1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
|
/*
* CDDL HEADER START
*
* The contents of this file are subject to the terms of the
* Common Development and Distribution License, Version 1.0 only
* (the "License"). You may not use this file except in compliance
* with the License.
*
* You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
* or http://www.opensolaris.org/os/licensing.
* See the License for the specific language governing permissions
* and limitations under the License.
*
* When distributing Covered Code, include this CDDL HEADER in each
* file and include the License file at usr/src/OPENSOLARIS.LICENSE.
* If applicable, add the following below this CDDL HEADER, with the
* fields enclosed by brackets "[]" replaced with your own identifying
* information: Portions Copyright [yyyy] [name of copyright owner]
*
* CDDL HEADER END
*/
/* Copyright (c) 1984, 1986, 1987, 1988, 1989 AT&T */
/* All Rights Reserved */
/*
* Copyright 2005 Sun Microsystems, Inc. All rights reserved.
* Use is subject to license terms.
*/
#pragma ident "%Z%%M% %I% %E% SMI"
/*
* acctprc
* reads std. input (acct.h format),
* writes std. output (tacct format)
* sorted by uid
* adds login names
*/
#include <stdio.h>
#include <sys/types.h>
#include <sys/param.h>
#include "acctdef.h"
#include <sys/acct.h>
#include <string.h>
#include <search.h>
#include <stdlib.h>
struct acct ab;
struct ptmp pb;
struct tacct tb;
struct utab {
uid_t ut_uid;
char ut_name[NSZ];
float ut_cpu[2]; /* cpu time (mins) */
float ut_kcore[2]; /* kcore-mins */
long ut_pc; /* # processes */
} * ub;
static int usize;
void **root = NULL;
void output(void);
void enter(struct ptmp *);
int
main(int argc, char **argv)
{
long elaps[2];
ulong_t etime, stime;
unsigned long mem;
#ifdef uts
float expand();
#else
ulong_t expand();
#endif
while (fread(&ab, sizeof(ab), 1, stdin) == 1) {
if (!MYKIND(ab.ac_flag))
continue;
pb.pt_uid = ab.ac_uid;
CPYN(pb.pt_name, NULL);
/*
* approximate cpu P/NP split as same as elapsed time
*/
if ((etime = SECS(expand(ab.ac_etime))) == 0)
etime = 1;
stime = expand(ab.ac_stime) + expand(ab.ac_utime);
mem = expand(ab.ac_mem);
if(pnpsplit(ab.ac_btime, etime, elaps) == 0) {
fprintf(stderr, "acctprc: could not calculate prime/non-prime hours\n");
exit(1);
}
pb.pt_cpu[0] = (double)stime * (double)elaps[0] / etime;
pb.pt_cpu[1] = (stime > pb.pt_cpu[0])? stime - pb.pt_cpu[0] : 0;
pb.pt_cpu[1] = stime - pb.pt_cpu[0];
if (stime)
pb.pt_mem = (mem + stime - 1) / stime;
else
pb.pt_mem = 0; /* unlikely */
enter(&pb);
}
output();
exit(0);
}
int node_compare(const void *node1, const void *node2)
{
if (((const struct utab *)node1)->ut_uid > \
((const struct utab *)node2)->ut_uid)
return(1);
else if (((const struct utab *)node1)->ut_uid < \
((const struct utab *)node2)->ut_uid)
return(-1);
else return(0);
}
void
enter(struct ptmp *p)
{
double memk;
struct utab **pt;
if ((ub = (struct utab *)malloc(sizeof (struct utab))) == NULL) {
fprintf(stderr, "acctprc: malloc fail!\n");
exit(2);
}
ub->ut_uid = p->pt_uid;
CPYN(ub->ut_name, p->pt_name);
ub->ut_cpu[0] = MINT(p->pt_cpu[0]);
ub->ut_cpu[1] = MINT(p->pt_cpu[1]);
memk = KCORE(pb.pt_mem);
ub->ut_kcore[0] = memk * MINT(p->pt_cpu[0]);
ub->ut_kcore[1] = memk * MINT(p->pt_cpu[1]);
ub->ut_pc = 1;
if (*(pt = (struct utab **)tsearch((void *)ub, (void **)&root, \
node_compare)) == NULL) {
fprintf(stderr, "Not enough space available to build tree\n");
exit(1);
}
if (*pt != ub) {
(*pt)->ut_cpu[0] += MINT(p->pt_cpu[0]);
(*pt)->ut_cpu[1] += MINT(p->pt_cpu[1]);
(*pt)->ut_kcore[0] += memk * MINT(p->pt_cpu[0]);
(*pt)->ut_kcore[1] += memk * MINT(p->pt_cpu[1]);
(*pt)->ut_pc++;
free(ub);
}
}
void print_node(const void *node, VISIT order, int level) {
if (order == postorder || order == leaf) {
tb.ta_uid = (*(struct utab **)node)->ut_uid;
CPYN(tb.ta_name, (char *)uidtonam((*(struct utab **)node)->ut_uid));
tb.ta_cpu[0] = (*(struct utab **)node)->ut_cpu[0];
tb.ta_cpu[1] = (*(struct utab **)node)->ut_cpu[1];
tb.ta_kcore[0] = (*(struct utab **)node)->ut_kcore[0];
tb.ta_kcore[1] = (*(struct utab **)node)->ut_kcore[1];
tb.ta_pc = (*(struct utab **)node)->ut_pc;
fwrite(&tb, sizeof(tb), 1, stdout);
}
}
void
output(void)
{
twalk((struct utab *)root, print_node);
}
|