1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
|
/*
* CDDL HEADER START
*
* The contents of this file are subject to the terms of the
* Common Development and Distribution License, Version 1.0 only
* (the "License"). You may not use this file except in compliance
* with the License.
*
* You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
* or http://www.opensolaris.org/os/licensing.
* See the License for the specific language governing permissions
* and limitations under the License.
*
* When distributing Covered Code, include this CDDL HEADER in each
* file and include the License file at usr/src/OPENSOLARIS.LICENSE.
* If applicable, add the following below this CDDL HEADER, with the
* fields enclosed by brackets "[]" replaced with your own identifying
* information: Portions Copyright [yyyy] [name of copyright owner]
*
* CDDL HEADER END
*/
/*
* Copyright 2004 Sun Microsystems, Inc. All rights reserved.
* Use is subject to license terms.
*/
#pragma ident "%Z%%M% %I% %E% SMI"
#include <stdio.h>
#include <malloc.h>
#include <math.h>
#include <errno.h>
#include <memory.h>
#include <sys/param.h>
#include <sys/types.h>
#include <sys/ioctl.h>
#include <AudioGain.h>
#include <AudioTypePcm.h>
#define irint(d) ((int)d)
// initialize constants for instananeous gain normalization
const double AudioGain::LoSigInstantRange = .008;
const double AudioGain::HiSigInstantRange = .48;
// initialize constants for weighted gain normalization
const double AudioGain::NoSigWeight = .0000;
const double AudioGain::LoSigWeightRange = .001;
const double AudioGain::HiSigWeightRange = .050;
// u-law max value converted to floating point
const double AudioGain::PeakSig = .9803765;
// XXX - patchable dc time constant: TC = 1 / (sample rate / DCfreq)
int DCfreq = 500;
const double AudioGain::DCtimeconstant = .1;
// patchable debugging flag
int debug_agc = 0;
// Constructor
AudioGain::
AudioGain():
clipcnt(0), DCaverage(0.), instant_gain(0.),
weighted_peaksum(0.), weighted_sum(0.),
weighted_avgsum(0.), weighted_cnt(0),
gain_cache(NULL)
{
}
// Destructor
AudioGain::
~AudioGain()
{
if (gain_cache != NULL) {
delete gain_cache;
}
}
// Return TRUE if we can handle this data type
Boolean AudioGain::
CanConvert(
const AudioHdr& hdr) const
{
return (float_convert.CanConvert(hdr));
}
// Return latest instantaneous gain
double AudioGain::
InstantGain()
{
return ((double)instant_gain);
}
// Return latest weighted gain
double AudioGain::
WeightedGain()
{
double g;
// Accumulated sum is averaged by the cache size and number of sums
if ((weighted_cnt > 0) && (gain_cache_size > 0.)) {
g = weighted_avgsum / gain_cache_size;
g /= weighted_cnt;
g -= NoSigWeight;
if (g > HiSigWeightRange) {
g = 1.;
} else if (g < 0.) {
g = 0.;
} else {
g /= HiSigWeightRange;
}
} else {
g = 0.;
}
return (g);
}
// Return latest weighted peak
// Clears the weighted peak for next calculation.
double AudioGain::
WeightedPeak()
{
double g;
// Peak sum is averaged by the cache size
if (gain_cache_size > 0.) {
g = weighted_peaksum / gain_cache_size;
g -= NoSigWeight;
if (g > HiSigWeightRange) {
g = 1.;
} else if (g < 0.) {
g = 0.;
} else {
g /= HiSigWeightRange;
}
} else {
g = 0.;
}
weighted_peaksum = 0.;
return (g);
}
// Return TRUE if signal clipped during last processed buffer
Boolean AudioGain::
Clipped()
{
Boolean clipped;
clipped = (clipcnt > 0);
return (clipped);
}
// Flush gain state
void AudioGain::
Flush()
{
clipcnt = 0;
DCaverage = 0.;
instant_gain = 0.;
weighted_peaksum = 0.;
weighted_sum = 0.;
weighted_avgsum = 0.;
weighted_cnt = 0;
if (gain_cache != NULL) {
delete gain_cache;
gain_cache = NULL;
}
}
// Process an input buffer according to the specified flags
// The input buffer is consumed if the reference count is zero!
AudioError AudioGain::
Process(
AudioBuffer* inbuf,
int type)
{
AudioHdr newhdr;
AudioError err;
if (inbuf == NULL)
return (AUDIO_ERR_BADARG);
if (Undefined(inbuf->GetLength())) {
err = AUDIO_ERR_BADARG;
process_error:
// report error and toss the buffer if it is not referenced
inbuf->RaiseError(err);
inbuf->Reference();
inbuf->Dereference();
return (err);
}
// Set up to convert to floating point; verify all header formats
newhdr = inbuf->GetHeader();
if (!float_convert.CanConvert(newhdr)) {
err = AUDIO_ERR_HDRINVAL;
goto process_error;
}
newhdr.encoding = FLOAT;
newhdr.bytes_per_unit = 8;
if ((err = newhdr.Validate()) || !float_convert.CanConvert(newhdr)) {
err = AUDIO_ERR_HDRINVAL;
goto process_error;
}
// Convert to floating-point up front, if necessary
if (inbuf->GetHeader() != newhdr) {
err = float_convert.Convert(inbuf, newhdr);
if (err)
goto process_error;
}
// Reference the resulting buffer to make sure it gets ditched later
inbuf->Reference();
// run through highpass filter to reject DC
process_dcfilter(inbuf);
if (type & AUDIO_GAIN_INSTANT)
process_instant(inbuf);
if (type & AUDIO_GAIN_WEIGHTED)
process_weighted(inbuf);
inbuf->Dereference();
return (AUDIO_SUCCESS);
}
// Run the buffer through a simple, dc filter.
// Buffer is assumed to be floating-point double PCM
void AudioGain::
process_dcfilter(
AudioBuffer* inbuf)
{
int i;
Boolean lastpeak;
double val;
double dcweight;
double timeconstant;
AudioHdr inhdr;
double *inptr;
size_t frames;
inhdr = inbuf->GetHeader();
inptr = (double *)inbuf->GetAddress();
frames = (size_t)inhdr.Time_to_Samples(inbuf->GetLength());
clipcnt = 0;
lastpeak = FALSE;
// Time constant corresponds to the number of samples for 500Hz
timeconstant = 1. / (inhdr.sample_rate / (double)DCfreq);
dcweight = 1. - timeconstant;
// loop through the input buffer, rewriting with weighted data
// XXX - should deal with multi-channel data!
// XXX - for now, check first channel only
for (i = 0; i < frames; i++, inptr += inhdr.channels) {
val = *inptr;
// Two max values in a row constitutes clipping
if ((val >= PeakSig) || (val <= -PeakSig)) {
if (lastpeak) {
clipcnt++;
} else {
lastpeak = TRUE;
}
} else {
lastpeak = FALSE;
}
// Add in this value to weighted average
DCaverage = (DCaverage * dcweight) + (val * timeconstant);
val -= DCaverage;
if (val > 1.)
val = 1.;
else if (val < -1.)
val = -1.;
*inptr = val;
}
}
// Calculate a single energy value averaged from the input buffer
// Buffer is assumed to be floating-point double PCM
void AudioGain::
process_instant(
AudioBuffer* inbuf)
{
int i;
double val;
double sum;
double sv;
AudioHdr inhdr;
double *inptr;
size_t frames;
inhdr = inbuf->GetHeader();
inptr = (double *)inbuf->GetAddress();
frames = (size_t)inhdr.Time_to_Samples(inbuf->GetLength());
// loop through the input buffer, calculating gain
// XXX - should deal with multi-channel data!
// XXX - for now, check first channel only
sum = 0.;
for (i = 0; i < frames; i++, inptr += inhdr.channels) {
// Get absolute value
sum += fabs(*inptr);
}
sum /= (double)frames;
// calculate level meter value (between 0 & 1)
val = log10(1. + (9. * sum));
sv = val;
// Normalize to within a reasonable range
val -= LoSigInstantRange;
if (val > HiSigInstantRange) {
val = 1.;
} else if (val < 0.) {
val = 0.;
} else {
val /= HiSigInstantRange;
}
instant_gain = val;
if (debug_agc != 0) {
printf("audio_amplitude: avg = %7.5f log value = %7.5f, "
"adjusted = %7.5f\n", sum, sv, val);
}
}
// Calculate a weighted gain for agc computations
// Buffer is assumed to be floating-point double PCM
void AudioGain::
process_weighted(
AudioBuffer* inbuf)
{
int i;
double val;
double nosig;
AudioHdr inhdr;
double *inptr;
size_t frames;
Double sz;
inhdr = inbuf->GetHeader();
inptr = (double *)inbuf->GetAddress();
frames = (size_t)inhdr.Time_to_Samples(inbuf->GetLength());
sz = (Double) frames;
// Allocate gain cache...all calls will hopefully be the same length
if (gain_cache == NULL) {
gain_cache = new double[frames];
for (i = 0; i < frames; i++) {
gain_cache[i] = 0.;
}
gain_cache_size = sz;
} else if (sz > gain_cache_size) {
frames = (size_t)irint(gain_cache_size);
}
// Scale up the 'no signal' level to avoid a divide in the inner loop
nosig = NoSigWeight * gain_cache_size;
// For each sample:
// calculate the sum of squares for a window around the sample;
// save the peak sum of squares;
// keep a running average of the sum of squares
//
// XXX - should deal with multi-channel data!
// XXX - for now, check first channel only
for (i = 0; i < frames; i++, inptr += inhdr.channels) {
val = *inptr;
val *= val;
weighted_sum += val;
weighted_sum -= gain_cache[i];
gain_cache[i] = val; // save value to subtract later
if (weighted_sum > weighted_peaksum)
weighted_peaksum = weighted_sum; // save peak
// Only count this sample towards the average if it is
// above threshold (this attempts to keep the volume
// from pumping up when there is no input signal).
if (weighted_sum > nosig) {
weighted_avgsum += weighted_sum;
weighted_cnt++;
}
}
}
|