summaryrefslogtreecommitdiff
path: root/usr/src/cmd/cmd-inet/usr.lib/in.mpathd/mpd_probe.c
blob: 298bec923c68b62719939f943244955ccaed791a (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
/*
 * Copyright 2009 Sun Microsystems, Inc.  All rights reserved.
 * Use is subject to license terms.
 */

/*
 * Copyright (c) 1987 Regents of the University of California.
 * All rights reserved.
 *
 * Redistribution and use in source and binary forms are permitted
 * provided that the above copyright notice and this paragraph are
 * duplicated in all such forms and that any documentation,
 * advertising materials, and other materials related to such
 * distribution and use acknowledge that the software was developed
 * by the University of California, Berkeley. The name of the
 * University may not be used to endorse or promote products derived
 * from this software without specific prior written permission.
 * THIS SOFTWARE IS PROVIDED ``AS IS'' AND WITHOUT ANY EXPRESS OR
 * IMPLIED WARRANTIES, INCLUDING, WITHOUT LIMITATION, THE IMPLIED
 * WARRANTIES OF MERCHANTIBILITY AND FITNESS FOR A PARTICULAR PURPOSE.
 */

#include "mpd_defs.h"
#include "mpd_tables.h"

/*
 * Probe types for probe()
 */
#define	PROBE_UNI	0x1234		/* Unicast probe packet */
#define	PROBE_MULTI	0x5678		/* Multicast probe packet */
#define	PROBE_RTT	0x9abc		/* RTT only probe packet */

#define	MSEC_PERMIN	(60 * MILLISEC)	/* Number of milliseconds in a minute */

/*
 * Format of probe / probe response packets. This is an ICMP Echo request
 * or ICMP Echo reply. Packet format is same for both IPv4 and IPv6
 */
struct pr_icmp
{
	uint8_t  pr_icmp_type;		/* type field */
	uint8_t  pr_icmp_code;		/* code field */
	uint16_t pr_icmp_cksum;		/* checksum field */
	uint16_t pr_icmp_id;		/* Identification */
	uint16_t pr_icmp_seq;		/* sequence number */
	uint64_t pr_icmp_timestamp;	/* Time stamp (in ns) */
	uint32_t pr_icmp_mtype;		/* Message type */
};

static struct in6_addr all_nodes_mcast_v6 = { { 0xff, 0x2, 0x0, 0x0,
				    0x0, 0x0, 0x0, 0x0,
				    0x0, 0x0, 0x0, 0x0,
				    0x0, 0x0, 0x0, 0x1 } };

static struct in_addr all_nodes_mcast_v4 = { { { 0xe0, 0x0, 0x0, 0x1 } } };

static hrtime_t	last_fdt_bumpup_time;	/* When FDT was bumped up last */

static void		*find_ancillary(struct msghdr *msg, int cmsg_level,
    int cmsg_type);
static void		pi_set_crtt(struct target *tg, int64_t m,
    boolean_t is_probe_uni);
static void		incoming_echo_reply(struct phyint_instance *pii,
    struct pr_icmp *reply, struct in6_addr fromaddr, struct timeval *recv_tvp);
static void		incoming_rtt_reply(struct phyint_instance *pii,
    struct pr_icmp *reply, struct in6_addr fromaddr);
static void		incoming_mcast_reply(struct phyint_instance *pii,
    struct pr_icmp *reply, struct in6_addr fromaddr);

static boolean_t	check_pg_crtt_improved(struct phyint_group *pg);
static boolean_t	check_pii_crtt_improved(struct phyint_instance *pii);
static boolean_t	check_exception_target(struct phyint_instance *pii,
    struct target *target);
static void		probe_fail_info(struct phyint_instance *pii,
    struct target *cur_tg, struct probe_fail_count *pfinfo);
static void		probe_success_info(struct phyint_instance *pii,
    struct target *cur_tg, struct probe_success_count *psinfo);
static boolean_t	phyint_repaired(struct phyint *pi);

static boolean_t	highest_ack_tg(uint16_t seq, struct target *tg);
static int 		in_cksum(ushort_t *addr, int len);
static void		reset_snxt_basetimes(void);
static int		ns2ms(int64_t ns);
static int64_t		tv2ns(struct timeval *);

/*
 * CRTT - Conservative Round Trip Time Estimate
 * Probe success - A matching probe reply received before CRTT ms has elapsed
 *	after sending the probe.
 * Probe failure - No probe reply received and more than CRTT ms has elapsed
 *	after sending the probe.
 *
 * TLS - Time last success. Most recent probe ack received at this time.
 * TFF - Time first fail. The time of the earliest probe failure in
 *	a consecutive series of probe failures.
 * NUM_PROBE_REPAIRS  - Number of consecutive successful probes required
 * 	before declaring phyint repair.
 * NUM_PROBE_FAILS - Number of consecutive probe failures required to
 *	declare a phyint failure.
 *
 * 			Phyint state diagram
 *
 * The state of a phyint that is capable of being probed, is completely
 * specified by the 3-tuple <pi_state, pg_state, I>.
 *
 * A phyint starts in either PI_RUNNING or PI_OFFLINE, depending on whether
 * IFF_OFFLINE is set.  If the phyint is also configured with a test address
 * (the common case) and probe targets, then a phyint must also successfully
 * be able to send and receive probes in order to remain in the PI_RUNNING
 * state (otherwise, it transitions to PI_FAILED).
 *
 * Further, if a PI_RUNNING phyint is configured with a test address but is
 * unable to find any probe targets, it will transition to the PI_NOTARGETS
 * state, which indicates that the link is apparently functional but that
 * in.mpathd is unable to send probes to verify functionality (in this case,
 * in.mpathd makes the optimistic assumption that the interface is working
 * correctly and thus does not mark the interface FAILED, but reports it as
 * IPMP_IF_UNKNOWN through the async events and query interfaces).
 *
 * At any point, a phyint may be administratively marked offline via if_mpadm.
 * In this case, the interface always transitions to PI_OFFLINE, regardless
 * of its previous state.  When the interface is later brought back online,
 * in.mpathd acts as if the interface is new (and thus it transitions to
 * PI_RUNNING or PI_FAILED based on the status of the link and the result of
 * its probes, if probes are sent).
 *
 * pi_state -  PI_RUNNING or PI_FAILED
 *	PI_RUNNING: The failure detection logic says the phyint is good.
 *	PI_FAILED: The failure detection logic says the phyint has failed.
 *
 * pg_state  - PG_OK, PG_DEGRADED, or PG_FAILED.
 *	PG_OK: All interfaces in the group are OK.
 *	PG_DEGRADED: Some interfaces in the group are unusable.
 *	PG_FAILED: All interfaces in the group are unusable.
 *
 *	In the case of router targets, we assume that the current list of
 *	targets obtained from the routing table, is still valid, so the
 *	phyint stat is PI_FAILED. In the case of host targets, we delete the
 *	list of targets, and multicast to the all hosts, to reconstruct the
 *	target list. So the phyints are in the PI_NOTARGETS state.
 *
 * I -	value of (pi_flags & IFF_INACTIVE)
 *	IFF_INACTIVE: This phyint will not send or receive packets.
 *	Usually, inactive is tied to standby interfaces that are not yet
 *	needed (e.g., no non-standby interfaces in the group have failed).
 *	When failback has been disabled (FAILBACK=no configured), phyint can
 *	also be a non-STANDBY. In this case IFF_INACTIVE is set when phyint
 *	subsequently recovers after a failure.
 *
 * Not all 9 possible combinations of the above 3-tuple are possible.
 *
 * I is tracked by IP. pi_state is tracked by mpathd.
 *
 *			pi_state state machine
 * ---------------------------------------------------------------------------
 *	Event			State			New State
 *				Action:
 * ---------------------------------------------------------------------------
 *	IP interface failure	(PI_RUNNING, I == 0) -> (PI_FAILED, I == 0)
 *	detection		: set IFF_FAILED on this phyint
 *
 *	IP interface failure	(PI_RUNNING, I == 1) -> (PI_FAILED, I == 0)
 *	detection		: set IFF_FAILED on this phyint
 *
 *	IP interface repair 	(PI_FAILED, I == 0, FAILBACK=yes)
 *	detection				     -> (PI_RUNNING, I == 0)
 *				: clear IFF_FAILED on this phyint
 *
 *	IP interface repair 	(PI_FAILED, I == 0, FAILBACK=no)
 *	detection				     ->	(PI_RUNNING, I == 1)
 *				: clear IFF_FAILED on this phyint
 *				: if failback is disabled set I == 1
 *
 *	Group failure		(perform on all phyints in the group)
 *	detection 		PI_RUNNING		PI_FAILED
 *	(Router targets)	: set IFF_FAILED
 *
 *	Group failure		(perform on all phyints in the group)
 *	detection 		PI_RUNNING		PI_NOTARGETS
 *	(Host targets)		: set IFF_FAILED
 *				: delete the target list on all phyints
 * ---------------------------------------------------------------------------
 */

struct probes_missed probes_missed;

/*
 * Compose and transmit an ICMP ECHO REQUEST packet.  The IP header
 * will be added on by the kernel.  The id field identifies this phyint.
 * and the sequence number is an increasing (modulo 2^^16) integer. The data
 * portion holds the time value when the packet is sent. On echo this is
 * extracted to compute the round-trip time. Three different types of
 * probe packets are used.
 *
 * PROBE_UNI: This type is used to do failure detection / failure recovery
 *	and RTT calculation. PROBE_UNI probes are spaced apart in time,
 *	not less than the current CRTT. pii_probes[] stores data
 *	about these probes. These packets consume sequence number space.
 *
 * PROBE_RTT: This type is used to make only rtt measurements. Normally these
 * 	are not used. Under heavy network load, the rtt may go up very high,
 *	due to a spike, or may appear to go high, due to extreme scheduling
 * 	delays. Once the network stress is removed, mpathd takes long time to
 *	recover, because the probe_interval is already high, and it takes
 *	a long time to send out sufficient number of probes to bring down the
 *	rtt. To avoid this problem, PROBE_RTT probes are sent out every
 *	user_probe_interval ms. and will cause only rtt updates. These packets
 *	do not consume sequence number space nor is information about these
 *	packets stored in the pii_probes[]
 *
 * PROBE_MULTI: This type is only used to construct a list of targets, when
 *	no targets are known. The packet is multicast to the all hosts addr.
 */
static void
probe(struct phyint_instance *pii, uint_t probe_type, hrtime_t start_hrtime)
{
	hrtime_t sent_hrtime;
	struct timeval sent_tv;
	struct pr_icmp probe_pkt;	/* Probe packet */
	struct sockaddr_storage targ;	/* target address */
	uint_t	targaddrlen;		/* targed address length */
	int	pr_ndx;			/* probe index in pii->pii_probes[] */
	boolean_t sent = _B_FALSE;
	int	rval;

	if (debug & D_TARGET) {
		logdebug("probe(%s %s %d %lld)\n", AF_STR(pii->pii_af),
		    pii->pii_name, probe_type, start_hrtime);
	}

	assert(pii->pii_probe_sock != -1);
	assert(probe_type == PROBE_UNI || probe_type == PROBE_MULTI ||
	    probe_type == PROBE_RTT);

	probe_pkt.pr_icmp_type = (pii->pii_af == AF_INET) ?
	    ICMP_ECHO_REQUEST : ICMP6_ECHO_REQUEST;
	probe_pkt.pr_icmp_code = 0;
	probe_pkt.pr_icmp_cksum = 0;
	probe_pkt.pr_icmp_seq = htons(pii->pii_snxt);

	/*
	 * Since there is no need to do arithmetic on the icmpid,
	 * (only equality check is done) pii_icmpid is stored in
	 * network byte order at initialization itself.
	 */
	probe_pkt.pr_icmp_id = pii->pii_icmpid;
	probe_pkt.pr_icmp_timestamp = htonll(start_hrtime);
	probe_pkt.pr_icmp_mtype = htonl(probe_type);

	/*
	 * If probe_type is PROBE_MULTI, this packet will be multicast to
	 * the all hosts address. Otherwise it is unicast to the next target.
	 */
	assert(probe_type == PROBE_MULTI || ((pii->pii_target_next != NULL) &&
	    pii->pii_rtt_target_next != NULL));

	bzero(&targ, sizeof (targ));
	targ.ss_family = pii->pii_af;

	if (pii->pii_af == AF_INET6) {
		struct in6_addr *addr6;

		addr6 = &((struct sockaddr_in6 *)&targ)->sin6_addr;
		targaddrlen = sizeof (struct sockaddr_in6);
		if (probe_type == PROBE_MULTI) {
			*addr6 = all_nodes_mcast_v6;
		} else if (probe_type == PROBE_UNI) {
			*addr6 = pii->pii_target_next->tg_address;
		} else { /* type is PROBE_RTT */
			*addr6 = pii->pii_rtt_target_next->tg_address;
		}
	} else {
		struct in_addr *addr4;

		addr4 = &((struct sockaddr_in *)&targ)->sin_addr;
		targaddrlen = sizeof (struct sockaddr_in);
		if (probe_type == PROBE_MULTI) {
			*addr4 = all_nodes_mcast_v4;
		} else if (probe_type == PROBE_UNI) {
			IN6_V4MAPPED_TO_INADDR(
			    &pii->pii_target_next->tg_address, addr4);
		} else { /* type is PROBE_RTT */
			IN6_V4MAPPED_TO_INADDR(
			    &pii->pii_rtt_target_next->tg_address, addr4);
		}

		/*
		 * Compute the IPv4 icmp checksum. Does not cover the IP header.
		 */
		probe_pkt.pr_icmp_cksum =
		    in_cksum((ushort_t *)&probe_pkt, (int)sizeof (probe_pkt));
	}

	/*
	 * Use the current time as the time we sent.  Not atomic, but the best
	 * we can do from here.
	 */
	sent_hrtime = gethrtime();
	(void) gettimeofday(&sent_tv, NULL);
	rval = sendto(pii->pii_probe_sock, &probe_pkt, sizeof (probe_pkt), 0,
	    (struct sockaddr *)&targ, targaddrlen);
	/*
	 * If the send would block, this may either be transient or a hang in a
	 * lower layer. We pretend the probe was actually sent, the daemon will
	 * not see a reply to the probe and will fail the interface if normal
	 * failure detection criteria are met.
	 */
	if (rval == sizeof (probe_pkt) ||
	    (rval == -1 && errno == EWOULDBLOCK)) {
		sent = _B_TRUE;
	} else {
		logperror_pii(pii, "probe: probe sendto");
	}

	/*
	 * If this is a PROBE_UNI probe packet being unicast to a target, then
	 * update our tables. We will need this info in processing the probe
	 * response. PROBE_MULTI and PROBE_RTT packets are not used for
	 * the purpose of failure or recovery detection. PROBE_MULTI packets
	 * are only used to construct a list of targets. PROBE_RTT packets are
	 * used only for updating the rtt and not for failure detection.
	 */
	if (probe_type == PROBE_UNI && sent) {
		pr_ndx = pii->pii_probe_next;
		assert(pr_ndx >= 0 && pr_ndx < PROBE_STATS_COUNT);

		/* Collect statistics, before we reuse the last slot. */
		if (pii->pii_probes[pr_ndx].pr_status == PR_LOST)
			pii->pii_cum_stats.lost++;
		else if (pii->pii_probes[pr_ndx].pr_status == PR_ACKED)
			pii->pii_cum_stats.acked++;
		pii->pii_cum_stats.sent++;

		pii->pii_probes[pr_ndx].pr_id = pii->pii_snxt;
		pii->pii_probes[pr_ndx].pr_tv_sent = sent_tv;
		pii->pii_probes[pr_ndx].pr_hrtime_sent = sent_hrtime;
		pii->pii_probes[pr_ndx].pr_hrtime_start = start_hrtime;
		pii->pii_probes[pr_ndx].pr_target = pii->pii_target_next;
		probe_chstate(&pii->pii_probes[pr_ndx], pii, PR_UNACKED);

		pii->pii_probe_next = PROBE_INDEX_NEXT(pii->pii_probe_next);
		pii->pii_target_next = target_next(pii->pii_target_next);
		assert(pii->pii_target_next != NULL);
		/*
		 * If we have a single variable to denote the next target to
		 * probe for both rtt probes and failure detection probes, we
		 * could end up with a situation where the failure detection
		 * probe targets become disjoint from the rtt probe targets.
		 * Eg. if 2 targets and the actual fdt is double the user
		 * specified fdt. So we have 2 variables. In this scheme
		 * we also reset pii_rtt_target_next for every fdt probe,
		 * though that may not be necessary.
		 */
		pii->pii_rtt_target_next = pii->pii_target_next;
		pii->pii_snxt++;
	} else if (probe_type == PROBE_RTT) {
		pii->pii_rtt_target_next =
		    target_next(pii->pii_rtt_target_next);
		assert(pii->pii_rtt_target_next != NULL);
	}
}

/*
 * Incoming IPv4 data from wire, is received here. Called from main.
 */
void
in_data(struct phyint_instance *pii)
{
	struct	sockaddr_in 	from;
	struct	in6_addr	fromaddr;
	static uint64_t in_packet[(IP_MAXPACKET + 1)/8];
	static uint64_t ancillary_data[(IP_MAXPACKET + 1)/8];
	struct ip *ip;
	int 	iphlen;
	int 	len;
	char 	abuf[INET_ADDRSTRLEN];
	struct msghdr msg;
	struct iovec iov;
	struct pr_icmp *reply;
	struct timeval *recv_tvp;

	if (debug & D_PROBE) {
		logdebug("in_data(%s %s)\n",
		    AF_STR(pii->pii_af), pii->pii_name);
	}

	iov.iov_base = (char *)in_packet;
	iov.iov_len = sizeof (in_packet);
	msg.msg_iov = &iov;
	msg.msg_iovlen = 1;
	msg.msg_name = (struct sockaddr *)&from;
	msg.msg_namelen = sizeof (from);
	msg.msg_control = ancillary_data;
	msg.msg_controllen = sizeof (ancillary_data);

	/*
	 * Poll has already told us that a message is waiting,
	 * on this socket. Read it now. We should not block.
	 */
	if ((len = recvmsg(pii->pii_probe_sock, &msg, 0)) < 0) {
		logperror_pii(pii, "in_data: recvmsg");
		return;
	}

	/*
	 * If the datalink has indicated the link is down, don't go
	 * any further.
	 */
	if (LINK_DOWN(pii->pii_phyint))
		return;

	/* Get the printable address for error reporting */
	(void) inet_ntop(AF_INET, &from.sin_addr, abuf, sizeof (abuf));

	/* Ignore packets > 64k or control buffers that don't fit */
	if (msg.msg_flags & (MSG_TRUNC|MSG_CTRUNC)) {
		if (debug & D_PKTBAD) {
			logdebug("Truncated message: msg_flags 0x%x from %s\n",
			    msg.msg_flags, abuf);
		}
		return;
	}

	/* Make sure packet contains at least minimum ICMP header */
	ip = (struct ip *)in_packet;
	iphlen = ip->ip_hl << 2;
	if (len < iphlen + ICMP_MINLEN) {
		if (debug & D_PKTBAD) {
			logdebug("in_data: packet too short (%d bytes)"
			    " from %s\n", len, abuf);
		}
		return;
	}

	/*
	 * Subtract the IP hdr length, 'len' will be length of the probe
	 * reply, starting from the icmp hdr.
	 */
	len -= iphlen;
	/* LINTED */
	reply = (struct pr_icmp *)((char *)in_packet + iphlen);

	/* Probe replies are icmp echo replies. Ignore anything else */
	if (reply->pr_icmp_type != ICMP_ECHO_REPLY)
		return;

	/*
	 * The icmp id should match what we sent, which is stored
	 * in pi_icmpid. The icmp code for reply must be 0.
	 * The reply content must be a struct pr_icmp
	 */
	if (reply->pr_icmp_id != pii->pii_icmpid) {
		/* Not in response to our probe */
		return;
	}

	if (reply->pr_icmp_code != 0) {
		logtrace("probe reply code %d from %s on %s\n",
		    reply->pr_icmp_code, abuf, pii->pii_name);
		return;
	}

	if (len < sizeof (struct pr_icmp)) {
		logtrace("probe reply too short: %d bytes from %s on %s\n",
		    len, abuf, pii->pii_name);
		return;
	}

	recv_tvp = find_ancillary(&msg, SOL_SOCKET, SCM_TIMESTAMP);
	if (recv_tvp == NULL) {
		logtrace("message without timestamp from %s on %s\n",
		    abuf, pii->pii_name);
		return;
	}

	IN6_INADDR_TO_V4MAPPED(&from.sin_addr, &fromaddr);
	if (reply->pr_icmp_mtype == htonl(PROBE_UNI))
		/* Unicast probe reply */
		incoming_echo_reply(pii, reply, fromaddr, recv_tvp);
	else if (reply->pr_icmp_mtype == htonl(PROBE_MULTI)) {
		/* Multicast reply */
		incoming_mcast_reply(pii, reply, fromaddr);
	} else if (reply->pr_icmp_mtype == htonl(PROBE_RTT)) {
		incoming_rtt_reply(pii, reply, fromaddr);
	} else {
		/* Probably not in response to our probe */
		logtrace("probe reply type: %d from %s on %s\n",
		    reply->pr_icmp_mtype, abuf, pii->pii_name);
		return;
	}
}

/*
 * Incoming IPv6 data from wire is received here. Called from main.
 */
void
in6_data(struct phyint_instance *pii)
{
	struct sockaddr_in6 from;
	static uint64_t in_packet[(IP_MAXPACKET + 1)/8];
	static uint64_t ancillary_data[(IP_MAXPACKET + 1)/8];
	int len;
	char abuf[INET6_ADDRSTRLEN];
	struct msghdr msg;
	struct iovec iov;
	void	*opt;
	struct	pr_icmp *reply;
	struct	timeval *recv_tvp;

	if (debug & D_PROBE) {
		logdebug("in6_data(%s %s)\n",
		    AF_STR(pii->pii_af), pii->pii_name);
	}

	iov.iov_base = (char *)in_packet;
	iov.iov_len = sizeof (in_packet);
	msg.msg_iov = &iov;
	msg.msg_iovlen = 1;
	msg.msg_name = (struct sockaddr *)&from;
	msg.msg_namelen = sizeof (from);
	msg.msg_control = ancillary_data;
	msg.msg_controllen = sizeof (ancillary_data);

	if ((len = recvmsg(pii->pii_probe_sock, &msg, 0)) < 0) {
		logperror_pii(pii, "in6_data: recvmsg");
		return;
	}

	/*
	 * If the datalink has indicated that the link is down, don't go
	 * any further.
	 */
	if (LINK_DOWN(pii->pii_phyint))
		return;

	/* Get the printable address for error reporting */
	(void) inet_ntop(AF_INET6, &from.sin6_addr, abuf, sizeof (abuf));
	if (len < ICMP_MINLEN) {
		if (debug & D_PKTBAD) {
			logdebug("Truncated message: msg_flags 0x%x from %s\n",
			    msg.msg_flags, abuf);
		}
		return;
	}
	/* Ignore packets > 64k or control buffers that don't fit */
	if (msg.msg_flags & (MSG_TRUNC|MSG_CTRUNC)) {
		if (debug & D_PKTBAD) {
			logdebug("Truncated message: msg_flags 0x%x from %s\n",
			    msg.msg_flags, abuf);
		}
		return;
	}

	reply = (struct pr_icmp *)in_packet;
	if (reply->pr_icmp_type != ICMP6_ECHO_REPLY)
		return;

	if (reply->pr_icmp_id != pii->pii_icmpid) {
		/* Not in response to our probe */
		return;
	}

	/*
	 * The kernel has already verified the the ICMP checksum.
	 */
	if (!IN6_IS_ADDR_LINKLOCAL(&from.sin6_addr)) {
		logtrace("ICMPv6 echo reply source address not linklocal from "
		    "%s on %s\n", abuf, pii->pii_name);
		return;
	}
	opt = find_ancillary(&msg, IPPROTO_IPV6, IPV6_RTHDR);
	if (opt != NULL) {
		/* Can't allow routing headers in probe replies  */
		logtrace("message with routing header from %s on %s\n",
		    abuf, pii->pii_name);
		return;
	}

	if (reply->pr_icmp_code != 0) {
		logtrace("probe reply code: %d from %s on %s\n",
		    reply->pr_icmp_code, abuf, pii->pii_name);
		return;
	}
	if (len < (sizeof (struct pr_icmp))) {
		logtrace("probe reply too short: %d bytes from %s on %s\n",
		    len, abuf, pii->pii_name);
		return;
	}

	recv_tvp = find_ancillary(&msg, SOL_SOCKET, SCM_TIMESTAMP);
	if (recv_tvp == NULL) {
		logtrace("message without timestamp from %s on %s\n",
		    abuf, pii->pii_name);
		return;
	}

	if (reply->pr_icmp_mtype == htonl(PROBE_UNI)) {
		incoming_echo_reply(pii, reply, from.sin6_addr, recv_tvp);
	} else if (reply->pr_icmp_mtype == htonl(PROBE_MULTI)) {
		incoming_mcast_reply(pii, reply, from.sin6_addr);
	} else if (reply->pr_icmp_mtype == htonl(PROBE_RTT)) {
		incoming_rtt_reply(pii, reply, from.sin6_addr);
	} else  {
		/* Probably not in response to our probe */
		logtrace("probe reply type: %d from %s on %s\n",
		    reply->pr_icmp_mtype, abuf, pii->pii_name);
	}
}

/*
 * Process the incoming rtt reply, in response to our rtt probe.
 * Common for both IPv4 and IPv6. Unlike incoming_echo_reply() we don't
 * have any stored information about the probe we sent. So we don't log
 * any errors if we receive bad replies.
 */
static void
incoming_rtt_reply(struct phyint_instance *pii, struct pr_icmp *reply,
    struct in6_addr fromaddr)
{
	int64_t	m;		/* rtt measurement in ns */
	char	abuf[INET6_ADDRSTRLEN];
	struct	target	*target;
	struct 	phyint_group *pg;

	/* Get the printable address for error reporting */
	(void) pr_addr(pii->pii_af, fromaddr, abuf, sizeof (abuf));

	if (debug & D_PROBE) {
		logdebug("incoming_rtt_reply: %s %s %s\n",
		    AF_STR(pii->pii_af), pii->pii_name, abuf);
	}

	/* Do we know this target ? */
	target = target_lookup(pii, fromaddr);
	if (target == NULL)
		return;

	m = (int64_t)(gethrtime() - ntohll(reply->pr_icmp_timestamp));
	/* Invalid rtt. It has wrapped around */
	if (m < 0)
		return;

	/*
	 * Don't update rtt until we see NUM_PROBE_REPAIRS probe responses
	 * The initial few responses after the interface is repaired may
	 * contain high rtt's because they could have been queued up waiting
	 * for ARP/NDP resolution on a failed interface.
	 */
	pg = pii->pii_phyint->pi_group;
	if ((pii->pii_state != PI_RUNNING) || GROUP_FAILED(pg))
		return;

	/*
	 * Update rtt only if the new rtt is lower than the current rtt.
	 * (specified by the 3rd parameter to pi_set_crtt).
	 * If a spike has caused the current probe_interval to be >
	 * user_probe_interval, then this mechanism is used to bring down
	 * the rtt rapidly once the network stress is removed.
	 * If the new rtt is higher than the current rtt, we don't want to
	 * update the rtt. We are having more than 1 outstanding probe and
	 * the increase in rtt we are seeing is being unnecessarily weighted
	 * many times. The regular rtt update will be handled by
	 * incoming_echo_reply() and will take care of any rtt increase.
	 */
	pi_set_crtt(target, m, _B_FALSE);
	if ((target->tg_crtt < (pg->pg_probeint / LOWER_FDT_TRIGGER)) &&
	    (user_failure_detection_time < pg->pg_fdt) &&
	    (last_fdt_bumpup_time + MIN_SETTLING_TIME < gethrtime())) {
		/*
		 * If the crtt has now dropped by a factor of LOWER_FT_TRIGGER,
		 * investigate if we can improve the failure detection time to
		 * meet whatever the user specified.
		 */
		if (check_pg_crtt_improved(pg)) {
			pg->pg_fdt = MAX(pg->pg_fdt / NEXT_FDT_MULTIPLE,
			    user_failure_detection_time);
			pg->pg_probeint = pg->pg_fdt / (NUM_PROBE_FAILS + 2);
			if (pii->pii_phyint->pi_group != phyint_anongroup) {
				logerr("Improved failure detection time %d ms "
				    "on (%s %s) for group \"%s\"\n",
				    pg->pg_fdt, AF_STR(pii->pii_af),
				    pii->pii_name,
				    pii->pii_phyint->pi_group->pg_name);
			}
			if (user_failure_detection_time == pg->pg_fdt) {
				/* Avoid any truncation or rounding errors */
				pg->pg_probeint = user_probe_interval;
				/*
				 * No more rtt probes will be sent. The actual
				 * fdt has dropped to the user specified value.
				 * pii_fd_snxt_basetime and pii_snxt_basetime
				 * will be in sync henceforth.
				 */
				reset_snxt_basetimes();
			}
		}
	}
}

/*
 * Process the incoming echo reply, in response to our unicast probe.
 * Common for both IPv4 and IPv6
 */
static void
incoming_echo_reply(struct phyint_instance *pii, struct pr_icmp *reply,
    struct in6_addr fromaddr, struct timeval *recv_tvp)
{
	int64_t	m;		/* rtt measurement in ns */
	hrtime_t cur_hrtime;	/* in ns from some arbitrary point */
	char	abuf[INET6_ADDRSTRLEN];
	int	pr_ndx;
	struct	target	*target;
	boolean_t exception;
	uint64_t pr_icmp_timestamp;
	uint16_t pr_icmp_seq;
	struct	probe_stats *pr_statp;
	struct 	phyint_group *pg = pii->pii_phyint->pi_group;

	/* Get the printable address for error reporting */
	(void) pr_addr(pii->pii_af, fromaddr, abuf, sizeof (abuf));

	if (debug & D_PROBE) {
		logdebug("incoming_echo_reply: %s %s %s seq %u recv_tvp %lld\n",
		    AF_STR(pii->pii_af), pii->pii_name, abuf,
		    ntohs(reply->pr_icmp_seq), tv2ns(recv_tvp));
	}

	pr_icmp_timestamp = ntohll(reply->pr_icmp_timestamp);
	pr_icmp_seq = ntohs(reply->pr_icmp_seq);

	/* Reject out of window probe replies */
	if (SEQ_GE(pr_icmp_seq, pii->pii_snxt) ||
	    SEQ_LT(pr_icmp_seq, pii->pii_snxt - PROBE_STATS_COUNT)) {
		logtrace("out of window probe seq %u snxt %u on %s from %s\n",
		    pr_icmp_seq, pii->pii_snxt, pii->pii_name, abuf);
		pii->pii_cum_stats.unknown++;
		return;
	}

	cur_hrtime = gethrtime();
	m = (int64_t)(cur_hrtime - pr_icmp_timestamp);
	if (m < 0) {
		/*
		 * This is a ridiculously high value of rtt. rtt has wrapped
		 * around. Log a message, and ignore the rtt.
		 */
		logerr("incoming_echo_reply: rtt wraparound cur_hrtime %lld "
		    "reply timestamp %lld\n", cur_hrtime, pr_icmp_timestamp);
	}

	/*
	 * Get the probe index pr_ndx corresponding to the received icmp seq.
	 * number in our pii->pii_probes[] array. The icmp sequence number
	 * pii_snxt corresponds to the probe index pii->pii_probe_next
	 */
	pr_ndx = MOD_SUB(pii->pii_probe_next,
	    (uint16_t)(pii->pii_snxt - pr_icmp_seq), PROBE_STATS_COUNT);

	assert(PR_STATUS_VALID(pii->pii_probes[pr_ndx].pr_status));

	target = pii->pii_probes[pr_ndx].pr_target;

	/*
	 * Perform sanity checks, whether this probe reply that we
	 * have received is genuine
	 */
	if (target != NULL) {
		/*
		 * Compare the src. addr of the received ICMP or ICMPv6
		 * probe reply with the target address in our tables.
		 */
		if (!IN6_ARE_ADDR_EQUAL(&target->tg_address, &fromaddr)) {
			/*
			 * We don't have any record of having sent a probe to
			 * this target. This is a fake probe reply. Log an error
			 */
			logtrace("probe status %d Fake probe reply seq %u "
			    "snxt %u on %s from %s\n",
			    pii->pii_probes[pr_ndx].pr_status,
			    pr_icmp_seq, pii->pii_snxt, pii->pii_name, abuf);
			pii->pii_cum_stats.unknown++;
			return;
		} else if (pii->pii_probes[pr_ndx].pr_status == PR_ACKED) {
			/*
			 * The address matches, but our tables indicate that
			 * this probe reply has been acked already. So this
			 * is a duplicate probe reply. Log an error
			 */
			logtrace("probe status %d Duplicate probe reply seq %u "
			    "snxt %u on %s from %s\n",
			    pii->pii_probes[pr_ndx].pr_status,
			    pr_icmp_seq, pii->pii_snxt, pii->pii_name, abuf);
			pii->pii_cum_stats.unknown++;
			return;
		}
	} else {
		/*
		 * Target must not be NULL in the PR_UNACKED state
		 */
		assert(pii->pii_probes[pr_ndx].pr_status != PR_UNACKED);
		if (pii->pii_probes[pr_ndx].pr_status == PR_UNUSED) {
			/*
			 * The probe stats slot is unused. So we didn't
			 * send out any probe to this target. This is a fake.
			 * Log an error.
			 */
			logtrace("probe status %d Fake probe reply seq %u "
			    "snxt %u on %s from %s\n",
			    pii->pii_probes[pr_ndx].pr_status,
			    pr_icmp_seq, pii->pii_snxt, pii->pii_name, abuf);
		}
		pii->pii_cum_stats.unknown++;
		return;
	}

	/*
	 * If the rtt does not appear to be right, don't update the
	 * rtt stats. This can happen if the system dropped into the
	 * debugger, or the system was hung or too busy for a
	 * substantial time that we didn't get a chance to run.
	 */
	if ((m < 0) || (ns2ms(m) > PROBE_STATS_COUNT * pg->pg_probeint)) {
		/*
		 * If the probe corresponding to this received response
		 * was truly sent 'm' ns. ago, then this response must
		 * have been rejected by the sequence number checks. The
		 * fact that it has passed the sequence number checks
		 * means that the measured rtt is wrong. We were probably
		 * scheduled long after the packet was received.
		 */
		goto out;
	}

	/*
	 * Don't update rtt until we see NUM_PROBE_REPAIRS probe responses
	 * The initial few responses after the interface is repaired may
	 * contain high rtt's because they could have been queued up waiting
	 * for ARP/NDP resolution on a failed interface.
	 */
	if ((pii->pii_state != PI_RUNNING) || GROUP_FAILED(pg))
		goto out;

	/*
	 * Don't update the Conservative Round Trip Time estimate for this
	 * (phint, target) pair if this is the not the highest ack seq seen
	 * thus far on this target.
	 */
	if (!highest_ack_tg(pr_icmp_seq, target))
		goto out;

	/*
	 * Always update the rtt. This is a failure detection probe
	 * and we want to measure both increase / decrease in rtt.
	 */
	pi_set_crtt(target, m, _B_TRUE);

	/*
	 * If the crtt exceeds the average time between probes,
	 * investigate if this slow target is an exception. If so we
	 * can avoid this target and still meet the failure detection
	 * time. Otherwise we can't meet the failure detection time.
	 */
	if (target->tg_crtt > pg->pg_probeint) {
		exception = check_exception_target(pii, target);
		if (exception) {
			/*
			 * This target is exceptionally slow. Don't use it
			 * for future probes. check_exception_target() has
			 * made sure that we have at least MIN_PROBE_TARGETS
			 * other active targets
			 */
			if (pii->pii_targets_are_routers) {
				/*
				 * This is a slow router, mark it as slow
				 * and don't use it for further probes. We
				 * don't delete it, since it will be populated
				 * again when we do a router scan. Hence we
				 * need to maintain extra state (unlike the
				 * host case below).  Mark it as TG_SLOW.
				 */
				if (target->tg_status == TG_ACTIVE)
					pii->pii_ntargets--;
				target->tg_status = TG_SLOW;
				target->tg_latime = gethrtime();
				target->tg_rtt_sa = -1;
				target->tg_crtt = 0;
				target->tg_rtt_sd = 0;
				if (pii->pii_target_next == target) {
					pii->pii_target_next =
					    target_next(target);
				}
			} else {
				/*
				 * the slow target is not a router, we can
				 * just delete it. Send an icmp multicast and
				 * pick the fastest responder that is not
				 * already an active target. target_delete()
				 * adjusts pii->pii_target_next
				 */
				target_delete(target);
				probe(pii, PROBE_MULTI, cur_hrtime);
			}
		} else {
			/*
			 * We can't meet the failure detection time.
			 * Log a message, and update the detection time to
			 * whatever we can achieve.
			 */
			pg->pg_probeint = target->tg_crtt * NEXT_FDT_MULTIPLE;
			pg->pg_fdt = pg->pg_probeint * (NUM_PROBE_FAILS + 2);
			last_fdt_bumpup_time = gethrtime();
			if (pg != phyint_anongroup) {
				logtrace("Cannot meet requested failure"
				    " detection time of %d ms on (%s %s) new"
				    " failure detection time for group \"%s\""
				    " is %d ms\n", user_failure_detection_time,
				    AF_STR(pii->pii_af), pii->pii_name,
				    pg->pg_name, pg->pg_fdt);
			}
		}
	} else if ((target->tg_crtt < (pg->pg_probeint / LOWER_FDT_TRIGGER)) &&
	    (user_failure_detection_time < pg->pg_fdt) &&
	    (last_fdt_bumpup_time + MIN_SETTLING_TIME < gethrtime())) {
		/*
		 * If the crtt has now dropped by a factor of LOWER_FDT_TRIGGER
		 * investigate if we can improve the failure detection time to
		 * meet whatever the user specified.
		 */
		if (check_pg_crtt_improved(pg)) {
			pg->pg_fdt = MAX(pg->pg_fdt / NEXT_FDT_MULTIPLE,
			    user_failure_detection_time);
			pg->pg_probeint = pg->pg_fdt / (NUM_PROBE_FAILS + 2);
			if (pg != phyint_anongroup) {
				logtrace("Improved failure detection time %d ms"
				    " on (%s %s) for group \"%s\"\n",
				    pg->pg_fdt, AF_STR(pii->pii_af),
				    pii->pii_name, pg->pg_name);
			}
			if (user_failure_detection_time == pg->pg_fdt) {
				/* Avoid any truncation or rounding errors */
				pg->pg_probeint = user_probe_interval;
				/*
				 * No more rtt probes will be sent. The actual
				 * fdt has dropped to the user specified value.
				 * pii_fd_snxt_basetime and pii_snxt_basetime
				 * will be in sync henceforth.
				 */
				reset_snxt_basetimes();
			}
		}
	}
out:
	pr_statp = &pii->pii_probes[pr_ndx];
	pr_statp->pr_hrtime_ackproc = cur_hrtime;
	pr_statp->pr_hrtime_ackrecv = pr_statp->pr_hrtime_sent +
	    (tv2ns(recv_tvp) - tv2ns(&pr_statp->pr_tv_sent));

	probe_chstate(pr_statp, pii, PR_ACKED);

	/*
	 * Update pii->pii_rack, i.e. the sequence number of the last received
	 * probe response, based on the echo reply we have received now, if
	 * either of the following conditions are satisfied.
	 * a. pii_rack is outside the current receive window of
	 *    [pii->pii_snxt - PROBE_STATS_COUNT, pii->pii_snxt).
	 *    This means we have not received probe responses for a
	 *    long time, and the sequence number has wrapped around.
	 * b. pii_rack is within the current receive window and this echo
	 *    reply corresponds to the highest sequence number we have seen
	 *    so far.
	 */
	if (SEQ_GE(pii->pii_rack, pii->pii_snxt) ||
	    SEQ_LT(pii->pii_rack, pii->pii_snxt - PROBE_STATS_COUNT) ||
	    SEQ_GT(pr_icmp_seq, pii->pii_rack)) {
		pii->pii_rack = pr_icmp_seq;
	}
}

/*
 * Returns true if seq is the highest unacknowledged seq for target tg
 * else returns false
 */
static boolean_t
highest_ack_tg(uint16_t seq, struct target *tg)
{
	struct phyint_instance *pii;
	int	 pr_ndx;
	uint16_t pr_seq;

	pii = tg->tg_phyint_inst;

	/*
	 * Get the seq number of the most recent probe sent so far,
	 * and also get the corresponding probe index in the probe stats
	 * array.
	 */
	pr_ndx = PROBE_INDEX_PREV(pii->pii_probe_next);
	pr_seq = pii->pii_snxt;
	pr_seq--;

	/*
	 * Start from the most recent probe and walk back, trying to find
	 * an acked probe corresponding to target tg.
	 */
	for (; pr_ndx != pii->pii_probe_next;
	    pr_ndx = PROBE_INDEX_PREV(pr_ndx), pr_seq--) {
		if (pii->pii_probes[pr_ndx].pr_target == tg &&
		    pii->pii_probes[pr_ndx].pr_status == PR_ACKED) {
			if (SEQ_GT(pr_seq, seq))
				return (_B_FALSE);
		}
	}
	return (_B_TRUE);
}

/*
 * Check whether the crtt for the group has improved by a factor of
 * LOWER_FDT_TRIGGER.  Small crtt improvements are ignored to avoid failure
 * detection time flapping in the face of small crtt changes.
 */
static boolean_t
check_pg_crtt_improved(struct phyint_group *pg)
{
	struct	phyint *pi;

	if (debug & D_PROBE)
		logdebug("check_pg_crtt_improved()\n");

	/*
	 * The crtt for the group is only improved if each phyint_instance
	 * for both ipv4 and ipv6 is improved.
	 */
	for (pi = pg->pg_phyint; pi != NULL; pi = pi->pi_pgnext) {
		if (!check_pii_crtt_improved(pi->pi_v4) ||
		    !check_pii_crtt_improved(pi->pi_v6))
			return (_B_FALSE);
	}

	return (_B_TRUE);
}

/*
 * Check whether the crtt has improved substantially on this phyint_instance.
 * Returns _B_TRUE if there's no crtt information available, because pii
 * is NULL or the phyint_instance is not capable of probing.
 */
boolean_t
check_pii_crtt_improved(struct phyint_instance *pii) {
	struct 	target *tg;

	if (pii == NULL)
		return (_B_TRUE);

	if (!PROBE_CAPABLE(pii) ||
	    pii->pii_phyint->pi_state == PI_FAILED)
		return (_B_TRUE);

	for (tg = pii->pii_targets; tg != NULL; tg = tg->tg_next) {
		if (tg->tg_status != TG_ACTIVE)
			continue;
		if (tg->tg_crtt > (pii->pii_phyint->pi_group->pg_probeint /
		    LOWER_FDT_TRIGGER)) {
			return (_B_FALSE);
		}
	}

	return (_B_TRUE);
}

/*
 * This target responds very slowly to probes. The target's crtt exceeds
 * the probe interval of its group. Compare against other targets
 * and determine if this target is an exception, if so return true, else false
 */
static boolean_t
check_exception_target(struct phyint_instance *pii, struct target *target)
{
	struct	target *tg;
	char abuf[INET6_ADDRSTRLEN];

	if (debug & D_PROBE) {
		logdebug("check_exception_target(%s %s target %s)\n",
		    AF_STR(pii->pii_af), pii->pii_name,
		    pr_addr(pii->pii_af, target->tg_address,
		    abuf, sizeof (abuf)));
	}

	/*
	 * We should have at least MIN_PROBE_TARGETS + 1 good targets now,
	 * to make a good judgement. Otherwise don't drop this target.
	 */
	if (pii->pii_ntargets <  MIN_PROBE_TARGETS + 1)
		return (_B_FALSE);

	/*
	 * Determine whether only this particular target is slow.
	 * We know that this target's crtt exceeds the group's probe interval.
	 * If all other active targets have a
	 * crtt < (this group's probe interval) / EXCEPTION_FACTOR,
	 * then this target is considered slow.
	 */
	for (tg = pii->pii_targets; tg != NULL; tg = tg->tg_next) {
		if (tg != target && tg->tg_status == TG_ACTIVE) {
			if (tg->tg_crtt >
			    pii->pii_phyint->pi_group->pg_probeint /
			    EXCEPTION_FACTOR) {
				return (_B_FALSE);
			}
		}
	}

	return (_B_TRUE);
}

/*
 * Update the target list. The icmp all hosts multicast has given us
 * some host to which we can send probes. If we already have sufficient
 * targets, discard it.
 */
static void
incoming_mcast_reply(struct phyint_instance *pii, struct pr_icmp *reply,
    struct in6_addr fromaddr)
/* ARGSUSED */
{
	int af;
	char abuf[INET6_ADDRSTRLEN];
	struct phyint *pi;

	if (debug & D_PROBE) {
		logdebug("incoming_mcast_reply(%s %s %s)\n",
		    AF_STR(pii->pii_af), pii->pii_name,
		    pr_addr(pii->pii_af, fromaddr, abuf, sizeof (abuf)));
	}

	/*
	 * Using host targets is a fallback mechanism. If we have
	 * found a router, don't add this host target. If we already
	 * know MAX_PROBE_TARGETS, don't add another target.
	 */
	assert(pii->pii_ntargets <= MAX_PROBE_TARGETS);
	if (pii->pii_targets != NULL) {
		if (pii->pii_targets_are_routers ||
		    (pii->pii_ntargets == MAX_PROBE_TARGETS)) {
			return;
		}
	}

	if (IN6_IS_ADDR_UNSPECIFIED(&fromaddr) ||
	    IN6_IS_ADDR_V4MAPPED_ANY(&fromaddr)) {
		/*
		 * Guard against response from 0.0.0.0
		 * and ::. Log a trace message
		 */
		logtrace("probe response from %s on %s\n",
		    pr_addr(pii->pii_af, fromaddr, abuf, sizeof (abuf)),
		    pii->pii_name);
		return;
	}

	/*
	 * This address is one of our own, so reject this address as a
	 * valid probe target.
	 */
	af = pii->pii_af;
	if (own_address(fromaddr))
		return;

	/*
	 * If the phyint is part a named group, then add the address to all
	 * members of the group.  Otherwise, add the address only to the
	 * phyint itself, since other phyints in the anongroup may not be on
	 * the same subnet.
	 */
	pi = pii->pii_phyint;
	if (pi->pi_group == phyint_anongroup) {
		target_add(pii, fromaddr, _B_FALSE);
	} else {
		pi = pi->pi_group->pg_phyint;
		for (; pi != NULL; pi = pi->pi_pgnext)
			target_add(PHYINT_INSTANCE(pi, af), fromaddr, _B_FALSE);
	}
}

/*
 * Compute CRTT given an existing scaled average, scaled deviation estimate
 * and a new rtt time.  The formula is from Jacobson and Karels'
 * "Congestion Avoidance and Control" in SIGCOMM '88.  The variable names
 * are the same as those in Appendix A.2 of that paper.
 *
 * m = new measurement
 * sa = scaled RTT average (8 * average estimates)
 * sv = scaled mean deviation (mdev) of RTT (4 * deviation estimates).
 * crtt = Conservative round trip time. Used to determine whether probe
 * has timed out.
 *
 * New scaled average and deviation are passed back via sap and svp
 */
static int64_t
compute_crtt(int64_t *sap, int64_t *svp, int64_t m)
{
	int64_t sa = *sap;
	int64_t sv = *svp;
	int64_t crtt;
	int64_t saved_m = m;

	assert(*sap >= -1);
	assert(*svp >= 0);

	if (sa != -1) {
		/*
		 * Update average estimator:
		 *	new rtt = old rtt + 1/8 Error
		 *	    where Error = m - old rtt
		 *	i.e. 8 * new rtt = 8 * old rtt + Error
		 *	i.e. new sa =  old sa + Error
		 */
		m -= sa >> 3;		/* m is now Error in estimate. */
		if ((sa += m) < 0) {
			/* Don't allow the smoothed average to be negative. */
			sa = 0;
		}

		/*
		 * Update deviation estimator:
		 *	new mdev =  old mdev + 1/4 (abs(Error) - old mdev)
		 *	i.e. 4 * new mdev = 4 * old mdev +
		 *		(abs(Error) - old mdev)
		 * 	i.e. new sv = old sv + (abs(Error) - old mdev)
		 */
		if (m < 0)
			m = -m;
		m -= sv >> 2;
		sv += m;
	} else {
		/* Initialization. This is the first response received. */
		sa = (m << 3);
		sv = (m << 1);
	}

	crtt = (sa >> 3) + sv;

	if (debug & D_PROBE) {
		logerr("compute_crtt: m = %lld sa = %lld, sv = %lld -> "
		    "crtt = %lld\n", saved_m, sa, sv, crtt);
	}

	*sap = sa;
	*svp = sv;

	/*
	 * CRTT = average estimates  + 4 * deviation estimates
	 *	= sa / 8 + sv
	 */
	return (crtt);
}

static void
pi_set_crtt(struct target *tg, int64_t m, boolean_t is_probe_uni)
{
	struct phyint_instance *pii = tg->tg_phyint_inst;
	int probe_interval = pii->pii_phyint->pi_group->pg_probeint;
	int64_t sa = tg->tg_rtt_sa;
	int64_t sv = tg->tg_rtt_sd;
	int new_crtt;
	int i;

	if (debug & D_PROBE)
		logdebug("pi_set_crtt: target -  m %lld\n", m);

	/* store the round trip time, in case we need to defer computation */
	tg->tg_deferred[tg->tg_num_deferred] = m;

	new_crtt = ns2ms(compute_crtt(&sa, &sv, m));

	/*
	 * If this probe's round trip time would singlehandedly cause an
	 * increase in the group's probe interval consider it suspect.
	 */
	if ((new_crtt > probe_interval) && is_probe_uni) {
		if (debug & D_PROBE) {
			logdebug("Received a suspect probe on %s, new_crtt ="
			    " %d, probe_interval = %d, num_deferred = %d\n",
			    pii->pii_probe_logint->li_name, new_crtt,
			    probe_interval, tg->tg_num_deferred);
		}

		/*
		 * If we've deferred as many rtts as we plan on deferring, then
		 * assume the link really did slow down and process all queued
		 * rtts
		 */
		if (tg->tg_num_deferred == MAXDEFERREDRTT) {
			if (debug & D_PROBE) {
				logdebug("Received MAXDEFERREDRTT probes which "
				    "would cause an increased probe_interval.  "
				    "Integrating queued rtt data points.\n");
			}

			for (i = 0; i <= tg->tg_num_deferred; i++) {
				tg->tg_crtt = ns2ms(compute_crtt(&tg->tg_rtt_sa,
				    &tg->tg_rtt_sd, tg->tg_deferred[i]));
			}

			tg->tg_num_deferred = 0;
		} else {
			tg->tg_num_deferred++;
		}
		return;
	}

	/*
	 * If this is a normal probe, or an RTT probe that would lead to a
	 * reduced CRTT, then update our CRTT data.  Further, if this was
	 * a normal probe, pitch any deferred probes since our probes are
	 * again being answered within our CRTT estimates.
	 */
	if (is_probe_uni || new_crtt < tg->tg_crtt) {
		tg->tg_rtt_sa = sa;
		tg->tg_rtt_sd = sv;
		tg->tg_crtt = new_crtt;
		if (is_probe_uni)
			tg->tg_num_deferred = 0;
	}
}

/*
 * Return a pointer to the specified option buffer.
 * If not found return NULL.
 */
static void *
find_ancillary(struct msghdr *msg, int cmsg_level, int cmsg_type)
{
	struct cmsghdr *cmsg;

	for (cmsg = CMSG_FIRSTHDR(msg); cmsg != NULL;
	    cmsg = CMSG_NXTHDR(msg, cmsg)) {
		if (cmsg->cmsg_level == cmsg_level &&
		    cmsg->cmsg_type == cmsg_type) {
			return (CMSG_DATA(cmsg));
		}
	}
	return (NULL);
}

/*
 * Try to activate another INACTIVE interface in the same group as `pi'.
 * Prefer STANDBY INACTIVE to just INACTIVE.
 */
void
phyint_activate_another(struct phyint *pi)
{
	struct phyint *pi2;
	struct phyint *inactivepi = NULL;

	if (pi->pi_group == phyint_anongroup)
		return;

	for (pi2 = pi->pi_group->pg_phyint; pi2 != NULL; pi2 = pi2->pi_pgnext) {
		if (pi == pi2 || !phyint_is_functioning(pi2) ||
		    !(pi2->pi_flags & IFF_INACTIVE))
			continue;

		inactivepi = pi2;
		if (pi2->pi_flags & IFF_STANDBY)
			break;
	}

	if (inactivepi != NULL)
		(void) change_pif_flags(inactivepi, 0, IFF_INACTIVE);
}

/*
 * Transition a phyint to PI_RUNNING.  The caller must ensure that the
 * transition is appropriate.  Clears IFF_OFFLINE or IFF_FAILED if
 * appropriate.  Also sets IFF_INACTIVE on this or other interfaces as
 * appropriate (see comment below).  Finally, also updates the phyint's group
 * state to account for the change.
 */
void
phyint_transition_to_running(struct phyint *pi)
{
	struct phyint *pi2;
	struct phyint *actstandbypi = NULL;
	uint_t nactive = 0, nnonstandby = 0;
	boolean_t onlining = (pi->pi_state == PI_OFFLINE);
	boolean_t initial = (pi->pi_state == PI_INIT);
	uint64_t set, clear;

	/*
	 * The interface is running again, but should it or another interface
	 * in the group end up INACTIVE?  There are three cases:
	 *
	 * 1. If it's a STANDBY interface, it should be end up INACTIVE if
	 *    the group is operating at capacity (i.e., there are at least as
	 *    many active interfaces as non-STANDBY interfaces in the group).
	 *    No other interfaces should be changed.
	 *
	 * 2. If it's a non-STANDBY interface and we're onlining it or
	 *    FAILBACK is enabled, then it should *not* end up INACTIVE.
	 *    Further, if the group is above capacity as a result of this
	 *    interface, then an active STANDBY interface in the group should
	 *    end up INACTIVE.
	 *
	 * 3. If it's a non-STANDBY interface, we're repairing it, and
	 *    FAILBACK is disabled, then it should end up INACTIVE *unless*
	 *    the group was failed (in which case we have no choice but to
	 *    use it).  No other interfaces should be changed.
	 */
	if (pi->pi_group != phyint_anongroup) {
		pi2 = pi->pi_group->pg_phyint;
		for (; pi2 != NULL; pi2 = pi2->pi_pgnext) {
			if (!(pi2->pi_flags & IFF_STANDBY))
				nnonstandby++;

			if (phyint_is_functioning(pi2) &&
			    !(pi2->pi_flags & IFF_INACTIVE)) {
				nactive++;
				if (pi2->pi_flags & IFF_STANDBY)
					actstandbypi = pi2;
			}
		}
	}

	set = 0;
	clear = (onlining ? IFF_OFFLINE : IFF_FAILED);

	if (pi->pi_flags & IFF_STANDBY) {			/* case 1 */
		if (nactive >= nnonstandby)
			set |= IFF_INACTIVE;
		else
			clear |= IFF_INACTIVE;
	} else if (onlining || failback_enabled) {		/* case 2 */
		if (nactive >= nnonstandby && actstandbypi != NULL)
			(void) change_pif_flags(actstandbypi, IFF_INACTIVE, 0);
	} else if (!initial && !GROUP_FAILED(pi->pi_group)) {	/* case 3 */
		set |= IFF_INACTIVE;
	}
	(void) change_pif_flags(pi, set, clear);

	phyint_chstate(pi, PI_RUNNING);

	/*
	 * Update the group state to account for the change.
	 */
	phyint_group_refresh_state(pi->pi_group);
}

/*
 * Adjust IFF_INACTIVE on the provided `pi' to trend the group configuration
 * to have at least one active interface and as many active interfaces as
 * non-standby interfaces.
 */
void
phyint_standby_refresh_inactive(struct phyint *pi)
{
	struct phyint *pi2;
	uint_t nactive = 0, nnonstandby = 0;

	/*
	 * All phyints in the anonymous group are effectively in their own
	 * group and thus active regardless of whether they're marked standby.
	 */
	if (pi->pi_group == phyint_anongroup) {
		(void) change_pif_flags(pi, 0, IFF_INACTIVE);
		return;
	}

	/*
	 * If the phyint isn't functioning we can't consider it.
	 */
	if (!phyint_is_functioning(pi))
		return;

	for (pi2 = pi->pi_group->pg_phyint; pi2 != NULL; pi2 = pi2->pi_pgnext) {
		if (!(pi2->pi_flags & IFF_STANDBY))
			nnonstandby++;

		if (phyint_is_functioning(pi2) &&
		    !(pi2->pi_flags & IFF_INACTIVE))
			nactive++;
	}

	if (nactive == 0 || nactive < nnonstandby)
		(void) change_pif_flags(pi, 0, IFF_INACTIVE);
	else if (nactive > nnonstandby)
		(void) change_pif_flags(pi, IFF_INACTIVE, 0);
}

/*
 * See if a previously failed interface has started working again.
 */
void
phyint_check_for_repair(struct phyint *pi)
{
	if (!phyint_repaired(pi))
		return;

	if (pi->pi_group == phyint_anongroup) {
		logerr("IP interface repair detected on %s\n", pi->pi_name);
	} else {
		logerr("IP interface repair detected on %s of group %s\n",
		    pi->pi_name, pi->pi_group->pg_name);
	}

	/*
	 * If the interface is PI_OFFLINE, it can't be made PI_RUNNING yet.
	 * So just clear IFF_OFFLINE and defer phyint_transition_to_running()
	 * until it is brought back online.
	 */
	if (pi->pi_state == PI_OFFLINE) {
		(void) change_pif_flags(pi, 0, IFF_FAILED);
		return;
	}

	phyint_transition_to_running(pi);	/* calls phyint_chstate() */
}

/*
 * See if an interface has failed, or if the whole group of interfaces has
 * failed.
 */
static void
phyint_inst_check_for_failure(struct phyint_instance *pii)
{
	struct phyint	*pi = pii->pii_phyint;
	struct phyint	*pi2;
	boolean_t	was_active;

	switch (failure_state(pii)) {
	case PHYINT_FAILURE:
		was_active = ((pi->pi_flags & IFF_INACTIVE) == 0);

		(void) change_pif_flags(pi, IFF_FAILED, IFF_INACTIVE);
		if (pi->pi_group == phyint_anongroup) {
			logerr("IP interface failure detected on %s\n",
			    pii->pii_name);
		} else {
			logerr("IP interface failure detected on %s of group"
			    " %s\n", pii->pii_name, pi->pi_group->pg_name);
		}

		/*
		 * If the failed interface was active, activate another
		 * INACTIVE interface in the group if possible.
		 */
		if (was_active)
			phyint_activate_another(pi);

		/*
		 * If the interface is offline, the state change will be
		 * noted when it comes back online.
		 */
		if (pi->pi_state != PI_OFFLINE) {
			phyint_chstate(pi, PI_FAILED);
			reset_crtt_all(pi);
		}
		break;

	case GROUP_FAILURE:
		pi2 = pi->pi_group->pg_phyint;
		for (; pi2 != NULL; pi2 = pi2->pi_pgnext) {
			(void) change_pif_flags(pi2, IFF_FAILED, IFF_INACTIVE);
			if (pi2->pi_state == PI_OFFLINE) /* see comment above */
				continue;

			reset_crtt_all(pi2);
			/*
			 * In the case of host targets, we would have flushed
			 * the targets, and gone to PI_NOTARGETS state.
			 */
			if (pi2->pi_state == PI_RUNNING)
				phyint_chstate(pi2, PI_FAILED);
		}
		break;

	default:
		break;
	}
}

/*
 * Determines if any timeout event has occurred and returns the number of
 * milliseconds until the next timeout event for the phyint. Returns
 * TIMER_INFINITY for "never".
 */
uint_t
phyint_inst_timer(struct phyint_instance *pii)
{
	int 	pr_ndx;
	uint_t	timeout;
	struct	target	*cur_tg;
	struct	probe_stats *pr_statp;
	struct	phyint_instance *pii_other;
	struct	phyint *pi;
	int	valid_unack_count;
	int	i;
	int	interval;
	uint_t	check_time;
	uint_t	cur_time;
	hrtime_t cur_hrtime;
	int	probe_interval = pii->pii_phyint->pi_group->pg_probeint;

	cur_hrtime = gethrtime();
	cur_time = ns2ms(cur_hrtime);

	if (debug & D_TIMER) {
		logdebug("phyint_inst_timer(%s %s)\n",
		    AF_STR(pii->pii_af), pii->pii_name);
	}

	pii_other = phyint_inst_other(pii);
	if (!PROBE_ENABLED(pii) && !PROBE_ENABLED(pii_other)) {
		/*
		 * Check to see if we're here due to link up/down flapping; If
		 * enough time has passed, then try to bring the interface
		 * back up; otherwise, schedule a timer to bring it back up
		 * when enough time *has* elapsed.
		 */
		pi = pii->pii_phyint;
		if (pi->pi_state == PI_FAILED && LINK_UP(pi)) {
			check_time = pi->pi_whenup[pi->pi_whendx] + MSEC_PERMIN;
			if (check_time > cur_time)
				return (check_time - cur_time);

			phyint_check_for_repair(pi);
		}
	}

	/*
	 * If probing is not enabled on this phyint instance, don't proceed.
	 */
	if (!PROBE_ENABLED(pii))
		return (TIMER_INFINITY);

	/*
	 * If the timer has fired too soon, probably triggered
	 * by some other phyint instance, return the remaining
	 * time
	 */
	if (TIME_LT(cur_time, pii->pii_snxt_time))
		return (pii->pii_snxt_time - cur_time);

	/*
	 * If the link is down, don't send any probes for now.
	 */
	if (LINK_DOWN(pii->pii_phyint))
		return (TIMER_INFINITY);

	/*
	 * Randomize the next probe time, between MIN_RANDOM_FACTOR
	 * and MAX_RANDOM_FACTOR with respect to the base probe time.
	 * Base probe time is strictly periodic.
	 */
	interval = GET_RANDOM(
	    (int)(MIN_RANDOM_FACTOR * user_probe_interval),
	    (int)(MAX_RANDOM_FACTOR * user_probe_interval));
	pii->pii_snxt_time = pii->pii_snxt_basetime + interval;

	/*
	 * Check if the current time > next time to probe. If so, we missed
	 * sending 1 or more probes, probably due to heavy system load. At least
	 * 'MIN_RANDOM_FACTOR * user_probe_interval' ms has elapsed since we
	 * were scheduled. Make adjustments to the times, in multiples of
	 * user_probe_interval.
	 */
	if (TIME_GT(cur_time, pii->pii_snxt_time)) {
		int n;

		n = (cur_time - pii->pii_snxt_time) / user_probe_interval;
		pii->pii_snxt_time 	+= (n + 1) * user_probe_interval;
		pii->pii_snxt_basetime 	+= (n + 1) * user_probe_interval;
		logtrace("missed sending %d probes cur_time %u snxt_time %u"
		    " snxt_basetime %u\n", n + 1, cur_time, pii->pii_snxt_time,
		    pii->pii_snxt_basetime);

		/* Collect statistics about missed probes */
		probes_missed.pm_nprobes += n + 1;
		probes_missed.pm_ntimes++;
	}
	pii->pii_snxt_basetime += user_probe_interval;
	interval = pii->pii_snxt_time - cur_time;
	if (debug & D_TARGET) {
		logdebug("cur_time %u snxt_time %u snxt_basetime %u"
		    " interval %u\n", cur_time, pii->pii_snxt_time,
		    pii->pii_snxt_basetime, interval);
	}

	/*
	 * If no targets are known, we need to send an ICMP multicast. The
	 * probe type is PROBE_MULTI.  We'll check back in 'interval' msec
	 * to see if we found a target.
	 */
	if (pii->pii_target_next == NULL) {
		assert(pii->pii_ntargets == 0);
		pii->pii_fd_snxt_basetime = pii->pii_snxt_basetime;
		probe(pii, PROBE_MULTI, cur_time);
		return (interval);
	}

	if ((user_probe_interval != probe_interval) &&
	    TIME_LT(pii->pii_snxt_time, pii->pii_fd_snxt_basetime)) {
		/*
		 * the failure detection (fd) probe timer has not yet fired.
		 * Need to send only an rtt probe. The probe type is PROBE_RTT.
		 */
		probe(pii, PROBE_RTT, cur_hrtime);
		return (interval);
	}
	/*
	 * the fd probe timer has fired. Need to do all failure
	 * detection / recovery calculations, and then send an fd probe
	 * of type PROBE_UNI.
	 */
	if (user_probe_interval == probe_interval) {
		/*
		 * We could have missed some probes, and then adjusted
		 * pii_snxt_basetime above. Otherwise we could have
		 * blindly added probe_interval to pii_fd_snxt_basetime.
		 */
		pii->pii_fd_snxt_basetime = pii->pii_snxt_basetime;
	} else {
		pii->pii_fd_snxt_basetime += probe_interval;
		if (TIME_GT(cur_time, pii->pii_fd_snxt_basetime)) {
			int n;

			n = (cur_time - pii->pii_fd_snxt_basetime) /
			    probe_interval;
			pii->pii_fd_snxt_basetime += (n + 1) * probe_interval;
		}
	}

	/*
	 * We can have at most, the latest 2 probes that we sent, in
	 * the PR_UNACKED state. All previous probes sent, are either
	 * PR_LOST or PR_ACKED. An unacknowledged probe is considered
	 * timed out if the probe's time_start + the CRTT < currenttime.
	 * For each of the last 2 probes, examine whether it has timed
	 * out. If so, mark it PR_LOST. The probe stats is a circular array.
	 */
	pr_ndx = PROBE_INDEX_PREV(pii->pii_probe_next);
	valid_unack_count = 0;

	for (i = 0; i < 2; i++) {
		pr_statp = &pii->pii_probes[pr_ndx];
		cur_tg = pii->pii_probes[pr_ndx].pr_target;
		switch (pr_statp->pr_status) {
		case PR_ACKED:
			/*
			 * We received back an ACK, so the switch clearly
			 * is not dropping our traffic, and thus we can
			 * enable failure detection immediately.
			 */
			if (pii->pii_fd_hrtime > gethrtime()) {
				if (debug & D_PROBE) {
					logdebug("successful probe on %s; "
					    "ending quiet period\n",
					    pii->pii_phyint->pi_name);
				}
				pii->pii_fd_hrtime = gethrtime();
			}
			break;

		case PR_UNACKED:
			assert(cur_tg != NULL);
			/*
			 * The crtt could be zero for some reason,
			 * Eg. the phyint could be failed. If the crtt is
			 * not available use group's probe interval,
			 * which is a worst case estimate.
			 */
			timeout = ns2ms(pr_statp->pr_hrtime_start);
			if (cur_tg->tg_crtt != 0) {
				timeout += cur_tg->tg_crtt;
			} else {
				timeout += probe_interval;
			}
			if (TIME_LT(timeout, cur_time)) {
				pr_statp->pr_time_lost = timeout;
				probe_chstate(pr_statp, pii, PR_LOST);
			} else if (i == 1) {
				/*
				 * We are forced to consider this probe
				 * lost, as we can have at most 2 unack.
				 * probes any time, and we will be sending a
				 * probe at the end of this function.
				 * Normally, we should not be here, but
				 * this can happen if an incoming response
				 * that was considered lost has increased
				 * the crtt for this target, and also bumped
				 * up the FDT. Note that we never cancel or
				 * increase the current pii_time_left, so
				 * when the timer fires, we find 2 valid
				 * unacked probes, and they are yet to timeout
				 */
				pr_statp->pr_time_lost = cur_time;
				probe_chstate(pr_statp, pii, PR_LOST);
			} else {
				/*
				 * Only the most recent probe can enter
				 * this 'else' arm. The second most recent
				 * probe must take either of the above arms,
				 * if it is unacked.
				 */
				valid_unack_count++;
			}
			break;
		}
		pr_ndx = PROBE_INDEX_PREV(pr_ndx);
	}

	/*
	 * We send out 1 probe randomly in the interval between one half
	 * and one probe interval for the group. Given that the CRTT is always
	 * less than the group's probe interval, we can have at most 1
	 * unacknowledged probe now.  All previous probes are either lost or
	 * acked.
	 */
	assert(valid_unack_count == 0 || valid_unack_count == 1);

	/*
	 * The timer has fired. Take appropriate action depending
	 * on the current state of the phyint.
	 *
	 * PI_RUNNING state 	- Failure detection
	 * PI_FAILED state 	- Repair detection
	 */
	switch (pii->pii_phyint->pi_state) {
	case PI_FAILED:
		/*
		 * If the most recent probe (excluding unacked probes that
		 * are yet to time out) has been acked, check whether the
		 * phyint is now repaired.
		 */
		if (pii->pii_rack + valid_unack_count + 1 == pii->pii_snxt) {
			phyint_check_for_repair(pii->pii_phyint);
		}
		break;

	case PI_RUNNING:
		/*
		 * It's possible our probes have been lost because of a
		 * spanning-tree mandated quiet period on the switch.  If so,
		 * ignore the lost probes.
		 */
		if (pii->pii_fd_hrtime - cur_hrtime > 0)
			break;

		if (pii->pii_rack + valid_unack_count + 1 != pii->pii_snxt) {
			/*
			 * We have 1 or more failed probes (excluding unacked
			 * probes that are yet to time out). Determine if the
			 * phyint has failed.
			 */
			phyint_inst_check_for_failure(pii);
		}
		break;

	default:
		logerr("phyint_inst_timer: invalid state %d\n",
		    pii->pii_phyint->pi_state);
		abort();
	}

	/*
	 * Start the next probe. probe() will also set pii->pii_probe_time_left
	 * to the group's probe interval. If phyint_failed -> target_flush_hosts
	 * was called, the target list may be empty.
	 */
	if (pii->pii_target_next != NULL) {
		probe(pii, PROBE_UNI, cur_hrtime);
		/*
		 * If we have just the one probe target, and we're not using
		 * router targets, try to find another as we presently have
		 * no resilience.
		 */
		if (!pii->pii_targets_are_routers && pii->pii_ntargets == 1)
			probe(pii, PROBE_MULTI, cur_hrtime);
	} else {
		probe(pii, PROBE_MULTI, cur_hrtime);
	}
	return (interval);
}

/*
 * Start the probe timer for an interface instance.
 */
void
start_timer(struct phyint_instance *pii)
{
	uint32_t interval;

	/*
	 * Spread the base probe times (pi_snxt_basetime) across phyints
	 * uniformly over the (curtime..curtime + the group's probe_interval).
	 * pi_snxt_basetime is strictly periodic with a frequency of
	 * the group's probe interval. The actual probe time pi_snxt_time
	 * adds some randomness to pi_snxt_basetime and happens in probe().
	 * For the 1st probe on each phyint after the timer is started,
	 * pi_snxt_time and pi_snxt_basetime are the same.
	 */
	interval = GET_RANDOM(0,
	    (int)pii->pii_phyint->pi_group->pg_probeint);

	pii->pii_snxt_basetime = getcurrenttime() + interval;
	pii->pii_fd_snxt_basetime = pii->pii_snxt_basetime;
	pii->pii_snxt_time = pii->pii_snxt_basetime;
	timer_schedule(interval);
}

/*
 * Restart the probe timer on an interface instance.
 */
static void
restart_timer(struct phyint_instance *pii)
{
	/*
	 * We don't need to restart the timer if it was never started in
	 * the first place (pii->pii_basetime_inited not set), as the timer
	 * won't have gone off yet.
	 */
	if (pii->pii_basetime_inited != 0) {

		if (debug & D_LINKNOTE)
			logdebug("restart timer: restarting timer on %s, "
			    "address family %s\n", pii->pii_phyint->pi_name,
			    AF_STR(pii->pii_af));

		start_timer(pii);
	}
}

static void
process_link_state_down(struct phyint *pi)
{
	logerr("The link has gone down on %s\n", pi->pi_name);

	/*
	 * Clear the probe statistics arrays, we don't want the repair
	 * detection logic relying on probes that were successful prior
	 * to the link going down.
	 */
	if (PROBE_CAPABLE(pi->pi_v4))
		clear_pii_probe_stats(pi->pi_v4);
	if (PROBE_CAPABLE(pi->pi_v6))
		clear_pii_probe_stats(pi->pi_v6);
	/*
	 * Check for interface failure.  Although we know the interface
	 * has failed, we don't know if all the other interfaces in the
	 * group have failed as well.
	 */
	if ((pi->pi_state == PI_RUNNING) ||
	    (pi->pi_state != PI_FAILED && !GROUP_FAILED(pi->pi_group))) {
		if (debug & D_LINKNOTE) {
			logdebug("process_link_state_down:"
			    " checking for failure on %s\n", pi->pi_name);
		}

		if (pi->pi_v4 != NULL)
			phyint_inst_check_for_failure(pi->pi_v4);
		else if (pi->pi_v6 != NULL)
			phyint_inst_check_for_failure(pi->pi_v6);
	}
}

static void
process_link_state_up(struct phyint *pi)
{
	logerr("The link has come up on %s\n", pi->pi_name);

	/*
	 * We stopped any running timers on each instance when the link
	 * went down, so restart them.
	 */
	if (pi->pi_v4)
		restart_timer(pi->pi_v4);
	if (pi->pi_v6)
		restart_timer(pi->pi_v6);

	phyint_check_for_repair(pi);

	pi->pi_whenup[pi->pi_whendx++] = getcurrenttime();
	if (pi->pi_whendx == LINK_UP_PERMIN)
		pi->pi_whendx = 0;
}

/*
 * Process any changes in link state passed up from the interfaces.
 */
void
process_link_state_changes(void)
{
	struct phyint *pi;

	/* Look for interfaces where the link state has just changed */

	for (pi = phyints; pi != NULL; pi = pi->pi_next) {
		boolean_t old_link_state_up = LINK_UP(pi);

		/*
		 * Except when the "phyint" structure is created, this is
		 * the only place the link state is updated.  This allows
		 * this routine to detect changes in link state, rather
		 * than just the current state.
		 */
		UPDATE_LINK_STATE(pi);

		if (LINK_DOWN(pi)) {
			/*
			 * Has link just gone down?
			 */
			if (old_link_state_up)
				process_link_state_down(pi);
		} else {
			/*
			 * Has link just gone back up?
			 */
			if (!old_link_state_up)
				process_link_state_up(pi);
		}
	}
}

void
reset_crtt_all(struct phyint *pi)
{
	struct phyint_instance *pii;
	struct target *tg;

	pii = pi->pi_v4;
	if (pii != NULL) {
		for (tg = pii->pii_targets; tg != NULL; tg = tg->tg_next) {
			tg->tg_crtt = 0;
			tg->tg_rtt_sa = -1;
			tg->tg_rtt_sd = 0;
		}
	}

	pii = pi->pi_v6;
	if (pii != NULL) {
		for (tg = pii->pii_targets; tg != NULL; tg = tg->tg_next) {
			tg->tg_crtt = 0;
			tg->tg_rtt_sa = -1;
			tg->tg_rtt_sd = 0;
		}
	}
}

/*
 * Check if the phyint has failed the last NUM_PROBE_FAILS consecutive
 * probes on both instances IPv4 and IPv6.
 * If the interface has failed, return the time of the first probe failure
 * in "tff".
 */
static int
phyint_inst_probe_failure_state(struct phyint_instance *pii, uint_t *tff)
{
	uint_t	pi_tff;
	struct	target *cur_tg;
	struct	probe_fail_count pfinfo;
	struct	phyint_instance *pii_other;
	int	pr_ndx;

	/*
	 * Get the number of consecutive failed probes on
	 * this phyint across all targets. Also get the number
	 * of consecutive failed probes on this target only
	 */
	pr_ndx = PROBE_INDEX_PREV(pii->pii_probe_next);
	cur_tg = pii->pii_probes[pr_ndx].pr_target;
	probe_fail_info(pii, cur_tg, &pfinfo);

	/* Get the time of first failure, for later use */
	pi_tff = pfinfo.pf_tff;

	/*
	 * If the current target has not responded to the
	 * last NUM_PROBE_FAILS probes, and other targets are
	 * responding delete this target. Dead gateway detection
	 * will eventually remove this target (if router) from the
	 * routing tables. If that does not occur, we may end
	 * up adding this to our list again.
	 */
	if (pfinfo.pf_nfail < NUM_PROBE_FAILS &&
	    pfinfo.pf_nfail_tg >= NUM_PROBE_FAILS) {
		if (pii->pii_targets_are_routers) {
			if (cur_tg->tg_status == TG_ACTIVE)
				pii->pii_ntargets--;
			cur_tg->tg_status = TG_DEAD;
			cur_tg->tg_crtt = 0;
			cur_tg->tg_rtt_sa = -1;
			cur_tg->tg_rtt_sd = 0;
			if (pii->pii_target_next == cur_tg)
				pii->pii_target_next = target_next(cur_tg);
		} else {
			target_delete(cur_tg);
			probe(pii, PROBE_MULTI, gethrtime());
		}
		return (PHYINT_OK);
	}

	/*
	 * If the phyint has lost NUM_PROBE_FAILS or more
	 * consecutive probes, on both IPv4 and IPv6 protocol
	 * instances of the phyint, then trigger failure
	 * detection, else return false
	 */
	if (pfinfo.pf_nfail < NUM_PROBE_FAILS)
		return (PHYINT_OK);

	pii_other = phyint_inst_other(pii);
	if (PROBE_CAPABLE(pii_other)) {
		probe_fail_info(pii_other, NULL, &pfinfo);
		if (pfinfo.pf_nfail >= NUM_PROBE_FAILS) {
			/*
			 * We have NUM_PROBE_FAILS or more failures
			 * on both IPv4 and IPv6. Get the earliest
			 * time when failure was detected on this
			 * phyint across IPv4 and IPv6.
			 */
			if (TIME_LT(pfinfo.pf_tff, pi_tff))
				pi_tff = pfinfo.pf_tff;
		} else {
			/*
			 * This instance has < NUM_PROBE_FAILS failure.
			 * So return false
			 */
			return (PHYINT_OK);
		}
	}
	*tff = pi_tff;
	return (PHYINT_FAILURE);
}

/*
 * Check if the link has gone down on this phyint, or it has failed the
 * last NUM_PROBE_FAILS consecutive probes on both instances IPv4 and IPv6.
 * Also look at other phyints of this group, for group failures.
 */
int
failure_state(struct phyint_instance *pii)
{
	struct	probe_success_count psinfo;
	uint_t	pi2_tls;		/* time last success */
	uint_t	pi_tff;			/* time first fail */
	struct	phyint *pi2;
	struct	phyint *pi;
	struct	phyint_instance *pii2;
	struct  phyint_group *pg;
	int	retval;

	if (debug & D_FAILREP)
		logdebug("phyint_failed(%s)\n", pii->pii_name);

	pi = pii->pii_phyint;
	pg = pi->pi_group;

	if (LINK_UP(pi) && phyint_inst_probe_failure_state(pii, &pi_tff) ==
	    PHYINT_OK)
		return (PHYINT_OK);

	/*
	 * At this point, the link is down, or the phyint is suspect, as it
	 * has lost NUM_PROBE_FAILS or more probes. If the phyint does not
	 * belong to any group, this is a PHYINT_FAILURE.  Otherwise, continue
	 * on to determine whether this should be considered a PHYINT_FAILURE
	 * or GROUP_FAILURE.
	 */
	if (pg == phyint_anongroup)
		return (PHYINT_FAILURE);

	/*
	 * Need to compare against other phyints of the same group
	 * to exclude group failures. If the failure was detected via
	 * probing, then if the time of last success (tls) of any
	 * phyint is more recent than the time of first fail (tff) of the
	 * phyint in question, and the link is up on the phyint,
	 * then it is a phyint failure. Otherwise it is a group failure.
	 * If failure was detected via a link down notification sent from
	 * the driver to IP, we see if any phyints in the group are still
	 * running and haven't received a link down notification.  We
	 * will usually be processing the link down notification shortly
	 * after it was received, so there is no point looking at the tls
	 * of other phyints.
	 */
	retval = GROUP_FAILURE;
	for (pi2 = pg->pg_phyint; pi2 != NULL; pi2 = pi2->pi_pgnext) {
		/* Exclude ourself from comparison */
		if (pi2 == pi)
			continue;

		if (LINK_DOWN(pi)) {
			/*
			 * We use FLAGS_TO_LINK_STATE() to test the flags
			 * directly, rather then LINK_UP() or LINK_DOWN(), as
			 * we may not have got round to processing the link
			 * state for the other phyints in the group yet.
			 *
			 * The check for PI_RUNNING and group failure handles
			 * the case when the group begins to recover.
			 * PI_RUNNING will be set, and group failure cleared
			 * only after receipt of NUM_PROBE_REPAIRS, by which
			 * time the other phyints should have received at
			 * least 1 packet, and so will not have NUM_PROBE_FAILS.
			 */
			if ((pi2->pi_state == PI_RUNNING) &&
			    !GROUP_FAILED(pg) && FLAGS_TO_LINK_STATE(pi2)) {
				retval = PHYINT_FAILURE;
				break;
			}
			continue;
		}

		if (LINK_DOWN(pi2))
			continue;

		/*
		 * If there's no probe-based failure detection on this
		 * interface, and its link is still up, then it's still
		 * working and thus the group has not failed.
		 */
		if (!PROBE_ENABLED(pi2->pi_v4) && !PROBE_ENABLED(pi2->pi_v6)) {
			retval = PHYINT_FAILURE;
			break;
		}

		/*
		 * Need to compare against both IPv4 and IPv6 instances.
		 */
		pii2 = pi2->pi_v4;
		if (pii2 != NULL) {
			probe_success_info(pii2, NULL, &psinfo);
			if (psinfo.ps_tls_valid) {
				pi2_tls = psinfo.ps_tls;
				/*
				 * See comment above regarding check
				 * for PI_RUNNING and group failure.
				 */
				if (TIME_GT(pi2_tls, pi_tff) &&
				    (pi2->pi_state == PI_RUNNING) &&
				    !GROUP_FAILED(pg) &&
				    FLAGS_TO_LINK_STATE(pi2)) {
					retval = PHYINT_FAILURE;
					break;
				}
			}
		}

		pii2 = pi2->pi_v6;
		if (pii2 != NULL) {
			probe_success_info(pii2, NULL, &psinfo);
			if (psinfo.ps_tls_valid) {
				pi2_tls = psinfo.ps_tls;
				/*
				 * See comment above regarding check
				 * for PI_RUNNING and group failure.
				 */
				if (TIME_GT(pi2_tls, pi_tff) &&
				    (pi2->pi_state == PI_RUNNING) &&
				    !GROUP_FAILED(pg) &&
				    FLAGS_TO_LINK_STATE(pi2)) {
					retval = PHYINT_FAILURE;
					break;
				}
			}
		}
	}

	/*
	 * Update the group state to account for the changes.
	 */
	phyint_group_refresh_state(pg);
	return (retval);
}

/*
 * Return the information associated with consecutive probe successes
 * starting with the most recent probe. At most the last 2 probes can be
 * in the unacknowledged state. All previous probes have either failed
 * or succeeded.
 */
static void
probe_success_info(struct phyint_instance *pii, struct target *cur_tg,
    struct probe_success_count *psinfo)
{
	uint_t	i;
	struct probe_stats *pr_statp;
	uint_t most_recent;
	uint_t second_most_recent;
	boolean_t pi_found_failure = _B_FALSE;
	boolean_t tg_found_failure = _B_FALSE;
	uint_t now;
	uint_t timeout;
	struct target *tg;

	if (debug & D_FAILREP)
		logdebug("probe_success_info(%s)\n", pii->pii_name);

	bzero(psinfo, sizeof (*psinfo));
	now = getcurrenttime();

	/*
	 * Start with the most recent probe, and count the number
	 * of consecutive probe successes. Latch the number of successes
	 * on hitting a failure.
	 */
	most_recent = PROBE_INDEX_PREV(pii->pii_probe_next);
	second_most_recent = PROBE_INDEX_PREV(most_recent);

	for (i = most_recent; i != pii->pii_probe_next;
	    i = PROBE_INDEX_PREV(i)) {
		pr_statp = &pii->pii_probes[i];

		switch (pr_statp->pr_status) {
		case PR_UNACKED:
			/*
			 * Only the most recent 2 probes can be unacknowledged
			 */
			assert(i == most_recent || i == second_most_recent);

			tg = pr_statp->pr_target;
			assert(tg != NULL);
			/*
			 * The crtt could be zero for some reason,
			 * Eg. the phyint could be failed. If the crtt is
			 * not available use the value of the group's probe
			 * interval which is a worst case estimate.
			 */
			timeout = ns2ms(pr_statp->pr_hrtime_start);
			if (tg->tg_crtt != 0) {
				timeout += tg->tg_crtt;
			} else {
				timeout +=
				    pii->pii_phyint->pi_group->pg_probeint;
			}

			if (TIME_LT(timeout, now)) {
				/*
				 * We hit a failure. Latch the total number of
				 * recent consecutive successes.
				 */
				pr_statp->pr_time_lost = timeout;
				probe_chstate(pr_statp, pii, PR_LOST);
				pi_found_failure = _B_TRUE;
				if (cur_tg != NULL && tg == cur_tg) {
					/*
					 * We hit a failure for the desired
					 * target. Latch the number of recent
					 * consecutive successes for this target
					 */
					tg_found_failure = _B_TRUE;
				}
			}
			break;

		case PR_ACKED:
			/*
			 * Bump up the count of probe successes, if we
			 * have not seen any failure so far.
			 */
			if (!pi_found_failure)
				psinfo->ps_nsucc++;

			if (cur_tg != NULL && pr_statp->pr_target == cur_tg &&
			    !tg_found_failure) {
				psinfo->ps_nsucc_tg++;
			}

			/*
			 * Record the time of last success, if this is
			 * the most recent probe success.
			 */
			if (!psinfo->ps_tls_valid) {
				psinfo->ps_tls =
				    ns2ms(pr_statp->pr_hrtime_ackproc);
				psinfo->ps_tls_valid = _B_TRUE;
			}
			break;

		case PR_LOST:
			/*
			 * We hit a failure. Latch the total number of
			 * recent consecutive successes.
			 */
			pi_found_failure = _B_TRUE;
			if (cur_tg != NULL && pr_statp->pr_target == cur_tg) {
				/*
				 * We hit a failure for the desired target.
				 * Latch the number of recent consecutive
				 * successes for this target
				 */
				tg_found_failure = _B_TRUE;
			}
			break;

		default:
			return;

		}
	}
}

/*
 * Return the information associated with consecutive probe failures
 * starting with the most recent probe. Only the last 2 probes can be in the
 * unacknowledged state. All previous probes have either failed or succeeded.
 */
static void
probe_fail_info(struct phyint_instance *pii, struct target *cur_tg,
    struct probe_fail_count *pfinfo)
{
	int	i;
	struct probe_stats *pr_statp;
	boolean_t	tg_found_success = _B_FALSE;
	boolean_t	pi_found_success = _B_FALSE;
	int	most_recent;
	int	second_most_recent;
	uint_t	now;
	uint_t	timeout;
	struct	target *tg;

	if (debug & D_FAILREP)
		logdebug("probe_fail_info(%s)\n", pii->pii_name);

	bzero(pfinfo, sizeof (*pfinfo));
	now = getcurrenttime();

	/*
	 * Start with the most recent probe, and count the number
	 * of consecutive probe failures. Latch the number of failures
	 * on hitting a probe success.
	 */
	most_recent = PROBE_INDEX_PREV(pii->pii_probe_next);
	second_most_recent = PROBE_INDEX_PREV(most_recent);

	for (i = most_recent; i != pii->pii_probe_next;
	    i = PROBE_INDEX_PREV(i)) {
		pr_statp = &pii->pii_probes[i];

		assert(PR_STATUS_VALID(pr_statp->pr_status));

		switch (pr_statp->pr_status) {
		case PR_UNACKED:
			/*
			 * Only the most recent 2 probes can be unacknowledged
			 */
			assert(i == most_recent || i == second_most_recent);

			tg = pr_statp->pr_target;
			/*
			 * Target is guaranteed to exist in the unack. state
			 */
			assert(tg != NULL);
			/*
			 * The crtt could be zero for some reason,
			 * Eg. the phyint could be failed. If the crtt is
			 * not available use the group's probe interval,
			 * which is a worst case estimate.
			 */
			timeout = ns2ms(pr_statp->pr_hrtime_start);
			if (tg->tg_crtt != 0) {
				timeout += tg->tg_crtt;
			} else {
				timeout +=
				    pii->pii_phyint->pi_group->pg_probeint;
			}

			if (TIME_GT(timeout, now))
				break;

			pr_statp->pr_time_lost = timeout;
			probe_chstate(pr_statp, pii, PR_LOST);
			/* FALLTHRU */

		case PR_LOST:
			if (!pi_found_success) {
				pfinfo->pf_nfail++;
				pfinfo->pf_tff = pr_statp->pr_time_lost;
			}
			if (cur_tg != NULL && pr_statp->pr_target == cur_tg &&
			    !tg_found_success)  {
				pfinfo->pf_nfail_tg++;
			}
			break;

		default:
			/*
			 * We hit a success or unused slot. Latch the
			 * total number of recent consecutive failures.
			 */
			pi_found_success = _B_TRUE;
			if (cur_tg != NULL && pr_statp->pr_target == cur_tg) {
				/*
				 * We hit a success for the desired target.
				 * Latch the number of recent consecutive
				 * failures for this target
				 */
				tg_found_success = _B_TRUE;
			}
		}
	}
}

/*
 * Change the state of probe `pr' on phyint_instance `pii' to state `state'.
 */
void
probe_chstate(struct probe_stats *pr, struct phyint_instance *pii, int state)
{
	if (pr->pr_status == state)
		return;

	pr->pr_status = state;
	(void) probe_state_event(pr, pii);
}

/*
 * Check if the phyint has been repaired.  If no test address has been
 * configured, then consider the interface repaired if the link is up (unless
 * the link is flapping; see below).  Otherwise, look for proof of probes
 * being sent and received. If last NUM_PROBE_REPAIRS probes are fine on
 * either IPv4 or IPv6 instance, the phyint can be considered repaired.
 */
static boolean_t
phyint_repaired(struct phyint *pi)
{
	struct	probe_success_count psinfo;
	struct	phyint_instance *pii;
	struct	target *cur_tg;
	int	pr_ndx;
	uint_t	cur_time;

	if (debug & D_FAILREP)
		logdebug("phyint_repaired(%s)\n", pi->pi_name);

	if (LINK_DOWN(pi))
		return (_B_FALSE);

	/*
	 * If we don't have any test addresses and the link is up, then
	 * consider the interface repaired, unless we've received more than
	 * LINK_UP_PERMIN link up notifications in the last minute, in
	 * which case we keep the link down until we drop back below
	 * the threshold.
	 */
	if (!PROBE_ENABLED(pi->pi_v4) && !PROBE_ENABLED(pi->pi_v6)) {
		cur_time = getcurrenttime();
		if ((pi->pi_whenup[pi->pi_whendx] == 0 ||
		    (cur_time - pi->pi_whenup[pi->pi_whendx]) > MSEC_PERMIN)) {
			pi->pi_lfmsg_printed = 0;
			return (_B_TRUE);
		}
		if (!pi->pi_lfmsg_printed) {
			logerr("The link has come up on %s more than %d times "
			    "in the last minute; disabling repair until it "
			    "stabilizes\n", pi->pi_name, LINK_UP_PERMIN);
			pi->pi_lfmsg_printed = 1;
		}

		return (_B_FALSE);
	}

	pii = pi->pi_v4;
	if (PROBE_CAPABLE(pii)) {
		pr_ndx = PROBE_INDEX_PREV(pii->pii_probe_next);
		cur_tg = pii->pii_probes[pr_ndx].pr_target;
		probe_success_info(pii, cur_tg, &psinfo);
		if (psinfo.ps_nsucc >= NUM_PROBE_REPAIRS ||
		    psinfo.ps_nsucc_tg >= NUM_PROBE_REPAIRS)
			return (_B_TRUE);
	}

	pii = pi->pi_v6;
	if (PROBE_CAPABLE(pii)) {
		pr_ndx = PROBE_INDEX_PREV(pii->pii_probe_next);
		cur_tg = pii->pii_probes[pr_ndx].pr_target;
		probe_success_info(pii, cur_tg, &psinfo);
		if (psinfo.ps_nsucc >= NUM_PROBE_REPAIRS ||
		    psinfo.ps_nsucc_tg >= NUM_PROBE_REPAIRS)
			return (_B_TRUE);
	}

	return (_B_FALSE);
}

/*
 * Used to set/clear phyint flags, by making a SIOCSLIFFLAGS call.
 */
boolean_t
change_pif_flags(struct phyint *pi, uint64_t set, uint64_t clear)
{
	int ifsock;
	struct lifreq lifr;
	uint64_t old_flags;

	if (debug & D_FAILREP) {
		logdebug("change_pif_flags(%s): set %llx clear %llx\n",
		    pi->pi_name, set, clear);
	}

	if (pi->pi_v4 != NULL)
		ifsock = ifsock_v4;
	else
		ifsock = ifsock_v6;

	/*
	 * Get the current flags from the kernel, and set/clear the
	 * desired phyint flags. Since we set only phyint flags, we can
	 * do it on either IPv4 or IPv6 instance.
	 */
	(void) strlcpy(lifr.lifr_name, pi->pi_name, sizeof (lifr.lifr_name));

	if (ioctl(ifsock, SIOCGLIFFLAGS, (char *)&lifr) < 0) {
		if (errno != ENXIO)
			logperror("change_pif_flags: ioctl (get flags)");
		return (_B_FALSE);
	}

	old_flags = lifr.lifr_flags;
	lifr.lifr_flags |= set;
	lifr.lifr_flags &= ~clear;

	if (old_flags == lifr.lifr_flags) {
		/* No change in the flags. No need to send ioctl */
		return (_B_TRUE);
	}

	if (ioctl(ifsock, SIOCSLIFFLAGS, (char *)&lifr) < 0) {
		if (errno != ENXIO)
			logperror("change_pif_flags: ioctl (set flags)");
		return (_B_FALSE);
	}

	/*
	 * Keep pi_flags in synch. with actual flags. Assumes flags are
	 * phyint flags.
	 */
	pi->pi_flags |= set;
	pi->pi_flags &= ~clear;

	if (pi->pi_v4 != NULL)
		pi->pi_v4->pii_flags = pi->pi_flags;

	if (pi->pi_v6 != NULL)
		pi->pi_v6->pii_flags = pi->pi_flags;

	return (_B_TRUE);
}

/*
 * icmp cksum computation for IPv4.
 */
static int
in_cksum(ushort_t *addr, int len)
{
	register int nleft = len;
	register ushort_t *w = addr;
	register ushort_t answer;
	ushort_t odd_byte = 0;
	register int sum = 0;

	/*
	 *  Our algorithm is simple, using a 32 bit accumulator (sum),
	 *  we add sequential 16 bit words to it, and at the end, fold
	 *  back all the carry bits from the top 16 bits into the lower
	 *  16 bits.
	 */
	while (nleft > 1)  {
		sum += *w++;
		nleft -= 2;
	}

	/* mop up an odd byte, if necessary */
	if (nleft == 1) {
		*(uchar_t *)(&odd_byte) = *(uchar_t *)w;
		sum += odd_byte;
	}

	/*
	 * add back carry outs from top 16 bits to low 16 bits
	 */
	sum = (sum >> 16) + (sum & 0xffff);	/* add hi 16 to low 16 */
	sum += (sum >> 16);			/* add carry */
	answer = ~sum;				/* truncate to 16 bits */
	return (answer);
}

static void
reset_snxt_basetimes(void)
{
	struct phyint_instance *pii;

	for (pii = phyint_instances; pii != NULL; pii = pii->pii_next) {
		pii->pii_fd_snxt_basetime = pii->pii_snxt_basetime;
	}
}

/*
 * Is the address one of our own addresses? Unfortunately,
 * we cannot check our phyint tables to determine if the address
 * is our own. This is because, we don't track interfaces that
 * are not part of any group. We have to either use a 'bind' or
 * get the complete list of all interfaces using SIOCGLIFCONF,
 * to do this check. We could also use SIOCTMYADDR.
 * Bind fails for the local zone address, so we might include local zone
 * address as target address. If local zone address is a target address
 * and it is up, it is not possible to detect the interface failure.
 * SIOCTMYADDR also doesn't consider local zone address as own address.
 * So, we choose to use SIOCGLIFCONF to collect the local addresses, and they
 * are stored in `localaddrs'
 */
boolean_t
own_address(struct in6_addr addr)
{
	addrlist_t *addrp;
	struct sockaddr_storage ss;
	int af = IN6_IS_ADDR_V4MAPPED(&addr) ? AF_INET : AF_INET6;

	addr2storage(af, &addr, &ss);
	for (addrp = localaddrs; addrp != NULL; addrp = addrp->al_next) {
		if (sockaddrcmp(&ss, &addrp->al_addr))
			return (_B_TRUE);
	}
	return (_B_FALSE);
}

static int
ns2ms(int64_t ns)
{
	return (NSEC2MSEC(ns));
}

static int64_t
tv2ns(struct timeval *tvp)
{
	return (tvp->tv_sec * NANOSEC + tvp->tv_usec * 1000);
}