1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
|
/*
* Copyright 2009 Sun Microsystems, Inc. All rights reserved.
* Use is subject to license terms.
*/
/*
* Copyright (c) 2003-2004, Jouni Malinen <jkmaline@cc.hut.fi>
* Sun elects to license this software under the BSD license.
* See README for more details.
*/
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <strings.h>
#include <sys/types.h>
#include <openssl/aes.h>
#include <openssl/hmac.h>
#include <openssl/rc4.h>
#include "wpa_enc.h"
/*
* @kek: key encryption key (KEK)
* @n: length of the wrapped key in 64-bit units; e.g., 2 = 128-bit = 16 bytes
* @plain: plaintext key to be wrapped, n * 64 bit
* @cipher: wrapped key, (n + 1) * 64 bit
*/
void
aes_wrap(uint8_t *kek, int n, uint8_t *plain, uint8_t *cipher)
{
uint8_t *a, *r, b[16];
int i, j;
AES_KEY key;
a = cipher;
r = cipher + 8;
/* 1) Initialize variables. */
(void) memset(a, 0xa6, 8);
(void) memcpy(r, plain, 8 * n);
(void) AES_set_encrypt_key(kek, 128, &key);
/*
* 2) Calculate intermediate values.
* For j = 0 to 5
* For i=1 to n
* B = AES(K, A | R[i])
* A = MSB(64, B) ^ t where t = (n*j)+i
* R[i] = LSB(64, B)
*/
for (j = 0; j <= 5; j++) {
r = cipher + 8;
for (i = 1; i <= n; i++) {
(void) memcpy(b, a, 8);
(void) memcpy(b + 8, r, 8);
AES_encrypt(b, b, &key);
(void) memcpy(a, b, 8);
a[7] ^= n * j + i;
(void) memcpy(r, b + 8, 8);
r += 8;
}
}
/*
* 3) Output the results.
*
* These are already in @cipher due to the location of temporary
* variables.
*/
}
/*
* @kek: key encryption key (KEK)
* @n: length of the wrapped key in 64-bit units; e.g., 2 = 128-bit = 16 bytes
* @cipher: wrapped key to be unwrapped, (n + 1) * 64 bit
* @plain: plaintext key, n * 64 bit
*/
int
aes_unwrap(uint8_t *kek, int n, uint8_t *cipher, uint8_t *plain)
{
uint8_t a[8], *r, b[16];
int i, j;
AES_KEY key;
/* 1) Initialize variables. */
(void) memcpy(a, cipher, 8);
r = plain;
(void) memcpy(r, cipher + 8, 8 * n);
(void) AES_set_decrypt_key(kek, 128, &key);
/*
* 2) Compute intermediate values.
* For j = 5 to 0
* For i = n to 1
* B = AES-1(K, (A ^ t) | R[i]) where t = n*j+i
* A = MSB(64, B)
* R[i] = LSB(64, B)
*/
for (j = 5; j >= 0; j--) {
r = plain + (n - 1) * 8;
for (i = n; i >= 1; i--) {
(void) memcpy(b, a, 8);
b[7] ^= n * j + i;
(void) memcpy(b + 8, r, 8);
AES_decrypt(b, b, &key);
(void) memcpy(a, b, 8);
(void) memcpy(r, b + 8, 8);
r -= 8;
}
}
/*
* 3) Output results.
*
* These are already in @plain due to the location of temporary
* variables. Just verify that the IV matches with the expected value.
*/
for (i = 0; i < 8; i++) {
if (a[i] != 0xa6) {
return (-1);
}
}
return (0);
}
/* RFC 2104 */
void
hmac_sha1(unsigned char *key, unsigned int key_len,
unsigned char *data, unsigned int data_len, unsigned char *mac)
{
unsigned int mac_len = 0;
(void) HMAC(EVP_sha1(), key, key_len, data, data_len, mac, &mac_len);
}
void
hmac_sha1_vector(unsigned char *key, unsigned int key_len, size_t num_elem,
unsigned char *addr[], unsigned int *len, unsigned char *mac)
{
unsigned char *buf, *ptr;
int i, buf_len;
buf_len = 0;
for (i = 0; i < num_elem; i ++)
buf_len += len[i];
buf = malloc(buf_len);
ptr = buf;
for (i = 0; i < num_elem; i ++) {
(void) memcpy(ptr, addr[i], len[i]);
ptr += len[i];
}
hmac_sha1(key, key_len, buf, buf_len, mac);
free(buf);
}
void
sha1_prf(unsigned char *key, unsigned int key_len,
char *label, unsigned char *data, unsigned int data_len,
unsigned char *buf, size_t buf_len)
{
uint8_t zero = 0, counter = 0;
size_t pos, plen;
uint8_t hash[SHA1_MAC_LEN];
size_t label_len = strlen(label);
unsigned char *addr[4];
unsigned int len[4];
addr[0] = (uint8_t *)label;
len[0] = label_len;
addr[1] = &zero;
len[1] = 1;
addr[2] = data;
len[2] = data_len;
addr[3] = &counter;
len[3] = 1;
pos = 0;
while (pos < buf_len) {
plen = buf_len - pos;
if (plen >= SHA1_MAC_LEN) {
hmac_sha1_vector(key, key_len, 4, addr, len, &buf[pos]);
pos += SHA1_MAC_LEN;
} else {
hmac_sha1_vector(key, key_len, 4, addr, len, hash);
(void) memcpy(&buf[pos], hash, plen);
break;
}
counter++;
}
}
void
pbkdf2_sha1(char *passphrase, char *ssid, size_t ssid_len, int iterations,
unsigned char *buf, size_t buflen)
{
(void) PKCS5_PBKDF2_HMAC_SHA1(passphrase, -1, (unsigned char *)ssid,
ssid_len, iterations, buflen, buf);
}
void
rc4_skip(uint8_t *key, size_t keylen, size_t skip,
uint8_t *data, size_t data_len)
{
uint8_t *buf;
size_t buf_len;
buf_len = skip + data_len;
buf = malloc(buf_len);
bzero(buf, buf_len);
bcopy(data, buf + skip, data_len);
rc4(buf, buf_len, key, keylen);
bcopy(buf + skip, data, data_len);
free(buf);
}
void
rc4(uint8_t *buf, size_t len, uint8_t *key, size_t key_len)
{
RC4_KEY k;
RC4_set_key(&k, key_len, key);
RC4(&k, len, buf, buf);
}
void
hmac_md5_vector(uint8_t *key, size_t key_len, size_t num_elem,
uint8_t *addr[], size_t *len, uint8_t *mac)
{
unsigned char *buf, *ptr;
int i, buf_len;
buf_len = 0;
for (i = 0; i < num_elem; i ++)
buf_len += len[i];
buf = malloc(buf_len);
ptr = buf;
for (i = 0; i < num_elem; i ++) {
(void) memcpy(ptr, addr[i], len[i]);
ptr += len[i];
}
hmac_md5(key, key_len, buf, buf_len, mac);
free(buf);
}
/* RFC 2104 */
void
hmac_md5(uint8_t *key, size_t key_len, uint8_t *data,
size_t data_len, uint8_t *mac)
{
unsigned int mac_len = 0;
(void) HMAC(EVP_md5(), key, key_len, data, data_len, mac, &mac_len);
}
|