summaryrefslogtreecommitdiff
path: root/usr/src/uts/sun4u/io/us_drv.c
diff options
context:
space:
mode:
Diffstat (limited to 'usr/src/uts/sun4u/io/us_drv.c')
-rw-r--r--usr/src/uts/sun4u/io/us_drv.c1047
1 files changed, 1047 insertions, 0 deletions
diff --git a/usr/src/uts/sun4u/io/us_drv.c b/usr/src/uts/sun4u/io/us_drv.c
new file mode 100644
index 0000000000..0616afd33e
--- /dev/null
+++ b/usr/src/uts/sun4u/io/us_drv.c
@@ -0,0 +1,1047 @@
+/*
+ * CDDL HEADER START
+ *
+ * The contents of this file are subject to the terms of the
+ * Common Development and Distribution License, Version 1.0 only
+ * (the "License"). You may not use this file except in compliance
+ * with the License.
+ *
+ * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
+ * or http://www.opensolaris.org/os/licensing.
+ * See the License for the specific language governing permissions
+ * and limitations under the License.
+ *
+ * When distributing Covered Code, include this CDDL HEADER in each
+ * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
+ * If applicable, add the following below this CDDL HEADER, with the
+ * fields enclosed by brackets "[]" replaced with your own identifying
+ * information: Portions Copyright [yyyy] [name of copyright owner]
+ *
+ * CDDL HEADER END
+ */
+/*
+ * Copyright 2004 Sun Microsystems, Inc. All rights reserved.
+ * Use is subject to license terms.
+ */
+
+#pragma ident "%Z%%M% %I% %E% SMI"
+
+/*
+ * Device driver for UltraSPARC CPU. The driver is not DDI-compliant.
+ *
+ * The driver supports following features:
+ * - Power management.
+ */
+
+#include <sys/types.h>
+#include <sys/param.h>
+#include <sys/errno.h>
+#include <sys/modctl.h>
+#include <sys/kmem.h>
+#include <sys/conf.h>
+#include <sys/cmn_err.h>
+#include <sys/stat.h>
+#include <sys/debug.h>
+#include <sys/systm.h>
+#include <sys/ddi.h>
+#include <sys/sunddi.h>
+
+#include <sys/cpu_module.h>
+#include <sys/machsystm.h>
+#include <sys/x_call.h>
+#include <sys/us_drv.h>
+#include <sys/msacct.h>
+
+/*
+ * UltraSPARC CPU power management
+ *
+ * The supported power saving model is to slow down the CPU by dividing the
+ * CPU clock. Periodically we determine the amount of time the CPU is running
+ * idle thread and threads in user mode during the last quantum. If the idle
+ * thread was running less than its low water mark for current speed for
+ * number of consecutive sampling periods, or number of running threads in
+ * user mode are above its high water mark, we arrange to go to the higher
+ * speed. If the idle thread was running more than its high water mark without
+ * dropping a number of consecutive times below the mark, and number of threads
+ * running in user mode are below its low water mark, we arrange to go to the
+ * next lower speed. While going down, we go through all the speeds. While
+ * going up we go to the maximum speed to minimize impact on the user, but have
+ * provisions in the driver to go to other speeds.
+ *
+ * The driver does not have knowledge of a particular implementation of this
+ * scheme and will work with all CPUs supporting this model. The driver
+ * determines supported speeds by looking at 'clock-divisors' property
+ * created by OBP.
+ */
+
+/*
+ * Configuration function prototypes and data structures
+ */
+static int us_attach(dev_info_t *dip, ddi_attach_cmd_t cmd);
+static int us_detach(dev_info_t *dip, ddi_detach_cmd_t cmd);
+static int us_power(dev_info_t *dip, int comp, int level);
+
+struct dev_ops us_ops = {
+ DEVO_REV, /* rev */
+ 0, /* refcnt */
+ nodev, /* getinfo */
+ nulldev, /* identify */
+ nulldev, /* probe */
+ us_attach, /* attach */
+ us_detach, /* detach */
+ nodev, /* reset */
+ (struct cb_ops *)NULL, /* cb_ops */
+ (struct bus_ops *)NULL, /* bus_ops */
+ us_power /* power */
+};
+
+static struct modldrv modldrv = {
+ &mod_driverops, /* modops */
+ "UltraSPARC CPU Driver %I%", /* linkinfo */
+ &us_ops, /* dev_ops */
+};
+
+static struct modlinkage modlinkage = {
+ MODREV_1, /* rev */
+ &modldrv, /* linkage */
+ NULL
+};
+
+/*
+ * Function prototypes
+ */
+static int us_pm_init(us_devstate_t *usdsp);
+static void us_pm_free(us_devstate_t *usdsp);
+static int us_pm_comp_create(us_devstate_t *usdsp);
+static void us_pm_monitor_disp(void *arg);
+static void us_pm_monitor(void *arg);
+
+/*
+ * Driver global variables
+ */
+uint_t us_drv_debug = 0;
+static void *us_state;
+static uint_t us_pm_idle_hwm = US_PM_IDLE_HWM;
+static uint_t us_pm_idle_lwm = US_PM_IDLE_LWM;
+static uint_t us_pm_idle_buf_zone = US_PM_IDLE_BUF_ZONE;
+static uint_t us_pm_idle_bhwm_cnt_max = US_PM_IDLE_BHWM_CNT_MAX;
+static uint_t us_pm_idle_blwm_cnt_max = US_PM_IDLE_BLWM_CNT_MAX;
+static uint_t us_pm_user_hwm = US_PM_USER_HWM;
+
+/*
+ * us_direct_pm allows user applications to directly control the
+ * power state transitions (direct pm) without following the normal
+ * direct pm protocol. This is needed because the normal protocol
+ * requires that a device only be lowered when it is idle, and be
+ * brought up when it request to do so by calling pm_raise_power().
+ * Ignoring this protocol is harmless for CPU (other than speed).
+ * Moreover it might be the case that CPU is never idle or wants
+ * to be at higher speed because of the addition CPU cycles required
+ * to run the user application.
+ *
+ * The driver will still report idle/busy status to the framework. Although
+ * framework will ignore this information for direct pm devices and not
+ * try to bring them down when idle, user applications can still use this
+ * information if they wants.
+ *
+ * In future, provide an ioctl to control setting of this mode. In
+ * that case, this variable should move to the state structure and
+ * protected by the lock in state strcuture.
+ */
+static int us_direct_pm = 0;
+
+/*
+ * Arranges for the handler function to be called at the interval suitable
+ * for current speed.
+ */
+#define US_PM_MONITOR_INIT(usdsp) { \
+ ASSERT(mutex_owned(&(usdsp)->lock)); \
+ (usdsp)->us_pm.timeout_id = timeout(us_pm_monitor_disp, (usdsp), \
+ (((usdsp)->us_pm.cur_spd == NULL) ? US_PM_QUANT_CNT_OTHR : \
+ (usdsp)->us_pm.cur_spd->quant_cnt)); \
+}
+
+/*
+ * Arranges for the handler function not to be called back.
+ */
+#define US_PM_MONITOR_FINI(usdsp) { \
+ timeout_id_t tmp_tid; \
+ ASSERT(mutex_owned(&(usdsp)->lock)); \
+ ASSERT((usdsp)->us_pm.timeout_id); \
+ tmp_tid = (usdsp)->us_pm.timeout_id; \
+ (usdsp)->us_pm.timeout_id = 0; \
+ mutex_exit(&(usdsp)->lock); \
+ (void) untimeout(tmp_tid); \
+ mutex_enter(&(usdsp)->us_pm.timeout_lock); \
+ while ((usdsp)->us_pm.timeout_count != 0) \
+ cv_wait(&(usdsp)->us_pm.timeout_cv, \
+ &(usdsp)->us_pm.timeout_lock); \
+ mutex_exit(&(usdsp)->us_pm.timeout_lock); \
+ mutex_enter(&(usdsp)->lock); \
+}
+
+int
+_init(void)
+{
+ int error;
+
+ DPRINTF(D_INIT, ("us: _init: function called\n"));
+ if ((error = ddi_soft_state_init(&us_state,
+ sizeof (us_devstate_t), 0)) != 0) {
+ return (error);
+ }
+
+ if ((error = mod_install(&modlinkage)) != 0) {
+ ddi_soft_state_fini(&us_state);
+ }
+
+ return (error);
+}
+
+int
+_fini(void)
+{
+ int error;
+
+ DPRINTF(D_FINI, ("us: _fini: function called\n"));
+ if ((error = mod_remove(&modlinkage)) == 0) {
+ ddi_soft_state_fini(&us_state);
+ }
+
+ return (error);
+}
+
+int
+_info(struct modinfo *modinfop)
+{
+ return (mod_info(&modlinkage, modinfop));
+}
+
+
+
+/*
+ * Driver attach(9e) entry point.
+ */
+static int
+us_attach(dev_info_t *dip, ddi_attach_cmd_t cmd)
+{
+ int instance;
+ us_devstate_t *usdsp;
+ extern pri_t maxclsyspri;
+
+ instance = ddi_get_instance(dip);
+
+ switch (cmd) {
+ case DDI_ATTACH:
+ DPRINTF(D_ATTACH, ("us_attach: instance %d: "
+ "DDI_ATTACH called\n", instance));
+ if (ddi_soft_state_zalloc(us_state, instance) != DDI_SUCCESS) {
+ cmn_err(CE_WARN, "us_attach: instance %d: "
+ "can't allocate state", instance);
+ return (DDI_FAILURE);
+ }
+ if ((usdsp = ddi_get_soft_state(us_state, instance)) == NULL) {
+ cmn_err(CE_WARN, "us_attach: instance %d: "
+ "can't get state", instance);
+ return (DDI_FAILURE);
+ }
+ usdsp->dip = dip;
+
+ if (us_pm_init(usdsp) != DDI_SUCCESS) {
+ ddi_soft_state_free(us_state, instance);
+ return (DDI_FAILURE);
+ }
+
+ /*
+ * Find CPU number for this dev_info node.
+ */
+ if (dip_to_cpu_id(dip, &(usdsp->cpu_id)) != DDI_SUCCESS) {
+ us_pm_free(usdsp);
+ ddi_soft_state_free(us_state, instance);
+ cmn_err(CE_WARN, "us_attach: instance %d: "
+ "can't convert dip to cpu_id", instance);
+ return (DDI_FAILURE);
+ }
+
+ if (us_pm_comp_create(usdsp) != DDI_SUCCESS) {
+ us_pm_free(usdsp);
+ ddi_soft_state_free(us_state, instance);
+ return (DDI_FAILURE);
+ }
+
+ /*
+ * Taskq is used to dispatch routine to monitor CPU activities.
+ */
+ usdsp->us_pm.tq = taskq_create_instance("us_pm_monitor",
+ ddi_get_instance(dip),
+ US_PM_TASKQ_THREADS, (maxclsyspri - 1), US_PM_TASKQ_MIN,
+ US_PM_TASKQ_MAX, TASKQ_PREPOPULATE|TASKQ_CPR_SAFE);
+
+ mutex_init(&usdsp->lock, NULL, MUTEX_DRIVER, NULL);
+ mutex_init(&usdsp->us_pm.timeout_lock, NULL, MUTEX_DRIVER,
+ NULL);
+ cv_init(&usdsp->us_pm.timeout_cv, NULL, CV_DEFAULT, NULL);
+
+ /*
+ * Driver needs to assume that CPU is running at unknown speed
+ * at DDI_ATTACH and switch it to the needed speed. We assume
+ * that initial needed speed is full speed for us.
+ */
+ /*
+ * We need to take the lock because us_pm_monitor()
+ * will start running in parallel with attach().
+ */
+ mutex_enter(&usdsp->lock);
+ usdsp->us_pm.cur_spd = NULL;
+ usdsp->us_pm.targ_spd = usdsp->us_pm.head_spd;
+ /*
+ * We don't call pm_raise_power() directly from attach beacuse
+ * driver attach for a slave CPU node can happen before the
+ * CPU is even initialized. We just start the monitoring
+ * system which understands unknown speed and moves CPU
+ * to targ_spd when it have been initialized.
+ */
+ US_PM_MONITOR_INIT(usdsp);
+ mutex_exit(&usdsp->lock);
+
+ ddi_report_dev(dip);
+ return (DDI_SUCCESS);
+
+ case DDI_RESUME:
+ DPRINTF(D_ATTACH, ("us_attach: instance %d: "
+ "DDI_RESUME called\n", instance));
+ if ((usdsp = ddi_get_soft_state(us_state, instance)) == NULL) {
+ cmn_err(CE_WARN, "us_attach: instance %d: "
+ "can't get state", instance);
+ return (DDI_FAILURE);
+ }
+ mutex_enter(&usdsp->lock);
+ /*
+ * Driver needs to assume that CPU is running at unknown speed
+ * at DDI_RESUME and switch it to the needed speed. We assume
+ * that the needed speed is full speed for us.
+ */
+ usdsp->us_pm.cur_spd = NULL;
+ usdsp->us_pm.targ_spd = usdsp->us_pm.head_spd;
+ US_PM_MONITOR_INIT(usdsp);
+ mutex_exit(&usdsp->lock);
+
+ return (DDI_SUCCESS);
+
+ default:
+ return (DDI_FAILURE);
+ }
+}
+
+/*
+ * Driver detach(9e) entry point.
+ */
+static int
+us_detach(dev_info_t *dip, ddi_detach_cmd_t cmd)
+{
+ int instance;
+ us_devstate_t *usdsp;
+ us_pm_t *upm;
+
+ instance = ddi_get_instance(dip);
+
+ switch (cmd) {
+ case DDI_DETACH:
+ DPRINTF(D_DETACH, ("us_detach: instance %d: "
+ "DDI_DETACH called\n", instance));
+ /*
+ * If the only thing supported by the driver is power
+ * management, we can in future enhance the driver and
+ * framework that loads it to unload the driver when
+ * user has disabled CPU power management.
+ */
+ return (DDI_FAILURE);
+
+ case DDI_SUSPEND:
+ DPRINTF(D_DETACH, ("us_detach: instance %d: "
+ "DDI_SUSPEND called\n", instance));
+ if ((usdsp = ddi_get_soft_state(us_state, instance)) == NULL) {
+ cmn_err(CE_WARN, "us_detach: instance %d: "
+ "can't get state", instance);
+ return (DDI_FAILURE);
+ }
+ /*
+ * During a checkpoint-resume sequence, framework will
+ * stop interrupts to quiesce kernel activity. This will
+ * leave our monitoring system ineffective. Handle this
+ * by stopping our monitoring system and bringing CPU
+ * to full speed. In case we are in special direct pm
+ * mode, we leave the CPU at whatever speed it is. This
+ * is harmless other than speed.
+ */
+ mutex_enter(&usdsp->lock);
+ upm = &(usdsp->us_pm);
+
+ DPRINTF(D_DETACH, ("us_detach: instance %d: DDI_SUSPEND - "
+ "cur_spd %d, head_spd %d\n", instance,
+ upm->cur_spd->pm_level, upm->head_spd->pm_level));
+
+ US_PM_MONITOR_FINI(usdsp);
+
+ if (!us_direct_pm && (upm->cur_spd != upm->head_spd)) {
+ if (upm->pm_busycnt < 1) {
+ if ((pm_busy_component(dip, US_PM_COMP_NUM) ==
+ DDI_SUCCESS)) {
+ upm->pm_busycnt++;
+ } else {
+ US_PM_MONITOR_INIT(usdsp);
+ mutex_exit(&usdsp->lock);
+ cmn_err(CE_WARN, "us_detach: instance "
+ "%d: can't busy CPU component",
+ instance);
+ return (DDI_FAILURE);
+ }
+ }
+ mutex_exit(&usdsp->lock);
+ if (pm_raise_power(dip, US_PM_COMP_NUM,
+ upm->head_spd->pm_level) != DDI_SUCCESS) {
+ mutex_enter(&usdsp->lock);
+ US_PM_MONITOR_INIT(usdsp);
+ mutex_exit(&usdsp->lock);
+ cmn_err(CE_WARN, "us_detach: instance %d: "
+ "can't raise CPU power level", instance);
+ return (DDI_FAILURE);
+ } else {
+ return (DDI_SUCCESS);
+ }
+ } else {
+ mutex_exit(&usdsp->lock);
+ return (DDI_SUCCESS);
+ }
+
+ default:
+ return (DDI_FAILURE);
+ }
+}
+
+/*
+ * Driver power(9e) entry point.
+ *
+ * Driver's notion of current power is set *only* in power(9e) entry point
+ * after actual power change operation has been successfully completed.
+ */
+/* ARGSUSED */
+static int
+us_power(dev_info_t *dip, int comp, int level)
+{
+ int instance;
+ us_devstate_t *usdsp;
+ us_pm_t *upm;
+ us_pm_spd_t *new_spd;
+
+ instance = ddi_get_instance(dip);
+
+ DPRINTF(D_POWER, ("us_power: instance %d: level %d\n",
+ instance, level));
+ if ((usdsp = ddi_get_soft_state(us_state, instance)) == NULL) {
+ cmn_err(CE_WARN, "us_power: instance %d: can't get state",
+ instance);
+ return (DDI_FAILURE);
+ }
+
+ mutex_enter(&usdsp->lock);
+ upm = &(usdsp->us_pm);
+
+ /*
+ * In normal operation, we fail if we are busy and request is
+ * to lower the power level. We let this go through if the driver
+ * is in special direct pm mode.
+ */
+ if (!us_direct_pm && (upm->pm_busycnt >= 1)) {
+ if ((upm->cur_spd != NULL) &&
+ (level < upm->cur_spd->pm_level)) {
+ mutex_exit(&usdsp->lock);
+ return (DDI_FAILURE);
+ }
+ }
+
+ for (new_spd = upm->head_spd; new_spd; new_spd = new_spd->down_spd) {
+ if (new_spd->pm_level == level)
+ break;
+ }
+ if (!new_spd) {
+ mutex_exit(&usdsp->lock);
+ cmn_err(CE_WARN, "us_power: instance %d: "
+ "can't locate new CPU speed", instance);
+ return (DDI_FAILURE);
+ }
+
+ /*
+ * We currently refuse to power manage if the CPU in not ready to
+ * take cross calls (cross calls fail silently if CPU is not ready
+ * for it).
+ */
+ if (!(CPU_XCALL_READY(usdsp->cpu_id))) {
+ mutex_exit(&usdsp->lock);
+ DPRINTF(D_POWER, ("us_power: instance %d: "
+ "CPU not ready for x-calls\n", instance));
+ return (DDI_FAILURE);
+ }
+ /*
+ * Execute CPU specific routine on the requested CPU to change its
+ * speed to normal-speed/divisor.
+ */
+ xc_one(usdsp->cpu_id, (xcfunc_t *)cpu_change_speed,
+ (uint64_t)new_spd->divisor, 0);
+
+ /*
+ * Reset idle threshold time for the new power level.
+ */
+ if ((upm->cur_spd != NULL) && (level < upm->cur_spd->pm_level)) {
+ if (pm_idle_component(dip, US_PM_COMP_NUM) == DDI_SUCCESS) {
+ if (upm->pm_busycnt >= 1)
+ upm->pm_busycnt--;
+ } else
+ cmn_err(CE_WARN, "us_power: instance %d: can't "
+ "idle CPU component", ddi_get_instance(dip));
+ }
+ /*
+ * Reset various parameters because we are now running at new speed.
+ */
+ upm->lastquan_idle = 0;
+ upm->lastquan_user = 0;
+ upm->lastquan_lbolt = 0;
+ upm->cur_spd = new_spd;
+ mutex_exit(&usdsp->lock);
+ return (DDI_SUCCESS);
+}
+
+/*
+ * Initialize power management data.
+ */
+static int
+us_pm_init(us_devstate_t *usdsp)
+{
+ us_pm_t *upm = &(usdsp->us_pm);
+ us_pm_spd_t *cur_spd;
+ us_pm_spd_t *prev_spd = NULL;
+ int *divisors;
+ uint_t ndivisors;
+ int idle_cnt_percent;
+ int user_cnt_percent;
+ int i;
+
+ /*
+ * clock-divisors property tells the supported speeds
+ * as divisors of the normal speed. Divisors are in increasing
+ * order starting with 1 (for normal speed). For example, a
+ * property value of "1, 2, 32" represents full, 1/2 and 1/32
+ * speeds.
+ */
+ if (ddi_prop_lookup_int_array(DDI_DEV_T_ANY, usdsp->dip,
+ DDI_PROP_DONTPASS, "clock-divisors", &divisors,
+ &ndivisors) != DDI_PROP_SUCCESS) {
+ DPRINTF(D_PM_INIT, ("us_pm_init: instance %d: "
+ "clock-divisors property not defined\n",
+ ddi_get_instance(usdsp->dip)));
+ return (DDI_FAILURE);
+ }
+ if (ndivisors < 2) {
+ /* Need at least two speeds to power manage */
+ ddi_prop_free(divisors);
+ return (DDI_FAILURE);
+ }
+ upm->num_spd = ndivisors;
+
+ /*
+ * Calculate the watermarks and other parameters based on the
+ * supplied divisors.
+ *
+ * One of the basic assumption is that for X amount of CPU work,
+ * if CPU is slowed down by a factor of N, the time it takes to
+ * do the same work will be N * X.
+ *
+ * The driver declares that a CPU is idle and ready for slowed down,
+ * if amount of idle thread is more than the current speed idle_hwm
+ * without dropping below idle_hwm a number of consecutive sampling
+ * intervals and number of running threads in user mode are below
+ * user_lwm. We want to set the current user_lwm such that if we
+ * just switched to the next slower speed with no change in real work
+ * load, the amount of user threads at the slower speed will be such
+ * that it falls below the slower speed's user_hwm. If we didn't do
+ * that then we will just come back to the higher speed as soon as we
+ * go down even with no change in work load.
+ * The user_hwm is a fixed precentage and not calculated dynamically.
+ *
+ * We bring the CPU up if idle thread at current speed is less than
+ * the current speed idle_lwm for a number of consecutive sampling
+ * intervals or user threads are above the user_hwm for the current
+ * speed.
+ */
+ for (i = 0; i < ndivisors; i++) {
+ cur_spd = kmem_zalloc(sizeof (us_pm_spd_t), KM_SLEEP);
+ cur_spd->divisor = divisors[i];
+ if (i == 0) { /* normal speed */
+ upm->head_spd = cur_spd;
+ cur_spd->quant_cnt = US_PM_QUANT_CNT_NORMAL;
+ cur_spd->idle_hwm =
+ (us_pm_idle_hwm * cur_spd->quant_cnt) / 100;
+ /* can't speed anymore */
+ cur_spd->idle_lwm = 0;
+ cur_spd->user_hwm = UINT_MAX;
+ } else {
+ cur_spd->quant_cnt = US_PM_QUANT_CNT_OTHR;
+ ASSERT(prev_spd != NULL);
+ prev_spd->down_spd = cur_spd;
+ cur_spd->up_spd = upm->head_spd;
+
+ /*
+ * Let's assume CPU is considered idle at full speed
+ * when it is spending I% of time in running the idle
+ * thread. At full speed, CPU will be busy (100 - I) %
+ * of times. This % of busyness increases by factor of
+ * N as CPU slows down. CPU that is idle I% of times
+ * in full speed, it is idle (100 - ((100 - I) * N)) %
+ * of times in N speed. The idle_lwm is a fixed
+ * percentage. A large value of N may result in
+ * idle_hwm to go below idle_lwm. We need to make sure
+ * that there is at least a buffer zone seperation
+ * between the idle_lwm and idle_hwm values.
+ */
+ idle_cnt_percent = 100 -
+ ((100 - us_pm_idle_hwm) * cur_spd->divisor);
+ idle_cnt_percent = max(idle_cnt_percent,
+ (us_pm_idle_lwm + us_pm_idle_buf_zone));
+ cur_spd->idle_hwm =
+ (idle_cnt_percent * cur_spd->quant_cnt) / 100;
+ cur_spd->idle_lwm =
+ (us_pm_idle_lwm * cur_spd->quant_cnt) / 100;
+
+ /*
+ * The lwm for user threads are determined such that
+ * if CPU slows down, the load of work in the
+ * new speed would still keep the CPU at or below the
+ * user_hwm in the new speed. This is to prevent
+ * the quick jump back up to higher speed.
+ */
+ cur_spd->user_hwm =
+ (us_pm_user_hwm * cur_spd->quant_cnt) / 100;
+ user_cnt_percent =
+ (us_pm_user_hwm * prev_spd->divisor) /
+ cur_spd->divisor;
+ prev_spd->user_lwm =
+ (user_cnt_percent * prev_spd->quant_cnt) / 100;
+ }
+ prev_spd = cur_spd;
+ }
+ /* Slowest speed. Can't slow down anymore */
+ cur_spd->idle_hwm = UINT_MAX;
+ cur_spd->user_lwm = -1;
+#ifdef DEBUG
+ DPRINTF(D_PM_INIT, ("us_pm_init: instance %d: head_spd div %d, "
+ "num_spd %d\n", ddi_get_instance(usdsp->dip),
+ upm->head_spd->divisor, upm->num_spd));
+ for (cur_spd = upm->head_spd; cur_spd; cur_spd = cur_spd->down_spd) {
+ DPRINTF(D_PM_INIT, ("us_pm_init: instance %d: divisor %d, "
+ "down_spd div %d, idle_hwm %d, user_lwm %d, "
+ "up_spd div %d, idle_lwm %d, user_hwm %d, "
+ "quant_cnt %d\n", ddi_get_instance(usdsp->dip),
+ cur_spd->divisor,
+ (cur_spd->down_spd ? cur_spd->down_spd->divisor : 0),
+ cur_spd->idle_hwm, cur_spd->user_lwm,
+ (cur_spd->up_spd ? cur_spd->up_spd->divisor : 0),
+ cur_spd->idle_lwm, cur_spd->user_hwm,
+ cur_spd->quant_cnt));
+ }
+#endif /* DEBUG */
+ ddi_prop_free(divisors);
+ return (DDI_SUCCESS);
+}
+
+/*
+ * Free CPU power management data.
+ */
+static void
+us_pm_free(us_devstate_t *usdsp)
+{
+ us_pm_t *upm = &(usdsp->us_pm);
+ us_pm_spd_t *cur_spd, *next_spd;
+
+ cur_spd = upm->head_spd;
+ while (cur_spd) {
+ next_spd = cur_spd->down_spd;
+ kmem_free(cur_spd, sizeof (us_pm_spd_t));
+ cur_spd = next_spd;
+ }
+ bzero(upm, sizeof (us_pm_t));
+}
+
+
+
+/*
+ * Create pm-components property.
+ */
+static int
+us_pm_comp_create(us_devstate_t *usdsp)
+{
+ us_pm_t *upm = &(usdsp->us_pm);
+ us_pm_spd_t *cur_spd;
+ char **pmc;
+ int size;
+ char name[] = "NAME=CPU Speed";
+ char norm[] = "Normal";
+ char othr[] = " of Normal";
+ int i, j;
+ int result = DDI_FAILURE;
+
+ pmc = kmem_zalloc((upm->num_spd + 1) * sizeof (char *), KM_SLEEP);
+ /*
+ * The amount of memory needed for each string is:
+ * digits for power level + '=' + '1/' + digits for divisor +
+ * description text + '\0'
+ */
+ size = US_PM_COMP_MAX_DIG + 1 + 2 + US_PM_COMP_MAX_DIG +
+ sizeof (othr) + 1;
+ if (upm->num_spd > US_PM_COMP_MAX_VAL) {
+ cmn_err(CE_WARN, "us_pm_comp_create: instance %d: "
+ "number of speeds exceeded limits",
+ ddi_get_instance(usdsp->dip));
+ kmem_free(pmc, (upm->num_spd + 1) * sizeof (char *));
+ return (result);
+ }
+
+ for (i = upm->num_spd, cur_spd = upm->head_spd; i > 0;
+ i--, cur_spd = cur_spd->down_spd) {
+ cur_spd->pm_level = i;
+ pmc[i] = kmem_zalloc((size * sizeof (char)), KM_SLEEP);
+ if (cur_spd == upm->head_spd) {
+ (void) sprintf(pmc[i], "%d=%s", cur_spd->pm_level,
+ norm);
+ } else {
+ if (cur_spd->divisor > US_PM_COMP_MAX_VAL) {
+ cmn_err(CE_WARN, "us_pm_comp_create: "
+ "instance %d: divisor exceeded limits",
+ ddi_get_instance(usdsp->dip));
+ for (j = upm->num_spd; j >= i; j--) {
+ kmem_free(pmc[j], size * sizeof (char));
+ }
+ kmem_free(pmc, (upm->num_spd + 1) *
+ sizeof (char *));
+ return (result);
+ }
+ (void) sprintf(pmc[i], "%d=1/%d%s", cur_spd->pm_level,
+ cur_spd->divisor, othr);
+ }
+ DPRINTF(D_PM_COMP_CREATE, ("us_pm_comp_create: instance %d: "
+ "pm-components power level %d string '%s'\n",
+ ddi_get_instance(usdsp->dip), i, pmc[i]));
+ }
+ pmc[0] = kmem_zalloc(sizeof (name), KM_SLEEP);
+ (void) strcat(pmc[0], name);
+ DPRINTF(D_PM_COMP_CREATE, ("us_pm_comp_create: instance %d: "
+ "pm-components component name '%s'\n",
+ ddi_get_instance(usdsp->dip), pmc[0]));
+
+ if (ddi_prop_update_string_array(DDI_DEV_T_NONE, usdsp->dip,
+ "pm-components", pmc, upm->num_spd + 1) == DDI_PROP_SUCCESS) {
+ result = DDI_SUCCESS;
+ } else {
+ cmn_err(CE_WARN, "us_pm_comp_create: instance %d: "
+ "can't create pm-components property",
+ ddi_get_instance(usdsp->dip));
+ }
+
+ for (i = upm->num_spd; i > 0; i--) {
+ kmem_free(pmc[i], size * sizeof (char));
+ }
+ kmem_free(pmc[0], sizeof (name));
+ kmem_free(pmc, (upm->num_spd + 1) * sizeof (char *));
+ return (result);
+}
+
+/*
+ * Mark a component idle.
+ */
+#define US_PM_MONITOR_PM_IDLE_COMP(dip, upm) { \
+ if ((upm)->pm_busycnt >= 1) { \
+ if (pm_idle_component((dip), US_PM_COMP_NUM) == DDI_SUCCESS) { \
+ DPRINTF(D_PM_MONITOR, ("us_pm_monitor: instance %d: " \
+ "pm_idle_component called\n", \
+ ddi_get_instance((dip)))); \
+ (upm)->pm_busycnt--; \
+ } else { \
+ cmn_err(CE_WARN, "us_pm_monitor: instance %d: can't " \
+ "idle CPU component", ddi_get_instance((dip))); \
+ } \
+ } \
+}
+
+/*
+ * Marks a component busy in both PM framework and driver state structure.
+ */
+#define US_PM_MONITOR_PM_BUSY_COMP(dip, upm) { \
+ if ((upm)->pm_busycnt < 1) { \
+ if (pm_busy_component((dip), US_PM_COMP_NUM) == DDI_SUCCESS) { \
+ DPRINTF(D_PM_MONITOR, ("us_pm_monitor: instance %d: " \
+ "pm_busy_component called\n", \
+ ddi_get_instance((dip)))); \
+ (upm)->pm_busycnt++; \
+ } else { \
+ cmn_err(CE_WARN, "us_pm_monitor: instance %d: " \
+ "can't busy CPU component", \
+ ddi_get_instance((dip))); \
+ } \
+ } \
+}
+
+/*
+ * Marks a component busy and calls pm_raise_power().
+ */
+#define US_PM_MONITOR_PM_BUSY_AND_RAISE(dip, usdsp, upm, new_level) { \
+ /* \
+ * Mark driver and PM framework busy first so framework doesn't try \
+ * to bring CPU to lower speed when we need to be at higher speed. \
+ */ \
+ US_PM_MONITOR_PM_BUSY_COMP((dip), (upm)); \
+ mutex_exit(&(usdsp)->lock); \
+ DPRINTF(D_PM_MONITOR, ("us_pm_monitor: instance %d: pm_raise_power " \
+ "called to %d\n", ddi_get_instance((dip)), (new_level))); \
+ if (pm_raise_power((dip), US_PM_COMP_NUM, (new_level)) != \
+ DDI_SUCCESS) { \
+ cmn_err(CE_WARN, "us_pm_monitor: instance %d: can't " \
+ "raise CPU power level", ddi_get_instance((dip))); \
+ } \
+ mutex_enter(&(usdsp)->lock); \
+}
+
+/*
+ * In order to monitor a CPU, we need to hold cpu_lock to access CPU statistics.
+ * Holding cpu_lock is not allowed from a callout routine. We dispatch a
+ * taskq to do that job.
+ */
+static void
+us_pm_monitor_disp(void *arg)
+{
+ us_devstate_t *usdsp = (us_devstate_t *)arg;
+
+ /*
+ * We are here because the last task has scheduled a timeout.
+ * The queue should be empty at this time.
+ */
+ mutex_enter(&usdsp->us_pm.timeout_lock);
+ if (!taskq_dispatch(usdsp->us_pm.tq, us_pm_monitor, arg, TQ_NOSLEEP)) {
+ mutex_exit(&usdsp->us_pm.timeout_lock);
+ DPRINTF(D_PM_MONITOR, ("us_pm_monitor_disp: failed to dispatch "
+ "the us_pm_monitor taskq\n"));
+ mutex_enter(&usdsp->lock);
+ US_PM_MONITOR_INIT(usdsp);
+ mutex_exit(&usdsp->lock);
+ return;
+ }
+ usdsp->us_pm.timeout_count++;
+ mutex_exit(&usdsp->us_pm.timeout_lock);
+}
+
+/*
+ * Monitors each CPU for the amount of time idle thread was running in the
+ * last quantum and arranges for the CPU to go to the lower or higher speed.
+ * Called at the time interval appropriate for the current speed. The
+ * time interval for normal speed is US_PM_QUANT_CNT_NORMAL. The time interval
+ * for other speeds (including unknown speed) is US_PM_QUANT_CNT_OTHR.
+ */
+static void
+us_pm_monitor(void *arg)
+{
+ us_devstate_t *usdsp = (us_devstate_t *)arg;
+ us_pm_t *upm;
+ us_pm_spd_t *cur_spd, *new_spd;
+ cpu_t *cp;
+ dev_info_t *dip;
+ uint_t idle_cnt, user_cnt;
+ clock_t lbolt_cnt, user_ticks, idle_ticks;
+ hrtime_t cphrt;
+
+#define GET_CPU_DATA(c, t, o) cphrt = c->cpu_acct[t]; \
+ scalehrtime((hrtime_t *)&cphrt); \
+ o = NSEC_TO_TICK(cphrt)
+
+ mutex_enter(&usdsp->lock);
+ upm = &(usdsp->us_pm);
+ if (upm->timeout_id == 0) {
+ mutex_exit(&usdsp->lock);
+ goto do_return;
+ }
+ cur_spd = upm->cur_spd;
+ dip = usdsp->dip;
+
+ /*
+ * It is possible that we are monitoring a CPU which hasn't
+ * been initialized yet. We just come back under the assumption
+ * that this situation is temporary and rare. If in future this
+ * is not true (e.g. we are running on really big machines which
+ * has many CPUs going in and out of service), we might need to
+ * revisit this and have this routine called only when corresponding
+ * CPU is initialized.
+ */
+ /*
+ * We assume that a CPU is initialized and has a valid cpu_t
+ * structure, if it is ready for cross calls. If this changes,
+ * additional checks might be needed.
+ */
+ if (!(CPU_XCALL_READY(usdsp->cpu_id))) {
+ DPRINTF(D_PM_MONITOR, ("us_pm_monitor: instance %d: "
+ "CPU not ready for x-calls\n", ddi_get_instance(dip)));
+ /*
+ * Make sure that we are busy so that framework doesn't
+ * try to bring us down in this situation.
+ */
+ US_PM_MONITOR_PM_BUSY_COMP(dip, upm);
+ US_PM_MONITOR_INIT(usdsp);
+ mutex_exit(&usdsp->lock);
+ goto do_return;
+ }
+
+ /*
+ * Make sure that we are still not at unknown power level.
+ */
+ if (cur_spd == NULL) {
+ DPRINTF(D_PM_MONITOR, ("us_pm_monitor: instance %d: "
+ "cur_spd is unknown\n", ddi_get_instance(dip)));
+ US_PM_MONITOR_PM_BUSY_AND_RAISE(dip, usdsp, upm,
+ upm->targ_spd->pm_level);
+ /*
+ * We just changed the speed. Wait till at least next
+ * call to this routine before proceeding ahead.
+ */
+ US_PM_MONITOR_INIT(usdsp);
+ mutex_exit(&usdsp->lock);
+ goto do_return;
+ }
+
+ mutex_enter(&cpu_lock);
+ if ((cp = cpu_get(usdsp->cpu_id)) == NULL) {
+ mutex_exit(&cpu_lock);
+ US_PM_MONITOR_INIT(usdsp);
+ mutex_exit(&usdsp->lock);
+ cmn_err(CE_WARN, "us_pm_monitor: instance %d: can't get cpu_t",
+ ddi_get_instance(dip));
+ goto do_return;
+ }
+ GET_CPU_DATA(cp, CMS_USER, user_ticks);
+ GET_CPU_DATA(cp, CMS_IDLE, idle_ticks);
+
+ /*
+ * We can't do anything when we have just switched to a state
+ * because there is no valid timestamp.
+ */
+ if (upm->lastquan_idle == 0) {
+ upm->lastquan_idle = idle_ticks;
+ upm->lastquan_user = user_ticks;
+ upm->lastquan_lbolt = lbolt;
+ mutex_exit(&cpu_lock);
+ US_PM_MONITOR_INIT(usdsp);
+ mutex_exit(&usdsp->lock);
+ goto do_return;
+ }
+
+ idle_cnt = idle_ticks - upm->lastquan_idle;
+ upm->lastquan_idle = idle_ticks;
+ user_cnt = user_ticks - upm->lastquan_user;
+ upm->lastquan_user = user_ticks;
+ /*
+ * Various watermarks are based on this routine being called back
+ * exactly at the requested period. This is not guaranteed
+ * because this routine is called from a taskq that is dispatched
+ * from a timeout routine. Handle this by finding out how many
+ * ticks have elapsed since the last call (lbolt_cnt) and adjusting
+ * the idle_cnt based on the delay added to the requested period
+ * by timeout and taskq.
+ */
+ lbolt_cnt = lbolt - upm->lastquan_lbolt;
+ upm->lastquan_lbolt = lbolt;
+ mutex_exit(&cpu_lock);
+ /*
+ * Time taken between recording the current counts and
+ * arranging the next call of this routine is an error in our
+ * calculation. We minimize the error by calling
+ * US_PM_MONITOR_INIT() here instead of end of this routine.
+ */
+ US_PM_MONITOR_INIT(usdsp);
+ DPRINTF(D_PM_MONITOR_VERBOSE, ("us_pm_monitor: instance %d: "
+ "idle count %d, user count %d, pm_level %d, pm_busycnt %d\n",
+ ddi_get_instance(dip), idle_cnt, user_cnt, cur_spd->pm_level,
+ upm->pm_busycnt));
+
+#ifdef DEBUG
+ /*
+ * Notify that timeout and taskq has caused delays and we need to
+ * scale our parameters accordingly.
+ *
+ * To get accurate result, don't turn on other DPRINTFs with
+ * the following DPRINTF. PROM calls generated by other
+ * DPRINTFs changes the timing.
+ */
+ if (lbolt_cnt > cur_spd->quant_cnt) {
+ DPRINTF(D_PM_MONITOR_DELAY, ("us_pm_monitor: instance %d: "
+ "lbolt count %d > quantum_count %d\n",
+ ddi_get_instance(dip), lbolt_cnt, cur_spd->quant_cnt));
+ }
+#endif /* DEBUG */
+
+ /*
+ * Adjust counts based on the delay added by timeout and taskq.
+ */
+ idle_cnt = (idle_cnt * cur_spd->quant_cnt) / lbolt_cnt;
+ user_cnt = (user_cnt * cur_spd->quant_cnt) / lbolt_cnt;
+ if ((user_cnt > cur_spd->user_hwm) || (idle_cnt < cur_spd->idle_lwm &&
+ cur_spd->idle_blwm_cnt >= us_pm_idle_blwm_cnt_max)) {
+ cur_spd->idle_blwm_cnt = 0;
+ cur_spd->idle_bhwm_cnt = 0;
+ /*
+ * In normal situation, arrange to go to next higher speed.
+ * If we are running in special direct pm mode, we just stay
+ * at the current speed.
+ */
+ if (us_direct_pm) {
+ US_PM_MONITOR_PM_BUSY_COMP(dip, upm);
+ } else {
+ new_spd = cur_spd->up_spd;
+ ASSERT(new_spd != cur_spd);
+ US_PM_MONITOR_PM_BUSY_AND_RAISE(dip, usdsp, upm,
+ new_spd->pm_level);
+ }
+ } else if ((user_cnt <= cur_spd->user_lwm) &&
+ (idle_cnt >= cur_spd->idle_hwm)) {
+ cur_spd->idle_blwm_cnt = 0;
+ cur_spd->idle_bhwm_cnt = 0;
+ /*
+ * Arrange to go to next lower speed by informing our idle
+ * status to the power management framework.
+ */
+ US_PM_MONITOR_PM_IDLE_COMP(dip, upm);
+ } else {
+ /*
+ * If we are between the idle water marks and have not
+ * been here enough consecutive times to be considered
+ * busy, just increment the count and return.
+ */
+ if ((idle_cnt < cur_spd->idle_hwm) &&
+ (idle_cnt >= cur_spd->idle_lwm) &&
+ (cur_spd->idle_bhwm_cnt < us_pm_idle_bhwm_cnt_max)) {
+ cur_spd->idle_blwm_cnt = 0;
+ cur_spd->idle_bhwm_cnt++;
+ mutex_exit(&usdsp->lock);
+ goto do_return;
+ }
+ if (idle_cnt < cur_spd->idle_lwm) {
+ cur_spd->idle_blwm_cnt++;
+ cur_spd->idle_bhwm_cnt = 0;
+ }
+ /*
+ * Arranges to stay at the current speed.
+ */
+ US_PM_MONITOR_PM_BUSY_COMP(dip, upm);
+ }
+ mutex_exit(&usdsp->lock);
+do_return:
+ mutex_enter(&upm->timeout_lock);
+ ASSERT(upm->timeout_count > 0);
+ upm->timeout_count--;
+ cv_signal(&upm->timeout_cv);
+ mutex_exit(&upm->timeout_lock);
+}