summaryrefslogtreecommitdiff
path: root/usr/src/uts/common/io/gsqueue/gsqueue.c
diff options
context:
space:
mode:
Diffstat (limited to 'usr/src/uts/common/io/gsqueue/gsqueue.c')
-rw-r--r--usr/src/uts/common/io/gsqueue/gsqueue.c607
1 files changed, 607 insertions, 0 deletions
diff --git a/usr/src/uts/common/io/gsqueue/gsqueue.c b/usr/src/uts/common/io/gsqueue/gsqueue.c
new file mode 100644
index 0000000000..381273a2e5
--- /dev/null
+++ b/usr/src/uts/common/io/gsqueue/gsqueue.c
@@ -0,0 +1,607 @@
+/*
+ * This file and its contents are supplied under the terms of the
+ * Common Development and Distribution License ("CDDL"), version 1.0.
+ * You may only use this file in accordance with the terms of version
+ * 1.0 of the CDDL.
+ *
+ * A full copy of the text of the CDDL should have accompanied this
+ * source. A copy of the CDDL is also available via the Internet at
+ * http://www.illumos.org/license/CDDL.
+ */
+
+/*
+ * Copyright (c) 2014 Joyent, Inc. All rights reserved.
+ */
+
+/*
+ * Serialization queues are a technique used in illumos to provide what's
+ * commonly known as a 'vertical' perimeter. The idea (described a bit in
+ * uts/common/inet/squeue.c) is to provide a means to make sure that message
+ * blocks (mblk_t) are processed in a specific order. Subsystems like ip and vnd
+ * consume these on different policies, ip on a conn_t basis, vnd on a per
+ * device basis, and use this to ensure that only one packet is being processed
+ * at a given time.
+ *
+ * Serialization queues were originally used by ip. As part of that
+ * implementation, many of the details of ip were baked into it. That includes
+ * things like conn_t, ip receive attributes, and the notion of sets. While an
+ * individual serialization queue, or gsqueue_t, is a useful level of
+ * abstraction, it isn't the basis on which monst consumers want to manage them.
+ * Instead, we have the notion of a set of serialization queues. These sets are
+ * DR (CPU Dynamic reconfiguration) aware, and allow consumers to have a
+ * gsqueue_t per CPU to fanout on without managing them all itself. In the
+ * original implementation, this existed, but they were heavily tied into the
+ * infrastructure of IP, and its notion of polling on the underlying MAC
+ * devices.
+ *
+ * The result of that past is a new interface to serialization queues and a
+ * similar, but slightly different, abstraction to sets of these
+ * (gsqueue_set_t). When designing this there are two different approaches that
+ * one could consider. The first is that the system has one gsqueue_set_t that
+ * the entire world shares, whether IP or some other consumer. The other is that
+ * every consumer has their own set.
+ *
+ * The trade offs between these two failure modes are the pathological failure
+ * modes. There is no guarantee that any two consumers here are equivalent. In
+ * fact, they very likely have very different latency profiles. If they are
+ * being processed in the same queue, that can lead to very odd behaviors. More
+ * generally, if we have a series of processing functions from one consumer
+ * which are generally short, and another which are generally long, that'll
+ * cause undue latency that's harder to observe. If we instead take the approach
+ * that each consumer should have its own set that it fans out over then we
+ * won't end up with the problem that a given serialization queue will have
+ * multiple latency profiles, but instead we'll see cpu contention for the bound
+ * gsqueue_t worker thread. Keep in mind though, that only the gsqueue_t worker
+ * thread is bound and it is in fact possible for it to be processed by other
+ * threads on other CPUs.
+ *
+ * We've opted to go down the second path, so each consumer has its own
+ * independent set of serialization queues that it is bound over.
+ *
+ * Structure Hierarchies
+ * ---------------------
+ *
+ * At the top level, we have a single list of gsqueue_set_t. The gsqueue_set_t
+ * encapsulates all the per-CPU gsqueue_t that exist in the form of
+ * gsqueue_cpu_t. The gsqueue_cpu_t has been designed such that it could
+ * accommodate more than one gsqueue_t, but today there is a one to one mapping.
+ *
+ * We maintain two different lists of gsqueue_cpu_t, the active and defunct
+ * sets. The active set is maintained in the array `gs_cpus`. There are NCPU
+ * entries available in `gs_cpus` with the total number of currently active cpus
+ * described in `gs_ncpus`. The ordering of `gs_cpus` is unimportant. When
+ * there is no longer a need for a given binding (see the following section for
+ * more explanation on when this is the case) then we move the entry to the
+ * `gs_defunct` list which is just a singly linked list of gsqueue_cpu_t.
+ *
+ * In addition, each gsqueue_set_t can have a series of callbacks registered
+ * with it. These are described in the following section. Graphically, a given
+ * gsqueue_set_t looks roughly like the following:
+ *
+ * +---------------+
+ * | gsqueue_set_t |
+ * +---------------+
+ * | |
+ * | * . . . gs_cpus
+ * | |
+ * | | +-------------------------------------------------+
+ * | +----->| gsqueue_cpu_t || gsqueue_cpu_t || gsqueue_cpu_t |...
+ * | +-------------------------------------------------+
+ * |
+ * * . . . gs_defunct
+ * |
+ * | +--------------+ +--------------+ +--------------+
+ * +--->| gsqueue_cb_t |-->| gsqueue_cb_t |->| gsqueue_cb_t |...
+ * +--------------+ +--------------+ +--------------+
+ *
+ * CPU DR, gsqueue_t, and gsqueue_t
+ * --------------------------------
+ *
+ * Recall, that every serialization queue (gsqueue_t or squeue_t) has a worker
+ * thread that may end up doing work. As part of supporting fanout, we have one
+ * gsqueue_t per CPU, and its worker thread is bound to that CPU. Because of
+ * this binding, we need to deal with CPU DR changes.
+ *
+ * The gsqueue driver maintains a single CPU DR callback that is used for the
+ * entire sub-system. We break down CPU DR events into three groups. Offline
+ * events, online events, and events we can ignore. When the first group occurs,
+ * we need to go through every gsqueue_t, find the gsqueue_cpu_t that
+ * corresponds to that processor id, and unbind all of its gsqueue_t's. It's
+ * rather important that we only unbind the gsqueue_t's and not actually destroy
+ * them. When this happens, they could very easily have data queued inside of
+ * them and it's unreasonable to just throw out everything in them at this
+ * point. The data remains intact and service continues uinterrupted.
+ *
+ * When we receive an online event, we do the opposite. We try to find a
+ * gsqueue_cpu_t that previously was bound to this CPU (by leaving its gqc_cpuid
+ * field intact) in the defunct list. If we find one, we remove it from the
+ * defunct list and add it to the active list as well as binding the gsqueue_t
+ * to the CPU in question. If we don't find one, then we create a new one.
+ *
+ * To deal with these kinds of situations, we allow a consumer to register
+ * callbacks for the gsqueue_t that they are interested in. These callbacks will
+ * fire whenever we are handling a topology change. The design of the callbacks
+ * is not that the user can take any administrative action during them, but
+ * rather set something for them to do asynchronously. It is illegal to make any
+ * calls into the gsqueue system while you are in a callback.
+ *
+ * Locking
+ * -------
+ *
+ * The lock ordering here is fairly straightforward. Due to our use of CPU
+ * binding and the CPU DR callbacks, we have an additional lock to consider
+ * cpu_lock. Because of that, the following are the rules for locking:
+ *
+ *
+ * o If performing binding operations, you must grab cpu_lock. cpu_lock is
+ * also at the top of the order.
+ *
+ * o cpu_lock > gsqueue_lock > gsqueue_t`gs_lock > squeue_t`sq_lock
+ * If you need to take multiple locks, you must take the greatest
+ * (left-most) one first.
+ */
+
+#include <sys/types.h>
+#include <sys/conf.h>
+#include <sys/stat.h>
+#include <sys/kmem.h>
+#include <sys/stream.h>
+#include <sys/modctl.h>
+#include <sys/cpuvar.h>
+#include <sys/list.h>
+#include <sys/sysmacros.h>
+
+#include <sys/gsqueue.h>
+#include <sys/squeue_impl.h>
+
+typedef struct gsqueue_cb {
+ struct gsqueue_cb *gcb_next;
+ gsqueue_cb_f gcb_func;
+ void *gcb_arg;
+} gsqueue_cb_t;
+
+typedef struct gsqueue_cpu {
+ struct gsqueue_cpu *gqc_next;
+ squeue_t *gqc_head;
+ processorid_t gqc_cpuid;
+} gsqueue_cpu_t;
+
+struct gsqueue_set {
+ list_node_t gs_next;
+ uint_t gs_wwait;
+ pri_t gs_wpri;
+ kmutex_t gs_lock;
+ int gs_ncpus;
+ gsqueue_cpu_t **gs_cpus;
+ gsqueue_cpu_t *gs_defunct;
+ gsqueue_cb_t *gs_cbs;
+};
+
+static kmutex_t gsqueue_lock;
+static list_t gsqueue_list;
+static kmem_cache_t *gsqueue_cb_cache;
+static kmem_cache_t *gsqueue_cpu_cache;
+static kmem_cache_t *gsqueue_set_cache;
+
+static gsqueue_cpu_t *
+gsqueue_cpu_create(uint_t wwait, pri_t wpri, processorid_t cpuid)
+{
+ gsqueue_cpu_t *scp;
+
+ scp = kmem_cache_alloc(gsqueue_cpu_cache, KM_SLEEP);
+
+ scp->gqc_next = NULL;
+ scp->gqc_cpuid = cpuid;
+ scp->gqc_head = squeue_create(wwait, wpri, B_FALSE);
+ scp->gqc_head->sq_state = SQS_DEFAULT;
+ squeue_bind(scp->gqc_head, cpuid);
+
+ return (scp);
+}
+
+static void
+gsqueue_cpu_destroy(gsqueue_cpu_t *scp)
+{
+ squeue_destroy(scp->gqc_head);
+ kmem_cache_free(gsqueue_cpu_cache, scp);
+}
+
+gsqueue_set_t *
+gsqueue_set_create(uint_t wwait, pri_t wpri)
+{
+ int i;
+ gsqueue_set_t *gssp;
+
+ gssp = kmem_cache_alloc(gsqueue_set_cache, KM_SLEEP);
+ gssp->gs_wwait = wwait;
+ gssp->gs_wpri = wpri;
+ gssp->gs_ncpus = 0;
+
+ /*
+ * We're grabbing CPU lock. Once we let go of it we have to ensure all
+ * set up of the gsqueue_set_t is complete, as it'll be in there for the
+ * various CPU DR bits.
+ */
+ mutex_enter(&cpu_lock);
+
+ for (i = 0; i < NCPU; i++) {
+ gsqueue_cpu_t *scp;
+ cpu_t *cp = cpu_get(i);
+ if (cp != NULL && CPU_ACTIVE(cp) &&
+ cp->cpu_flags & CPU_EXISTS) {
+ scp = gsqueue_cpu_create(wwait, wpri, cp->cpu_id);
+ gssp->gs_cpus[gssp->gs_ncpus] = scp;
+ gssp->gs_ncpus++;
+ }
+ }
+
+ /* Finally we can add it to our global list and be done */
+ mutex_enter(&gsqueue_lock);
+ list_insert_tail(&gsqueue_list, gssp);
+ mutex_exit(&gsqueue_lock);
+ mutex_exit(&cpu_lock);
+
+ return (gssp);
+}
+
+void
+gsqueue_set_destroy(gsqueue_set_t *gssp)
+{
+ int i;
+ gsqueue_cpu_t *scp;
+
+ /*
+ * Go through and unbind all of the squeues while cpu_lock is held and
+ * move them to the defunct list. Once that's done, we don't need to do
+ * anything else with cpu_lock.
+ */
+ mutex_enter(&cpu_lock);
+ mutex_enter(&gsqueue_lock);
+ list_remove(&gsqueue_list, gssp);
+ mutex_exit(&gsqueue_lock);
+
+ mutex_enter(&gssp->gs_lock);
+
+ for (i = 0; i < gssp->gs_ncpus; i++) {
+ scp = gssp->gs_cpus[i];
+ squeue_unbind(scp->gqc_head);
+ scp->gqc_next = gssp->gs_defunct;
+ gssp->gs_defunct = scp;
+ gssp->gs_cpus[i] = NULL;
+ }
+ gssp->gs_ncpus = 0;
+
+ mutex_exit(&gssp->gs_lock);
+ mutex_exit(&cpu_lock);
+
+ while (gssp->gs_defunct != NULL) {
+ gsqueue_cpu_t *scp;
+
+ scp = gssp->gs_defunct;
+ gssp->gs_defunct = scp->gqc_next;
+ gsqueue_cpu_destroy(scp);
+ }
+
+ while (gssp->gs_cbs != NULL) {
+ gsqueue_cb_t *cbp;
+
+ cbp = gssp->gs_cbs;
+ gssp->gs_cbs = cbp->gcb_next;
+ kmem_cache_free(gsqueue_cb_cache, cbp);
+ }
+
+ ASSERT(gssp->gs_ncpus == 0);
+ ASSERT(gssp->gs_defunct == NULL);
+ ASSERT(gssp->gs_cbs == NULL);
+ kmem_cache_free(gsqueue_set_cache, gssp);
+}
+
+gsqueue_t *
+gsqueue_set_get(gsqueue_set_t *gssp, uint_t index)
+{
+ squeue_t *sqp;
+ gsqueue_cpu_t *scp;
+
+ mutex_enter(&gssp->gs_lock);
+ scp = gssp->gs_cpus[index % gssp->gs_ncpus];
+ sqp = scp->gqc_head;
+ mutex_exit(&gssp->gs_lock);
+ return ((gsqueue_t *)sqp);
+}
+
+uintptr_t
+gsqueue_set_cb_add(gsqueue_set_t *gssp, gsqueue_cb_f cb, void *arg)
+{
+ gsqueue_cb_t *cbp;
+
+ cbp = kmem_cache_alloc(gsqueue_cb_cache, KM_SLEEP);
+ cbp->gcb_func = cb;
+ cbp->gcb_arg = arg;
+
+ mutex_enter(&gssp->gs_lock);
+ cbp->gcb_next = gssp->gs_cbs;
+ gssp->gs_cbs = cbp;
+ mutex_exit(&gssp->gs_lock);
+ return ((uintptr_t)cbp);
+}
+
+int
+gsqueue_set_cb_remove(gsqueue_set_t *gssp, uintptr_t id)
+{
+ gsqueue_cb_t *cbp, *prev;
+ mutex_enter(&gssp->gs_lock);
+ cbp = gssp->gs_cbs;
+ prev = NULL;
+ while (cbp != NULL) {
+ if ((uintptr_t)cbp != id) {
+ prev = cbp;
+ cbp = cbp->gcb_next;
+ continue;
+ }
+
+ if (prev == NULL) {
+ gssp->gs_cbs = cbp->gcb_next;
+ } else {
+ prev->gcb_next = cbp->gcb_next;
+ }
+
+ mutex_exit(&gssp->gs_lock);
+ kmem_cache_free(gsqueue_cb_cache, cbp);
+ return (0);
+ }
+ mutex_exit(&gssp->gs_lock);
+ return (-1);
+}
+
+void
+gsqueue_enter_one(gsqueue_t *gsp, mblk_t *mp, gsqueue_proc_f func, void *arg,
+ int flags, uint8_t tag)
+{
+ squeue_t *sqp = (squeue_t *)gsp;
+
+ ASSERT(mp->b_next == NULL);
+ ASSERT(mp->b_prev == NULL);
+ mp->b_queue = (queue_t *)func;
+ mp->b_prev = arg;
+ sqp->sq_enter(sqp, mp, mp, 1, NULL, flags, tag);
+}
+
+static void
+gsqueue_notify(gsqueue_set_t *gssp, squeue_t *sqp, boolean_t online)
+{
+ gsqueue_cb_t *cbp;
+
+ ASSERT(MUTEX_HELD(&gssp->gs_lock));
+ cbp = gssp->gs_cbs;
+ while (cbp != NULL) {
+ cbp->gcb_func(gssp, (gsqueue_t *)sqp, cbp->gcb_arg, online);
+ cbp = cbp->gcb_next;
+ }
+
+}
+
+/*
+ * When we online a processor we need to go through and either bind a defunct
+ * squeue or create a new one. We'll try to reuse a gsqueue_cpu_t from the
+ * defunct list that used to be on that processor. If no such gsqueue_cpu_t
+ * exists, then we'll create a new one. We'd rather avoid taking over an
+ * existing defunct one that used to be on another CPU, as its not unreasonable
+ * to believe that its CPU will come back. More CPUs are offlined and onlined by
+ * the administrator or by creating cpu sets than actually get offlined by FMA.
+ */
+static void
+gsqueue_handle_online(processorid_t id)
+{
+ gsqueue_set_t *gssp;
+
+ ASSERT(MUTEX_HELD(&cpu_lock));
+ mutex_enter(&gsqueue_lock);
+ for (gssp = list_head(&gsqueue_list); gssp != NULL;
+ gssp = list_next(&gsqueue_list, gssp)) {
+ gsqueue_cpu_t *scp;
+
+ mutex_enter(&gssp->gs_lock);
+ scp = gssp->gs_defunct;
+ while (scp != NULL) {
+ if (scp->gqc_cpuid == id)
+ break;
+ scp = scp->gqc_next;
+ }
+
+ if (scp == NULL) {
+ scp = gsqueue_cpu_create(gssp->gs_wwait,
+ gssp->gs_wpri, id);
+ } else {
+ squeue_bind(scp->gqc_head, id);
+ }
+ ASSERT(gssp->gs_ncpus < NCPU);
+ gssp->gs_cpus[gssp->gs_ncpus] = scp;
+ gssp->gs_ncpus++;
+ gsqueue_notify(gssp, scp->gqc_head, B_TRUE);
+ mutex_exit(&gssp->gs_lock);
+ }
+ mutex_exit(&gsqueue_lock);
+}
+
+static void
+gsqueue_handle_offline(processorid_t id)
+{
+ gsqueue_set_t *gssp;
+
+ ASSERT(MUTEX_HELD(&cpu_lock));
+ mutex_enter(&gsqueue_lock);
+ for (gssp = list_head(&gsqueue_list); gssp != NULL;
+ gssp = list_next(&gsqueue_list, gssp)) {
+ int i;
+ gsqueue_cpu_t *scp = NULL;
+
+ mutex_enter(&gssp->gs_lock);
+ for (i = 0; i < gssp->gs_ncpus; i++) {
+ if (gssp->gs_cpus[i]->gqc_cpuid == id) {
+ scp = gssp->gs_cpus[i];
+ break;
+ }
+ }
+
+ if (scp != NULL) {
+ squeue_unbind(scp->gqc_head);
+ scp->gqc_next = gssp->gs_defunct;
+ gssp->gs_defunct = scp;
+ gssp->gs_cpus[i] = gssp->gs_cpus[gssp->gs_ncpus-1];
+ gssp->gs_ncpus--;
+ gsqueue_notify(gssp, scp->gqc_head, B_FALSE);
+ }
+ mutex_exit(&gssp->gs_lock);
+ }
+ mutex_exit(&gsqueue_lock);
+}
+
+/* ARGSUSED */
+static int
+gsqueue_cpu_setup(cpu_setup_t what, int id, void *unused)
+{
+ cpu_t *cp;
+
+ ASSERT(MUTEX_HELD(&cpu_lock));
+ cp = cpu_get(id);
+ switch (what) {
+ case CPU_CONFIG:
+ case CPU_ON:
+ case CPU_INIT:
+ case CPU_CPUPART_IN:
+ if (cp != NULL && CPU_ACTIVE(cp) && cp->cpu_flags & CPU_EXISTS)
+ gsqueue_handle_online(cp->cpu_id);
+ break;
+ case CPU_UNCONFIG:
+ case CPU_OFF:
+ case CPU_CPUPART_OUT:
+ gsqueue_handle_offline(cp->cpu_id);
+ break;
+ default:
+ break;
+ }
+
+ return (0);
+}
+
+
+/* ARGSUSED */
+static int
+gsqueue_set_cache_construct(void *buf, void *arg, int kmflags)
+{
+ gsqueue_set_t *gssp = buf;
+
+ gssp->gs_cpus = kmem_alloc(sizeof (gsqueue_cpu_t *) * NCPU, kmflags);
+ if (gssp->gs_cpus == NULL)
+ return (-1);
+
+ mutex_init(&gssp->gs_lock, NULL, MUTEX_DRIVER, NULL);
+ gssp->gs_ncpus = 0;
+ gssp->gs_defunct = NULL;
+ gssp->gs_cbs = NULL;
+
+ return (0);
+}
+
+static void
+gsqueue_set_cache_destruct(void *buf, void *arg)
+{
+ gsqueue_set_t *gssp = buf;
+
+ kmem_free(gssp->gs_cpus, sizeof (gsqueue_cpu_t *) * NCPU);
+ gssp->gs_cpus = NULL;
+ mutex_destroy(&gssp->gs_lock);
+}
+
+static void
+gsqueue_ddiinit(void)
+{
+ list_create(&gsqueue_list, sizeof (gsqueue_set_t),
+ offsetof(gsqueue_set_t, gs_next));
+ mutex_init(&gsqueue_lock, NULL, MUTEX_DRIVER, NULL);
+
+ gsqueue_cb_cache = kmem_cache_create("gsqueue_cb_cache",
+ sizeof (gsqueue_cb_t),
+ 0, NULL, NULL, NULL, NULL, NULL, 0);
+ gsqueue_cpu_cache = kmem_cache_create("gsqueue_cpu_cache",
+ sizeof (gsqueue_cpu_t),
+ 0, NULL, NULL, NULL, NULL, NULL, 0);
+ gsqueue_set_cache = kmem_cache_create("squeue_set_cache",
+ sizeof (gsqueue_set_t),
+ 0, gsqueue_set_cache_construct, gsqueue_set_cache_destruct,
+ NULL, NULL, NULL, 0);
+
+
+ mutex_enter(&cpu_lock);
+ register_cpu_setup_func(gsqueue_cpu_setup, NULL);
+ mutex_exit(&cpu_lock);
+}
+
+static int
+gsqueue_ddifini(void)
+{
+ mutex_enter(&gsqueue_lock);
+ if (list_is_empty(&gsqueue_list) == 0) {
+ mutex_exit(&gsqueue_lock);
+ return (EBUSY);
+ }
+ list_destroy(&gsqueue_list);
+ mutex_exit(&gsqueue_lock);
+
+ mutex_enter(&cpu_lock);
+ register_cpu_setup_func(gsqueue_cpu_setup, NULL);
+ mutex_exit(&cpu_lock);
+
+ kmem_cache_destroy(gsqueue_set_cache);
+ kmem_cache_destroy(gsqueue_cpu_cache);
+ kmem_cache_destroy(gsqueue_cb_cache);
+
+ mutex_destroy(&gsqueue_lock);
+
+ return (0);
+}
+
+static struct modlmisc gsqueue_modmisc = {
+ &mod_miscops,
+ "gsqueue"
+};
+
+static struct modlinkage gsqueue_modlinkage = {
+ MODREV_1,
+ &gsqueue_modmisc,
+ NULL
+};
+
+int
+_init(void)
+{
+ int ret;
+
+ gsqueue_ddiinit();
+ if ((ret = mod_install(&gsqueue_modlinkage)) != 0) {
+ VERIFY(gsqueue_ddifini() == 0);
+ return (ret);
+ }
+
+ return (ret);
+}
+
+int
+_info(struct modinfo *modinfop)
+{
+ return (mod_info(&gsqueue_modlinkage, modinfop));
+}
+
+int
+_fini(void)
+{
+ int ret;
+
+ if ((ret = gsqueue_ddifini()) != 0)
+ return (ret);
+
+ if ((ret = mod_remove(&gsqueue_modlinkage)) != 0)
+ return (ret);
+
+ return (0);
+}