_sent = B_FALSE;
+ }
+
+ /*
+ * We do Hoe's algorithm. Refer to her
+ * paper "Improving the Start-up Behavior
+ * of a Congestion Control Scheme for TCP,"
+ * appeared in SIGCOMM'96.
+ *
+ * Save highest seq no we have sent so far.
+ * Be careful about the invisible FIN byte.
+ */
+ if ((tcp->tcp_valid_bits & TCP_FSS_VALID) &&
+ (tcp->tcp_unsent == 0)) {
+ tcp->tcp_rexmit_max = tcp->tcp_fss;
+ } else {
+ tcp->tcp_rexmit_max = tcp->tcp_snxt;
+ }
+
+ /*
+ * Do not allow bursty traffic during.
+ * fast recovery. Refer to Fall and Floyd's
+ * paper "Simulation-based Comparisons of
+ * Tahoe, Reno and SACK TCP" (in CCR?)
+ * This is a best current practise.
+ */
+ tcp->tcp_snd_burst = TCP_CWND_SS;
+
+ /*
+ * For SACK:
+ * Calculate tcp_pipe, which is the
+ * estimated number of bytes in
+ * network.
+ *
+ * tcp_fack is the highest sack'ed seq num
+ * TCP has received.
+ *
+ * tcp_pipe is explained in the above quoted
+ * Fall and Floyd's paper. tcp_fack is
+ * explained in Mathis and Mahdavi's
+ * "Forward Acknowledgment: Refining TCP
+ * Congestion Control" in SIGCOMM '96.
+ */
+ if (tcp->tcp_snd_sack_ok) {
+ ASSERT(tcp->tcp_sack_info != NULL);
+ if (tcp->tcp_notsack_list != NULL) {
+ tcp->tcp_pipe = tcp->tcp_snxt -
+ tcp->tcp_fack;
+ tcp->tcp_sack_snxt = seg_ack;
+ flags |= TH_NEED_SACK_REXMIT;
+ } else {
+ /*
+ * Always initialize tcp_pipe
+ * even though we don't have
+ * any SACK info. If later
+ * we get SACK info and
+ * tcp_pipe is not initialized,
+ * funny things will happen.
+ */
+ tcp->tcp_pipe =
+ tcp->tcp_cwnd_ssthresh;
+ }
+ } else {
+ flags |= TH_REXMIT_NEEDED;
+ } /* tcp_snd_sack_ok */
+
+ } else {
+ /*
+ * Here we perform congestion
+ * avoidance, but NOT slow start.
+ * This is known as the Fast
+ * Recovery Algorithm.
+ */
+ if (tcp->tcp_snd_sack_ok &&
+ tcp->tcp_notsack_list != NULL) {
+ flags |= TH_NEED_SACK_REXMIT;
+ tcp->tcp_pipe -= mss;
+ if (tcp->tcp_pipe < 0)
+ tcp->tcp_pipe = 0;
+ } else {
+ /*
+ * We know that one more packet has
+ * left the pipe thus we can update
+ * cwnd.
+ */
+ cwnd = tcp->tcp_cwnd + mss;
+ if (cwnd > tcp->tcp_cwnd_max)
+ cwnd = tcp->tcp_cwnd_max;
+ tcp->tcp_cwnd = cwnd;
+ if (tcp->tcp_unsent > 0)
+ flags |= TH_XMIT_NEEDED;
+ }
+ }
+ }
+ } else if (tcp->tcp_zero_win_probe) {
+ /*
+ * If the window has opened, need to arrange
+ * to send additional data.
+ */
+ if (new_swnd != 0) {
+ /* tcp_suna != tcp_snxt */
+ /* Packet contains a window update */
+ TCPS_BUMP_MIB(tcps, tcpInWinUpdate);
+ tcp->tcp_zero_win_probe = 0;
+ tcp->tcp_timer_backoff = 0;
+ tcp->tcp_ms_we_have_waited = 0;
+
+ /*
+ * Transmit starting with tcp_suna since
+ * the one byte probe is not ack'ed.
+ * If TCP has sent more than one identical
+ * probe, tcp_rexmit will be set. That means
+ * tcp_ss_rexmit() will send out the one
+ * byte along with new data. Otherwise,
+ * fake the retransmission.
+ */
+ flags |= TH_XMIT_NEEDED;
+ if (!tcp->tcp_rexmit) {
+ tcp->tcp_rexmit = B_TRUE;
+ tcp->tcp_dupack_cnt = 0;
+ tcp->tcp_rexmit_nxt = tcp->tcp_suna;
+ tcp->tcp_rexmit_max = tcp->tcp_suna + 1;
+ }
+ }
+ }
+ goto swnd_update;
+ }
+
+ /*
+ * Check for "acceptability" of ACK value per RFC 793, pages 72 - 73.
+ * If the ACK value acks something that we have not yet sent, it might
+ * be an old duplicate segment. Send an ACK to re-synchronize the
+ * other side.
+ * Note: reset in response to unacceptable ACK in SYN_RECEIVE
+ * state is handled above, so we can always just drop the segment and
+ * send an ACK here.
+ *
+ * In the case where the peer shrinks the window, we see the new window
+ * update, but all the data sent previously is queued up by the peer.
+ * To account for this, in tcp_process_shrunk_swnd(), the sequence
+ * number, which was already sent, and within window, is recorded.
+ * tcp_snxt is then updated.
+ *
+ * If the window has previously shrunk, and an ACK for data not yet
+ * sent, according to tcp_snxt is recieved, it may still be valid. If
+ * the ACK is for data within the window at the time the window was
+ * shrunk, then the ACK is acceptable. In this case tcp_snxt is set to
+ * the sequence number ACK'ed.
+ *
+ * If the ACK covers all the data sent at the time the window was
+ * shrunk, we can now set tcp_is_wnd_shrnk to B_FALSE.
+ *
+ * Should we send ACKs in response to ACK only segments?
+ */
+
+ if (SEQ_GT(seg_ack, tcp->tcp_snxt)) {
+ if ((tcp->tcp_is_wnd_shrnk) &&
+ (SEQ_LEQ(seg_ack, tcp->tcp_snxt_shrunk))) {
+ uint32_t data_acked_ahead_snxt;
+
+ data_acked_ahead_snxt = seg_ack - tcp->tcp_snxt;
+ tcp_update_xmit_tail(tcp, seg_ack);
+ tcp->tcp_unsent -= data_acked_ahead_snxt;
+ } else {
+ TCPS_BUMP_MIB(tcps, tcpInAckUnsent);
+ /* drop the received segment */
+ freemsg(mp);
+
+ /*
+ * Send back an ACK. If tcp_drop_ack_unsent_cnt is
+ * greater than 0, check if the number of such
+ * bogus ACks is greater than that count. If yes,
+ * don't send back any ACK. This prevents TCP from
+ * getting into an ACK storm if somehow an attacker
+ * successfully spoofs an acceptable segment to our
+ * peer. If this continues (count > 2 X threshold),
+ * we should abort this connection.
+ */
+ if (tcp_drop_ack_unsent_cnt > 0 &&
+ ++tcp->tcp_in_ack_unsent >
+ tcp_drop_ack_unsent_cnt) {
+ TCP_STAT(tcps, tcp_in_ack_unsent_drop);
+ if (tcp->tcp_in_ack_unsent > 2 *
+ tcp_drop_ack_unsent_cnt) {
+ (void) tcp_clean_death(tcp, EPROTO);
+ }
+ return;
+ }
+ mp = tcp_ack_mp(tcp);
+ if (mp != NULL) {
+ BUMP_LOCAL(tcp->tcp_obsegs);
+ TCPS_BUMP_MIB(tcps, tcpOutAck);
+ tcp_send_data(tcp, mp);
+ }
+ return;
+ }
+ } else if (tcp->tcp_is_wnd_shrnk && SEQ_GEQ(seg_ack,
+ tcp->tcp_snxt_shrunk)) {
+ tcp->tcp_is_wnd_shrnk = B_FALSE;
+ }
+
+ /*
+ * TCP gets a new ACK, update the notsack'ed list to delete those
+ * blocks that are covered by this ACK.
+ */
+ if (tcp->tcp_snd_sack_ok && tcp->tcp_notsack_list != NULL) {
+ tcp_notsack_remove(&(tcp->tcp_notsack_list), seg_ack,
+ &(tcp->tcp_num_notsack_blk), &(tcp->tcp_cnt_notsack_list));
+ }
+
+ /*
+ * If we got an ACK after fast retransmit, check to see
+ * if it is a partial ACK. If it is not and the congestion
+ * window was inflated to account for the other side's
+ * cached packets, retract it. If it is, do Hoe's algorithm.
+ */
+ if (tcp->tcp_dupack_cnt >= tcps->tcps_dupack_fast_retransmit) {
+ ASSERT(tcp->tcp_rexmit == B_FALSE);
+ if (SEQ_GEQ(seg_ack, tcp->tcp_rexmit_max)) {
+ tcp->tcp_dupack_cnt = 0;
+ /*
+ * Restore the orig tcp_cwnd_ssthresh after
+ * fast retransmit phase.
+ */
+ if (tcp->tcp_cwnd > tcp->tcp_cwnd_ssthresh) {
+ tcp->tcp_cwnd = tcp->tcp_cwnd_ssthresh;
+ }
+ tcp->tcp_rexmit_max = seg_ack;
+ tcp->tcp_cwnd_cnt = 0;
+ tcp->tcp_snd_burst = tcp->tcp_localnet ?
+ TCP_CWND_INFINITE : TCP_CWND_NORMAL;
+
+ /*
+ * Remove all notsack info to avoid confusion with
+ * the next fast retrasnmit/recovery phase.
+ */
+ if (tcp->tcp_snd_sack_ok &&
+ tcp->tcp_notsack_list != NULL) {
+ TCP_NOTSACK_REMOVE_ALL(tcp->tcp_notsack_list,
+ tcp);
+ }
+ } else {
+ if (tcp->tcp_snd_sack_ok &&
+ tcp->tcp_notsack_list != NULL) {
+ flags |= TH_NEED_SACK_REXMIT;
+ tcp->tcp_pipe -= mss;
+ if (tcp->tcp_pipe < 0)
+ tcp->tcp_pipe = 0;
+ } else {
+ /*
+ * Hoe's algorithm:
+ *
+ * Retransmit the unack'ed segment and
+ * restart fast recovery. Note that we
+ * need to scale back tcp_cwnd to the
+ * original value when we started fast
+ * recovery. This is to prevent overly
+ * aggressive behaviour in sending new
+ * segments.
+ */
+ tcp->tcp_cwnd = tcp->tcp_cwnd_ssthresh +
+ tcps->tcps_dupack_fast_retransmit * mss;
+ tcp->tcp_cwnd_cnt = tcp->tcp_cwnd;
+ flags |= TH_REXMIT_NEEDED;
+ }
+ }
+ } else {
+ tcp->tcp_dupack_cnt = 0;
+ if (tcp->tcp_rexmit) {
+ /*
+ * TCP is retranmitting. If the ACK ack's all
+ * outstanding data, update tcp_rexmit_max and
+ * tcp_rexmit_nxt. Otherwise, update tcp_rexmit_nxt
+ * to the correct value.
+ *
+ * Note that SEQ_LEQ() is used. This is to avoid
+ * unnecessary fast retransmit caused by dup ACKs
+ * received when TCP does slow start retransmission
+ * after a time out. During this phase, TCP may
+ * send out segments which are already received.
+ * This causes dup ACKs to be sent back.
+ */
+ if (SEQ_LEQ(seg_ack, tcp->tcp_rexmit_max)) {
+ if (SEQ_GT(seg_ack, tcp->tcp_rexmit_nxt)) {
+ tcp->tcp_rexmit_nxt = seg_ack;
+ }
+ if (seg_ack != tcp->tcp_rexmit_max) {
+ flags |= TH_XMIT_NEEDED;
+ }
+ } else {
+ tcp->tcp_rexmit = B_FALSE;
+ tcp->tcp_rexmit_nxt = tcp->tcp_snxt;
+ tcp->tcp_snd_burst = tcp->tcp_localnet ?
+ TCP_CWND_INFINITE : TCP_CWND_NORMAL;
+ }
+ tcp->tcp_ms_we_have_waited = 0;
+ }
+ }
+
+ TCPS_BUMP_MIB(tcps, tcpInAckSegs);
+ TCPS_UPDATE_MIB(tcps, tcpInAckBytes, bytes_acked);
+ tcp->tcp_suna = seg_ack;
+ if (tcp->tcp_zero_win_probe != 0) {
+ tcp->tcp_zero_win_probe = 0;
+ tcp->tcp_timer_backoff = 0;
+ }
+
+ /*
+ * If tcp_xmit_head is NULL, then it must be the FIN being ack'ed.
+ * Note that it cannot be the SYN being ack'ed. The code flow
+ * will not reach here.
+ */
+ if (mp1 == NULL) {
+ goto fin_acked;
+ }
+
+ /*
+ * Update the congestion window.
+ *
+ * If TCP is not ECN capable or TCP is ECN capable but the
+ * congestion experience bit is not set, increase the tcp_cwnd as
+ * usual.
+ */
+ if (!tcp->tcp_ecn_ok || !(flags & TH_ECE)) {
+ cwnd = tcp->tcp_cwnd;
+ add = mss;
+
+ if (cwnd >= tcp->tcp_cwnd_ssthresh) {
+ /*
+ * This is to prevent an increase of less than 1 MSS of
+ * tcp_cwnd. With partial increase, tcp_wput_data()
+ * may send out tinygrams in order to preserve mblk
+ * boundaries.
+ *
+ * By initializing tcp_cwnd_cnt to new tcp_cwnd and
+ * decrementing it by 1 MSS for every ACKs, tcp_cwnd is
+ * increased by 1 MSS for every RTTs.
+ */
+ if (tcp->tcp_cwnd_cnt <= 0) {
+ tcp->tcp_cwnd_cnt = cwnd + add;
+ } else {
+ tcp->tcp_cwnd_cnt -= add;
+ add = 0;
+ }
+ }
+ tcp->tcp_cwnd = MIN(cwnd + add, tcp->tcp_cwnd_max);
+ }
+
+ /* See if the latest urgent data has been acknowledged */
+ if ((tcp->tcp_valid_bits & TCP_URG_VALID) &&
+ SEQ_GT(seg_ack, tcp->tcp_urg))
+ tcp->tcp_valid_bits &= ~TCP_URG_VALID;
+
+ /* Can we update the RTT estimates? */
+ if (tcp->tcp_snd_ts_ok) {
+ /* Ignore zero timestamp echo-reply. */
+ if (tcpopt.tcp_opt_ts_ecr != 0) {
+ tcp_set_rto(tcp, (int32_t)LBOLT_FASTPATH -
+ (int32_t)tcpopt.tcp_opt_ts_ecr);
+ }
+
+ /* If needed, restart the timer. */
+ if (tcp->tcp_set_timer == 1) {
+ TCP_TIMER_RESTART(tcp, tcp->tcp_rto);
+ tcp->tcp_set_timer = 0;
+ }
+ /*
+ * Update tcp_csuna in case the other side stops sending
+ * us timestamps.
+ */
+ tcp->tcp_csuna = tcp->tcp_snxt;
+ } else if (SEQ_GT(seg_ack, tcp->tcp_csuna)) {
+ /*
+ * An ACK sequence we haven't seen before, so get the RTT
+ * and update the RTO. But first check if the timestamp is
+ * valid to use.
+ */
+ if ((mp1->b_next != NULL) &&
+ SEQ_GT(seg_ack, (uint32_t)(uintptr_t)(mp1->b_next)))
+ tcp_set_rto(tcp, (int32_t)LBOLT_FASTPATH -
+ (int32_t)(intptr_t)mp1->b_prev);
+ else
+ TCPS_BUMP_MIB(tcps, tcpRttNoUpdate);
+
+ /* Remeber the last sequence to be ACKed */
+ tcp->tcp_csuna = seg_ack;
+ if (tcp->tcp_set_timer == 1) {
+ TCP_TIMER_RESTART(tcp, tcp->tcp_rto);
+ tcp->tcp_set_timer = 0;
+ }
+ } else {
+ TCPS_BUMP_MIB(tcps, tcpRttNoUpdate);
+ }
+
+ /* Eat acknowledged bytes off the xmit queue. */
+ for (;;) {
+ mblk_t *mp2;
+ uchar_t *wptr;
+
+ wptr = mp1->b_wptr;
+ ASSERT((uintptr_t)(wptr - mp1->b_rptr) <= (uintptr_t)INT_MAX);
+ bytes_acked -= (int)(wptr - mp1->b_rptr);
+ if (bytes_acked < 0) {
+ mp1->b_rptr = wptr + bytes_acked;
+ /*
+ * Set a new timestamp if all the bytes timed by the
+ * old timestamp have been ack'ed.
+ */
+ if (SEQ_GT(seg_ack,
+ (uint32_t)(uintptr_t)(mp1->b_next))) {
+ mp1->b_prev =
+ (mblk_t *)(uintptr_t)LBOLT_FASTPATH;
+ mp1->b_next = NULL;
+ }
+ break;
+ }
+ mp1->b_next = NULL;
+ mp1->b_prev = NULL;
+ mp2 = mp1;
+ mp1 = mp1->b_cont;
+
+ /*
+ * This notification is required for some zero-copy
+ * clients to maintain a copy semantic. After the data
+ * is ack'ed, client is safe to modify or reuse the buffer.
+ */
+ if (tcp->tcp_snd_zcopy_aware &&
+ (mp2->b_datap->db_struioflag & STRUIO_ZCNOTIFY))
+ tcp_zcopy_notify(tcp);
+ freeb(mp2);
+ if (bytes_acked == 0) {
+ if (mp1 == NULL) {
+ /* Everything is ack'ed, clear the tail. */
+ tcp->tcp_xmit_tail = NULL;
+ /*
+ * Cancel the timer unless we are still
+ * waiting for an ACK for the FIN packet.
+ */
+ if (tcp->tcp_timer_tid != 0 &&
+ tcp->tcp_snxt == tcp->tcp_suna) {
+ (void) TCP_TIMER_CANCEL(tcp,
+ tcp->tcp_timer_tid);
+ tcp->tcp_timer_tid = 0;
+ }
+ goto pre_swnd_update;
+ }
+ if (mp2 != tcp->tcp_xmit_tail)
+ break;
+ tcp->tcp_xmit_tail = mp1;
+ ASSERT((uintptr_t)(mp1->b_wptr - mp1->b_rptr) <=
+ (uintptr_t)INT_MAX);
+ tcp->tcp_xmit_tail_unsent = (int)(mp1->b_wptr -
+ mp1->b_rptr);
+ break;
+ }
+ if (mp1 == NULL) {
+ /*
+ * More was acked but there is nothing more
+ * outstanding. This means that the FIN was
+ * just acked or that we're talking to a clown.
+ */
+fin_acked:
+ ASSERT(tcp->tcp_fin_sent);
+ tcp->tcp_xmit_tail = NULL;
+ if (tcp->tcp_fin_sent) {
+ /* FIN was acked - making progress */
+ if (!tcp->tcp_fin_acked)
+ tcp->tcp_ip_forward_progress = B_TRUE;
+ tcp->tcp_fin_acked = B_TRUE;
+ if (tcp->tcp_linger_tid != 0 &&
+ TCP_TIMER_CANCEL(tcp,
+ tcp->tcp_linger_tid) >= 0) {
+ tcp_stop_lingering(tcp);
+ freemsg(mp);
+ mp = NULL;
+ }
+ } else {
+ /*
+ * We should never get here because
+ * we have already checked that the
+ * number of bytes ack'ed should be
+ * smaller than or equal to what we
+ * have sent so far (it is the
+ * acceptability check of the ACK).
+ * We can only get here if the send
+ * queue is corrupted.
+ *
+ * Terminate the connection and
+ * panic the system. It is better
+ * for us to panic instead of
+ * continuing to avoid other disaster.
+ */
+ tcp_xmit_ctl(NULL, tcp, tcp->tcp_snxt,
+ tcp->tcp_rnxt, TH_RST|TH_ACK);
+ panic("Memory corruption "
+ "detected for connection %s.",
+ tcp_display(tcp, NULL,
+ DISP_ADDR_AND_PORT));
+ /*NOTREACHED*/
+ }
+ goto pre_swnd_update;
+ }
+ ASSERT(mp2 != tcp->tcp_xmit_tail);
+ }
+ if (tcp->tcp_unsent) {
+ flags |= TH_XMIT_NEEDED;
+ }
+pre_swnd_update:
+ tcp->tcp_xmit_head = mp1;
+swnd_update:
+ /*
+ * The following check is different from most other implementations.
+ * For bi-directional transfer, when segments are dropped, the
+ * "normal" check will not accept a window update in those
+ * retransmitted segemnts. Failing to do that, TCP may send out
+ * segments which are outside receiver's window. As TCP accepts
+ * the ack in those retransmitted segments, if the window update in
+ * the same segment is not accepted, TCP will incorrectly calculates
+ * that it can send more segments. This can create a deadlock
+ * with the receiver if its window becomes zero.
+ */
+ if (SEQ_LT(tcp->tcp_swl2, seg_ack) ||
+ SEQ_LT(tcp->tcp_swl1, seg_seq) ||
+ (tcp->tcp_swl1 == seg_seq && new_swnd > tcp->tcp_swnd)) {
+ /*
+ * The criteria for update is:
+ *
+ * 1. the segment acknowledges some data. Or
+ * 2. the segment is new, i.e. it has a higher seq num. Or
+ * 3. the segment is not old and the advertised window is
+ * larger than the previous advertised window.
+ */
+ if (tcp->tcp_unsent && new_swnd > tcp->tcp_swnd)
+ flags |= TH_XMIT_NEEDED;
+ tcp->tcp_swnd = new_swnd;
+ if (new_swnd > tcp->tcp_max_swnd)
+ tcp->tcp_max_swnd = new_swnd;
+ tcp->tcp_swl1 = seg_seq;
+ tcp->tcp_swl2 = seg_ack;
+ }
+est:
+ if (tcp->tcp_state > TCPS_ESTABLISHED) {
+
+ switch (tcp->tcp_state) {
+ case TCPS_FIN_WAIT_1:
+ if (tcp->tcp_fin_acked) {
+ tcp->tcp_state = TCPS_FIN_WAIT_2;
+ /*
+ * We implement the non-standard BSD/SunOS
+ * FIN_WAIT_2 flushing algorithm.
+ * If there is no user attached to this
+ * TCP endpoint, then this TCP struct
+ * could hang around forever in FIN_WAIT_2
+ * state if the peer forgets to send us
+ * a FIN. To prevent this, we wait only
+ * 2*MSL (a convenient time value) for
+ * the FIN to arrive. If it doesn't show up,
+ * we flush the TCP endpoint. This algorithm,
+ * though a violation of RFC-793, has worked
+ * for over 10 years in BSD systems.
+ * Note: SunOS 4.x waits 675 seconds before
+ * flushing the FIN_WAIT_2 connection.
+ */
+ TCP_TIMER_RESTART(tcp,
+ tcps->tcps_fin_wait_2_flush_interval);
+ }
+ break;
+ case TCPS_FIN_WAIT_2:
+ break; /* Shutdown hook? */
+ case TCPS_LAST_ACK:
+ freemsg(mp);
+ if (tcp->tcp_fin_acked) {
+ (void) tcp_clean_death(tcp, 0);
+ return;
+ }
+ goto xmit_check;
+ case TCPS_CLOSING:
+ if (tcp->tcp_fin_acked)
+ SET_TIME_WAIT(tcps, tcp, connp);
+ /*FALLTHRU*/
+ case TCPS_CLOSE_WAIT:
+ freemsg(mp);
+ goto xmit_check;
+ default:
+ ASSERT(tcp->tcp_state != TCPS_TIME_WAIT);
+ break;
+ }
+ }
+ if (flags & TH_FIN) {
+ /* Make sure we ack the fin */
+ flags |= TH_ACK_NEEDED;
+ if (!tcp->tcp_fin_rcvd) {
+ tcp->tcp_fin_rcvd = B_TRUE;
+ tcp->tcp_rnxt++;
+ tcpha = tcp->tcp_tcpha;
+ tcpha->tha_ack = htonl(tcp->tcp_rnxt);
+
+ /*
+ * Generate the ordrel_ind at the end unless we
+ * are an eager guy.
+ * In the eager case tcp_rsrv will do this when run
+ * after tcp_accept is done.
+ */
+ if (tcp->tcp_listener == NULL &&
+ !TCP_IS_DETACHED(tcp) && !tcp->tcp_hard_binding)
+ flags |= TH_ORDREL_NEEDED;
+ switch (tcp->tcp_state) {
+ case TCPS_SYN_RCVD:
+ case TCPS_ESTABLISHED:
+ tcp->tcp_state = TCPS_CLOSE_WAIT;
+ /* Keepalive? */
+ break;
+ case TCPS_FIN_WAIT_1:
+ if (!tcp->tcp_fin_acked) {
+ tcp->tcp_state = TCPS_CLOSING;
+ break;
+ }
+ /* FALLTHRU */
+ case TCPS_FIN_WAIT_2:
+ SET_TIME_WAIT(tcps, tcp, connp);
+ if (seg_len) {
+ /*
+ * implies data piggybacked on FIN.
+ * break to handle data.
+ */
+ break;
+ }
+ freemsg(mp);
+ goto ack_check;
+ }
+ }
+ }
+ if (mp == NULL)
+ goto xmit_check;
+ if (seg_len == 0) {
+ freemsg(mp);
+ goto xmit_check;
+ }
+ if (mp->b_rptr == mp->b_wptr) {
+ /*
+ * The header has been consumed, so we remove the
+ * zero-length mblk here.
+ */
+ mp1 = mp;
+ mp = mp->b_cont;
+ freeb(mp1);
+ }
+update_ack:
+ tcpha = tcp->tcp_tcpha;
+ tcp->tcp_rack_cnt++;
+ {
+ uint32_t cur_max;
+
+ cur_max = tcp->tcp_rack_cur_max;
+ if (tcp->tcp_rack_cnt >= cur_max) {
+ /*
+ * We have more unacked data than we should - send
+ * an ACK now.
+ */
+ flags |= TH_ACK_NEEDED;
+ cur_max++;
+ if (cur_max > tcp->tcp_rack_abs_max)
+ tcp->tcp_rack_cur_max = tcp->tcp_rack_abs_max;
+ else
+ tcp->tcp_rack_cur_max = cur_max;
+ } else if (TCP_IS_DETACHED(tcp)) {
+ /* We don't have an ACK timer for detached TCP. */
+ flags |= TH_ACK_NEEDED;
+ } else if (seg_len < mss) {
+ /*
+ * If we get a segment that is less than an mss, and we
+ * already have unacknowledged data, and the amount
+ * unacknowledged is not a multiple of mss, then we
+ * better generate an ACK now. Otherwise, this may be
+ * the tail piece of a transaction, and we would rather
+ * wait for the response.
+ */
+ uint32_t udif;
+ ASSERT((uintptr_t)(tcp->tcp_rnxt - tcp->tcp_rack) <=
+ (uintptr_t)INT_MAX);
+ udif = (int)(tcp->tcp_rnxt - tcp->tcp_rack);
+ if (udif && (udif % mss))
+ flags |= TH_ACK_NEEDED;
+ else
+ flags |= TH_ACK_TIMER_NEEDED;
+ } else {
+ /* Start delayed ack timer */
+ flags |= TH_ACK_TIMER_NEEDED;
+ }
+ }
+ tcp->tcp_rnxt += seg_len;
+ tcpha->tha_ack = htonl(tcp->tcp_rnxt);
+
+ if (mp == NULL)
+ goto xmit_check;
+
+ /* Update SACK list */
+ if (tcp->tcp_snd_sack_ok && tcp->tcp_num_sack_blk > 0) {
+ tcp_sack_remove(tcp->tcp_sack_list, tcp->tcp_rnxt,
+ &(tcp->tcp_num_sack_blk));
+ }
+
+ if (tcp->tcp_urp_mp) {
+ tcp->tcp_urp_mp->b_cont = mp;
+ mp = tcp->tcp_urp_mp;
+ tcp->tcp_urp_mp = NULL;
+ /* Ready for a new signal. */
+ tcp->tcp_urp_last_valid = B_FALSE;
+#ifdef DEBUG
+ (void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE,
+ "tcp_rput: sending exdata_ind %s",
+ tcp_display(tcp, NULL, DISP_PORT_ONLY));
+#endif /* DEBUG */
+ }
+
+ /*
+ * Check for ancillary data changes compared to last segment.
+ */
+ if (connp->conn_recv_ancillary.crb_all != 0) {
+ mp = tcp_input_add_ancillary(tcp, mp, &ipp, ira);
+ if (mp == NULL)
+ return;
+ }
+
+ if (tcp->tcp_listener != NULL || tcp->tcp_hard_binding) {
+ /*
+ * Side queue inbound data until the accept happens.
+ * tcp_accept/tcp_rput drains this when the accept happens.
+ * M_DATA is queued on b_cont. Otherwise (T_OPTDATA_IND or
+ * T_EXDATA_IND) it is queued on b_next.
+ * XXX Make urgent data use this. Requires:
+ * Removing tcp_listener check for TH_URG
+ * Making M_PCPROTO and MARK messages skip the eager case
+ */
+
+ if (tcp->tcp_kssl_pending) {
+ DTRACE_PROBE1(kssl_mblk__ksslinput_pending,
+ mblk_t *, mp);
+ tcp_kssl_input(tcp, mp, ira->ira_cred);
+ } else {
+ tcp_rcv_enqueue(tcp, mp, seg_len, ira->ira_cred);
+ }
+ } else if (IPCL_IS_NONSTR(connp)) {
+ /*
+ * Non-STREAMS socket
+ *
+ * Note that no KSSL processing is done here, because
+ * KSSL is not supported for non-STREAMS sockets.
+ */
+ boolean_t push = flags & (TH_PUSH|TH_FIN);
+ int error;
+
+ if ((*connp->conn_upcalls->su_recv)(
+ connp->conn_upper_handle,
+ mp, seg_len, 0, &error, &push) <= 0) {
+ /*
+ * We should never be in middle of a
+ * fallback, the squeue guarantees that.
+ */
+ ASSERT(error != EOPNOTSUPP);
+ if (error == ENOSPC)
+ tcp->tcp_rwnd -= seg_len;
+ } else if (push) {
+ /* PUSH bit set and sockfs is not flow controlled */
+ flags |= tcp_rwnd_reopen(tcp);
+ }
+ } else {
+ /* STREAMS socket */
+ if (mp->b_datap->db_type != M_DATA ||
+ (flags & TH_MARKNEXT_NEEDED)) {
+ if (tcp->tcp_rcv_list != NULL) {
+ flags |= tcp_rcv_drain(tcp);
+ }
+ ASSERT(tcp->tcp_rcv_list == NULL ||
+ tcp->tcp_fused_sigurg);
+
+ if (flags & TH_MARKNEXT_NEEDED) {
+#ifdef DEBUG
+ (void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE,
+ "tcp_rput: sending MSGMARKNEXT %s",
+ tcp_display(tcp, NULL,
+ DISP_PORT_ONLY));
+#endif /* DEBUG */
+ mp->b_flag |= MSGMARKNEXT;
+ flags &= ~TH_MARKNEXT_NEEDED;
+ }
+
+ /* Does this need SSL processing first? */
+ if ((tcp->tcp_kssl_ctx != NULL) &&
+ (DB_TYPE(mp) == M_DATA)) {
+ DTRACE_PROBE1(kssl_mblk__ksslinput_data1,
+ mblk_t *, mp);
+ tcp_kssl_input(tcp, mp, ira->ira_cred);
+ } else {
+ if (is_system_labeled())
+ tcp_setcred_data(mp, ira);
+
+ putnext(connp->conn_rq, mp);
+ if (!canputnext(connp->conn_rq))
+ tcp->tcp_rwnd -= seg_len;
+ }
+ } else if ((tcp->tcp_kssl_ctx != NULL) &&
+ (DB_TYPE(mp) == M_DATA)) {
+ /* Does this need SSL processing first? */
+ DTRACE_PROBE1(kssl_mblk__ksslinput_data2, mblk_t *, mp);
+ tcp_kssl_input(tcp, mp, ira->ira_cred);
+ } else if ((flags & (TH_PUSH|TH_FIN)) ||
+ tcp->tcp_rcv_cnt + seg_len >= connp->conn_rcvbuf >> 3) {
+ if (tcp->tcp_rcv_list != NULL) {
+ /*
+ * Enqueue the new segment first and then
+ * call tcp_rcv_drain() to send all data
+ * up. The other way to do this is to
+ * send all queued data up and then call
+ * putnext() to send the new segment up.
+ * This way can remove the else part later
+ * on.
+ *
+ * We don't do this to avoid one more call to
+ * canputnext() as tcp_rcv_drain() needs to
+ * call canputnext().
+ */
+ tcp_rcv_enqueue(tcp, mp, seg_len,
+ ira->ira_cred);
+ flags |= tcp_rcv_drain(tcp);
+ } else {
+ if (is_system_labeled())
+ tcp_setcred_data(mp, ira);
+
+ putnext(connp->conn_rq, mp);
+ if (!canputnext(connp->conn_rq))
+ tcp->tcp_rwnd -= seg_len;
+ }
+ } else {
+ /*
+ * Enqueue all packets when processing an mblk
+ * from the co queue and also enqueue normal packets.
+ */
+ tcp_rcv_enqueue(tcp, mp, seg_len, ira->ira_cred);
+ }
+ /*
+ * Make sure the timer is running if we have data waiting
+ * for a push bit. This provides resiliency against
+ * implementations that do not correctly generate push bits.
+ */
+ if (tcp->tcp_rcv_list != NULL && tcp->tcp_push_tid == 0) {
+ /*
+ * The connection may be closed at this point, so don't
+ * do anything for a detached tcp.
+ */
+ if (!TCP_IS_DETACHED(tcp))
+ tcp->tcp_push_tid = TCP_TIMER(tcp,
+ tcp_push_timer,
+ MSEC_TO_TICK(
+ tcps->tcps_push_timer_interval));
+ }
+ }
+
+xmit_check:
+ /* Is there anything left to do? */
+ ASSERT(!(flags & TH_MARKNEXT_NEEDED));
+ if ((flags & (TH_REXMIT_NEEDED|TH_XMIT_NEEDED|TH_ACK_NEEDED|
+ TH_NEED_SACK_REXMIT|TH_LIMIT_XMIT|TH_ACK_TIMER_NEEDED|
+ TH_ORDREL_NEEDED|TH_SEND_URP_MARK)) == 0)
+ goto done;
+
+ /* Any transmit work to do and a non-zero window? */
+ if ((flags & (TH_REXMIT_NEEDED|TH_XMIT_NEEDED|TH_NEED_SACK_REXMIT|
+ TH_LIMIT_XMIT)) && tcp->tcp_swnd != 0) {
+ if (flags & TH_REXMIT_NEEDED) {
+ uint32_t snd_size = tcp->tcp_snxt - tcp->tcp_suna;
+
+ TCPS_BUMP_MIB(tcps, tcpOutFastRetrans);
+ if (snd_size > mss)
+ snd_size = mss;
+ if (snd_size > tcp->tcp_swnd)
+ snd_size = tcp->tcp_swnd;
+ mp1 = tcp_xmit_mp(tcp, tcp->tcp_xmit_head, snd_size,
+ NULL, NULL, tcp->tcp_suna, B_TRUE, &snd_size,
+ B_TRUE);
+
+ if (mp1 != NULL) {
+ tcp->tcp_xmit_head->b_prev =
+ (mblk_t *)LBOLT_FASTPATH;
+ tcp->tcp_csuna = tcp->tcp_snxt;
+ TCPS_BUMP_MIB(tcps, tcpRetransSegs);
+ TCPS_UPDATE_MIB(tcps, tcpRetransBytes,
+ snd_size);
+ tcp_send_data(tcp, mp1);
+ }
+ }
+ if (flags & TH_NEED_SACK_REXMIT) {
+ tcp_sack_rexmit(tcp, &flags);
+ }
+ /*
+ * For TH_LIMIT_XMIT, tcp_wput_data() is called to send
+ * out new segment. Note that tcp_rexmit should not be
+ * set, otherwise TH_LIMIT_XMIT should not be set.
+ */
+ if (flags & (TH_XMIT_NEEDED|TH_LIMIT_XMIT)) {
+ if (!tcp->tcp_rexmit) {
+ tcp_wput_data(tcp, NULL, B_FALSE);
+ } else {
+ tcp_ss_rexmit(tcp);
+ }
+ }
+ /*
+ * Adjust tcp_cwnd back to normal value after sending
+ * new data segments.
+ */
+ if (flags & TH_LIMIT_XMIT) {
+ tcp->tcp_cwnd -= mss << (tcp->tcp_dupack_cnt - 1);
+ /*
+ * This will restart the timer. Restarting the
+ * timer is used to avoid a timeout before the
+ * limited transmitted segment's ACK gets back.
+ */
+ if (tcp->tcp_xmit_head != NULL)
+ tcp->tcp_xmit_head->b_prev =
+ (mblk_t *)LBOLT_FASTPATH;
+ }
+
+ /* Anything more to do? */
+ if ((flags & (TH_ACK_NEEDED|TH_ACK_TIMER_NEEDED|
+ TH_ORDREL_NEEDED|TH_SEND_URP_MARK)) == 0)
+ goto done;
+ }
+ack_check:
+ if (flags & TH_SEND_URP_MARK) {
+ ASSERT(tcp->tcp_urp_mark_mp);
+ ASSERT(!IPCL_IS_NONSTR(connp));
+ /*
+ * Send up any queued data and then send the mark message
+ */
+ if (tcp->tcp_rcv_list != NULL) {
+ flags |= tcp_rcv_drain(tcp);
+
+ }
+ ASSERT(tcp->tcp_rcv_list == NULL || tcp->tcp_fused_sigurg);
+ mp1 = tcp->tcp_urp_mark_mp;
+ tcp->tcp_urp_mark_mp = NULL;
+ if (is_system_labeled())
+ tcp_setcred_data(mp1, ira);
+
+ putnext(connp->conn_rq, mp1);
+#ifdef DEBUG
+ (void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE,
+ "tcp_rput: sending zero-length %s %s",
+ ((mp1->b_flag & MSGMARKNEXT) ? "MSGMARKNEXT" :
+ "MSGNOTMARKNEXT"),
+ tcp_display(tcp, NULL, DISP_PORT_ONLY));
+#endif /* DEBUG */
+ flags &= ~TH_SEND_URP_MARK;
+ }
+ if (flags & TH_ACK_NEEDED) {
+ /*
+ * Time to send an ack for some reason.
+ */
+ mp1 = tcp_ack_mp(tcp);
+
+ if (mp1 != NULL) {
+ tcp_send_data(tcp, mp1);
+ BUMP_LOCAL(tcp->tcp_obsegs);
+ TCPS_BUMP_MIB(tcps, tcpOutAck);
+ }
+ if (tcp->tcp_ack_tid != 0) {
+ (void) TCP_TIMER_CANCEL(tcp, tcp->tcp_ack_tid);
+ tcp->tcp_ack_tid = 0;
+ }
+ }
+ if (flags & TH_ACK_TIMER_NEEDED) {
+ /*
+ * Arrange for deferred ACK or push wait timeout.
+ * Start timer if it is not already running.
+ */
+ if (tcp->tcp_ack_tid == 0) {
+ tcp->tcp_ack_tid = TCP_TIMER(tcp, tcp_ack_timer,
+ MSEC_TO_TICK(tcp->tcp_localnet ?
+ (clock_t)tcps->tcps_local_dack_interval :
+ (clock_t)tcps->tcps_deferred_ack_interval));
+ }
+ }
+ if (flags & TH_ORDREL_NEEDED) {
+ /*
+ * Send up the ordrel_ind unless we are an eager guy.
+ * In the eager case tcp_rsrv will do this when run
+ * after tcp_accept is done.
+ */
+ ASSERT(tcp->tcp_listener == NULL);
+ ASSERT(!tcp->tcp_detached);
+
+ if (IPCL_IS_NONSTR(connp)) {
+ ASSERT(tcp->tcp_ordrel_mp == NULL);
+ tcp->tcp_ordrel_done = B_TRUE;
+ (*connp->conn_upcalls->su_opctl)
+ (connp->conn_upper_handle, SOCK_OPCTL_SHUT_RECV, 0);
+ goto done;
+ }
+
+ if (tcp->tcp_rcv_list != NULL) {
+ /*
+ * Push any mblk(s) enqueued from co processing.
+ */
+ flags |= tcp_rcv_drain(tcp);
+ }
+ ASSERT(tcp->tcp_rcv_list == NULL || tcp->tcp_fused_sigurg);
+
+ mp1 = tcp->tcp_ordrel_mp;
+ tcp->tcp_ordrel_mp = NULL;
+ tcp->tcp_ordrel_done = B_TRUE;
+ putnext(connp->conn_rq, mp1);
+ }
+done:
+ ASSERT(!(flags & TH_MARKNEXT_NEEDED));
+}
+
+/*
+ * Attach ancillary data to a received TCP segments for the
+ * ancillary pieces requested by the application that are
+ * different than they were in the previous data segment.
+ *
+ * Save the "current" values once memory allocation is ok so that
+ * when memory allocation fails we can just wait for the next data segment.
+ */
+static mblk_t *
+tcp_input_add_ancillary(tcp_t *tcp, mblk_t *mp, ip_pkt_t *ipp,
+ ip_recv_attr_t *ira)
+{
+ struct T_optdata_ind *todi;
+ int optlen;
+ uchar_t *optptr;
+ struct T_opthdr *toh;
+ crb_t addflag; /* Which pieces to add */
+ mblk_t *mp1;
+ conn_t *connp = tcp->tcp_connp;
+
+ optlen = 0;
+ addflag.crb_all = 0;
+ /* If app asked for pktinfo and the index has changed ... */
+ if (connp->conn_recv_ancillary.crb_ip_recvpktinfo &&
+ ira->ira_ruifindex != tcp->tcp_recvifindex) {
+ optlen += sizeof (struct T_opthdr) +
+ sizeof (struct in6_pktinfo);
+ addflag.crb_ip_recvpktinfo = 1;
+ }
+ /* If app asked for hoplimit and it has changed ... */
+ if (connp->conn_recv_ancillary.crb_ipv6_recvhoplimit &&
+ ipp->ipp_hoplimit != tcp->tcp_recvhops) {
+ optlen += sizeof (struct T_opthdr) + sizeof (uint_t);
+ addflag.crb_ipv6_recvhoplimit = 1;
+ }
+ /* If app asked for tclass and it has changed ... */
+ if (connp->conn_recv_ancillary.crb_ipv6_recvtclass &&
+ ipp->ipp_tclass != tcp->tcp_recvtclass) {
+ optlen += sizeof (struct T_opthdr) + sizeof (uint_t);
+ addflag.crb_ipv6_recvtclass = 1;
+ }
+ /*
+ * If app asked for hopbyhop headers and it has changed ...
+ * For security labels, note that (1) security labels can't change on
+ * a connected socket at all, (2) we're connected to at most one peer,
+ * (3) if anything changes, then it must be some other extra option.
+ */
+ if (connp->conn_recv_ancillary.crb_ipv6_recvhopopts &&
+ ip_cmpbuf(tcp->tcp_hopopts, tcp->tcp_hopoptslen,
+ (ipp->ipp_fields & IPPF_HOPOPTS),
+ ipp->ipp_hopopts, ipp->ipp_hopoptslen)) {
+ optlen += sizeof (struct T_opthdr) + ipp->ipp_hopoptslen;
+ addflag.crb_ipv6_recvhopopts = 1;
+ if (!ip_allocbuf((void **)&tcp->tcp_hopopts,
+ &tcp->tcp_hopoptslen, (ipp->ipp_fields & IPPF_HOPOPTS),
+ ipp->ipp_hopopts, ipp->ipp_hopoptslen))
+ return (mp);
+ }
+ /* If app asked for dst headers before routing headers ... */
+ if (connp->conn_recv_ancillary.crb_ipv6_recvrthdrdstopts &&
+ ip_cmpbuf(tcp->tcp_rthdrdstopts, tcp->tcp_rthdrdstoptslen,
+ (ipp->ipp_fields & IPPF_RTHDRDSTOPTS),
+ ipp->ipp_rthdrdstopts, ipp->ipp_rthdrdstoptslen)) {
+ optlen += sizeof (struct T_opthdr) +
+ ipp->ipp_rthdrdstoptslen;
+ addflag.crb_ipv6_recvrthdrdstopts = 1;
+ if (!ip_allocbuf((void **)&tcp->tcp_rthdrdstopts,
+ &tcp->tcp_rthdrdstoptslen,
+ (ipp->ipp_fields & IPPF_RTHDRDSTOPTS),
+ ipp->ipp_rthdrdstopts, ipp->ipp_rthdrdstoptslen))
+ return (mp);
+ }
+ /* If app asked for routing headers and it has changed ... */
+ if (connp->conn_recv_ancillary.crb_ipv6_recvrthdr &&
+ ip_cmpbuf(tcp->tcp_rthdr, tcp->tcp_rthdrlen,
+ (ipp->ipp_fields & IPPF_RTHDR),
+ ipp->ipp_rthdr, ipp->ipp_rthdrlen)) {
+ optlen += sizeof (struct T_opthdr) + ipp->ipp_rthdrlen;
+ addflag.crb_ipv6_recvrthdr = 1;
+ if (!ip_allocbuf((void **)&tcp->tcp_rthdr,
+ &tcp->tcp_rthdrlen, (ipp->ipp_fields & IPPF_RTHDR),
+ ipp->ipp_rthdr, ipp->ipp_rthdrlen))
+ return (mp);
+ }
+ /* If app asked for dest headers and it has changed ... */
+ if ((connp->conn_recv_ancillary.crb_ipv6_recvdstopts ||
+ connp->conn_recv_ancillary.crb_old_ipv6_recvdstopts) &&
+ ip_cmpbuf(tcp->tcp_dstopts, tcp->tcp_dstoptslen,
+ (ipp->ipp_fields & IPPF_DSTOPTS),
+ ipp->ipp_dstopts, ipp->ipp_dstoptslen)) {
+ optlen += sizeof (struct T_opthdr) + ipp->ipp_dstoptslen;
+ addflag.crb_ipv6_recvdstopts = 1;
+ if (!ip_allocbuf((void **)&tcp->tcp_dstopts,
+ &tcp->tcp_dstoptslen, (ipp->ipp_fields & IPPF_DSTOPTS),
+ ipp->ipp_dstopts, ipp->ipp_dstoptslen))
+ return (mp);
+ }
+
+ if (optlen == 0) {
+ /* Nothing to add */
+ return (mp);
+ }
+ mp1 = allocb(sizeof (struct T_optdata_ind) + optlen, BPRI_MED);
+ if (mp1 == NULL) {
+ /*
+ * Defer sending ancillary data until the next TCP segment
+ * arrives.
+ */
+ return (mp);
+ }
+ mp1->b_cont = mp;
+ mp = mp1;
+ mp->b_wptr += sizeof (*todi) + optlen;
+ mp->b_datap->db_type = M_PROTO;
+ todi = (struct T_optdata_ind *)mp->b_rptr;
+ todi->PRIM_type = T_OPTDATA_IND;
+ todi->DATA_flag = 1; /* MORE data */
+ todi->OPT_length = optlen;
+ todi->OPT_offset = sizeof (*todi);
+ optptr = (uchar_t *)&todi[1];
+ /*
+ * If app asked for pktinfo and the index has changed ...
+ * Note that the local address never changes for the connection.
+ */
+ if (addflag.crb_ip_recvpktinfo) {
+ struct in6_pktinfo *pkti;
+ uint_t ifindex;
+
+ ifindex = ira->ira_ruifindex;
+ toh = (struct T_opthdr *)optptr;
+ toh->level = IPPROTO_IPV6;
+ toh->name = IPV6_PKTINFO;
+ toh->len = sizeof (*toh) + sizeof (*pkti);
+ toh->status = 0;
+ optptr += sizeof (*toh);
+ pkti = (struct in6_pktinfo *)optptr;
+ pkti->ipi6_addr = connp->conn_laddr_v6;
+ pkti->ipi6_ifindex = ifindex;
+ optptr += sizeof (*pkti);
+ ASSERT(OK_32PTR(optptr));
+ /* Save as "last" value */
+ tcp->tcp_recvifindex = ifindex;
+ }
+ /* If app asked for hoplimit and it has changed ... */
+ if (addflag.crb_ipv6_recvhoplimit) {
+ toh = (struct T_opthdr *)optptr;
+ toh->level = IPPROTO_IPV6;
+ toh->name = IPV6_HOPLIMIT;
+ toh->len = sizeof (*toh) + sizeof (uint_t);
+ toh->status = 0;
+ optptr += sizeof (*toh);
+ *(uint_t *)optptr = ipp->ipp_hoplimit;
+ optptr += sizeof (uint_t);
+ ASSERT(OK_32PTR(optptr));
+ /* Save as "last" value */
+ tcp->tcp_recvhops = ipp->ipp_hoplimit;
+ }
+ /* If app asked for tclass and it has changed ... */
+ if (addflag.crb_ipv6_recvtclass) {
+ toh = (struct T_opthdr *)optptr;
+ toh->level = IPPROTO_IPV6;
+ toh->name = IPV6_TCLASS;
+ toh->len = sizeof (*toh) + sizeof (uint_t);
+ toh->status = 0;
+ optptr += sizeof (*toh);
+ *(uint_t *)optptr = ipp->ipp_tclass;
+ optptr += sizeof (uint_t);
+ ASSERT(OK_32PTR(optptr));
+ /* Save as "last" value */
+ tcp->tcp_recvtclass = ipp->ipp_tclass;
+ }
+ if (addflag.crb_ipv6_recvhopopts) {
+ toh = (struct T_opthdr *)optptr;
+ toh->level = IPPROTO_IPV6;
+ toh->name = IPV6_HOPOPTS;
+ toh->len = sizeof (*toh) + ipp->ipp_hopoptslen;
+ toh->status = 0;
+ optptr += sizeof (*toh);
+ bcopy((uchar_t *)ipp->ipp_hopopts, optptr, ipp->ipp_hopoptslen);
+ optptr += ipp->ipp_hopoptslen;
+ ASSERT(OK_32PTR(optptr));
+ /* Save as last value */
+ ip_savebuf((void **)&tcp->tcp_hopopts, &tcp->tcp_hopoptslen,
+ (ipp->ipp_fields & IPPF_HOPOPTS),
+ ipp->ipp_hopopts, ipp->ipp_hopoptslen);
+ }
+ if (addflag.crb_ipv6_recvrthdrdstopts) {
+ toh = (struct T_opthdr *)optptr;
+ toh->level = IPPROTO_IPV6;
+ toh->name = IPV6_RTHDRDSTOPTS;
+ toh->len = sizeof (*toh) + ipp->ipp_rthdrdstoptslen;
+ toh->status = 0;
+ optptr += sizeof (*toh);
+ bcopy(ipp->ipp_rthdrdstopts, optptr, ipp->ipp_rthdrdstoptslen);
+ optptr += ipp->ipp_rthdrdstoptslen;
+ ASSERT(OK_32PTR(optptr));
+ /* Save as last value */
+ ip_savebuf((void **)&tcp->tcp_rthdrdstopts,
+ &tcp->tcp_rthdrdstoptslen,
+ (ipp->ipp_fields & IPPF_RTHDRDSTOPTS),
+ ipp->ipp_rthdrdstopts, ipp->ipp_rthdrdstoptslen);
+ }
+ if (addflag.crb_ipv6_recvrthdr) {
+ toh = (struct T_opthdr *)optptr;
+ toh->level = IPPROTO_IPV6;
+ toh->name = IPV6_RTHDR;
+ toh->len = sizeof (*toh) + ipp->ipp_rthdrlen;
+ toh->status = 0;
+ optptr += sizeof (*toh);
+ bcopy(ipp->ipp_rthdr, optptr, ipp->ipp_rthdrlen);
+ optptr += ipp->ipp_rthdrlen;
+ ASSERT(OK_32PTR(optptr));
+ /* Save as last value */
+ ip_savebuf((void **)&tcp->tcp_rthdr, &tcp->tcp_rthdrlen,
+ (ipp->ipp_fields & IPPF_RTHDR),
+ ipp->ipp_rthdr, ipp->ipp_rthdrlen);
+ }
+ if (addflag.crb_ipv6_recvdstopts) {
+ toh = (struct T_opthdr *)optptr;
+ toh->level = IPPROTO_IPV6;
+ toh->name = IPV6_DSTOPTS;
+ toh->len = sizeof (*toh) + ipp->ipp_dstoptslen;
+ toh->status = 0;
+ optptr += sizeof (*toh);
+ bcopy(ipp->ipp_dstopts, optptr, ipp->ipp_dstoptslen);
+ optptr += ipp->ipp_dstoptslen;
+ ASSERT(OK_32PTR(optptr));
+ /* Save as last value */
+ ip_savebuf((void **)&tcp->tcp_dstopts, &tcp->tcp_dstoptslen,
+ (ipp->ipp_fields & IPPF_DSTOPTS),
+ ipp->ipp_dstopts, ipp->ipp_dstoptslen);
+ }
+ ASSERT(optptr == mp->b_wptr);
+ return (mp);
+}
+
+/* The minimum of smoothed mean deviation in RTO calculation. */
+#define TCP_SD_MIN 400
+
+/*
+ * Set RTO for this connection. The formula is from Jacobson and Karels'
+ * "Congestion Avoidance and Control" in SIGCOMM '88. The variable names
+ * are the same as those in Appendix A.2 of that paper.
+ *
+ * m = new measurement
+ * sa = smoothed RTT average (8 * average estimates).
+ * sv = smoothed mean deviation (mdev) of RTT (4 * deviation estimates).
+ */
+static void
+tcp_set_rto(tcp_t *tcp, clock_t rtt)
+{
+ long m = TICK_TO_MSEC(rtt);
+ clock_t sa = tcp->tcp_rtt_sa;
+ clock_t sv = tcp->tcp_rtt_sd;
+ clock_t rto;
+ tcp_stack_t *tcps = tcp->tcp_tcps;
+
+ TCPS_BUMP_MIB(tcps, tcpRttUpdate);
+ tcp->tcp_rtt_update++;
+
+ /* tcp_rtt_sa is not 0 means this is a new sample. */
+ if (sa != 0) {
+ /*
+ * Update average estimator:
+ * new rtt = 7/8 old rtt + 1/8 Error
+ */
+
+ /* m is now Error in estimate. */
+ m -= sa >> 3;
+ if ((sa += m) <= 0) {
+ /*
+ * Don't allow the smoothed average to be negative.
+ * We use 0 to denote reinitialization of the
+ * variables.
+ */
+ sa = 1;
+ }
+
+ /*
+ * Update deviation estimator:
+ * new mdev = 3/4 old mdev + 1/4 (abs(Error) - old mdev)
+ */
+ if (m < 0)
+ m = -m;
+ m -= sv >> 2;
+ sv += m;
+ } else {
+ /*
+ * This follows BSD's implementation. So the reinitialized
+ * RTO is 3 * m. We cannot go less than 2 because if the
+ * link is bandwidth dominated, doubling the window size
+ * during slow start means doubling the RTT. We want to be
+ * more conservative when we reinitialize our estimates. 3
+ * is just a convenient number.
+ */
+ sa = m << 3;
+ sv = m << 1;
+ }
+ if (sv < TCP_SD_MIN) {
+ /*
+ * We do not know that if sa captures the delay ACK
+ * effect as in a long train of segments, a receiver
+ * does not delay its ACKs. So set the minimum of sv
+ * to be TCP_SD_MIN, which is default to 400 ms, twice
+ * of BSD DATO. That means the minimum of mean
+ * deviation is 100 ms.
+ *
+ */
+ sv = TCP_SD_MIN;
+ }
+ tcp->tcp_rtt_sa = sa;
+ tcp->tcp_rtt_sd = sv;
+ /*
+ * RTO = average estimates (sa / 8) + 4 * deviation estimates (sv)
+ *
+ * Add tcp_rexmit_interval extra in case of extreme environment
+ * where the algorithm fails to work. The default value of
+ * tcp_rexmit_interval_extra should be 0.
+ *
+ * As we use a finer grained clock than BSD and update
+ * RTO for every ACKs, add in another .25 of RTT to the
+ * deviation of RTO to accomodate burstiness of 1/4 of
+ * window size.
+ */
+ rto = (sa >> 3) + sv + tcps->tcps_rexmit_interval_extra + (sa >> 5);
+
+ if (rto > tcps->tcps_rexmit_interval_max) {
+ tcp->tcp_rto = tcps->tcps_rexmit_interval_max;
+ } else if (rto < tcps->tcps_rexmit_interval_min) {
+ tcp->tcp_rto = tcps->tcps_rexmit_interval_min;
+ } else {
+ tcp->tcp_rto = rto;
+ }
+
+ /* Now, we can reset tcp_timer_backoff to use the new RTO... */
+ tcp->tcp_timer_backoff = 0;
+}
+
+/*
+ * On a labeled system we have some protocols above TCP, such as RPC, which
+ * appear to assume that every mblk in a chain has a db_credp.
+ */
+static void
+tcp_setcred_data(mblk_t *mp, ip_recv_attr_t *ira)
+{
+ ASSERT(is_system_labeled());
+ ASSERT(ira->ira_cred != NULL);
+
+ while (mp != NULL) {
+ mblk_setcred(mp, ira->ira_cred, NOPID);
+ mp = mp->b_cont;
+ }
+}
+
+uint_t
+tcp_rwnd_reopen(tcp_t *tcp)
+{
+ uint_t ret = 0;
+ uint_t thwin;
+ conn_t *connp = tcp->tcp_connp;
+
+ /* Learn the latest rwnd information that we sent to the other side. */
+ thwin = ((uint_t)ntohs(tcp->tcp_tcpha->tha_win))
+ << tcp->tcp_rcv_ws;
+ /* This is peer's calculated send window (our receive window). */
+ thwin -= tcp->tcp_rnxt - tcp->tcp_rack;
+ /*
+ * Increase the receive window to max. But we need to do receiver
+ * SWS avoidance. This means that we need to check the increase of
+ * of receive window is at least 1 MSS.
+ */
+ if (connp->conn_rcvbuf - thwin >= tcp->tcp_mss) {
+ /*
+ * If the window that the other side knows is less than max
+ * deferred acks segments, send an update immediately.
+ */
+ if (thwin < tcp->tcp_rack_cur_max * tcp->tcp_mss) {
+ TCPS_BUMP_MIB(tcp->tcp_tcps, tcpOutWinUpdate);
+ ret = TH_ACK_NEEDED;
+ }
+ tcp->tcp_rwnd = connp->conn_rcvbuf;
+ }
+ return (ret);
+}
+
+/*
+ * Handle a packet that has been reclassified by TCP.
+ * This function drops the ref on connp that the caller had.
+ */
+void
+tcp_reinput(conn_t *connp, mblk_t *mp, ip_recv_attr_t *ira, ip_stack_t *ipst)
+{
+ ipsec_stack_t *ipss = ipst->ips_netstack->netstack_ipsec;
+
+ if (connp->conn_incoming_ifindex != 0 &&
+ connp->conn_incoming_ifindex != ira->ira_ruifindex) {
+ freemsg(mp);
+ CONN_DEC_REF(connp);
+ return;
+ }
+
+ if (CONN_INBOUND_POLICY_PRESENT_V6(connp, ipss) ||
+ (ira->ira_flags & IRAF_IPSEC_SECURE)) {
+ ip6_t *ip6h;
+ ipha_t *ipha;
+
+ if (ira->ira_flags & IRAF_IS_IPV4) {
+ ipha = (ipha_t *)mp->b_rptr;
+ ip6h = NULL;
+ } else {
+ ipha = NULL;
+ ip6h = (ip6_t *)mp->b_rptr;
+ }
+ mp = ipsec_check_inbound_policy(mp, connp, ipha, ip6h, ira);
+ if (mp == NULL) {
+ BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsInDiscards);
+ /* Note that mp is NULL */
+ ip_drop_input("ipIfStatsInDiscards", mp, NULL);
+ CONN_DEC_REF(connp);
+ return;
+ }
+ }
+
+ if (IPCL_IS_TCP(connp)) {
+ /*
+ * do not drain, certain use cases can blow
+ * the stack
+ */
+ SQUEUE_ENTER_ONE(connp->conn_sqp, mp,
+ connp->conn_recv, connp, ira,
+ SQ_NODRAIN, SQTAG_IP_TCP_INPUT);
+ } else {
+ /* Not TCP; must be SOCK_RAW, IPPROTO_TCP */
+ (connp->conn_recv)(connp, mp, NULL,
+ ira);
+ CONN_DEC_REF(connp);
+ }
+
+}
+
+/* ARGSUSED */
+static void
+tcp_rsrv_input(void *arg, mblk_t *mp, void *arg2, ip_recv_attr_t *dummy)
+{
+ conn_t *connp = (conn_t *)arg;
+ tcp_t *tcp = connp->conn_tcp;
+ queue_t *q = connp->conn_rq;
+
+ ASSERT(!IPCL_IS_NONSTR(connp));
+ mutex_enter(&tcp->tcp_rsrv_mp_lock);
+ tcp->tcp_rsrv_mp = mp;
+ mutex_exit(&tcp->tcp_rsrv_mp_lock);
+
+ if (TCP_IS_DETACHED(tcp) || q == NULL) {
+ return;
+ }
+
+ if (tcp->tcp_fused) {
+ tcp_fuse_backenable(tcp);
+ return;
+ }
+
+ if (canputnext(q)) {
+ /* Not flow-controlled, open rwnd */
+ tcp->tcp_rwnd = connp->conn_rcvbuf;
+
+ /*
+ * Send back a window update immediately if TCP is above
+ * ESTABLISHED state and the increase of the rcv window
+ * that the other side knows is at least 1 MSS after flow
+ * control is lifted.
+ */
+ if (tcp->tcp_state >= TCPS_ESTABLISHED &&
+ tcp_rwnd_reopen(tcp) == TH_ACK_NEEDED) {
+ tcp_xmit_ctl(NULL, tcp,
+ (tcp->tcp_swnd == 0) ? tcp->tcp_suna :
+ tcp->tcp_snxt, tcp->tcp_rnxt, TH_ACK);
+ }
+ }
+}
+
+/*
+ * The read side service routine is called mostly when we get back-enabled as a
+ * result of flow control relief. Since we don't actually queue anything in
+ * TCP, we have no data to send out of here. What we do is clear the receive
+ * window, and send out a window update.
+ */
+void
+tcp_rsrv(queue_t *q)
+{
+ conn_t *connp = Q_TO_CONN(q);
+ tcp_t *tcp = connp->conn_tcp;
+ mblk_t *mp;
+
+ /* No code does a putq on the read side */
+ ASSERT(q->q_first == NULL);
+
+ /*
+ * If tcp->tcp_rsrv_mp == NULL, it means that tcp_rsrv() has already
+ * been run. So just return.
+ */
+ mutex_enter(&tcp->tcp_rsrv_mp_lock);
+ if ((mp = tcp->tcp_rsrv_mp) == NULL) {
+ mutex_exit(&tcp->tcp_rsrv_mp_lock);
+ return;
+ }
+ tcp->tcp_rsrv_mp = NULL;
+ mutex_exit(&tcp->tcp_rsrv_mp_lock);
+
+ CONN_INC_REF(connp);
+ SQUEUE_ENTER_ONE(connp->conn_sqp, mp, tcp_rsrv_input, connp,
+ NULL, SQ_PROCESS, SQTAG_TCP_RSRV);
+}
+
+/* At minimum we need 8 bytes in the TCP header for the lookup */
+#define ICMP_MIN_TCP_HDR 8
+
+/*
+ * tcp_icmp_input is called as conn_recvicmp to process ICMP error messages
+ * passed up by IP. The message is always received on the correct tcp_t.
+ * Assumes that IP has pulled up everything up to and including the ICMP header.
+ */
+/* ARGSUSED2 */
+void
+tcp_icmp_input(void *arg1, mblk_t *mp, void *arg2, ip_recv_attr_t *ira)
+{
+ conn_t *connp = (conn_t *)arg1;
+ icmph_t *icmph;
+ ipha_t *ipha;
+ int iph_hdr_length;
+ tcpha_t *tcpha;
+ uint32_t seg_seq;
+ tcp_t *tcp = connp->conn_tcp;
+
+ /* Assume IP provides aligned packets */
+ ASSERT(OK_32PTR(mp->b_rptr));
+ ASSERT((MBLKL(mp) >= sizeof (ipha_t)));
+
+ /*
+ * Verify IP version. Anything other than IPv4 or IPv6 packet is sent
+ * upstream. ICMPv6 is handled in tcp_icmp_error_ipv6.
+ */
+ if (!(ira->ira_flags & IRAF_IS_IPV4)) {
+ tcp_icmp_error_ipv6(tcp, mp, ira);
+ return;
+ }
+
+ /* Skip past the outer IP and ICMP headers */
+ iph_hdr_length = ira->ira_ip_hdr_length;
+ icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length];
+ /*
+ * If we don't have the correct outer IP header length
+ * or if we don't have a complete inner IP header
+ * drop it.
+ */
+ if (iph_hdr_length < sizeof (ipha_t) ||
+ (ipha_t *)&icmph[1] + 1 > (ipha_t *)mp->b_wptr) {
+noticmpv4:
+ freemsg(mp);
+ return;
+ }
+ ipha = (ipha_t *)&icmph[1];
+
+ /* Skip past the inner IP and find the ULP header */
+ iph_hdr_length = IPH_HDR_LENGTH(ipha);
+ tcpha = (tcpha_t *)((char *)ipha + iph_hdr_length);
+ /*
+ * If we don't have the correct inner IP header length or if the ULP
+ * is not IPPROTO_TCP or if we don't have at least ICMP_MIN_TCP_HDR
+ * bytes of TCP header, drop it.
+ */
+ if (iph_hdr_length < sizeof (ipha_t) ||
+ ipha->ipha_protocol != IPPROTO_TCP ||
+ (uchar_t *)tcpha + ICMP_MIN_TCP_HDR > mp->b_wptr) {
+ goto noticmpv4;
+ }
+
+ seg_seq = ntohl(tcpha->tha_seq);
+ switch (icmph->icmph_type) {
+ case ICMP_DEST_UNREACHABLE:
+ switch (icmph->icmph_code) {
+ case ICMP_FRAGMENTATION_NEEDED:
+ /*
+ * Update Path MTU, then try to send something out.
+ */
+ tcp_update_pmtu(tcp, B_TRUE);
+ tcp_rexmit_after_error(tcp);
+ break;
+ case ICMP_PORT_UNREACHABLE:
+ case ICMP_PROTOCOL_UNREACHABLE:
+ switch (tcp->tcp_state) {
+ case TCPS_SYN_SENT:
+ case TCPS_SYN_RCVD:
+ /*
+ * ICMP can snipe away incipient
+ * TCP connections as long as
+ * seq number is same as initial
+ * send seq number.
+ */
+ if (seg_seq == tcp->tcp_iss) {
+ (void) tcp_clean_death(tcp,
+ ECONNREFUSED);
+ }
+ break;
+ }
+ break;
+ case ICMP_HOST_UNREACHABLE:
+ case ICMP_NET_UNREACHABLE:
+ /* Record the error in case we finally time out. */
+ if (icmph->icmph_code == ICMP_HOST_UNREACHABLE)
+ tcp->tcp_client_errno = EHOSTUNREACH;
+ else
+ tcp->tcp_client_errno = ENETUNREACH;
+ if (tcp->tcp_state == TCPS_SYN_RCVD) {
+ if (tcp->tcp_listener != NULL &&
+ tcp->tcp_listener->tcp_syn_defense) {
+ /*
+ * Ditch the half-open connection if we
+ * suspect a SYN attack is under way.
+ */
+ (void) tcp_clean_death(tcp,
+ tcp->tcp_client_errno);
+ }
+ }
+ break;
+ default:
+ break;
+ }
+ break;
+ case ICMP_SOURCE_QUENCH: {
+ /*
+ * use a global boolean to control
+ * whether TCP should respond to ICMP_SOURCE_QUENCH.
+ * The default is false.
+ */
+ if (tcp_icmp_source_quench) {
+ /*
+ * Reduce the sending rate as if we got a
+ * retransmit timeout
+ */
+ uint32_t npkt;
+
+ npkt = ((tcp->tcp_snxt - tcp->tcp_suna) >> 1) /
+ tcp->tcp_mss;
+ tcp->tcp_cwnd_ssthresh = MAX(npkt, 2) * tcp->tcp_mss;
+ tcp->tcp_cwnd = tcp->tcp_mss;
+ tcp->tcp_cwnd_cnt = 0;
+ }
+ break;
+ }
+ }
+ freemsg(mp);
+}
+
+/*
+ * tcp_icmp_error_ipv6 is called from tcp_icmp_input to process ICMPv6
+ * error messages passed up by IP.
+ * Assumes that IP has pulled up all the extension headers as well
+ * as the ICMPv6 header.
+ */
+static void
+tcp_icmp_error_ipv6(tcp_t *tcp, mblk_t *mp, ip_recv_attr_t *ira)
+{
+ icmp6_t *icmp6;
+ ip6_t *ip6h;
+ uint16_t iph_hdr_length = ira->ira_ip_hdr_length;
+ tcpha_t *tcpha;
+ uint8_t *nexthdrp;
+ uint32_t seg_seq;
+
+ /*
+ * Verify that we have a complete IP header.
+ */
+ ASSERT((MBLKL(mp) >= sizeof (ip6_t)));
+
+ icmp6 = (icmp6_t *)&mp->b_rptr[iph_hdr_length];
+ ip6h = (ip6_t *)&icmp6[1];
+ /*
+ * Verify if we have a complete ICMP and inner IP header.
+ */
+ if ((uchar_t *)&ip6h[1] > mp->b_wptr) {
+noticmpv6:
+ freemsg(mp);
+ return;
+ }
+
+ if (!ip_hdr_length_nexthdr_v6(mp, ip6h, &iph_hdr_length, &nexthdrp))
+ goto noticmpv6;
+ tcpha = (tcpha_t *)((char *)ip6h + iph_hdr_length);
+ /*
+ * Validate inner header. If the ULP is not IPPROTO_TCP or if we don't
+ * have at least ICMP_MIN_TCP_HDR bytes of TCP header drop the
+ * packet.
+ */
+ if ((*nexthdrp != IPPROTO_TCP) ||
+ ((uchar_t *)tcpha + ICMP_MIN_TCP_HDR) > mp->b_wptr) {
+ goto noticmpv6;
+ }
+
+ seg_seq = ntohl(tcpha->tha_seq);
+ switch (icmp6->icmp6_type) {
+ case ICMP6_PACKET_TOO_BIG:
+ /*
+ * Update Path MTU, then try to send something out.
+ */
+ tcp_update_pmtu(tcp, B_TRUE);
+ tcp_rexmit_after_error(tcp);
+ break;
+ case ICMP6_DST_UNREACH:
+ switch (icmp6->icmp6_code) {
+ case ICMP6_DST_UNREACH_NOPORT:
+ if (((tcp->tcp_state == TCPS_SYN_SENT) ||
+ (tcp->tcp_state == TCPS_SYN_RCVD)) &&
+ (seg_seq == tcp->tcp_iss)) {
+ (void) tcp_clean_death(tcp, ECONNREFUSED);
+ }
+ break;
+ case ICMP6_DST_UNREACH_ADMIN:
+ case ICMP6_DST_UNREACH_NOROUTE:
+ case ICMP6_DST_UNREACH_BEYONDSCOPE:
+ case ICMP6_DST_UNREACH_ADDR:
+ /* Record the error in case we finally time out. */
+ tcp->tcp_client_errno = EHOSTUNREACH;
+ if (((tcp->tcp_state == TCPS_SYN_SENT) ||
+ (tcp->tcp_state == TCPS_SYN_RCVD)) &&
+ (seg_seq == tcp->tcp_iss)) {
+ if (tcp->tcp_listener != NULL &&
+ tcp->tcp_listener->tcp_syn_defense) {
+ /*
+ * Ditch the half-open connection if we
+ * suspect a SYN attack is under way.
+ */
+ (void) tcp_clean_death(tcp,
+ tcp->tcp_client_errno);
+ }
+ }
+
+
+ break;
+ default:
+ break;
+ }
+ break;
+ case ICMP6_PARAM_PROB:
+ /* If this corresponds to an ICMP_PROTOCOL_UNREACHABLE */
+ if (icmp6->icmp6_code == ICMP6_PARAMPROB_NEXTHEADER &&
+ (uchar_t *)ip6h + icmp6->icmp6_pptr ==
+ (uchar_t *)nexthdrp) {
+ if (tcp->tcp_state == TCPS_SYN_SENT ||
+ tcp->tcp_state == TCPS_SYN_RCVD) {
+ (void) tcp_clean_death(tcp, ECONNREFUSED);
+ }
+ break;
+ }
+ break;
+
+ case ICMP6_TIME_EXCEEDED:
+ default:
+ break;
+ }
+ freemsg(mp);
+}
+
+/*
+ * CALLED OUTSIDE OF SQUEUE! It can not follow any pointers that tcp might
+ * change. But it can refer to fields like tcp_suna and tcp_snxt.
+ *
+ * Function tcp_verifyicmp is called as conn_verifyicmp to verify the ICMP
+ * error messages received by IP. The message is always received on the correct
+ * tcp_t.
+ */
+/* ARGSUSED */
+boolean_t
+tcp_verifyicmp(conn_t *connp, void *arg2, icmph_t *icmph, icmp6_t *icmp6,
+ ip_recv_attr_t *ira)
+{
+ tcpha_t *tcpha = (tcpha_t *)arg2;
+ uint32_t seq = ntohl(tcpha->tha_seq);
+ tcp_t *tcp = connp->conn_tcp;
+
+ /*
+ * TCP sequence number contained in payload of the ICMP error message
+ * should be within the range SND.UNA <= SEG.SEQ < SND.NXT. Otherwise,
+ * the message is either a stale ICMP error, or an attack from the
+ * network. Fail the verification.
+ */
+ if (SEQ_LT(seq, tcp->tcp_suna) || SEQ_GEQ(seq, tcp->tcp_snxt))
+ return (B_FALSE);
+
+ /* For "too big" we also check the ignore flag */
+ if (ira->ira_flags & IRAF_IS_IPV4) {
+ ASSERT(icmph != NULL);
+ if (icmph->icmph_type == ICMP_DEST_UNREACHABLE &&
+ icmph->icmph_code == ICMP_FRAGMENTATION_NEEDED &&
+ tcp->tcp_tcps->tcps_ignore_path_mtu)
+ return (B_FALSE);
+ } else {
+ ASSERT(icmp6 != NULL);
+ if (icmp6->icmp6_type == ICMP6_PACKET_TOO_BIG &&
+ tcp->tcp_tcps->tcps_ignore_path_mtu)
+ return (B_FALSE);
+ }
+ return (B_TRUE);
+}