summaryrefslogtreecommitdiff
path: root/usr/src/cmd/mdb/common/modules/genunix/kmem.c
blob: 6efa51e3b63756d66d95e5c362b9534147e2f0bd (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
3904
3905
3906
3907
3908
3909
3910
3911
3912
3913
3914
3915
3916
3917
3918
3919
3920
3921
3922
3923
3924
3925
3926
3927
3928
3929
3930
3931
3932
3933
3934
3935
3936
3937
3938
3939
3940
3941
3942
3943
3944
3945
3946
3947
3948
3949
3950
3951
3952
3953
3954
3955
3956
3957
3958
3959
3960
3961
3962
3963
3964
3965
3966
3967
3968
3969
3970
3971
3972
3973
3974
3975
3976
3977
3978
3979
3980
3981
3982
3983
3984
3985
3986
3987
3988
3989
3990
3991
3992
3993
3994
3995
3996
3997
3998
3999
4000
4001
4002
4003
4004
4005
4006
4007
4008
4009
4010
4011
4012
4013
4014
4015
4016
4017
4018
4019
4020
4021
4022
4023
4024
4025
4026
4027
4028
4029
4030
4031
4032
4033
4034
4035
4036
4037
4038
4039
4040
4041
4042
4043
4044
4045
4046
4047
4048
4049
4050
4051
4052
4053
4054
4055
4056
4057
4058
4059
4060
4061
4062
4063
4064
4065
4066
4067
4068
4069
4070
4071
4072
4073
4074
4075
4076
4077
4078
4079
4080
4081
4082
4083
4084
4085
4086
4087
4088
4089
4090
4091
4092
4093
4094
4095
4096
4097
4098
4099
4100
4101
4102
4103
4104
4105
4106
4107
4108
4109
4110
4111
4112
4113
4114
4115
4116
4117
4118
4119
4120
4121
4122
4123
4124
4125
4126
4127
4128
4129
4130
4131
4132
4133
4134
4135
4136
4137
4138
4139
4140
4141
4142
4143
4144
4145
4146
4147
4148
4149
4150
4151
4152
4153
4154
4155
4156
4157
4158
4159
4160
4161
4162
4163
4164
4165
4166
4167
4168
4169
4170
4171
4172
4173
4174
4175
4176
4177
4178
4179
4180
4181
4182
4183
4184
4185
4186
4187
4188
4189
4190
4191
4192
4193
4194
4195
4196
4197
4198
4199
4200
4201
4202
4203
4204
4205
4206
4207
4208
4209
4210
4211
4212
4213
4214
4215
4216
4217
4218
4219
4220
4221
4222
4223
4224
4225
4226
4227
4228
4229
4230
4231
4232
4233
4234
4235
4236
4237
4238
4239
4240
4241
4242
4243
4244
4245
4246
4247
4248
4249
4250
4251
4252
4253
4254
4255
4256
4257
4258
4259
4260
4261
4262
4263
4264
4265
4266
4267
4268
4269
4270
4271
4272
4273
4274
4275
4276
4277
4278
4279
4280
4281
4282
4283
4284
4285
4286
4287
4288
4289
4290
4291
4292
4293
4294
4295
4296
4297
4298
4299
4300
4301
4302
4303
4304
4305
4306
4307
4308
4309
4310
4311
4312
4313
4314
4315
4316
4317
4318
4319
4320
4321
4322
4323
4324
4325
4326
4327
4328
4329
4330
4331
4332
4333
4334
4335
4336
4337
4338
4339
4340
4341
4342
4343
4344
4345
4346
4347
4348
4349
4350
4351
4352
4353
4354
4355
4356
4357
4358
4359
4360
4361
4362
4363
4364
4365
4366
4367
4368
4369
4370
4371
4372
4373
4374
4375
4376
4377
4378
4379
4380
4381
4382
4383
4384
4385
4386
4387
4388
4389
4390
4391
4392
4393
4394
4395
4396
4397
4398
4399
4400
4401
4402
4403
4404
4405
/*
 * CDDL HEADER START
 *
 * The contents of this file are subject to the terms of the
 * Common Development and Distribution License (the "License").
 * You may not use this file except in compliance with the License.
 *
 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
 * or http://www.opensolaris.org/os/licensing.
 * See the License for the specific language governing permissions
 * and limitations under the License.
 *
 * When distributing Covered Code, include this CDDL HEADER in each
 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
 * If applicable, add the following below this CDDL HEADER, with the
 * fields enclosed by brackets "[]" replaced with your own identifying
 * information: Portions Copyright [yyyy] [name of copyright owner]
 *
 * CDDL HEADER END
 */
/*
 * Copyright 2009 Sun Microsystems, Inc.  All rights reserved.
 * Use is subject to license terms.
 */

/*
 * Copyright (c) 2018, Joyent, Inc. All rights reserved.
 * Copyright (c) 2012 by Delphix. All rights reserved.
 */

#include <mdb/mdb_param.h>
#include <mdb/mdb_modapi.h>
#include <mdb/mdb_ctf.h>
#include <mdb/mdb_whatis.h>
#include <sys/cpuvar.h>
#include <sys/kmem_impl.h>
#include <sys/vmem_impl.h>
#include <sys/machelf.h>
#include <sys/modctl.h>
#include <sys/kobj.h>
#include <sys/panic.h>
#include <sys/stack.h>
#include <sys/sysmacros.h>
#include <vm/page.h>

#include "avl.h"
#include "combined.h"
#include "dist.h"
#include "kmem.h"
#include "list.h"

#define	dprintf(x) if (mdb_debug_level) { \
	mdb_printf("kmem debug: ");  \
	/*CSTYLED*/\
	mdb_printf x ;\
}

#define	KM_ALLOCATED		0x01
#define	KM_FREE			0x02
#define	KM_BUFCTL		0x04
#define	KM_CONSTRUCTED		0x08	/* only constructed free buffers */
#define	KM_HASH			0x10

static int mdb_debug_level = 0;

/*ARGSUSED*/
static int
kmem_init_walkers(uintptr_t addr, const kmem_cache_t *c, void *ignored)
{
	mdb_walker_t w;
	char descr[64];

	(void) mdb_snprintf(descr, sizeof (descr),
	    "walk the %s cache", c->cache_name);

	w.walk_name = c->cache_name;
	w.walk_descr = descr;
	w.walk_init = kmem_walk_init;
	w.walk_step = kmem_walk_step;
	w.walk_fini = kmem_walk_fini;
	w.walk_init_arg = (void *)addr;

	if (mdb_add_walker(&w) == -1)
		mdb_warn("failed to add %s walker", c->cache_name);

	return (WALK_NEXT);
}

/*ARGSUSED*/
int
kmem_debug(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv)
{
	mdb_debug_level ^= 1;

	mdb_printf("kmem: debugging is now %s\n",
	    mdb_debug_level ? "on" : "off");

	return (DCMD_OK);
}

int
kmem_cache_walk_init(mdb_walk_state_t *wsp)
{
	GElf_Sym sym;

	if (mdb_lookup_by_name("kmem_caches", &sym) == -1) {
		mdb_warn("couldn't find kmem_caches");
		return (WALK_ERR);
	}

	wsp->walk_addr = (uintptr_t)sym.st_value;

	return (list_walk_init_named(wsp, "cache list", "cache"));
}

int
kmem_cpu_cache_walk_init(mdb_walk_state_t *wsp)
{
	if (wsp->walk_addr == NULL) {
		mdb_warn("kmem_cpu_cache doesn't support global walks");
		return (WALK_ERR);
	}

	if (mdb_layered_walk("cpu", wsp) == -1) {
		mdb_warn("couldn't walk 'cpu'");
		return (WALK_ERR);
	}

	wsp->walk_data = (void *)wsp->walk_addr;

	return (WALK_NEXT);
}

int
kmem_cpu_cache_walk_step(mdb_walk_state_t *wsp)
{
	uintptr_t caddr = (uintptr_t)wsp->walk_data;
	const cpu_t *cpu = wsp->walk_layer;
	kmem_cpu_cache_t cc;

	caddr += OFFSETOF(kmem_cache_t, cache_cpu[cpu->cpu_seqid]);

	if (mdb_vread(&cc, sizeof (kmem_cpu_cache_t), caddr) == -1) {
		mdb_warn("couldn't read kmem_cpu_cache at %p", caddr);
		return (WALK_ERR);
	}

	return (wsp->walk_callback(caddr, &cc, wsp->walk_cbdata));
}

static int
kmem_slab_check(void *p, uintptr_t saddr, void *arg)
{
	kmem_slab_t *sp = p;
	uintptr_t caddr = (uintptr_t)arg;
	if ((uintptr_t)sp->slab_cache != caddr) {
		mdb_warn("slab %p isn't in cache %p (in cache %p)\n",
		    saddr, caddr, sp->slab_cache);
		return (-1);
	}

	return (0);
}

static int
kmem_partial_slab_check(void *p, uintptr_t saddr, void *arg)
{
	kmem_slab_t *sp = p;

	int rc = kmem_slab_check(p, saddr, arg);
	if (rc != 0) {
		return (rc);
	}

	if (!KMEM_SLAB_IS_PARTIAL(sp)) {
		mdb_warn("slab %p is not a partial slab\n", saddr);
		return (-1);
	}

	return (0);
}

static int
kmem_complete_slab_check(void *p, uintptr_t saddr, void *arg)
{
	kmem_slab_t *sp = p;

	int rc = kmem_slab_check(p, saddr, arg);
	if (rc != 0) {
		return (rc);
	}

	if (!KMEM_SLAB_IS_ALL_USED(sp)) {
		mdb_warn("slab %p is not completely allocated\n", saddr);
		return (-1);
	}

	return (0);
}

typedef struct {
	uintptr_t kns_cache_addr;
	int kns_nslabs;
} kmem_nth_slab_t;

static int
kmem_nth_slab_check(void *p, uintptr_t saddr, void *arg)
{
	kmem_nth_slab_t *chkp = arg;

	int rc = kmem_slab_check(p, saddr, (void *)chkp->kns_cache_addr);
	if (rc != 0) {
		return (rc);
	}

	return (chkp->kns_nslabs-- == 0 ? 1 : 0);
}

static int
kmem_complete_slab_walk_init(mdb_walk_state_t *wsp)
{
	uintptr_t caddr = wsp->walk_addr;

	wsp->walk_addr = (uintptr_t)(caddr +
	    offsetof(kmem_cache_t, cache_complete_slabs));

	return (list_walk_init_checked(wsp, "slab list", "slab",
	    kmem_complete_slab_check, (void *)caddr));
}

static int
kmem_partial_slab_walk_init(mdb_walk_state_t *wsp)
{
	uintptr_t caddr = wsp->walk_addr;

	wsp->walk_addr = (uintptr_t)(caddr +
	    offsetof(kmem_cache_t, cache_partial_slabs));

	return (avl_walk_init_checked(wsp, "slab list", "slab",
	    kmem_partial_slab_check, (void *)caddr));
}

int
kmem_slab_walk_init(mdb_walk_state_t *wsp)
{
	uintptr_t caddr = wsp->walk_addr;

	if (caddr == NULL) {
		mdb_warn("kmem_slab doesn't support global walks\n");
		return (WALK_ERR);
	}

	combined_walk_init(wsp);
	combined_walk_add(wsp,
	    kmem_complete_slab_walk_init, list_walk_step, list_walk_fini);
	combined_walk_add(wsp,
	    kmem_partial_slab_walk_init, avl_walk_step, avl_walk_fini);

	return (WALK_NEXT);
}

static int
kmem_first_complete_slab_walk_init(mdb_walk_state_t *wsp)
{
	uintptr_t caddr = wsp->walk_addr;
	kmem_nth_slab_t *chk;

	chk = mdb_alloc(sizeof (kmem_nth_slab_t),
	    UM_SLEEP | UM_GC);
	chk->kns_cache_addr = caddr;
	chk->kns_nslabs = 1;
	wsp->walk_addr = (uintptr_t)(caddr +
	    offsetof(kmem_cache_t, cache_complete_slabs));

	return (list_walk_init_checked(wsp, "slab list", "slab",
	    kmem_nth_slab_check, chk));
}

int
kmem_slab_walk_partial_init(mdb_walk_state_t *wsp)
{
	uintptr_t caddr = wsp->walk_addr;
	kmem_cache_t c;

	if (caddr == NULL) {
		mdb_warn("kmem_slab_partial doesn't support global walks\n");
		return (WALK_ERR);
	}

	if (mdb_vread(&c, sizeof (c), caddr) == -1) {
		mdb_warn("couldn't read kmem_cache at %p", caddr);
		return (WALK_ERR);
	}

	combined_walk_init(wsp);

	/*
	 * Some consumers (umem_walk_step(), in particular) require at
	 * least one callback if there are any buffers in the cache.  So
	 * if there are *no* partial slabs, report the first full slab, if
	 * any.
	 *
	 * Yes, this is ugly, but it's cleaner than the other possibilities.
	 */
	if (c.cache_partial_slabs.avl_numnodes == 0) {
		combined_walk_add(wsp, kmem_first_complete_slab_walk_init,
		    list_walk_step, list_walk_fini);
	} else {
		combined_walk_add(wsp, kmem_partial_slab_walk_init,
		    avl_walk_step, avl_walk_fini);
	}

	return (WALK_NEXT);
}

int
kmem_cache(uintptr_t addr, uint_t flags, int ac, const mdb_arg_t *argv)
{
	kmem_cache_t c;
	const char *filter = NULL;

	if (mdb_getopts(ac, argv,
	    'n', MDB_OPT_STR, &filter,
	    NULL) != ac) {
		return (DCMD_USAGE);
	}

	if (!(flags & DCMD_ADDRSPEC)) {
		if (mdb_walk_dcmd("kmem_cache", "kmem_cache", ac, argv) == -1) {
			mdb_warn("can't walk kmem_cache");
			return (DCMD_ERR);
		}
		return (DCMD_OK);
	}

	if (DCMD_HDRSPEC(flags))
		mdb_printf("%-?s %-25s %4s %6s %8s %8s\n", "ADDR", "NAME",
		    "FLAG", "CFLAG", "BUFSIZE", "BUFTOTL");

	if (mdb_vread(&c, sizeof (c), addr) == -1) {
		mdb_warn("couldn't read kmem_cache at %p", addr);
		return (DCMD_ERR);
	}

	if ((filter != NULL) && (strstr(c.cache_name, filter) == NULL))
		return (DCMD_OK);

	mdb_printf("%0?p %-25s %04x %06x %8ld %8lld\n", addr, c.cache_name,
	    c.cache_flags, c.cache_cflags, c.cache_bufsize, c.cache_buftotal);

	return (DCMD_OK);
}

void
kmem_cache_help(void)
{
	mdb_printf("%s", "Print kernel memory caches.\n\n");
	mdb_dec_indent(2);
	mdb_printf("%<b>OPTIONS%</b>\n");
	mdb_inc_indent(2);
	mdb_printf("%s",
"  -n name\n"
"        name of kmem cache (or matching partial name)\n"
"\n"
"Column\tDescription\n"
"\n"
"ADDR\t\taddress of kmem cache\n"
"NAME\t\tname of kmem cache\n"
"FLAG\t\tvarious cache state flags\n"
"CFLAG\t\tcache creation flags\n"
"BUFSIZE\tobject size in bytes\n"
"BUFTOTL\tcurrent total buffers in cache (allocated and free)\n");
}

#define	LABEL_WIDTH	11
static void
kmem_slabs_print_dist(uint_t *ks_bucket, size_t buffers_per_slab,
    size_t maxbuckets, size_t minbucketsize)
{
	uint64_t total;
	int buckets;
	int i;
	const int *distarray;
	int complete[2];

	buckets = buffers_per_slab;

	total = 0;
	for (i = 0; i <= buffers_per_slab; i++)
		total += ks_bucket[i];

	if (maxbuckets > 1)
		buckets = MIN(buckets, maxbuckets);

	if (minbucketsize > 1) {
		/*
		 * minbucketsize does not apply to the first bucket reserved
		 * for completely allocated slabs
		 */
		buckets = MIN(buckets, 1 + ((buffers_per_slab - 1) /
		    minbucketsize));
		if ((buckets < 2) && (buffers_per_slab > 1)) {
			buckets = 2;
			minbucketsize = (buffers_per_slab - 1);
		}
	}

	/*
	 * The first printed bucket is reserved for completely allocated slabs.
	 * Passing (buckets - 1) excludes that bucket from the generated
	 * distribution, since we're handling it as a special case.
	 */
	complete[0] = buffers_per_slab;
	complete[1] = buffers_per_slab + 1;
	distarray = dist_linear(buckets - 1, 1, buffers_per_slab - 1);

	mdb_printf("%*s\n", LABEL_WIDTH, "Allocated");
	dist_print_header("Buffers", LABEL_WIDTH, "Slabs");

	dist_print_bucket(complete, 0, ks_bucket, total, LABEL_WIDTH);
	/*
	 * Print bucket ranges in descending order after the first bucket for
	 * completely allocated slabs, so a person can see immediately whether
	 * or not there is fragmentation without having to scan possibly
	 * multiple screens of output. Starting at (buckets - 2) excludes the
	 * extra terminating bucket.
	 */
	for (i = buckets - 2; i >= 0; i--) {
		dist_print_bucket(distarray, i, ks_bucket, total, LABEL_WIDTH);
	}
	mdb_printf("\n");
}
#undef LABEL_WIDTH

/*ARGSUSED*/
static int
kmem_first_slab(uintptr_t addr, const kmem_slab_t *sp, boolean_t *is_slab)
{
	*is_slab = B_TRUE;
	return (WALK_DONE);
}

/*ARGSUSED*/
static int
kmem_first_partial_slab(uintptr_t addr, const kmem_slab_t *sp,
    boolean_t *is_slab)
{
	/*
	 * The "kmem_partial_slab" walker reports the first full slab if there
	 * are no partial slabs (for the sake of consumers that require at least
	 * one callback if there are any buffers in the cache).
	 */
	*is_slab = KMEM_SLAB_IS_PARTIAL(sp);
	return (WALK_DONE);
}

typedef struct kmem_slab_usage {
	int ksu_refcnt;			/* count of allocated buffers on slab */
	boolean_t ksu_nomove;		/* slab marked non-reclaimable */
} kmem_slab_usage_t;

typedef struct kmem_slab_stats {
	const kmem_cache_t *ks_cp;
	int ks_slabs;			/* slabs in cache */
	int ks_partial_slabs;		/* partially allocated slabs in cache */
	uint64_t ks_unused_buffers;	/* total unused buffers in cache */
	int ks_max_buffers_per_slab;	/* max buffers per slab */
	int ks_usage_len;		/* ks_usage array length */
	kmem_slab_usage_t *ks_usage;	/* partial slab usage */
	uint_t *ks_bucket;		/* slab usage distribution */
} kmem_slab_stats_t;

/*ARGSUSED*/
static int
kmem_slablist_stat(uintptr_t addr, const kmem_slab_t *sp,
    kmem_slab_stats_t *ks)
{
	kmem_slab_usage_t *ksu;
	long unused;

	ks->ks_slabs++;
	ks->ks_bucket[sp->slab_refcnt]++;

	unused = (sp->slab_chunks - sp->slab_refcnt);
	if (unused == 0) {
		return (WALK_NEXT);
	}

	ks->ks_partial_slabs++;
	ks->ks_unused_buffers += unused;

	if (ks->ks_partial_slabs > ks->ks_usage_len) {
		kmem_slab_usage_t *usage;
		int len = ks->ks_usage_len;

		len = (len == 0 ? 16 : len * 2);
		usage = mdb_zalloc(len * sizeof (kmem_slab_usage_t), UM_SLEEP);
		if (ks->ks_usage != NULL) {
			bcopy(ks->ks_usage, usage,
			    ks->ks_usage_len * sizeof (kmem_slab_usage_t));
			mdb_free(ks->ks_usage,
			    ks->ks_usage_len * sizeof (kmem_slab_usage_t));
		}
		ks->ks_usage = usage;
		ks->ks_usage_len = len;
	}

	ksu = &ks->ks_usage[ks->ks_partial_slabs - 1];
	ksu->ksu_refcnt = sp->slab_refcnt;
	ksu->ksu_nomove = (sp->slab_flags & KMEM_SLAB_NOMOVE);
	return (WALK_NEXT);
}

static void
kmem_slabs_header()
{
	mdb_printf("%-25s %8s %8s %9s %9s %6s\n",
	    "", "", "Partial", "", "Unused", "");
	mdb_printf("%-25s %8s %8s %9s %9s %6s\n",
	    "Cache Name", "Slabs", "Slabs", "Buffers", "Buffers", "Waste");
	mdb_printf("%-25s %8s %8s %9s %9s %6s\n",
	    "-------------------------", "--------", "--------", "---------",
	    "---------", "------");
}

int
kmem_slabs(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv)
{
	kmem_cache_t c;
	kmem_slab_stats_t stats;
	mdb_walk_cb_t cb;
	int pct;
	int tenths_pct;
	size_t maxbuckets = 1;
	size_t minbucketsize = 0;
	const char *filter = NULL;
	const char *name = NULL;
	uint_t opt_v = FALSE;
	boolean_t buckets = B_FALSE;
	boolean_t skip = B_FALSE;

	if (mdb_getopts(argc, argv,
	    'B', MDB_OPT_UINTPTR, &minbucketsize,
	    'b', MDB_OPT_UINTPTR, &maxbuckets,
	    'n', MDB_OPT_STR, &filter,
	    'N', MDB_OPT_STR, &name,
	    'v', MDB_OPT_SETBITS, TRUE, &opt_v,
	    NULL) != argc) {
		return (DCMD_USAGE);
	}

	if ((maxbuckets != 1) || (minbucketsize != 0)) {
		buckets = B_TRUE;
	}

	if (!(flags & DCMD_ADDRSPEC)) {
		if (mdb_walk_dcmd("kmem_cache", "kmem_slabs", argc,
		    argv) == -1) {
			mdb_warn("can't walk kmem_cache");
			return (DCMD_ERR);
		}
		return (DCMD_OK);
	}

	if (mdb_vread(&c, sizeof (c), addr) == -1) {
		mdb_warn("couldn't read kmem_cache at %p", addr);
		return (DCMD_ERR);
	}

	if (name == NULL) {
		skip = ((filter != NULL) &&
		    (strstr(c.cache_name, filter) == NULL));
	} else if (filter == NULL) {
		skip = (strcmp(c.cache_name, name) != 0);
	} else {
		/* match either -n or -N */
		skip = ((strcmp(c.cache_name, name) != 0) &&
		    (strstr(c.cache_name, filter) == NULL));
	}

	if (!(opt_v || buckets) && DCMD_HDRSPEC(flags)) {
		kmem_slabs_header();
	} else if ((opt_v || buckets) && !skip) {
		if (DCMD_HDRSPEC(flags)) {
			kmem_slabs_header();
		} else {
			boolean_t is_slab = B_FALSE;
			const char *walker_name;
			if (opt_v) {
				cb = (mdb_walk_cb_t)kmem_first_partial_slab;
				walker_name = "kmem_slab_partial";
			} else {
				cb = (mdb_walk_cb_t)kmem_first_slab;
				walker_name = "kmem_slab";
			}
			(void) mdb_pwalk(walker_name, cb, &is_slab, addr);
			if (is_slab) {
				kmem_slabs_header();
			}
		}
	}

	if (skip) {
		return (DCMD_OK);
	}

	bzero(&stats, sizeof (kmem_slab_stats_t));
	stats.ks_cp = &c;
	stats.ks_max_buffers_per_slab = c.cache_maxchunks;
	/* +1 to include a zero bucket */
	stats.ks_bucket = mdb_zalloc((stats.ks_max_buffers_per_slab + 1) *
	    sizeof (*stats.ks_bucket), UM_SLEEP);
	cb = (mdb_walk_cb_t)kmem_slablist_stat;
	(void) mdb_pwalk("kmem_slab", cb, &stats, addr);

	if (c.cache_buftotal == 0) {
		pct = 0;
		tenths_pct = 0;
	} else {
		uint64_t n = stats.ks_unused_buffers * 10000;
		pct = (int)(n / c.cache_buftotal);
		tenths_pct = pct - ((pct / 100) * 100);
		tenths_pct = (tenths_pct + 5) / 10; /* round nearest tenth */
		if (tenths_pct == 10) {
			pct += 100;
			tenths_pct = 0;
		}
	}

	pct /= 100;
	mdb_printf("%-25s %8d %8d %9lld %9lld %3d.%1d%%\n", c.cache_name,
	    stats.ks_slabs, stats.ks_partial_slabs, c.cache_buftotal,
	    stats.ks_unused_buffers, pct, tenths_pct);

	if (maxbuckets == 0) {
		maxbuckets = stats.ks_max_buffers_per_slab;
	}

	if (((maxbuckets > 1) || (minbucketsize > 0)) &&
	    (stats.ks_slabs > 0)) {
		mdb_printf("\n");
		kmem_slabs_print_dist(stats.ks_bucket,
		    stats.ks_max_buffers_per_slab, maxbuckets, minbucketsize);
	}

	mdb_free(stats.ks_bucket, (stats.ks_max_buffers_per_slab + 1) *
	    sizeof (*stats.ks_bucket));

	if (!opt_v) {
		return (DCMD_OK);
	}

	if (opt_v && (stats.ks_partial_slabs > 0)) {
		int i;
		kmem_slab_usage_t *ksu;

		mdb_printf("  %d complete (%d), %d partial:",
		    (stats.ks_slabs - stats.ks_partial_slabs),
		    stats.ks_max_buffers_per_slab,
		    stats.ks_partial_slabs);

		for (i = 0; i < stats.ks_partial_slabs; i++) {
			ksu = &stats.ks_usage[i];
			mdb_printf(" %d%s", ksu->ksu_refcnt,
			    (ksu->ksu_nomove ? "*" : ""));
		}
		mdb_printf("\n\n");
	}

	if (stats.ks_usage_len > 0) {
		mdb_free(stats.ks_usage,
		    stats.ks_usage_len * sizeof (kmem_slab_usage_t));
	}

	return (DCMD_OK);
}

void
kmem_slabs_help(void)
{
	mdb_printf("%s",
"Display slab usage per kmem cache.\n\n");
	mdb_dec_indent(2);
	mdb_printf("%<b>OPTIONS%</b>\n");
	mdb_inc_indent(2);
	mdb_printf("%s",
"  -n name\n"
"        name of kmem cache (or matching partial name)\n"
"  -N name\n"
"        exact name of kmem cache\n"
"  -b maxbins\n"
"        Print a distribution of allocated buffers per slab using at\n"
"        most maxbins bins. The first bin is reserved for completely\n"
"        allocated slabs. Setting maxbins to zero (-b 0) has the same\n"
"        effect as specifying the maximum allocated buffers per slab\n"
"        or setting minbinsize to 1 (-B 1).\n"
"  -B minbinsize\n"
"        Print a distribution of allocated buffers per slab, making\n"
"        all bins (except the first, reserved for completely allocated\n"
"        slabs) at least minbinsize buffers apart.\n"
"  -v    verbose output: List the allocated buffer count of each partial\n"
"        slab on the free list in order from front to back to show how\n"
"        closely the slabs are ordered by usage. For example\n"
"\n"
"          10 complete, 3 partial (8): 7 3 1\n"
"\n"
"        means there are thirteen slabs with eight buffers each, including\n"
"        three partially allocated slabs with less than all eight buffers\n"
"        allocated.\n"
"\n"
"        Buffer allocations are always from the front of the partial slab\n"
"        list. When a buffer is freed from a completely used slab, that\n"
"        slab is added to the front of the partial slab list. Assuming\n"
"        that all buffers are equally likely to be freed soon, the\n"
"        desired order of partial slabs is most-used at the front of the\n"
"        list and least-used at the back (as in the example above).\n"
"        However, if a slab contains an allocated buffer that will not\n"
"        soon be freed, it would be better for that slab to be at the\n"
"        front where all of its buffers can be allocated. Taking a slab\n"
"        off the partial slab list (either with all buffers freed or all\n"
"        buffers allocated) reduces cache fragmentation.\n"
"\n"
"        A slab's allocated buffer count representing a partial slab (9 in\n"
"        the example below) may be marked as follows:\n"
"\n"
"        9*   An asterisk indicates that kmem has marked the slab non-\n"
"        reclaimable because the kmem client refused to move one of the\n"
"        slab's buffers. Since kmem does not expect to completely free the\n"
"        slab, it moves it to the front of the list in the hope of\n"
"        completely allocating it instead. A slab marked with an asterisk\n"
"        stays marked for as long as it remains on the partial slab list.\n"
"\n"
"Column\t\tDescription\n"
"\n"
"Cache Name\t\tname of kmem cache\n"
"Slabs\t\t\ttotal slab count\n"
"Partial Slabs\t\tcount of partially allocated slabs on the free list\n"
"Buffers\t\ttotal buffer count (Slabs * (buffers per slab))\n"
"Unused Buffers\tcount of unallocated buffers across all partial slabs\n"
"Waste\t\t\t(Unused Buffers / Buffers) does not include space\n"
"\t\t\t  for accounting structures (debug mode), slab\n"
"\t\t\t  coloring (incremental small offsets to stagger\n"
"\t\t\t  buffer alignment), or the per-CPU magazine layer\n");
}

static int
addrcmp(const void *lhs, const void *rhs)
{
	uintptr_t p1 = *((uintptr_t *)lhs);
	uintptr_t p2 = *((uintptr_t *)rhs);

	if (p1 < p2)
		return (-1);
	if (p1 > p2)
		return (1);
	return (0);
}

static int
bufctlcmp(const kmem_bufctl_audit_t **lhs, const kmem_bufctl_audit_t **rhs)
{
	const kmem_bufctl_audit_t *bcp1 = *lhs;
	const kmem_bufctl_audit_t *bcp2 = *rhs;

	if (bcp1->bc_timestamp > bcp2->bc_timestamp)
		return (-1);

	if (bcp1->bc_timestamp < bcp2->bc_timestamp)
		return (1);

	return (0);
}

typedef struct kmem_hash_walk {
	uintptr_t *kmhw_table;
	size_t kmhw_nelems;
	size_t kmhw_pos;
	kmem_bufctl_t kmhw_cur;
} kmem_hash_walk_t;

int
kmem_hash_walk_init(mdb_walk_state_t *wsp)
{
	kmem_hash_walk_t *kmhw;
	uintptr_t *hash;
	kmem_cache_t c;
	uintptr_t haddr, addr = wsp->walk_addr;
	size_t nelems;
	size_t hsize;

	if (addr == NULL) {
		mdb_warn("kmem_hash doesn't support global walks\n");
		return (WALK_ERR);
	}

	if (mdb_vread(&c, sizeof (c), addr) == -1) {
		mdb_warn("couldn't read cache at addr %p", addr);
		return (WALK_ERR);
	}

	if (!(c.cache_flags & KMF_HASH)) {
		mdb_warn("cache %p doesn't have a hash table\n", addr);
		return (WALK_DONE);		/* nothing to do */
	}

	kmhw = mdb_zalloc(sizeof (kmem_hash_walk_t), UM_SLEEP);
	kmhw->kmhw_cur.bc_next = NULL;
	kmhw->kmhw_pos = 0;

	kmhw->kmhw_nelems = nelems = c.cache_hash_mask + 1;
	hsize = nelems * sizeof (uintptr_t);
	haddr = (uintptr_t)c.cache_hash_table;

	kmhw->kmhw_table = hash = mdb_alloc(hsize, UM_SLEEP);
	if (mdb_vread(hash, hsize, haddr) == -1) {
		mdb_warn("failed to read hash table at %p", haddr);
		mdb_free(hash, hsize);
		mdb_free(kmhw, sizeof (kmem_hash_walk_t));
		return (WALK_ERR);
	}

	wsp->walk_data = kmhw;

	return (WALK_NEXT);
}

int
kmem_hash_walk_step(mdb_walk_state_t *wsp)
{
	kmem_hash_walk_t *kmhw = wsp->walk_data;
	uintptr_t addr = NULL;

	if ((addr = (uintptr_t)kmhw->kmhw_cur.bc_next) == NULL) {
		while (kmhw->kmhw_pos < kmhw->kmhw_nelems) {
			if ((addr = kmhw->kmhw_table[kmhw->kmhw_pos++]) != NULL)
				break;
		}
	}
	if (addr == NULL)
		return (WALK_DONE);

	if (mdb_vread(&kmhw->kmhw_cur, sizeof (kmem_bufctl_t), addr) == -1) {
		mdb_warn("couldn't read kmem_bufctl_t at addr %p", addr);
		return (WALK_ERR);
	}

	return (wsp->walk_callback(addr, &kmhw->kmhw_cur, wsp->walk_cbdata));
}

void
kmem_hash_walk_fini(mdb_walk_state_t *wsp)
{
	kmem_hash_walk_t *kmhw = wsp->walk_data;

	if (kmhw == NULL)
		return;

	mdb_free(kmhw->kmhw_table, kmhw->kmhw_nelems * sizeof (uintptr_t));
	mdb_free(kmhw, sizeof (kmem_hash_walk_t));
}

/*
 * Find the address of the bufctl structure for the address 'buf' in cache
 * 'cp', which is at address caddr, and place it in *out.
 */
static int
kmem_hash_lookup(kmem_cache_t *cp, uintptr_t caddr, void *buf, uintptr_t *out)
{
	uintptr_t bucket = (uintptr_t)KMEM_HASH(cp, buf);
	kmem_bufctl_t *bcp;
	kmem_bufctl_t bc;

	if (mdb_vread(&bcp, sizeof (kmem_bufctl_t *), bucket) == -1) {
		mdb_warn("unable to read hash bucket for %p in cache %p",
		    buf, caddr);
		return (-1);
	}

	while (bcp != NULL) {
		if (mdb_vread(&bc, sizeof (kmem_bufctl_t),
		    (uintptr_t)bcp) == -1) {
			mdb_warn("unable to read bufctl at %p", bcp);
			return (-1);
		}
		if (bc.bc_addr == buf) {
			*out = (uintptr_t)bcp;
			return (0);
		}
		bcp = bc.bc_next;
	}

	mdb_warn("unable to find bufctl for %p in cache %p\n", buf, caddr);
	return (-1);
}

int
kmem_get_magsize(const kmem_cache_t *cp)
{
	uintptr_t addr = (uintptr_t)cp->cache_magtype;
	GElf_Sym mt_sym;
	kmem_magtype_t mt;
	int res;

	/*
	 * if cpu 0 has a non-zero magsize, it must be correct.  caches
	 * with KMF_NOMAGAZINE have disabled their magazine layers, so
	 * it is okay to return 0 for them.
	 */
	if ((res = cp->cache_cpu[0].cc_magsize) != 0 ||
	    (cp->cache_flags & KMF_NOMAGAZINE))
		return (res);

	if (mdb_lookup_by_name("kmem_magtype", &mt_sym) == -1) {
		mdb_warn("unable to read 'kmem_magtype'");
	} else if (addr < mt_sym.st_value ||
	    addr + sizeof (mt) - 1 > mt_sym.st_value + mt_sym.st_size - 1 ||
	    ((addr - mt_sym.st_value) % sizeof (mt)) != 0) {
		mdb_warn("cache '%s' has invalid magtype pointer (%p)\n",
		    cp->cache_name, addr);
		return (0);
	}
	if (mdb_vread(&mt, sizeof (mt), addr) == -1) {
		mdb_warn("unable to read magtype at %a", addr);
		return (0);
	}
	return (mt.mt_magsize);
}

/*ARGSUSED*/
static int
kmem_estimate_slab(uintptr_t addr, const kmem_slab_t *sp, size_t *est)
{
	*est -= (sp->slab_chunks - sp->slab_refcnt);

	return (WALK_NEXT);
}

/*
 * Returns an upper bound on the number of allocated buffers in a given
 * cache.
 */
size_t
kmem_estimate_allocated(uintptr_t addr, const kmem_cache_t *cp)
{
	int magsize;
	size_t cache_est;

	cache_est = cp->cache_buftotal;

	(void) mdb_pwalk("kmem_slab_partial",
	    (mdb_walk_cb_t)kmem_estimate_slab, &cache_est, addr);

	if ((magsize = kmem_get_magsize(cp)) != 0) {
		size_t mag_est = cp->cache_full.ml_total * magsize;

		if (cache_est >= mag_est) {
			cache_est -= mag_est;
		} else {
			mdb_warn("cache %p's magazine layer holds more buffers "
			    "than the slab layer.\n", addr);
		}
	}
	return (cache_est);
}

#define	READMAG_ROUNDS(rounds) { \
	if (mdb_vread(mp, magbsize, (uintptr_t)kmp) == -1) { \
		mdb_warn("couldn't read magazine at %p", kmp); \
		goto fail; \
	} \
	for (i = 0; i < rounds; i++) { \
		maglist[magcnt++] = mp->mag_round[i]; \
		if (magcnt == magmax) { \
			mdb_warn("%d magazines exceeds fudge factor\n", \
			    magcnt); \
			goto fail; \
		} \
	} \
}

int
kmem_read_magazines(kmem_cache_t *cp, uintptr_t addr, int ncpus,
    void ***maglistp, size_t *magcntp, size_t *magmaxp, int alloc_flags)
{
	kmem_magazine_t *kmp, *mp;
	void **maglist = NULL;
	int i, cpu;
	size_t magsize, magmax, magbsize;
	size_t magcnt = 0;

	/*
	 * Read the magtype out of the cache, after verifying the pointer's
	 * correctness.
	 */
	magsize = kmem_get_magsize(cp);
	if (magsize == 0) {
		*maglistp = NULL;
		*magcntp = 0;
		*magmaxp = 0;
		return (WALK_NEXT);
	}

	/*
	 * There are several places where we need to go buffer hunting:
	 * the per-CPU loaded magazine, the per-CPU spare full magazine,
	 * and the full magazine list in the depot.
	 *
	 * For an upper bound on the number of buffers in the magazine
	 * layer, we have the number of magazines on the cache_full
	 * list plus at most two magazines per CPU (the loaded and the
	 * spare).  Toss in 100 magazines as a fudge factor in case this
	 * is live (the number "100" comes from the same fudge factor in
	 * crash(1M)).
	 */
	magmax = (cp->cache_full.ml_total + 2 * ncpus + 100) * magsize;
	magbsize = offsetof(kmem_magazine_t, mag_round[magsize]);

	if (magbsize >= PAGESIZE / 2) {
		mdb_warn("magazine size for cache %p unreasonable (%x)\n",
		    addr, magbsize);
		return (WALK_ERR);
	}

	maglist = mdb_alloc(magmax * sizeof (void *), alloc_flags);
	mp = mdb_alloc(magbsize, alloc_flags);
	if (mp == NULL || maglist == NULL)
		goto fail;

	/*
	 * First up: the magazines in the depot (i.e. on the cache_full list).
	 */
	for (kmp = cp->cache_full.ml_list; kmp != NULL; ) {
		READMAG_ROUNDS(magsize);
		kmp = mp->mag_next;

		if (kmp == cp->cache_full.ml_list)
			break; /* cache_full list loop detected */
	}

	dprintf(("cache_full list done\n"));

	/*
	 * Now whip through the CPUs, snagging the loaded magazines
	 * and full spares.
	 *
	 * In order to prevent inconsistent dumps, rounds and prounds
	 * are copied aside before dumping begins.
	 */
	for (cpu = 0; cpu < ncpus; cpu++) {
		kmem_cpu_cache_t *ccp = &cp->cache_cpu[cpu];
		short rounds, prounds;

		if (KMEM_DUMPCC(ccp)) {
			rounds = ccp->cc_dump_rounds;
			prounds = ccp->cc_dump_prounds;
		} else {
			rounds = ccp->cc_rounds;
			prounds = ccp->cc_prounds;
		}

		dprintf(("reading cpu cache %p\n",
		    (uintptr_t)ccp - (uintptr_t)cp + addr));

		if (rounds > 0 &&
		    (kmp = ccp->cc_loaded) != NULL) {
			dprintf(("reading %d loaded rounds\n", rounds));
			READMAG_ROUNDS(rounds);
		}

		if (prounds > 0 &&
		    (kmp = ccp->cc_ploaded) != NULL) {
			dprintf(("reading %d previously loaded rounds\n",
			    prounds));
			READMAG_ROUNDS(prounds);
		}
	}

	dprintf(("magazine layer: %d buffers\n", magcnt));

	if (!(alloc_flags & UM_GC))
		mdb_free(mp, magbsize);

	*maglistp = maglist;
	*magcntp = magcnt;
	*magmaxp = magmax;

	return (WALK_NEXT);

fail:
	if (!(alloc_flags & UM_GC)) {
		if (mp)
			mdb_free(mp, magbsize);
		if (maglist)
			mdb_free(maglist, magmax * sizeof (void *));
	}
	return (WALK_ERR);
}

static int
kmem_walk_callback(mdb_walk_state_t *wsp, uintptr_t buf)
{
	return (wsp->walk_callback(buf, NULL, wsp->walk_cbdata));
}

static int
bufctl_walk_callback(kmem_cache_t *cp, mdb_walk_state_t *wsp, uintptr_t buf)
{
	kmem_bufctl_audit_t b;

	/*
	 * if KMF_AUDIT is not set, we know that we're looking at a
	 * kmem_bufctl_t.
	 */
	if (!(cp->cache_flags & KMF_AUDIT) ||
	    mdb_vread(&b, sizeof (kmem_bufctl_audit_t), buf) == -1) {
		(void) memset(&b, 0, sizeof (b));
		if (mdb_vread(&b, sizeof (kmem_bufctl_t), buf) == -1) {
			mdb_warn("unable to read bufctl at %p", buf);
			return (WALK_ERR);
		}
	}

	return (wsp->walk_callback(buf, &b, wsp->walk_cbdata));
}

typedef struct kmem_walk {
	int kmw_type;

	uintptr_t kmw_addr;		/* cache address */
	kmem_cache_t *kmw_cp;
	size_t kmw_csize;

	/*
	 * magazine layer
	 */
	void **kmw_maglist;
	size_t kmw_max;
	size_t kmw_count;
	size_t kmw_pos;

	/*
	 * slab layer
	 */
	char *kmw_valid;	/* to keep track of freed buffers */
	char *kmw_ubase;	/* buffer for slab data */
} kmem_walk_t;

static int
kmem_walk_init_common(mdb_walk_state_t *wsp, int type)
{
	kmem_walk_t *kmw;
	int ncpus, csize;
	kmem_cache_t *cp;
	size_t vm_quantum;

	size_t magmax, magcnt;
	void **maglist = NULL;
	uint_t chunksize, slabsize;
	int status = WALK_ERR;
	uintptr_t addr = wsp->walk_addr;
	const char *layered;

	type &= ~KM_HASH;

	if (addr == NULL) {
		mdb_warn("kmem walk doesn't support global walks\n");
		return (WALK_ERR);
	}

	dprintf(("walking %p\n", addr));

	/*
	 * First we need to figure out how many CPUs are configured in the
	 * system to know how much to slurp out.
	 */
	mdb_readvar(&ncpus, "max_ncpus");

	csize = KMEM_CACHE_SIZE(ncpus);
	cp = mdb_alloc(csize, UM_SLEEP);

	if (mdb_vread(cp, csize, addr) == -1) {
		mdb_warn("couldn't read cache at addr %p", addr);
		goto out2;
	}

	/*
	 * It's easy for someone to hand us an invalid cache address.
	 * Unfortunately, it is hard for this walker to survive an
	 * invalid cache cleanly.  So we make sure that:
	 *
	 *	1. the vmem arena for the cache is readable,
	 *	2. the vmem arena's quantum is a power of 2,
	 *	3. our slabsize is a multiple of the quantum, and
	 *	4. our chunksize is >0 and less than our slabsize.
	 */
	if (mdb_vread(&vm_quantum, sizeof (vm_quantum),
	    (uintptr_t)&cp->cache_arena->vm_quantum) == -1 ||
	    vm_quantum == 0 ||
	    (vm_quantum & (vm_quantum - 1)) != 0 ||
	    cp->cache_slabsize < vm_quantum ||
	    P2PHASE(cp->cache_slabsize, vm_quantum) != 0 ||
	    cp->cache_chunksize == 0 ||
	    cp->cache_chunksize > cp->cache_slabsize) {
		mdb_warn("%p is not a valid kmem_cache_t\n", addr);
		goto out2;
	}

	dprintf(("buf total is %d\n", cp->cache_buftotal));

	if (cp->cache_buftotal == 0) {
		mdb_free(cp, csize);
		return (WALK_DONE);
	}

	/*
	 * If they ask for bufctls, but it's a small-slab cache,
	 * there is nothing to report.
	 */
	if ((type & KM_BUFCTL) && !(cp->cache_flags & KMF_HASH)) {
		dprintf(("bufctl requested, not KMF_HASH (flags: %p)\n",
		    cp->cache_flags));
		mdb_free(cp, csize);
		return (WALK_DONE);
	}

	/*
	 * If they want constructed buffers, but there's no constructor or
	 * the cache has DEADBEEF checking enabled, there is nothing to report.
	 */
	if ((type & KM_CONSTRUCTED) && (!(type & KM_FREE) ||
	    cp->cache_constructor == NULL ||
	    (cp->cache_flags & (KMF_DEADBEEF | KMF_LITE)) == KMF_DEADBEEF)) {
		mdb_free(cp, csize);
		return (WALK_DONE);
	}

	/*
	 * Read in the contents of the magazine layer
	 */
	if (kmem_read_magazines(cp, addr, ncpus, &maglist, &magcnt,
	    &magmax, UM_SLEEP) == WALK_ERR)
		goto out2;

	/*
	 * We have all of the buffers from the magazines;  if we are walking
	 * allocated buffers, sort them so we can bsearch them later.
	 */
	if (type & KM_ALLOCATED)
		qsort(maglist, magcnt, sizeof (void *), addrcmp);

	wsp->walk_data = kmw = mdb_zalloc(sizeof (kmem_walk_t), UM_SLEEP);

	kmw->kmw_type = type;
	kmw->kmw_addr = addr;
	kmw->kmw_cp = cp;
	kmw->kmw_csize = csize;
	kmw->kmw_maglist = maglist;
	kmw->kmw_max = magmax;
	kmw->kmw_count = magcnt;
	kmw->kmw_pos = 0;

	/*
	 * When walking allocated buffers in a KMF_HASH cache, we walk the
	 * hash table instead of the slab layer.
	 */
	if ((cp->cache_flags & KMF_HASH) && (type & KM_ALLOCATED)) {
		layered = "kmem_hash";

		kmw->kmw_type |= KM_HASH;
	} else {
		/*
		 * If we are walking freed buffers, we only need the
		 * magazine layer plus the partially allocated slabs.
		 * To walk allocated buffers, we need all of the slabs.
		 */
		if (type & KM_ALLOCATED)
			layered = "kmem_slab";
		else
			layered = "kmem_slab_partial";

		/*
		 * for small-slab caches, we read in the entire slab.  For
		 * freed buffers, we can just walk the freelist.  For
		 * allocated buffers, we use a 'valid' array to track
		 * the freed buffers.
		 */
		if (!(cp->cache_flags & KMF_HASH)) {
			chunksize = cp->cache_chunksize;
			slabsize = cp->cache_slabsize;

			kmw->kmw_ubase = mdb_alloc(slabsize +
			    sizeof (kmem_bufctl_t), UM_SLEEP);

			if (type & KM_ALLOCATED)
				kmw->kmw_valid =
				    mdb_alloc(slabsize / chunksize, UM_SLEEP);
		}
	}

	status = WALK_NEXT;

	if (mdb_layered_walk(layered, wsp) == -1) {
		mdb_warn("unable to start layered '%s' walk", layered);
		status = WALK_ERR;
	}

out1:
	if (status == WALK_ERR) {
		if (kmw->kmw_valid)
			mdb_free(kmw->kmw_valid, slabsize / chunksize);

		if (kmw->kmw_ubase)
			mdb_free(kmw->kmw_ubase, slabsize +
			    sizeof (kmem_bufctl_t));

		if (kmw->kmw_maglist)
			mdb_free(kmw->kmw_maglist,
			    kmw->kmw_max * sizeof (uintptr_t));

		mdb_free(kmw, sizeof (kmem_walk_t));
		wsp->walk_data = NULL;
	}

out2:
	if (status == WALK_ERR)
		mdb_free(cp, csize);

	return (status);
}

int
kmem_walk_step(mdb_walk_state_t *wsp)
{
	kmem_walk_t *kmw = wsp->walk_data;
	int type = kmw->kmw_type;
	kmem_cache_t *cp = kmw->kmw_cp;

	void **maglist = kmw->kmw_maglist;
	int magcnt = kmw->kmw_count;

	uintptr_t chunksize, slabsize;
	uintptr_t addr;
	const kmem_slab_t *sp;
	const kmem_bufctl_t *bcp;
	kmem_bufctl_t bc;

	int chunks;
	char *kbase;
	void *buf;
	int i, ret;

	char *valid, *ubase;

	/*
	 * first, handle the 'kmem_hash' layered walk case
	 */
	if (type & KM_HASH) {
		/*
		 * We have a buffer which has been allocated out of the
		 * global layer. We need to make sure that it's not
		 * actually sitting in a magazine before we report it as
		 * an allocated buffer.
		 */
		buf = ((const kmem_bufctl_t *)wsp->walk_layer)->bc_addr;

		if (magcnt > 0 &&
		    bsearch(&buf, maglist, magcnt, sizeof (void *),
		    addrcmp) != NULL)
			return (WALK_NEXT);

		if (type & KM_BUFCTL)
			return (bufctl_walk_callback(cp, wsp, wsp->walk_addr));

		return (kmem_walk_callback(wsp, (uintptr_t)buf));
	}

	ret = WALK_NEXT;

	addr = kmw->kmw_addr;

	/*
	 * If we're walking freed buffers, report everything in the
	 * magazine layer before processing the first slab.
	 */
	if ((type & KM_FREE) && magcnt != 0) {
		kmw->kmw_count = 0;		/* only do this once */
		for (i = 0; i < magcnt; i++) {
			buf = maglist[i];

			if (type & KM_BUFCTL) {
				uintptr_t out;

				if (cp->cache_flags & KMF_BUFTAG) {
					kmem_buftag_t *btp;
					kmem_buftag_t tag;

					/* LINTED - alignment */
					btp = KMEM_BUFTAG(cp, buf);
					if (mdb_vread(&tag, sizeof (tag),
					    (uintptr_t)btp) == -1) {
						mdb_warn("reading buftag for "
						    "%p at %p", buf, btp);
						continue;
					}
					out = (uintptr_t)tag.bt_bufctl;
				} else {
					if (kmem_hash_lookup(cp, addr, buf,
					    &out) == -1)
						continue;
				}
				ret = bufctl_walk_callback(cp, wsp, out);
			} else {
				ret = kmem_walk_callback(wsp, (uintptr_t)buf);
			}

			if (ret != WALK_NEXT)
				return (ret);
		}
	}

	/*
	 * If they want constructed buffers, we're finished, since the
	 * magazine layer holds them all.
	 */
	if (type & KM_CONSTRUCTED)
		return (WALK_DONE);

	/*
	 * Handle the buffers in the current slab
	 */
	chunksize = cp->cache_chunksize;
	slabsize = cp->cache_slabsize;

	sp = wsp->walk_layer;
	chunks = sp->slab_chunks;
	kbase = sp->slab_base;

	dprintf(("kbase is %p\n", kbase));

	if (!(cp->cache_flags & KMF_HASH)) {
		valid = kmw->kmw_valid;
		ubase = kmw->kmw_ubase;

		if (mdb_vread(ubase, chunks * chunksize,
		    (uintptr_t)kbase) == -1) {
			mdb_warn("failed to read slab contents at %p", kbase);
			return (WALK_ERR);
		}

		/*
		 * Set up the valid map as fully allocated -- we'll punch
		 * out the freelist.
		 */
		if (type & KM_ALLOCATED)
			(void) memset(valid, 1, chunks);
	} else {
		valid = NULL;
		ubase = NULL;
	}

	/*
	 * walk the slab's freelist
	 */
	bcp = sp->slab_head;

	dprintf(("refcnt is %d; chunks is %d\n", sp->slab_refcnt, chunks));

	/*
	 * since we could be in the middle of allocating a buffer,
	 * our refcnt could be one higher than it aught.  So we
	 * check one further on the freelist than the count allows.
	 */
	for (i = sp->slab_refcnt; i <= chunks; i++) {
		uint_t ndx;

		dprintf(("bcp is %p\n", bcp));

		if (bcp == NULL) {
			if (i == chunks)
				break;
			mdb_warn(
			    "slab %p in cache %p freelist too short by %d\n",
			    sp, addr, chunks - i);
			break;
		}

		if (cp->cache_flags & KMF_HASH) {
			if (mdb_vread(&bc, sizeof (bc), (uintptr_t)bcp) == -1) {
				mdb_warn("failed to read bufctl ptr at %p",
				    bcp);
				break;
			}
			buf = bc.bc_addr;
		} else {
			/*
			 * Otherwise the buffer is (or should be) in the slab
			 * that we've read in; determine its offset in the
			 * slab, validate that it's not corrupt, and add to
			 * our base address to find the umem_bufctl_t.  (Note
			 * that we don't need to add the size of the bufctl
			 * to our offset calculation because of the slop that's
			 * allocated for the buffer at ubase.)
			 */
			uintptr_t offs = (uintptr_t)bcp - (uintptr_t)kbase;

			if (offs > chunks * chunksize) {
				mdb_warn("found corrupt bufctl ptr %p"
				    " in slab %p in cache %p\n", bcp,
				    wsp->walk_addr, addr);
				break;
			}

			bc = *((kmem_bufctl_t *)((uintptr_t)ubase + offs));
			buf = KMEM_BUF(cp, bcp);
		}

		ndx = ((uintptr_t)buf - (uintptr_t)kbase) / chunksize;

		if (ndx > slabsize / cp->cache_bufsize) {
			/*
			 * This is very wrong; we have managed to find
			 * a buffer in the slab which shouldn't
			 * actually be here.  Emit a warning, and
			 * try to continue.
			 */
			mdb_warn("buf %p is out of range for "
			    "slab %p, cache %p\n", buf, sp, addr);
		} else if (type & KM_ALLOCATED) {
			/*
			 * we have found a buffer on the slab's freelist;
			 * clear its entry
			 */
			valid[ndx] = 0;
		} else {
			/*
			 * Report this freed buffer
			 */
			if (type & KM_BUFCTL) {
				ret = bufctl_walk_callback(cp, wsp,
				    (uintptr_t)bcp);
			} else {
				ret = kmem_walk_callback(wsp, (uintptr_t)buf);
			}
			if (ret != WALK_NEXT)
				return (ret);
		}

		bcp = bc.bc_next;
	}

	if (bcp != NULL) {
		dprintf(("slab %p in cache %p freelist too long (%p)\n",
		    sp, addr, bcp));
	}

	/*
	 * If we are walking freed buffers, the loop above handled reporting
	 * them.
	 */
	if (type & KM_FREE)
		return (WALK_NEXT);

	if (type & KM_BUFCTL) {
		mdb_warn("impossible situation: small-slab KM_BUFCTL walk for "
		    "cache %p\n", addr);
		return (WALK_ERR);
	}

	/*
	 * Report allocated buffers, skipping buffers in the magazine layer.
	 * We only get this far for small-slab caches.
	 */
	for (i = 0; ret == WALK_NEXT && i < chunks; i++) {
		buf = (char *)kbase + i * chunksize;

		if (!valid[i])
			continue;		/* on slab freelist */

		if (magcnt > 0 &&
		    bsearch(&buf, maglist, magcnt, sizeof (void *),
		    addrcmp) != NULL)
			continue;		/* in magazine layer */

		ret = kmem_walk_callback(wsp, (uintptr_t)buf);
	}
	return (ret);
}

void
kmem_walk_fini(mdb_walk_state_t *wsp)
{
	kmem_walk_t *kmw = wsp->walk_data;
	uintptr_t chunksize;
	uintptr_t slabsize;

	if (kmw == NULL)
		return;

	if (kmw->kmw_maglist != NULL)
		mdb_free(kmw->kmw_maglist, kmw->kmw_max * sizeof (void *));

	chunksize = kmw->kmw_cp->cache_chunksize;
	slabsize = kmw->kmw_cp->cache_slabsize;

	if (kmw->kmw_valid != NULL)
		mdb_free(kmw->kmw_valid, slabsize / chunksize);
	if (kmw->kmw_ubase != NULL)
		mdb_free(kmw->kmw_ubase, slabsize + sizeof (kmem_bufctl_t));

	mdb_free(kmw->kmw_cp, kmw->kmw_csize);
	mdb_free(kmw, sizeof (kmem_walk_t));
}

/*ARGSUSED*/
static int
kmem_walk_all(uintptr_t addr, const kmem_cache_t *c, mdb_walk_state_t *wsp)
{
	/*
	 * Buffers allocated from NOTOUCH caches can also show up as freed
	 * memory in other caches.  This can be a little confusing, so we
	 * don't walk NOTOUCH caches when walking all caches (thereby assuring
	 * that "::walk kmem" and "::walk freemem" yield disjoint output).
	 */
	if (c->cache_cflags & KMC_NOTOUCH)
		return (WALK_NEXT);

	if (mdb_pwalk(wsp->walk_data, wsp->walk_callback,
	    wsp->walk_cbdata, addr) == -1)
		return (WALK_DONE);

	return (WALK_NEXT);
}

#define	KMEM_WALK_ALL(name, wsp) { \
	wsp->walk_data = (name); \
	if (mdb_walk("kmem_cache", (mdb_walk_cb_t)kmem_walk_all, wsp) == -1) \
		return (WALK_ERR); \
	return (WALK_DONE); \
}

int
kmem_walk_init(mdb_walk_state_t *wsp)
{
	if (wsp->walk_arg != NULL)
		wsp->walk_addr = (uintptr_t)wsp->walk_arg;

	if (wsp->walk_addr == NULL)
		KMEM_WALK_ALL("kmem", wsp);
	return (kmem_walk_init_common(wsp, KM_ALLOCATED));
}

int
bufctl_walk_init(mdb_walk_state_t *wsp)
{
	if (wsp->walk_addr == NULL)
		KMEM_WALK_ALL("bufctl", wsp);
	return (kmem_walk_init_common(wsp, KM_ALLOCATED | KM_BUFCTL));
}

int
freemem_walk_init(mdb_walk_state_t *wsp)
{
	if (wsp->walk_addr == NULL)
		KMEM_WALK_ALL("freemem", wsp);
	return (kmem_walk_init_common(wsp, KM_FREE));
}

int
freemem_constructed_walk_init(mdb_walk_state_t *wsp)
{
	if (wsp->walk_addr == NULL)
		KMEM_WALK_ALL("freemem_constructed", wsp);
	return (kmem_walk_init_common(wsp, KM_FREE | KM_CONSTRUCTED));
}

int
freectl_walk_init(mdb_walk_state_t *wsp)
{
	if (wsp->walk_addr == NULL)
		KMEM_WALK_ALL("freectl", wsp);
	return (kmem_walk_init_common(wsp, KM_FREE | KM_BUFCTL));
}

int
freectl_constructed_walk_init(mdb_walk_state_t *wsp)
{
	if (wsp->walk_addr == NULL)
		KMEM_WALK_ALL("freectl_constructed", wsp);
	return (kmem_walk_init_common(wsp,
	    KM_FREE | KM_BUFCTL | KM_CONSTRUCTED));
}

typedef struct bufctl_history_walk {
	void		*bhw_next;
	kmem_cache_t	*bhw_cache;
	kmem_slab_t	*bhw_slab;
	hrtime_t	bhw_timestamp;
} bufctl_history_walk_t;

int
bufctl_history_walk_init(mdb_walk_state_t *wsp)
{
	bufctl_history_walk_t *bhw;
	kmem_bufctl_audit_t bc;
	kmem_bufctl_audit_t bcn;

	if (wsp->walk_addr == NULL) {
		mdb_warn("bufctl_history walk doesn't support global walks\n");
		return (WALK_ERR);
	}

	if (mdb_vread(&bc, sizeof (bc), wsp->walk_addr) == -1) {
		mdb_warn("unable to read bufctl at %p", wsp->walk_addr);
		return (WALK_ERR);
	}

	bhw = mdb_zalloc(sizeof (*bhw), UM_SLEEP);
	bhw->bhw_timestamp = 0;
	bhw->bhw_cache = bc.bc_cache;
	bhw->bhw_slab = bc.bc_slab;

	/*
	 * sometimes the first log entry matches the base bufctl;  in that
	 * case, skip the base bufctl.
	 */
	if (bc.bc_lastlog != NULL &&
	    mdb_vread(&bcn, sizeof (bcn), (uintptr_t)bc.bc_lastlog) != -1 &&
	    bc.bc_addr == bcn.bc_addr &&
	    bc.bc_cache == bcn.bc_cache &&
	    bc.bc_slab == bcn.bc_slab &&
	    bc.bc_timestamp == bcn.bc_timestamp &&
	    bc.bc_thread == bcn.bc_thread)
		bhw->bhw_next = bc.bc_lastlog;
	else
		bhw->bhw_next = (void *)wsp->walk_addr;

	wsp->walk_addr = (uintptr_t)bc.bc_addr;
	wsp->walk_data = bhw;

	return (WALK_NEXT);
}

int
bufctl_history_walk_step(mdb_walk_state_t *wsp)
{
	bufctl_history_walk_t *bhw = wsp->walk_data;
	uintptr_t addr = (uintptr_t)bhw->bhw_next;
	uintptr_t baseaddr = wsp->walk_addr;
	kmem_bufctl_audit_t bc;

	if (addr == NULL)
		return (WALK_DONE);

	if (mdb_vread(&bc, sizeof (bc), addr) == -1) {
		mdb_warn("unable to read bufctl at %p", bhw->bhw_next);
		return (WALK_ERR);
	}

	/*
	 * The bufctl is only valid if the address, cache, and slab are
	 * correct.  We also check that the timestamp is decreasing, to
	 * prevent infinite loops.
	 */
	if ((uintptr_t)bc.bc_addr != baseaddr ||
	    bc.bc_cache != bhw->bhw_cache ||
	    bc.bc_slab != bhw->bhw_slab ||
	    (bhw->bhw_timestamp != 0 && bc.bc_timestamp >= bhw->bhw_timestamp))
		return (WALK_DONE);

	bhw->bhw_next = bc.bc_lastlog;
	bhw->bhw_timestamp = bc.bc_timestamp;

	return (wsp->walk_callback(addr, &bc, wsp->walk_cbdata));
}

void
bufctl_history_walk_fini(mdb_walk_state_t *wsp)
{
	bufctl_history_walk_t *bhw = wsp->walk_data;

	mdb_free(bhw, sizeof (*bhw));
}

typedef struct kmem_log_walk {
	kmem_bufctl_audit_t *klw_base;
	kmem_bufctl_audit_t **klw_sorted;
	kmem_log_header_t klw_lh;
	size_t klw_size;
	size_t klw_maxndx;
	size_t klw_ndx;
} kmem_log_walk_t;

int
kmem_log_walk_init(mdb_walk_state_t *wsp)
{
	uintptr_t lp = wsp->walk_addr;
	kmem_log_walk_t *klw;
	kmem_log_header_t *lhp;
	int maxndx, i, j, k;

	/*
	 * By default (global walk), walk the kmem_transaction_log.  Otherwise
	 * read the log whose kmem_log_header_t is stored at walk_addr.
	 */
	if (lp == NULL && mdb_readvar(&lp, "kmem_transaction_log") == -1) {
		mdb_warn("failed to read 'kmem_transaction_log'");
		return (WALK_ERR);
	}

	if (lp == NULL) {
		mdb_warn("log is disabled\n");
		return (WALK_ERR);
	}

	klw = mdb_zalloc(sizeof (kmem_log_walk_t), UM_SLEEP);
	lhp = &klw->klw_lh;

	if (mdb_vread(lhp, sizeof (kmem_log_header_t), lp) == -1) {
		mdb_warn("failed to read log header at %p", lp);
		mdb_free(klw, sizeof (kmem_log_walk_t));
		return (WALK_ERR);
	}

	klw->klw_size = lhp->lh_chunksize * lhp->lh_nchunks;
	klw->klw_base = mdb_alloc(klw->klw_size, UM_SLEEP);
	maxndx = lhp->lh_chunksize / sizeof (kmem_bufctl_audit_t) - 1;

	if (mdb_vread(klw->klw_base, klw->klw_size,
	    (uintptr_t)lhp->lh_base) == -1) {
		mdb_warn("failed to read log at base %p", lhp->lh_base);
		mdb_free(klw->klw_base, klw->klw_size);
		mdb_free(klw, sizeof (kmem_log_walk_t));
		return (WALK_ERR);
	}

	klw->klw_sorted = mdb_alloc(maxndx * lhp->lh_nchunks *
	    sizeof (kmem_bufctl_audit_t *), UM_SLEEP);

	for (i = 0, k = 0; i < lhp->lh_nchunks; i++) {
		kmem_bufctl_audit_t *chunk = (kmem_bufctl_audit_t *)
		    ((uintptr_t)klw->klw_base + i * lhp->lh_chunksize);

		for (j = 0; j < maxndx; j++)
			klw->klw_sorted[k++] = &chunk[j];
	}

	qsort(klw->klw_sorted, k, sizeof (kmem_bufctl_audit_t *),
	    (int(*)(const void *, const void *))bufctlcmp);

	klw->klw_maxndx = k;
	wsp->walk_data = klw;

	return (WALK_NEXT);
}

int
kmem_log_walk_step(mdb_walk_state_t *wsp)
{
	kmem_log_walk_t *klw = wsp->walk_data;
	kmem_bufctl_audit_t *bcp;

	if (klw->klw_ndx == klw->klw_maxndx)
		return (WALK_DONE);

	bcp = klw->klw_sorted[klw->klw_ndx++];

	return (wsp->walk_callback((uintptr_t)bcp - (uintptr_t)klw->klw_base +
	    (uintptr_t)klw->klw_lh.lh_base, bcp, wsp->walk_cbdata));
}

void
kmem_log_walk_fini(mdb_walk_state_t *wsp)
{
	kmem_log_walk_t *klw = wsp->walk_data;

	mdb_free(klw->klw_base, klw->klw_size);
	mdb_free(klw->klw_sorted, klw->klw_maxndx *
	    sizeof (kmem_bufctl_audit_t *));
	mdb_free(klw, sizeof (kmem_log_walk_t));
}

typedef struct allocdby_bufctl {
	uintptr_t abb_addr;
	hrtime_t abb_ts;
} allocdby_bufctl_t;

typedef struct allocdby_walk {
	const char *abw_walk;
	uintptr_t abw_thread;
	size_t abw_nbufs;
	size_t abw_size;
	allocdby_bufctl_t *abw_buf;
	size_t abw_ndx;
} allocdby_walk_t;

int
allocdby_walk_bufctl(uintptr_t addr, const kmem_bufctl_audit_t *bcp,
    allocdby_walk_t *abw)
{
	if ((uintptr_t)bcp->bc_thread != abw->abw_thread)
		return (WALK_NEXT);

	if (abw->abw_nbufs == abw->abw_size) {
		allocdby_bufctl_t *buf;
		size_t oldsize = sizeof (allocdby_bufctl_t) * abw->abw_size;

		buf = mdb_zalloc(oldsize << 1, UM_SLEEP);

		bcopy(abw->abw_buf, buf, oldsize);
		mdb_free(abw->abw_buf, oldsize);

		abw->abw_size <<= 1;
		abw->abw_buf = buf;
	}

	abw->abw_buf[abw->abw_nbufs].abb_addr = addr;
	abw->abw_buf[abw->abw_nbufs].abb_ts = bcp->bc_timestamp;
	abw->abw_nbufs++;

	return (WALK_NEXT);
}

/*ARGSUSED*/
int
allocdby_walk_cache(uintptr_t addr, const kmem_cache_t *c, allocdby_walk_t *abw)
{
	if (mdb_pwalk(abw->abw_walk, (mdb_walk_cb_t)allocdby_walk_bufctl,
	    abw, addr) == -1) {
		mdb_warn("couldn't walk bufctl for cache %p", addr);
		return (WALK_DONE);
	}

	return (WALK_NEXT);
}

static int
allocdby_cmp(const allocdby_bufctl_t *lhs, const allocdby_bufctl_t *rhs)
{
	if (lhs->abb_ts < rhs->abb_ts)
		return (1);
	if (lhs->abb_ts > rhs->abb_ts)
		return (-1);
	return (0);
}

static int
allocdby_walk_init_common(mdb_walk_state_t *wsp, const char *walk)
{
	allocdby_walk_t *abw;

	if (wsp->walk_addr == NULL) {
		mdb_warn("allocdby walk doesn't support global walks\n");
		return (WALK_ERR);
	}

	abw = mdb_zalloc(sizeof (allocdby_walk_t), UM_SLEEP);

	abw->abw_thread = wsp->walk_addr;
	abw->abw_walk = walk;
	abw->abw_size = 128;	/* something reasonable */
	abw->abw_buf =
	    mdb_zalloc(abw->abw_size * sizeof (allocdby_bufctl_t), UM_SLEEP);

	wsp->walk_data = abw;

	if (mdb_walk("kmem_cache",
	    (mdb_walk_cb_t)allocdby_walk_cache, abw) == -1) {
		mdb_warn("couldn't walk kmem_cache");
		allocdby_walk_fini(wsp);
		return (WALK_ERR);
	}

	qsort(abw->abw_buf, abw->abw_nbufs, sizeof (allocdby_bufctl_t),
	    (int(*)(const void *, const void *))allocdby_cmp);

	return (WALK_NEXT);
}

int
allocdby_walk_init(mdb_walk_state_t *wsp)
{
	return (allocdby_walk_init_common(wsp, "bufctl"));
}

int
freedby_walk_init(mdb_walk_state_t *wsp)
{
	return (allocdby_walk_init_common(wsp, "freectl"));
}

int
allocdby_walk_step(mdb_walk_state_t *wsp)
{
	allocdby_walk_t *abw = wsp->walk_data;
	kmem_bufctl_audit_t bc;
	uintptr_t addr;

	if (abw->abw_ndx == abw->abw_nbufs)
		return (WALK_DONE);

	addr = abw->abw_buf[abw->abw_ndx++].abb_addr;

	if (mdb_vread(&bc, sizeof (bc), addr) == -1) {
		mdb_warn("couldn't read bufctl at %p", addr);
		return (WALK_DONE);
	}

	return (wsp->walk_callback(addr, &bc, wsp->walk_cbdata));
}

void
allocdby_walk_fini(mdb_walk_state_t *wsp)
{
	allocdby_walk_t *abw = wsp->walk_data;

	mdb_free(abw->abw_buf, sizeof (allocdby_bufctl_t) * abw->abw_size);
	mdb_free(abw, sizeof (allocdby_walk_t));
}

/*ARGSUSED*/
int
allocdby_walk(uintptr_t addr, const kmem_bufctl_audit_t *bcp, void *ignored)
{
	char c[MDB_SYM_NAMLEN];
	GElf_Sym sym;
	int i;

	mdb_printf("%0?p %12llx ", addr, bcp->bc_timestamp);
	for (i = 0; i < bcp->bc_depth; i++) {
		if (mdb_lookup_by_addr(bcp->bc_stack[i],
		    MDB_SYM_FUZZY, c, sizeof (c), &sym) == -1)
			continue;
		if (strncmp(c, "kmem_", 5) == 0)
			continue;
		mdb_printf("%s+0x%lx",
		    c, bcp->bc_stack[i] - (uintptr_t)sym.st_value);
		break;
	}
	mdb_printf("\n");

	return (WALK_NEXT);
}

static int
allocdby_common(uintptr_t addr, uint_t flags, const char *w)
{
	if (!(flags & DCMD_ADDRSPEC))
		return (DCMD_USAGE);

	mdb_printf("%-?s %12s %s\n", "BUFCTL", "TIMESTAMP", "CALLER");

	if (mdb_pwalk(w, (mdb_walk_cb_t)allocdby_walk, NULL, addr) == -1) {
		mdb_warn("can't walk '%s' for %p", w, addr);
		return (DCMD_ERR);
	}

	return (DCMD_OK);
}

/*ARGSUSED*/
int
allocdby(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv)
{
	return (allocdby_common(addr, flags, "allocdby"));
}

/*ARGSUSED*/
int
freedby(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv)
{
	return (allocdby_common(addr, flags, "freedby"));
}

/*
 * Return a string describing the address in relation to the given thread's
 * stack.
 *
 * - If the thread state is TS_FREE, return " (inactive interrupt thread)".
 *
 * - If the address is above the stack pointer, return an empty string
 *   signifying that the address is active.
 *
 * - If the address is below the stack pointer, and the thread is not on proc,
 *   return " (below sp)".
 *
 * - If the address is below the stack pointer, and the thread is on proc,
 *   return " (possibly below sp)".  Depending on context, we may or may not
 *   have an accurate t_sp.
 */
static const char *
stack_active(const kthread_t *t, uintptr_t addr)
{
	uintptr_t panicstk;
	GElf_Sym sym;

	if (t->t_state == TS_FREE)
		return (" (inactive interrupt thread)");

	/*
	 * Check to see if we're on the panic stack.  If so, ignore t_sp, as it
	 * no longer relates to the thread's real stack.
	 */
	if (mdb_lookup_by_name("panic_stack", &sym) == 0) {
		panicstk = (uintptr_t)sym.st_value;

		if (t->t_sp >= panicstk && t->t_sp < panicstk + PANICSTKSIZE)
			return ("");
	}

	if (addr >= t->t_sp + STACK_BIAS)
		return ("");

	if (t->t_state == TS_ONPROC)
		return (" (possibly below sp)");

	return (" (below sp)");
}

/*
 * Additional state for the kmem and vmem ::whatis handlers
 */
typedef struct whatis_info {
	mdb_whatis_t *wi_w;
	const kmem_cache_t *wi_cache;
	const vmem_t *wi_vmem;
	vmem_t *wi_msb_arena;
	size_t wi_slab_size;
	uint_t wi_slab_found;
	uint_t wi_kmem_lite_count;
	uint_t wi_freemem;
} whatis_info_t;

/* call one of our dcmd functions with "-v" and the provided address */
static void
whatis_call_printer(mdb_dcmd_f *dcmd, uintptr_t addr)
{
	mdb_arg_t a;
	a.a_type = MDB_TYPE_STRING;
	a.a_un.a_str = "-v";

	mdb_printf(":\n");
	(void) (*dcmd)(addr, DCMD_ADDRSPEC, 1, &a);
}

static void
whatis_print_kmf_lite(uintptr_t btaddr, size_t count)
{
#define	KMEM_LITE_MAX	16
	pc_t callers[KMEM_LITE_MAX];
	pc_t uninit = (pc_t)KMEM_UNINITIALIZED_PATTERN;

	kmem_buftag_t bt;
	intptr_t stat;
	const char *plural = "";
	int i;

	/* validate our arguments and read in the buftag */
	if (count == 0 || count > KMEM_LITE_MAX ||
	    mdb_vread(&bt, sizeof (bt), btaddr) == -1)
		return;

	/* validate the buffer state and read in the callers */
	stat = (intptr_t)bt.bt_bufctl ^ bt.bt_bxstat;

	if (stat != KMEM_BUFTAG_ALLOC && stat != KMEM_BUFTAG_FREE)
		return;

	if (mdb_vread(callers, count * sizeof (pc_t),
	    btaddr + offsetof(kmem_buftag_lite_t, bt_history)) == -1)
		return;

	/* If there aren't any filled in callers, bail */
	if (callers[0] == uninit)
		return;

	plural = (callers[1] == uninit) ? "" : "s";

	/* Everything's done and checked; print them out */
	mdb_printf(":\n");

	mdb_inc_indent(8);
	mdb_printf("recent caller%s: %a", plural, callers[0]);
	for (i = 1; i < count; i++) {
		if (callers[i] == uninit)
			break;
		mdb_printf(", %a", callers[i]);
	}
	mdb_dec_indent(8);
}

static void
whatis_print_kmem(whatis_info_t *wi, uintptr_t maddr, uintptr_t addr,
    uintptr_t baddr)
{
	mdb_whatis_t *w = wi->wi_w;

	const kmem_cache_t *cp = wi->wi_cache;
	/* LINTED pointer cast may result in improper alignment */
	uintptr_t btaddr = (uintptr_t)KMEM_BUFTAG(cp, addr);
	int quiet = (mdb_whatis_flags(w) & WHATIS_QUIET);
	int call_printer = (!quiet && (cp->cache_flags & KMF_AUDIT));

	mdb_whatis_report_object(w, maddr, addr, "");

	if (baddr != 0 && !call_printer)
		mdb_printf("bufctl %p ", baddr);

	mdb_printf("%s from %s",
	    (wi->wi_freemem == FALSE) ? "allocated" : "freed", cp->cache_name);

	if (baddr != 0 && call_printer) {
		whatis_call_printer(bufctl, baddr);
		return;
	}

	/* for KMF_LITE caches, try to print out the previous callers */
	if (!quiet && (cp->cache_flags & KMF_LITE))
		whatis_print_kmf_lite(btaddr, wi->wi_kmem_lite_count);

	mdb_printf("\n");
}

/*ARGSUSED*/
static int
whatis_walk_kmem(uintptr_t addr, void *ignored, whatis_info_t *wi)
{
	mdb_whatis_t *w = wi->wi_w;

	uintptr_t cur;
	size_t size = wi->wi_cache->cache_bufsize;

	while (mdb_whatis_match(w, addr, size, &cur))
		whatis_print_kmem(wi, cur, addr, NULL);

	return (WHATIS_WALKRET(w));
}

/*ARGSUSED*/
static int
whatis_walk_bufctl(uintptr_t baddr, const kmem_bufctl_t *bcp, whatis_info_t *wi)
{
	mdb_whatis_t *w = wi->wi_w;

	uintptr_t cur;
	uintptr_t addr = (uintptr_t)bcp->bc_addr;
	size_t size = wi->wi_cache->cache_bufsize;

	while (mdb_whatis_match(w, addr, size, &cur))
		whatis_print_kmem(wi, cur, addr, baddr);

	return (WHATIS_WALKRET(w));
}

static int
whatis_walk_seg(uintptr_t addr, const vmem_seg_t *vs, whatis_info_t *wi)
{
	mdb_whatis_t *w = wi->wi_w;

	size_t size = vs->vs_end - vs->vs_start;
	uintptr_t cur;

	/* We're not interested in anything but alloc and free segments */
	if (vs->vs_type != VMEM_ALLOC && vs->vs_type != VMEM_FREE)
		return (WALK_NEXT);

	while (mdb_whatis_match(w, vs->vs_start, size, &cur)) {
		mdb_whatis_report_object(w, cur, vs->vs_start, "");

		/*
		 * If we're not printing it seperately, provide the vmem_seg
		 * pointer if it has a stack trace.
		 */
		if ((mdb_whatis_flags(w) & WHATIS_QUIET) &&
		    (!(mdb_whatis_flags(w) & WHATIS_BUFCTL) ||
		    (vs->vs_type == VMEM_ALLOC && vs->vs_depth != 0))) {
			mdb_printf("vmem_seg %p ", addr);
		}

		mdb_printf("%s from the %s vmem arena",
		    (vs->vs_type == VMEM_ALLOC) ? "allocated" : "freed",
		    wi->wi_vmem->vm_name);

		if (!(mdb_whatis_flags(w) & WHATIS_QUIET))
			whatis_call_printer(vmem_seg, addr);
		else
			mdb_printf("\n");
	}

	return (WHATIS_WALKRET(w));
}

static int
whatis_walk_vmem(uintptr_t addr, const vmem_t *vmem, whatis_info_t *wi)
{
	mdb_whatis_t *w = wi->wi_w;
	const char *nm = vmem->vm_name;

	int identifier = ((vmem->vm_cflags & VMC_IDENTIFIER) != 0);
	int idspace = ((mdb_whatis_flags(w) & WHATIS_IDSPACE) != 0);

	if (identifier != idspace)
		return (WALK_NEXT);

	wi->wi_vmem = vmem;

	if (mdb_whatis_flags(w) & WHATIS_VERBOSE)
		mdb_printf("Searching vmem arena %s...\n", nm);

	if (mdb_pwalk("vmem_seg",
	    (mdb_walk_cb_t)whatis_walk_seg, wi, addr) == -1) {
		mdb_warn("can't walk vmem_seg for %p", addr);
		return (WALK_NEXT);
	}

	return (WHATIS_WALKRET(w));
}

/*ARGSUSED*/
static int
whatis_walk_slab(uintptr_t saddr, const kmem_slab_t *sp, whatis_info_t *wi)
{
	mdb_whatis_t *w = wi->wi_w;

	/* It must overlap with the slab data, or it's not interesting */
	if (mdb_whatis_overlaps(w,
	    (uintptr_t)sp->slab_base, wi->wi_slab_size)) {
		wi->wi_slab_found++;
		return (WALK_DONE);
	}
	return (WALK_NEXT);
}

static int
whatis_walk_cache(uintptr_t addr, const kmem_cache_t *c, whatis_info_t *wi)
{
	mdb_whatis_t *w = wi->wi_w;

	char *walk, *freewalk;
	mdb_walk_cb_t func;
	int do_bufctl;

	int identifier = ((c->cache_flags & KMC_IDENTIFIER) != 0);
	int idspace = ((mdb_whatis_flags(w) & WHATIS_IDSPACE) != 0);

	if (identifier != idspace)
		return (WALK_NEXT);

	/* Override the '-b' flag as necessary */
	if (!(c->cache_flags & KMF_HASH))
		do_bufctl = FALSE;	/* no bufctls to walk */
	else if (c->cache_flags & KMF_AUDIT)
		do_bufctl = TRUE;	/* we always want debugging info */
	else
		do_bufctl = ((mdb_whatis_flags(w) & WHATIS_BUFCTL) != 0);

	if (do_bufctl) {
		walk = "bufctl";
		freewalk = "freectl";
		func = (mdb_walk_cb_t)whatis_walk_bufctl;
	} else {
		walk = "kmem";
		freewalk = "freemem";
		func = (mdb_walk_cb_t)whatis_walk_kmem;
	}

	wi->wi_cache = c;

	if (mdb_whatis_flags(w) & WHATIS_VERBOSE)
		mdb_printf("Searching %s...\n", c->cache_name);

	/*
	 * If more then two buffers live on each slab, figure out if we're
	 * interested in anything in any slab before doing the more expensive
	 * kmem/freemem (bufctl/freectl) walkers.
	 */
	wi->wi_slab_size = c->cache_slabsize - c->cache_maxcolor;
	if (!(c->cache_flags & KMF_HASH))
		wi->wi_slab_size -= sizeof (kmem_slab_t);

	if ((wi->wi_slab_size / c->cache_chunksize) > 2) {
		wi->wi_slab_found = 0;
		if (mdb_pwalk("kmem_slab", (mdb_walk_cb_t)whatis_walk_slab, wi,
		    addr) == -1) {
			mdb_warn("can't find kmem_slab walker");
			return (WALK_DONE);
		}
		if (wi->wi_slab_found == 0)
			return (WALK_NEXT);
	}

	wi->wi_freemem = FALSE;
	if (mdb_pwalk(walk, func, wi, addr) == -1) {
		mdb_warn("can't find %s walker", walk);
		return (WALK_DONE);
	}

	if (mdb_whatis_done(w))
		return (WALK_DONE);

	/*
	 * We have searched for allocated memory; now search for freed memory.
	 */
	if (mdb_whatis_flags(w) & WHATIS_VERBOSE)
		mdb_printf("Searching %s for free memory...\n", c->cache_name);

	wi->wi_freemem = TRUE;
	if (mdb_pwalk(freewalk, func, wi, addr) == -1) {
		mdb_warn("can't find %s walker", freewalk);
		return (WALK_DONE);
	}

	return (WHATIS_WALKRET(w));
}

static int
whatis_walk_touch(uintptr_t addr, const kmem_cache_t *c, whatis_info_t *wi)
{
	if (c->cache_arena == wi->wi_msb_arena ||
	    (c->cache_cflags & KMC_NOTOUCH))
		return (WALK_NEXT);

	return (whatis_walk_cache(addr, c, wi));
}

static int
whatis_walk_metadata(uintptr_t addr, const kmem_cache_t *c, whatis_info_t *wi)
{
	if (c->cache_arena != wi->wi_msb_arena)
		return (WALK_NEXT);

	return (whatis_walk_cache(addr, c, wi));
}

static int
whatis_walk_notouch(uintptr_t addr, const kmem_cache_t *c, whatis_info_t *wi)
{
	if (c->cache_arena == wi->wi_msb_arena ||
	    !(c->cache_cflags & KMC_NOTOUCH))
		return (WALK_NEXT);

	return (whatis_walk_cache(addr, c, wi));
}

static int
whatis_walk_thread(uintptr_t addr, const kthread_t *t, mdb_whatis_t *w)
{
	uintptr_t cur;
	uintptr_t saddr;
	size_t size;

	/*
	 * Often, one calls ::whatis on an address from a thread structure.
	 * We use this opportunity to short circuit this case...
	 */
	while (mdb_whatis_match(w, addr, sizeof (kthread_t), &cur))
		mdb_whatis_report_object(w, cur, addr,
		    "allocated as a thread structure\n");

	/*
	 * Now check the stack
	 */
	if (t->t_stkbase == NULL)
		return (WALK_NEXT);

	/*
	 * This assumes that t_stk is the end of the stack, but it's really
	 * only the initial stack pointer for the thread.  Arguments to the
	 * initial procedure, SA(MINFRAME), etc. are all after t_stk.  So
	 * that 't->t_stk::whatis' reports "part of t's stack", we include
	 * t_stk in the range (the "+ 1", below), but the kernel should
	 * really include the full stack bounds where we can find it.
	 */
	saddr = (uintptr_t)t->t_stkbase;
	size = (uintptr_t)t->t_stk - saddr + 1;
	while (mdb_whatis_match(w, saddr, size, &cur))
		mdb_whatis_report_object(w, cur, cur,
		    "in thread %p's stack%s\n", addr, stack_active(t, cur));

	return (WHATIS_WALKRET(w));
}

static void
whatis_modctl_match(mdb_whatis_t *w, const char *name,
    uintptr_t base, size_t size, const char *where)
{
	uintptr_t cur;

	/*
	 * Since we're searching for addresses inside a module, we report
	 * them as symbols.
	 */
	while (mdb_whatis_match(w, base, size, &cur))
		mdb_whatis_report_address(w, cur, "in %s's %s\n", name, where);
}

static int
whatis_walk_modctl(uintptr_t addr, const struct modctl *m, mdb_whatis_t *w)
{
	char name[MODMAXNAMELEN];
	struct module mod;
	Shdr shdr;

	if (m->mod_mp == NULL)
		return (WALK_NEXT);

	if (mdb_vread(&mod, sizeof (mod), (uintptr_t)m->mod_mp) == -1) {
		mdb_warn("couldn't read modctl %p's module", addr);
		return (WALK_NEXT);
	}

	if (mdb_readstr(name, sizeof (name), (uintptr_t)m->mod_modname) == -1)
		(void) mdb_snprintf(name, sizeof (name), "0x%p", addr);

	whatis_modctl_match(w, name,
	    (uintptr_t)mod.text, mod.text_size, "text segment");
	whatis_modctl_match(w, name,
	    (uintptr_t)mod.data, mod.data_size, "data segment");
	whatis_modctl_match(w, name,
	    (uintptr_t)mod.bss, mod.bss_size, "bss segment");

	if (mdb_vread(&shdr, sizeof (shdr), (uintptr_t)mod.symhdr) == -1) {
		mdb_warn("couldn't read symbol header for %p's module", addr);
		return (WALK_NEXT);
	}

	whatis_modctl_match(w, name,
	    (uintptr_t)mod.symtbl, mod.nsyms * shdr.sh_entsize, "symtab");
	whatis_modctl_match(w, name,
	    (uintptr_t)mod.symspace, mod.symsize, "symtab");

	return (WHATIS_WALKRET(w));
}

/*ARGSUSED*/
static int
whatis_walk_memseg(uintptr_t addr, const struct memseg *seg, mdb_whatis_t *w)
{
	uintptr_t cur;

	uintptr_t base = (uintptr_t)seg->pages;
	size_t size = (uintptr_t)seg->epages - base;

	while (mdb_whatis_match(w, base, size, &cur)) {
		/* round our found pointer down to the page_t base. */
		size_t offset = (cur - base) % sizeof (page_t);

		mdb_whatis_report_object(w, cur, cur - offset,
		    "allocated as a page structure\n");
	}

	return (WHATIS_WALKRET(w));
}

/*ARGSUSED*/
static int
whatis_run_modules(mdb_whatis_t *w, void *arg)
{
	if (mdb_walk("modctl", (mdb_walk_cb_t)whatis_walk_modctl, w) == -1) {
		mdb_warn("couldn't find modctl walker");
		return (1);
	}
	return (0);
}

/*ARGSUSED*/
static int
whatis_run_threads(mdb_whatis_t *w, void *ignored)
{
	/*
	 * Now search all thread stacks.  Yes, this is a little weak; we
	 * can save a lot of work by first checking to see if the
	 * address is in segkp vs. segkmem.  But hey, computers are
	 * fast.
	 */
	if (mdb_walk("thread", (mdb_walk_cb_t)whatis_walk_thread, w) == -1) {
		mdb_warn("couldn't find thread walker");
		return (1);
	}
	return (0);
}

/*ARGSUSED*/
static int
whatis_run_pages(mdb_whatis_t *w, void *ignored)
{
	if (mdb_walk("memseg", (mdb_walk_cb_t)whatis_walk_memseg, w) == -1) {
		mdb_warn("couldn't find memseg walker");
		return (1);
	}
	return (0);
}

/*ARGSUSED*/
static int
whatis_run_kmem(mdb_whatis_t *w, void *ignored)
{
	whatis_info_t wi;

	bzero(&wi, sizeof (wi));
	wi.wi_w = w;

	if (mdb_readvar(&wi.wi_msb_arena, "kmem_msb_arena") == -1)
		mdb_warn("unable to readvar \"kmem_msb_arena\"");

	if (mdb_readvar(&wi.wi_kmem_lite_count,
	    "kmem_lite_count") == -1 || wi.wi_kmem_lite_count > 16)
		wi.wi_kmem_lite_count = 0;

	/*
	 * We process kmem caches in the following order:
	 *
	 *	non-KMC_NOTOUCH, non-metadata	(typically the most interesting)
	 *	metadata			(can be huge with KMF_AUDIT)
	 *	KMC_NOTOUCH, non-metadata	(see kmem_walk_all())
	 */
	if (mdb_walk("kmem_cache", (mdb_walk_cb_t)whatis_walk_touch,
	    &wi) == -1 ||
	    mdb_walk("kmem_cache", (mdb_walk_cb_t)whatis_walk_metadata,
	    &wi) == -1 ||
	    mdb_walk("kmem_cache", (mdb_walk_cb_t)whatis_walk_notouch,
	    &wi) == -1) {
		mdb_warn("couldn't find kmem_cache walker");
		return (1);
	}
	return (0);
}

/*ARGSUSED*/
static int
whatis_run_vmem(mdb_whatis_t *w, void *ignored)
{
	whatis_info_t wi;

	bzero(&wi, sizeof (wi));
	wi.wi_w = w;

	if (mdb_walk("vmem_postfix",
	    (mdb_walk_cb_t)whatis_walk_vmem, &wi) == -1) {
		mdb_warn("couldn't find vmem_postfix walker");
		return (1);
	}
	return (0);
}

typedef struct kmem_log_cpu {
	uintptr_t kmc_low;
	uintptr_t kmc_high;
} kmem_log_cpu_t;

typedef struct kmem_log_data {
	uintptr_t kmd_addr;
	kmem_log_cpu_t *kmd_cpu;
} kmem_log_data_t;

int
kmem_log_walk(uintptr_t addr, const kmem_bufctl_audit_t *b,
    kmem_log_data_t *kmd)
{
	int i;
	kmem_log_cpu_t *kmc = kmd->kmd_cpu;
	size_t bufsize;

	for (i = 0; i < NCPU; i++) {
		if (addr >= kmc[i].kmc_low && addr < kmc[i].kmc_high)
			break;
	}

	if (kmd->kmd_addr) {
		if (b->bc_cache == NULL)
			return (WALK_NEXT);

		if (mdb_vread(&bufsize, sizeof (bufsize),
		    (uintptr_t)&b->bc_cache->cache_bufsize) == -1) {
			mdb_warn(
			    "failed to read cache_bufsize for cache at %p",
			    b->bc_cache);
			return (WALK_ERR);
		}

		if (kmd->kmd_addr < (uintptr_t)b->bc_addr ||
		    kmd->kmd_addr >= (uintptr_t)b->bc_addr + bufsize)
			return (WALK_NEXT);
	}

	if (i == NCPU)
		mdb_printf("   ");
	else
		mdb_printf("%3d", i);

	mdb_printf(" %0?p %0?p %16llx %0?p\n", addr, b->bc_addr,
	    b->bc_timestamp, b->bc_thread);

	return (WALK_NEXT);
}

/*ARGSUSED*/
int
kmem_log(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv)
{
	kmem_log_header_t lh;
	kmem_cpu_log_header_t clh;
	uintptr_t lhp, clhp;
	int ncpus;
	uintptr_t *cpu;
	GElf_Sym sym;
	kmem_log_cpu_t *kmc;
	int i;
	kmem_log_data_t kmd;
	uint_t opt_b = FALSE;

	if (mdb_getopts(argc, argv,
	    'b', MDB_OPT_SETBITS, TRUE, &opt_b, NULL) != argc)
		return (DCMD_USAGE);

	if (mdb_readvar(&lhp, "kmem_transaction_log") == -1) {
		mdb_warn("failed to read 'kmem_transaction_log'");
		return (DCMD_ERR);
	}

	if (lhp == NULL) {
		mdb_warn("no kmem transaction log\n");
		return (DCMD_ERR);
	}

	mdb_readvar(&ncpus, "ncpus");

	if (mdb_vread(&lh, sizeof (kmem_log_header_t), lhp) == -1) {
		mdb_warn("failed to read log header at %p", lhp);
		return (DCMD_ERR);
	}

	clhp = lhp + ((uintptr_t)&lh.lh_cpu[0] - (uintptr_t)&lh);

	cpu = mdb_alloc(sizeof (uintptr_t) * NCPU, UM_SLEEP | UM_GC);

	if (mdb_lookup_by_name("cpu", &sym) == -1) {
		mdb_warn("couldn't find 'cpu' array");
		return (DCMD_ERR);
	}

	if (sym.st_size != NCPU * sizeof (uintptr_t)) {
		mdb_warn("expected 'cpu' to be of size %d; found %d\n",
		    NCPU * sizeof (uintptr_t), sym.st_size);
		return (DCMD_ERR);
	}

	if (mdb_vread(cpu, sym.st_size, (uintptr_t)sym.st_value) == -1) {
		mdb_warn("failed to read cpu array at %p", sym.st_value);
		return (DCMD_ERR);
	}

	kmc = mdb_zalloc(sizeof (kmem_log_cpu_t) * NCPU, UM_SLEEP | UM_GC);
	kmd.kmd_addr = NULL;
	kmd.kmd_cpu = kmc;

	for (i = 0; i < NCPU; i++) {

		if (cpu[i] == NULL)
			continue;

		if (mdb_vread(&clh, sizeof (clh), clhp) == -1) {
			mdb_warn("cannot read cpu %d's log header at %p",
			    i, clhp);
			return (DCMD_ERR);
		}

		kmc[i].kmc_low = clh.clh_chunk * lh.lh_chunksize +
		    (uintptr_t)lh.lh_base;
		kmc[i].kmc_high = (uintptr_t)clh.clh_current;

		clhp += sizeof (kmem_cpu_log_header_t);
	}

	mdb_printf("%3s %-?s %-?s %16s %-?s\n", "CPU", "ADDR", "BUFADDR",
	    "TIMESTAMP", "THREAD");

	/*
	 * If we have been passed an address, print out only log entries
	 * corresponding to that address.  If opt_b is specified, then interpret
	 * the address as a bufctl.
	 */
	if (flags & DCMD_ADDRSPEC) {
		kmem_bufctl_audit_t b;

		if (opt_b) {
			kmd.kmd_addr = addr;
		} else {
			if (mdb_vread(&b,
			    sizeof (kmem_bufctl_audit_t), addr) == -1) {
				mdb_warn("failed to read bufctl at %p", addr);
				return (DCMD_ERR);
			}

			(void) kmem_log_walk(addr, &b, &kmd);

			return (DCMD_OK);
		}
	}

	if (mdb_walk("kmem_log", (mdb_walk_cb_t)kmem_log_walk, &kmd) == -1) {
		mdb_warn("can't find kmem log walker");
		return (DCMD_ERR);
	}

	return (DCMD_OK);
}

typedef struct bufctl_history_cb {
	int		bhc_flags;
	int		bhc_argc;
	const mdb_arg_t	*bhc_argv;
	int		bhc_ret;
} bufctl_history_cb_t;

/*ARGSUSED*/
static int
bufctl_history_callback(uintptr_t addr, const void *ign, void *arg)
{
	bufctl_history_cb_t *bhc = arg;

	bhc->bhc_ret =
	    bufctl(addr, bhc->bhc_flags, bhc->bhc_argc, bhc->bhc_argv);

	bhc->bhc_flags &= ~DCMD_LOOPFIRST;

	return ((bhc->bhc_ret == DCMD_OK)? WALK_NEXT : WALK_DONE);
}

void
bufctl_help(void)
{
	mdb_printf("%s",
"Display the contents of kmem_bufctl_audit_ts, with optional filtering.\n\n");
	mdb_dec_indent(2);
	mdb_printf("%<b>OPTIONS%</b>\n");
	mdb_inc_indent(2);
	mdb_printf("%s",
"  -v    Display the full content of the bufctl, including its stack trace\n"
"  -h    retrieve the bufctl's transaction history, if available\n"
"  -a addr\n"
"        filter out bufctls not involving the buffer at addr\n"
"  -c caller\n"
"        filter out bufctls without the function/PC in their stack trace\n"
"  -e earliest\n"
"        filter out bufctls timestamped before earliest\n"
"  -l latest\n"
"        filter out bufctls timestamped after latest\n"
"  -t thread\n"
"        filter out bufctls not involving thread\n");
}

int
bufctl(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv)
{
	kmem_bufctl_audit_t bc;
	uint_t verbose = FALSE;
	uint_t history = FALSE;
	uint_t in_history = FALSE;
	uintptr_t caller = NULL, thread = NULL;
	uintptr_t laddr, haddr, baddr = NULL;
	hrtime_t earliest = 0, latest = 0;
	int i, depth;
	char c[MDB_SYM_NAMLEN];
	GElf_Sym sym;

	if (mdb_getopts(argc, argv,
	    'v', MDB_OPT_SETBITS, TRUE, &verbose,
	    'h', MDB_OPT_SETBITS, TRUE, &history,
	    'H', MDB_OPT_SETBITS, TRUE, &in_history,		/* internal */
	    'c', MDB_OPT_UINTPTR, &caller,
	    't', MDB_OPT_UINTPTR, &thread,
	    'e', MDB_OPT_UINT64, &earliest,
	    'l', MDB_OPT_UINT64, &latest,
	    'a', MDB_OPT_UINTPTR, &baddr, NULL) != argc)
		return (DCMD_USAGE);

	if (!(flags & DCMD_ADDRSPEC))
		return (DCMD_USAGE);

	if (in_history && !history)
		return (DCMD_USAGE);

	if (history && !in_history) {
		mdb_arg_t *nargv = mdb_zalloc(sizeof (*nargv) * (argc + 1),
		    UM_SLEEP | UM_GC);
		bufctl_history_cb_t bhc;

		nargv[0].a_type = MDB_TYPE_STRING;
		nargv[0].a_un.a_str = "-H";		/* prevent recursion */

		for (i = 0; i < argc; i++)
			nargv[i + 1] = argv[i];

		/*
		 * When in history mode, we treat each element as if it
		 * were in a seperate loop, so that the headers group
		 * bufctls with similar histories.
		 */
		bhc.bhc_flags = flags | DCMD_LOOP | DCMD_LOOPFIRST;
		bhc.bhc_argc = argc + 1;
		bhc.bhc_argv = nargv;
		bhc.bhc_ret = DCMD_OK;

		if (mdb_pwalk("bufctl_history", bufctl_history_callback, &bhc,
		    addr) == -1) {
			mdb_warn("unable to walk bufctl_history");
			return (DCMD_ERR);
		}

		if (bhc.bhc_ret == DCMD_OK && !(flags & DCMD_PIPE_OUT))
			mdb_printf("\n");

		return (bhc.bhc_ret);
	}

	if (DCMD_HDRSPEC(flags) && !(flags & DCMD_PIPE_OUT)) {
		if (verbose) {
			mdb_printf("%16s %16s %16s %16s\n"
			    "%<u>%16s %16s %16s %16s%</u>\n",
			    "ADDR", "BUFADDR", "TIMESTAMP", "THREAD",
			    "", "CACHE", "LASTLOG", "CONTENTS");
		} else {
			mdb_printf("%<u>%-?s %-?s %-12s %-?s %s%</u>\n",
			    "ADDR", "BUFADDR", "TIMESTAMP", "THREAD", "CALLER");
		}
	}

	if (mdb_vread(&bc, sizeof (bc), addr) == -1) {
		mdb_warn("couldn't read bufctl at %p", addr);
		return (DCMD_ERR);
	}

	/*
	 * Guard against bogus bc_depth in case the bufctl is corrupt or
	 * the address does not really refer to a bufctl.
	 */
	depth = MIN(bc.bc_depth, KMEM_STACK_DEPTH);

	if (caller != NULL) {
		laddr = caller;
		haddr = caller + sizeof (caller);

		if (mdb_lookup_by_addr(caller, MDB_SYM_FUZZY, c, sizeof (c),
		    &sym) != -1 && caller == (uintptr_t)sym.st_value) {
			/*
			 * We were provided an exact symbol value; any
			 * address in the function is valid.
			 */
			laddr = (uintptr_t)sym.st_value;
			haddr = (uintptr_t)sym.st_value + sym.st_size;
		}

		for (i = 0; i < depth; i++)
			if (bc.bc_stack[i] >= laddr && bc.bc_stack[i] < haddr)
				break;

		if (i == depth)
			return (DCMD_OK);
	}

	if (thread != NULL && (uintptr_t)bc.bc_thread != thread)
		return (DCMD_OK);

	if (earliest != 0 && bc.bc_timestamp < earliest)
		return (DCMD_OK);

	if (latest != 0 && bc.bc_timestamp > latest)
		return (DCMD_OK);

	if (baddr != 0 && (uintptr_t)bc.bc_addr != baddr)
		return (DCMD_OK);

	if (flags & DCMD_PIPE_OUT) {
		mdb_printf("%#lr\n", addr);
		return (DCMD_OK);
	}

	if (verbose) {
		mdb_printf(
		    "%<b>%16p%</b> %16p %16llx %16p\n"
		    "%16s %16p %16p %16p\n",
		    addr, bc.bc_addr, bc.bc_timestamp, bc.bc_thread,
		    "", bc.bc_cache, bc.bc_lastlog, bc.bc_contents);

		mdb_inc_indent(17);
		for (i = 0; i < depth; i++)
			mdb_printf("%a\n", bc.bc_stack[i]);
		mdb_dec_indent(17);
		mdb_printf("\n");
	} else {
		mdb_printf("%0?p %0?p %12llx %0?p", addr, bc.bc_addr,
		    bc.bc_timestamp, bc.bc_thread);

		for (i = 0; i < depth; i++) {
			if (mdb_lookup_by_addr(bc.bc_stack[i],
			    MDB_SYM_FUZZY, c, sizeof (c), &sym) == -1)
				continue;
			if (strncmp(c, "kmem_", 5) == 0)
				continue;
			mdb_printf(" %a\n", bc.bc_stack[i]);
			break;
		}

		if (i >= depth)
			mdb_printf("\n");
	}

	return (DCMD_OK);
}

typedef struct kmem_verify {
	uint64_t *kmv_buf;		/* buffer to read cache contents into */
	size_t kmv_size;		/* number of bytes in kmv_buf */
	int kmv_corruption;		/* > 0 if corruption found. */
	uint_t kmv_flags;		/* dcmd flags */
	struct kmem_cache kmv_cache;	/* the cache we're operating on */
} kmem_verify_t;

/*
 * verify_pattern()
 * 	verify that buf is filled with the pattern pat.
 */
static int64_t
verify_pattern(uint64_t *buf_arg, size_t size, uint64_t pat)
{
	/*LINTED*/
	uint64_t *bufend = (uint64_t *)((char *)buf_arg + size);
	uint64_t *buf;

	for (buf = buf_arg; buf < bufend; buf++)
		if (*buf != pat)
			return ((uintptr_t)buf - (uintptr_t)buf_arg);
	return (-1);
}

/*
 * verify_buftag()
 *	verify that btp->bt_bxstat == (bcp ^ pat)
 */
static int
verify_buftag(kmem_buftag_t *btp, uintptr_t pat)
{
	return (btp->bt_bxstat == ((intptr_t)btp->bt_bufctl ^ pat) ? 0 : -1);
}

/*
 * verify_free()
 * 	verify the integrity of a free block of memory by checking
 * 	that it is filled with 0xdeadbeef and that its buftag is sane.
 */
/*ARGSUSED1*/
static int
verify_free(uintptr_t addr, const void *data, void *private)
{
	kmem_verify_t *kmv = (kmem_verify_t *)private;
	uint64_t *buf = kmv->kmv_buf;	/* buf to validate */
	int64_t corrupt;		/* corruption offset */
	kmem_buftag_t *buftagp;		/* ptr to buftag */
	kmem_cache_t *cp = &kmv->kmv_cache;
	boolean_t besilent = !!(kmv->kmv_flags & (DCMD_LOOP | DCMD_PIPE_OUT));

	/*LINTED*/
	buftagp = KMEM_BUFTAG(cp, buf);

	/*
	 * Read the buffer to check.
	 */
	if (mdb_vread(buf, kmv->kmv_size, addr) == -1) {
		if (!besilent)
			mdb_warn("couldn't read %p", addr);
		return (WALK_NEXT);
	}

	if ((corrupt = verify_pattern(buf, cp->cache_verify,
	    KMEM_FREE_PATTERN)) >= 0) {
		if (!besilent)
			mdb_printf("buffer %p (free) seems corrupted, at %p\n",
			    addr, (uintptr_t)addr + corrupt);
		goto corrupt;
	}
	/*
	 * When KMF_LITE is set, buftagp->bt_redzone is used to hold
	 * the first bytes of the buffer, hence we cannot check for red
	 * zone corruption.
	 */
	if ((cp->cache_flags & (KMF_HASH | KMF_LITE)) == KMF_HASH &&
	    buftagp->bt_redzone != KMEM_REDZONE_PATTERN) {
		if (!besilent)
			mdb_printf("buffer %p (free) seems to "
			    "have a corrupt redzone pattern\n", addr);
		goto corrupt;
	}

	/*
	 * confirm bufctl pointer integrity.
	 */
	if (verify_buftag(buftagp, KMEM_BUFTAG_FREE) == -1) {
		if (!besilent)
			mdb_printf("buffer %p (free) has a corrupt "
			    "buftag\n", addr);
		goto corrupt;
	}

	return (WALK_NEXT);
corrupt:
	if (kmv->kmv_flags & DCMD_PIPE_OUT)
		mdb_printf("%p\n", addr);
	kmv->kmv_corruption++;
	return (WALK_NEXT);
}

/*
 * verify_alloc()
 * 	Verify that the buftag of an allocated buffer makes sense with respect
 * 	to the buffer.
 */
/*ARGSUSED1*/
static int
verify_alloc(uintptr_t addr, const void *data, void *private)
{
	kmem_verify_t *kmv = (kmem_verify_t *)private;
	kmem_cache_t *cp = &kmv->kmv_cache;
	uint64_t *buf = kmv->kmv_buf;	/* buf to validate */
	/*LINTED*/
	kmem_buftag_t *buftagp = KMEM_BUFTAG(cp, buf);
	uint32_t *ip = (uint32_t *)buftagp;
	uint8_t *bp = (uint8_t *)buf;
	int looks_ok = 0, size_ok = 1;	/* flags for finding corruption */
	boolean_t besilent = !!(kmv->kmv_flags & (DCMD_LOOP | DCMD_PIPE_OUT));

	/*
	 * Read the buffer to check.
	 */
	if (mdb_vread(buf, kmv->kmv_size, addr) == -1) {
		if (!besilent)
			mdb_warn("couldn't read %p", addr);
		return (WALK_NEXT);
	}

	/*
	 * There are two cases to handle:
	 * 1. If the buf was alloc'd using kmem_cache_alloc, it will have
	 *    0xfeedfacefeedface at the end of it
	 * 2. If the buf was alloc'd using kmem_alloc, it will have
	 *    0xbb just past the end of the region in use.  At the buftag,
	 *    it will have 0xfeedface (or, if the whole buffer is in use,
	 *    0xfeedface & bb000000 or 0xfeedfacf & 000000bb depending on
	 *    endianness), followed by 32 bits containing the offset of the
	 *    0xbb byte in the buffer.
	 *
	 * Finally, the two 32-bit words that comprise the second half of the
	 * buftag should xor to KMEM_BUFTAG_ALLOC
	 */

	if (buftagp->bt_redzone == KMEM_REDZONE_PATTERN)
		looks_ok = 1;
	else if (!KMEM_SIZE_VALID(ip[1]))
		size_ok = 0;
	else if (bp[KMEM_SIZE_DECODE(ip[1])] == KMEM_REDZONE_BYTE)
		looks_ok = 1;
	else
		size_ok = 0;

	if (!size_ok) {
		if (!besilent)
			mdb_printf("buffer %p (allocated) has a corrupt "
			    "redzone size encoding\n", addr);
		goto corrupt;
	}

	if (!looks_ok) {
		if (!besilent)
			mdb_printf("buffer %p (allocated) has a corrupt "
			    "redzone signature\n", addr);
		goto corrupt;
	}

	if (verify_buftag(buftagp, KMEM_BUFTAG_ALLOC) == -1) {
		if (!besilent)
			mdb_printf("buffer %p (allocated) has a "
			    "corrupt buftag\n", addr);
		goto corrupt;
	}

	return (WALK_NEXT);
corrupt:
	if (kmv->kmv_flags & DCMD_PIPE_OUT)
		mdb_printf("%p\n", addr);

	kmv->kmv_corruption++;
	return (WALK_NEXT);
}

/*ARGSUSED2*/
int
kmem_verify(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv)
{
	if (flags & DCMD_ADDRSPEC) {
		int check_alloc = 0, check_free = 0;
		kmem_verify_t kmv;

		if (mdb_vread(&kmv.kmv_cache, sizeof (kmv.kmv_cache),
		    addr) == -1) {
			mdb_warn("couldn't read kmem_cache %p", addr);
			return (DCMD_ERR);
		}

		if ((kmv.kmv_cache.cache_dump.kd_unsafe ||
		    kmv.kmv_cache.cache_dump.kd_alloc_fails) &&
		    !(flags & (DCMD_LOOP | DCMD_PIPE_OUT))) {
			mdb_warn("WARNING: cache was used during dump: "
			    "corruption may be incorrectly reported\n");
		}

		kmv.kmv_size = kmv.kmv_cache.cache_buftag +
		    sizeof (kmem_buftag_t);
		kmv.kmv_buf = mdb_alloc(kmv.kmv_size, UM_SLEEP | UM_GC);
		kmv.kmv_corruption = 0;
		kmv.kmv_flags = flags;

		if ((kmv.kmv_cache.cache_flags & KMF_REDZONE)) {
			check_alloc = 1;
			if (kmv.kmv_cache.cache_flags & KMF_DEADBEEF)
				check_free = 1;
		} else {
			if (!(flags & DCMD_LOOP)) {
				mdb_warn("cache %p (%s) does not have "
				    "redzone checking enabled\n", addr,
				    kmv.kmv_cache.cache_name);
			}
			return (DCMD_ERR);
		}

		if (!(flags & (DCMD_LOOP | DCMD_PIPE_OUT))) {
			mdb_printf("Summary for cache '%s'\n",
			    kmv.kmv_cache.cache_name);
			mdb_inc_indent(2);
		}

		if (check_alloc)
			(void) mdb_pwalk("kmem", verify_alloc, &kmv, addr);
		if (check_free)
			(void) mdb_pwalk("freemem", verify_free, &kmv, addr);

		if (!(flags & DCMD_PIPE_OUT)) {
			if (flags & DCMD_LOOP) {
				if (kmv.kmv_corruption == 0) {
					mdb_printf("%-*s %?p clean\n",
					    KMEM_CACHE_NAMELEN,
					    kmv.kmv_cache.cache_name, addr);
				} else {
					mdb_printf("%-*s %?p %d corrupt "
					    "buffer%s\n", KMEM_CACHE_NAMELEN,
					    kmv.kmv_cache.cache_name, addr,
					    kmv.kmv_corruption,
					    kmv.kmv_corruption > 1 ? "s" : "");
				}
			} else {
				/*
				 * This is the more verbose mode, when the user
				 * typed addr::kmem_verify.  If the cache was
				 * clean, nothing will have yet been printed. So
				 * say something.
				 */
				if (kmv.kmv_corruption == 0)
					mdb_printf("clean\n");

				mdb_dec_indent(2);
			}
		}
	} else {
		/*
		 * If the user didn't specify a cache to verify, we'll walk all
		 * kmem_cache's, specifying ourself as a callback for each...
		 * this is the equivalent of '::walk kmem_cache .::kmem_verify'
		 */

		if (!(flags & DCMD_PIPE_OUT)) {
			uintptr_t dump_curr;
			uintptr_t dump_end;

			if (mdb_readvar(&dump_curr, "kmem_dump_curr") != -1 &&
			    mdb_readvar(&dump_end, "kmem_dump_end") != -1 &&
			    dump_curr == dump_end) {
				mdb_warn("WARNING: exceeded kmem_dump_size; "
				    "corruption may be incorrectly reported\n");
			}

			mdb_printf("%<u>%-*s %-?s %-20s%</b>\n",
			    KMEM_CACHE_NAMELEN, "Cache Name", "Addr",
			    "Cache Integrity");
		}

		(void) (mdb_walk_dcmd("kmem_cache", "kmem_verify", 0, NULL));
	}

	return (DCMD_OK);
}

typedef struct vmem_node {
	struct vmem_node *vn_next;
	struct vmem_node *vn_parent;
	struct vmem_node *vn_sibling;
	struct vmem_node *vn_children;
	uintptr_t vn_addr;
	int vn_marked;
	vmem_t vn_vmem;
} vmem_node_t;

typedef struct vmem_walk {
	vmem_node_t *vw_root;
	vmem_node_t *vw_current;
} vmem_walk_t;

int
vmem_walk_init(mdb_walk_state_t *wsp)
{
	uintptr_t vaddr, paddr;
	vmem_node_t *head = NULL, *root = NULL, *current = NULL, *parent, *vp;
	vmem_walk_t *vw;

	if (mdb_readvar(&vaddr, "vmem_list") == -1) {
		mdb_warn("couldn't read 'vmem_list'");
		return (WALK_ERR);
	}

	while (vaddr != NULL) {
		vp = mdb_zalloc(sizeof (vmem_node_t), UM_SLEEP);
		vp->vn_addr = vaddr;
		vp->vn_next = head;
		head = vp;

		if (vaddr == wsp->walk_addr)
			current = vp;

		if (mdb_vread(&vp->vn_vmem, sizeof (vmem_t), vaddr) == -1) {
			mdb_warn("couldn't read vmem_t at %p", vaddr);
			goto err;
		}

		vaddr = (uintptr_t)vp->vn_vmem.vm_next;
	}

	for (vp = head; vp != NULL; vp = vp->vn_next) {

		if ((paddr = (uintptr_t)vp->vn_vmem.vm_source) == NULL) {
			vp->vn_sibling = root;
			root = vp;
			continue;
		}

		for (parent = head; parent != NULL; parent = parent->vn_next) {
			if (parent->vn_addr != paddr)
				continue;
			vp->vn_sibling = parent->vn_children;
			parent->vn_children = vp;
			vp->vn_parent = parent;
			break;
		}

		if (parent == NULL) {
			mdb_warn("couldn't find %p's parent (%p)\n",
			    vp->vn_addr, paddr);
			goto err;
		}
	}

	vw = mdb_zalloc(sizeof (vmem_walk_t), UM_SLEEP);
	vw->vw_root = root;

	if (current != NULL)
		vw->vw_current = current;
	else
		vw->vw_current = root;

	wsp->walk_data = vw;
	return (WALK_NEXT);
err:
	for (vp = head; head != NULL; vp = head) {
		head = vp->vn_next;
		mdb_free(vp, sizeof (vmem_node_t));
	}

	return (WALK_ERR);
}

int
vmem_walk_step(mdb_walk_state_t *wsp)
{
	vmem_walk_t *vw = wsp->walk_data;
	vmem_node_t *vp;
	int rval;

	if ((vp = vw->vw_current) == NULL)
		return (WALK_DONE);

	rval = wsp->walk_callback(vp->vn_addr, &vp->vn_vmem, wsp->walk_cbdata);

	if (vp->vn_children != NULL) {
		vw->vw_current = vp->vn_children;
		return (rval);
	}

	do {
		vw->vw_current = vp->vn_sibling;
		vp = vp->vn_parent;
	} while (vw->vw_current == NULL && vp != NULL);

	return (rval);
}

/*
 * The "vmem_postfix" walk walks the vmem arenas in post-fix order; all
 * children are visited before their parent.  We perform the postfix walk
 * iteratively (rather than recursively) to allow mdb to regain control
 * after each callback.
 */
int
vmem_postfix_walk_step(mdb_walk_state_t *wsp)
{
	vmem_walk_t *vw = wsp->walk_data;
	vmem_node_t *vp = vw->vw_current;
	int rval;

	/*
	 * If this node is marked, then we know that we have already visited
	 * all of its children.  If the node has any siblings, they need to
	 * be visited next; otherwise, we need to visit the parent.  Note
	 * that vp->vn_marked will only be zero on the first invocation of
	 * the step function.
	 */
	if (vp->vn_marked) {
		if (vp->vn_sibling != NULL)
			vp = vp->vn_sibling;
		else if (vp->vn_parent != NULL)
			vp = vp->vn_parent;
		else {
			/*
			 * We have neither a parent, nor a sibling, and we
			 * have already been visited; we're done.
			 */
			return (WALK_DONE);
		}
	}

	/*
	 * Before we visit this node, visit its children.
	 */
	while (vp->vn_children != NULL && !vp->vn_children->vn_marked)
		vp = vp->vn_children;

	vp->vn_marked = 1;
	vw->vw_current = vp;
	rval = wsp->walk_callback(vp->vn_addr, &vp->vn_vmem, wsp->walk_cbdata);

	return (rval);
}

void
vmem_walk_fini(mdb_walk_state_t *wsp)
{
	vmem_walk_t *vw = wsp->walk_data;
	vmem_node_t *root = vw->vw_root;
	int done;

	if (root == NULL)
		return;

	if ((vw->vw_root = root->vn_children) != NULL)
		vmem_walk_fini(wsp);

	vw->vw_root = root->vn_sibling;
	done = (root->vn_sibling == NULL && root->vn_parent == NULL);
	mdb_free(root, sizeof (vmem_node_t));

	if (done) {
		mdb_free(vw, sizeof (vmem_walk_t));
	} else {
		vmem_walk_fini(wsp);
	}
}

typedef struct vmem_seg_walk {
	uint8_t vsw_type;
	uintptr_t vsw_start;
	uintptr_t vsw_current;
} vmem_seg_walk_t;

/*ARGSUSED*/
int
vmem_seg_walk_common_init(mdb_walk_state_t *wsp, uint8_t type, char *name)
{
	vmem_seg_walk_t *vsw;

	if (wsp->walk_addr == NULL) {
		mdb_warn("vmem_%s does not support global walks\n", name);
		return (WALK_ERR);
	}

	wsp->walk_data = vsw = mdb_alloc(sizeof (vmem_seg_walk_t), UM_SLEEP);

	vsw->vsw_type = type;
	vsw->vsw_start = wsp->walk_addr + offsetof(vmem_t, vm_seg0);
	vsw->vsw_current = vsw->vsw_start;

	return (WALK_NEXT);
}

/*
 * vmem segments can't have type 0 (this should be added to vmem_impl.h).
 */
#define	VMEM_NONE	0

int
vmem_alloc_walk_init(mdb_walk_state_t *wsp)
{
	return (vmem_seg_walk_common_init(wsp, VMEM_ALLOC, "alloc"));
}

int
vmem_free_walk_init(mdb_walk_state_t *wsp)
{
	return (vmem_seg_walk_common_init(wsp, VMEM_FREE, "free"));
}

int
vmem_span_walk_init(mdb_walk_state_t *wsp)
{
	return (vmem_seg_walk_common_init(wsp, VMEM_SPAN, "span"));
}

int
vmem_seg_walk_init(mdb_walk_state_t *wsp)
{
	return (vmem_seg_walk_common_init(wsp, VMEM_NONE, "seg"));
}

int
vmem_seg_walk_step(mdb_walk_state_t *wsp)
{
	vmem_seg_t seg;
	vmem_seg_walk_t *vsw = wsp->walk_data;
	uintptr_t addr = vsw->vsw_current;
	static size_t seg_size = 0;
	int rval;

	if (!seg_size) {
		if (mdb_readvar(&seg_size, "vmem_seg_size") == -1) {
			mdb_warn("failed to read 'vmem_seg_size'");
			seg_size = sizeof (vmem_seg_t);
		}
	}

	if (seg_size < sizeof (seg))
		bzero((caddr_t)&seg + seg_size, sizeof (seg) - seg_size);

	if (mdb_vread(&seg, seg_size, addr) == -1) {
		mdb_warn("couldn't read vmem_seg at %p", addr);
		return (WALK_ERR);
	}

	vsw->vsw_current = (uintptr_t)seg.vs_anext;
	if (vsw->vsw_type != VMEM_NONE && seg.vs_type != vsw->vsw_type) {
		rval = WALK_NEXT;
	} else {
		rval = wsp->walk_callback(addr, &seg, wsp->walk_cbdata);
	}

	if (vsw->vsw_current == vsw->vsw_start)
		return (WALK_DONE);

	return (rval);
}

void
vmem_seg_walk_fini(mdb_walk_state_t *wsp)
{
	vmem_seg_walk_t *vsw = wsp->walk_data;

	mdb_free(vsw, sizeof (vmem_seg_walk_t));
}

#define	VMEM_NAMEWIDTH	22

int
vmem(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv)
{
	vmem_t v, parent;
	vmem_kstat_t *vkp = &v.vm_kstat;
	uintptr_t paddr;
	int ident = 0;
	char c[VMEM_NAMEWIDTH];

	if (!(flags & DCMD_ADDRSPEC)) {
		if (mdb_walk_dcmd("vmem", "vmem", argc, argv) == -1) {
			mdb_warn("can't walk vmem");
			return (DCMD_ERR);
		}
		return (DCMD_OK);
	}

	if (DCMD_HDRSPEC(flags))
		mdb_printf("%-?s %-*s %10s %12s %9s %5s\n",
		    "ADDR", VMEM_NAMEWIDTH, "NAME", "INUSE",
		    "TOTAL", "SUCCEED", "FAIL");

	if (mdb_vread(&v, sizeof (v), addr) == -1) {
		mdb_warn("couldn't read vmem at %p", addr);
		return (DCMD_ERR);
	}

	for (paddr = (uintptr_t)v.vm_source; paddr != NULL; ident += 2) {
		if (mdb_vread(&parent, sizeof (parent), paddr) == -1) {
			mdb_warn("couldn't trace %p's ancestry", addr);
			ident = 0;
			break;
		}
		paddr = (uintptr_t)parent.vm_source;
	}

	(void) mdb_snprintf(c, VMEM_NAMEWIDTH, "%*s%s", ident, "", v.vm_name);

	mdb_printf("%0?p %-*s %10llu %12llu %9llu %5llu\n",
	    addr, VMEM_NAMEWIDTH, c,
	    vkp->vk_mem_inuse.value.ui64, vkp->vk_mem_total.value.ui64,
	    vkp->vk_alloc.value.ui64, vkp->vk_fail.value.ui64);

	return (DCMD_OK);
}

void
vmem_seg_help(void)
{
	mdb_printf("%s",
"Display the contents of vmem_seg_ts, with optional filtering.\n\n"
"\n"
"A vmem_seg_t represents a range of addresses (or arbitrary numbers),\n"
"representing a single chunk of data.  Only ALLOC segments have debugging\n"
"information.\n");
	mdb_dec_indent(2);
	mdb_printf("%<b>OPTIONS%</b>\n");
	mdb_inc_indent(2);
	mdb_printf("%s",
"  -v    Display the full content of the vmem_seg, including its stack trace\n"
"  -s    report the size of the segment, instead of the end address\n"
"  -c caller\n"
"        filter out segments without the function/PC in their stack trace\n"
"  -e earliest\n"
"        filter out segments timestamped before earliest\n"
"  -l latest\n"
"        filter out segments timestamped after latest\n"
"  -m minsize\n"
"        filer out segments smaller than minsize\n"
"  -M maxsize\n"
"        filer out segments larger than maxsize\n"
"  -t thread\n"
"        filter out segments not involving thread\n"
"  -T type\n"
"        filter out segments not of type 'type'\n"
"        type is one of: ALLOC/FREE/SPAN/ROTOR/WALKER\n");
}

/*ARGSUSED*/
int
vmem_seg(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv)
{
	vmem_seg_t vs;
	pc_t *stk = vs.vs_stack;
	uintptr_t sz;
	uint8_t t;
	const char *type = NULL;
	GElf_Sym sym;
	char c[MDB_SYM_NAMLEN];
	int no_debug;
	int i;
	int depth;
	uintptr_t laddr, haddr;

	uintptr_t caller = NULL, thread = NULL;
	uintptr_t minsize = 0, maxsize = 0;

	hrtime_t earliest = 0, latest = 0;

	uint_t size = 0;
	uint_t verbose = 0;

	if (!(flags & DCMD_ADDRSPEC))
		return (DCMD_USAGE);

	if (mdb_getopts(argc, argv,
	    'c', MDB_OPT_UINTPTR, &caller,
	    'e', MDB_OPT_UINT64, &earliest,
	    'l', MDB_OPT_UINT64, &latest,
	    's', MDB_OPT_SETBITS, TRUE, &size,
	    'm', MDB_OPT_UINTPTR, &minsize,
	    'M', MDB_OPT_UINTPTR, &maxsize,
	    't', MDB_OPT_UINTPTR, &thread,
	    'T', MDB_OPT_STR, &type,
	    'v', MDB_OPT_SETBITS, TRUE, &verbose,
	    NULL) != argc)
		return (DCMD_USAGE);

	if (DCMD_HDRSPEC(flags) && !(flags & DCMD_PIPE_OUT)) {
		if (verbose) {
			mdb_printf("%16s %4s %16s %16s %16s\n"
			    "%<u>%16s %4s %16s %16s %16s%</u>\n",
			    "ADDR", "TYPE", "START", "END", "SIZE",
			    "", "", "THREAD", "TIMESTAMP", "");
		} else {
			mdb_printf("%?s %4s %?s %?s %s\n", "ADDR", "TYPE",
			    "START", size? "SIZE" : "END", "WHO");
		}
	}

	if (mdb_vread(&vs, sizeof (vs), addr) == -1) {
		mdb_warn("couldn't read vmem_seg at %p", addr);
		return (DCMD_ERR);
	}

	if (type != NULL) {
		if (strcmp(type, "ALLC") == 0 || strcmp(type, "ALLOC") == 0)
			t = VMEM_ALLOC;
		else if (strcmp(type, "FREE") == 0)
			t = VMEM_FREE;
		else if (strcmp(type, "SPAN") == 0)
			t = VMEM_SPAN;
		else if (strcmp(type, "ROTR") == 0 ||
		    strcmp(type, "ROTOR") == 0)
			t = VMEM_ROTOR;
		else if (strcmp(type, "WLKR") == 0 ||
		    strcmp(type, "WALKER") == 0)
			t = VMEM_WALKER;
		else {
			mdb_warn("\"%s\" is not a recognized vmem_seg type\n",
			    type);
			return (DCMD_ERR);
		}

		if (vs.vs_type != t)
			return (DCMD_OK);
	}

	sz = vs.vs_end - vs.vs_start;

	if (minsize != 0 && sz < minsize)
		return (DCMD_OK);

	if (maxsize != 0 && sz > maxsize)
		return (DCMD_OK);

	t = vs.vs_type;
	depth = vs.vs_depth;

	/*
	 * debug info, when present, is only accurate for VMEM_ALLOC segments
	 */
	no_debug = (t != VMEM_ALLOC) ||
	    (depth == 0 || depth > VMEM_STACK_DEPTH);

	if (no_debug) {
		if (caller != NULL || thread != NULL || earliest != 0 ||
		    latest != 0)
			return (DCMD_OK);		/* not enough info */
	} else {
		if (caller != NULL) {
			laddr = caller;
			haddr = caller + sizeof (caller);

			if (mdb_lookup_by_addr(caller, MDB_SYM_FUZZY, c,
			    sizeof (c), &sym) != -1 &&
			    caller == (uintptr_t)sym.st_value) {
				/*
				 * We were provided an exact symbol value; any
				 * address in the function is valid.
				 */
				laddr = (uintptr_t)sym.st_value;
				haddr = (uintptr_t)sym.st_value + sym.st_size;
			}

			for (i = 0; i < depth; i++)
				if (vs.vs_stack[i] >= laddr &&
				    vs.vs_stack[i] < haddr)
					break;

			if (i == depth)
				return (DCMD_OK);
		}

		if (thread != NULL && (uintptr_t)vs.vs_thread != thread)
			return (DCMD_OK);

		if (earliest != 0 && vs.vs_timestamp < earliest)
			return (DCMD_OK);

		if (latest != 0 && vs.vs_timestamp > latest)
			return (DCMD_OK);
	}

	type = (t == VMEM_ALLOC ? "ALLC" :
	    t == VMEM_FREE ? "FREE" :
	    t == VMEM_SPAN ? "SPAN" :
	    t == VMEM_ROTOR ? "ROTR" :
	    t == VMEM_WALKER ? "WLKR" :
	    "????");

	if (flags & DCMD_PIPE_OUT) {
		mdb_printf("%#lr\n", addr);
		return (DCMD_OK);
	}

	if (verbose) {
		mdb_printf("%<b>%16p%</b> %4s %16p %16p %16d\n",
		    addr, type, vs.vs_start, vs.vs_end, sz);

		if (no_debug)
			return (DCMD_OK);

		mdb_printf("%16s %4s %16p %16llx\n",
		    "", "", vs.vs_thread, vs.vs_timestamp);

		mdb_inc_indent(17);
		for (i = 0; i < depth; i++) {
			mdb_printf("%a\n", stk[i]);
		}
		mdb_dec_indent(17);
		mdb_printf("\n");
	} else {
		mdb_printf("%0?p %4s %0?p %0?p", addr, type,
		    vs.vs_start, size? sz : vs.vs_end);

		if (no_debug) {
			mdb_printf("\n");
			return (DCMD_OK);
		}

		for (i = 0; i < depth; i++) {
			if (mdb_lookup_by_addr(stk[i], MDB_SYM_FUZZY,
			    c, sizeof (c), &sym) == -1)
				continue;
			if (strncmp(c, "vmem_", 5) == 0)
				continue;
			break;
		}
		mdb_printf(" %a\n", stk[i]);
	}
	return (DCMD_OK);
}

typedef struct kmalog_data {
	uintptr_t	kma_addr;
	hrtime_t	kma_newest;
} kmalog_data_t;

/*ARGSUSED*/
static int
showbc(uintptr_t addr, const kmem_bufctl_audit_t *bcp, kmalog_data_t *kma)
{
	char name[KMEM_CACHE_NAMELEN + 1];
	hrtime_t delta;
	int i, depth;
	size_t bufsize;

	if (bcp->bc_timestamp == 0)
		return (WALK_DONE);

	if (kma->kma_newest == 0)
		kma->kma_newest = bcp->bc_timestamp;

	if (kma->kma_addr) {
		if (mdb_vread(&bufsize, sizeof (bufsize),
		    (uintptr_t)&bcp->bc_cache->cache_bufsize) == -1) {
			mdb_warn(
			    "failed to read cache_bufsize for cache at %p",
			    bcp->bc_cache);
			return (WALK_ERR);
		}

		if (kma->kma_addr < (uintptr_t)bcp->bc_addr ||
		    kma->kma_addr >= (uintptr_t)bcp->bc_addr + bufsize)
			return (WALK_NEXT);
	}

	delta = kma->kma_newest - bcp->bc_timestamp;
	depth = MIN(bcp->bc_depth, KMEM_STACK_DEPTH);

	if (mdb_readstr(name, sizeof (name), (uintptr_t)
	    &bcp->bc_cache->cache_name) <= 0)
		(void) mdb_snprintf(name, sizeof (name), "%a", bcp->bc_cache);

	mdb_printf("\nT-%lld.%09lld  addr=%p  %s\n",
	    delta / NANOSEC, delta % NANOSEC, bcp->bc_addr, name);

	for (i = 0; i < depth; i++)
		mdb_printf("\t %a\n", bcp->bc_stack[i]);

	return (WALK_NEXT);
}

int
kmalog(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv)
{
	const char *logname = "kmem_transaction_log";
	kmalog_data_t kma;

	if (argc > 1)
		return (DCMD_USAGE);

	kma.kma_newest = 0;
	if (flags & DCMD_ADDRSPEC)
		kma.kma_addr = addr;
	else
		kma.kma_addr = NULL;

	if (argc > 0) {
		if (argv->a_type != MDB_TYPE_STRING)
			return (DCMD_USAGE);
		if (strcmp(argv->a_un.a_str, "fail") == 0)
			logname = "kmem_failure_log";
		else if (strcmp(argv->a_un.a_str, "slab") == 0)
			logname = "kmem_slab_log";
		else if (strcmp(argv->a_un.a_str, "zerosized") == 0)
			logname = "kmem_zerosized_log";
		else
			return (DCMD_USAGE);
	}

	if (mdb_readvar(&addr, logname) == -1) {
		mdb_warn("failed to read %s log header pointer");
		return (DCMD_ERR);
	}

	if (mdb_pwalk("kmem_log", (mdb_walk_cb_t)showbc, &kma, addr) == -1) {
		mdb_warn("failed to walk kmem log");
		return (DCMD_ERR);
	}

	return (DCMD_OK);
}

/*
 * As the final lure for die-hard crash(1M) users, we provide ::kmausers here.
 * The first piece is a structure which we use to accumulate kmem_cache_t
 * addresses of interest.  The kmc_add is used as a callback for the kmem_cache
 * walker; we either add all caches, or ones named explicitly as arguments.
 */

typedef struct kmclist {
	const char *kmc_name;			/* Name to match (or NULL) */
	uintptr_t *kmc_caches;			/* List of kmem_cache_t addrs */
	int kmc_nelems;				/* Num entries in kmc_caches */
	int kmc_size;				/* Size of kmc_caches array */
} kmclist_t;

static int
kmc_add(uintptr_t addr, const kmem_cache_t *cp, kmclist_t *kmc)
{
	void *p;
	int s;

	if (kmc->kmc_name == NULL ||
	    strcmp(cp->cache_name, kmc->kmc_name) == 0) {
		/*
		 * If we have a match, grow our array (if necessary), and then
		 * add the virtual address of the matching cache to our list.
		 */
		if (kmc->kmc_nelems >= kmc->kmc_size) {
			s = kmc->kmc_size ? kmc->kmc_size * 2 : 256;
			p = mdb_alloc(sizeof (uintptr_t) * s, UM_SLEEP | UM_GC);

			bcopy(kmc->kmc_caches, p,
			    sizeof (uintptr_t) * kmc->kmc_size);

			kmc->kmc_caches = p;
			kmc->kmc_size = s;
		}

		kmc->kmc_caches[kmc->kmc_nelems++] = addr;
		return (kmc->kmc_name ? WALK_DONE : WALK_NEXT);
	}

	return (WALK_NEXT);
}

/*
 * The second piece of ::kmausers is a hash table of allocations.  Each
 * allocation owner is identified by its stack trace and data_size.  We then
 * track the total bytes of all such allocations, and the number of allocations
 * to report at the end.  Once we have a list of caches, we walk through the
 * allocated bufctls of each, and update our hash table accordingly.
 */

typedef struct kmowner {
	struct kmowner *kmo_head;		/* First hash elt in bucket */
	struct kmowner *kmo_next;		/* Next hash elt in chain */
	size_t kmo_signature;			/* Hash table signature */
	uint_t kmo_num;				/* Number of allocations */
	size_t kmo_data_size;			/* Size of each allocation */
	size_t kmo_total_size;			/* Total bytes of allocation */
	int kmo_depth;				/* Depth of stack trace */
	uintptr_t kmo_stack[KMEM_STACK_DEPTH];	/* Stack trace */
} kmowner_t;

typedef struct kmusers {
	uintptr_t kmu_addr;			/* address of interest */
	const kmem_cache_t *kmu_cache;		/* Current kmem cache */
	kmowner_t *kmu_hash;			/* Hash table of owners */
	int kmu_nelems;				/* Number of entries in use */
	int kmu_size;				/* Total number of entries */
} kmusers_t;

static void
kmu_add(kmusers_t *kmu, const kmem_bufctl_audit_t *bcp,
    size_t size, size_t data_size)
{
	int i, depth = MIN(bcp->bc_depth, KMEM_STACK_DEPTH);
	size_t bucket, signature = data_size;
	kmowner_t *kmo, *kmoend;

	/*
	 * If the hash table is full, double its size and rehash everything.
	 */
	if (kmu->kmu_nelems >= kmu->kmu_size) {
		int s = kmu->kmu_size ? kmu->kmu_size * 2 : 1024;

		kmo = mdb_alloc(sizeof (kmowner_t) * s, UM_SLEEP | UM_GC);
		bcopy(kmu->kmu_hash, kmo, sizeof (kmowner_t) * kmu->kmu_size);
		kmu->kmu_hash = kmo;
		kmu->kmu_size = s;

		kmoend = kmu->kmu_hash + kmu->kmu_size;
		for (kmo = kmu->kmu_hash; kmo < kmoend; kmo++)
			kmo->kmo_head = NULL;

		kmoend = kmu->kmu_hash + kmu->kmu_nelems;
		for (kmo = kmu->kmu_hash; kmo < kmoend; kmo++) {
			bucket = kmo->kmo_signature & (kmu->kmu_size - 1);
			kmo->kmo_next = kmu->kmu_hash[bucket].kmo_head;
			kmu->kmu_hash[bucket].kmo_head = kmo;
		}
	}

	/*
	 * Finish computing the hash signature from the stack trace, and then
	 * see if the owner is in the hash table.  If so, update our stats.
	 */
	for (i = 0; i < depth; i++)
		signature += bcp->bc_stack[i];

	bucket = signature & (kmu->kmu_size - 1);

	for (kmo = kmu->kmu_hash[bucket].kmo_head; kmo; kmo = kmo->kmo_next) {
		if (kmo->kmo_signature == signature) {
			size_t difference = 0;

			difference |= kmo->kmo_data_size - data_size;
			difference |= kmo->kmo_depth - depth;

			for (i = 0; i < depth; i++) {
				difference |= kmo->kmo_stack[i] -
				    bcp->bc_stack[i];
			}

			if (difference == 0) {
				kmo->kmo_total_size += size;
				kmo->kmo_num++;
				return;
			}
		}
	}

	/*
	 * If the owner is not yet hashed, grab the next element and fill it
	 * in based on the allocation information.
	 */
	kmo = &kmu->kmu_hash[kmu->kmu_nelems++];
	kmo->kmo_next = kmu->kmu_hash[bucket].kmo_head;
	kmu->kmu_hash[bucket].kmo_head = kmo;

	kmo->kmo_signature = signature;
	kmo->kmo_num = 1;
	kmo->kmo_data_size = data_size;
	kmo->kmo_total_size = size;
	kmo->kmo_depth = depth;

	for (i = 0; i < depth; i++)
		kmo->kmo_stack[i] = bcp->bc_stack[i];
}

/*
 * When ::kmausers is invoked without the -f flag, we simply update our hash
 * table with the information from each allocated bufctl.
 */
/*ARGSUSED*/
static int
kmause1(uintptr_t addr, const kmem_bufctl_audit_t *bcp, kmusers_t *kmu)
{
	const kmem_cache_t *cp = kmu->kmu_cache;

	kmu_add(kmu, bcp, cp->cache_bufsize, cp->cache_bufsize);
	return (WALK_NEXT);
}

/*
 * When ::kmausers is invoked with the -f flag, we print out the information
 * for each bufctl as well as updating the hash table.
 */
static int
kmause2(uintptr_t addr, const kmem_bufctl_audit_t *bcp, kmusers_t *kmu)
{
	int i, depth = MIN(bcp->bc_depth, KMEM_STACK_DEPTH);
	const kmem_cache_t *cp = kmu->kmu_cache;
	kmem_bufctl_t bufctl;

	if (kmu->kmu_addr) {
		if (mdb_vread(&bufctl, sizeof (bufctl),  addr) == -1)
			mdb_warn("couldn't read bufctl at %p", addr);
		else if (kmu->kmu_addr < (uintptr_t)bufctl.bc_addr ||
		    kmu->kmu_addr >= (uintptr_t)bufctl.bc_addr +
		    cp->cache_bufsize)
			return (WALK_NEXT);
	}

	mdb_printf("size %d, addr %p, thread %p, cache %s\n",
	    cp->cache_bufsize, addr, bcp->bc_thread, cp->cache_name);

	for (i = 0; i < depth; i++)
		mdb_printf("\t %a\n", bcp->bc_stack[i]);

	kmu_add(kmu, bcp, cp->cache_bufsize, cp->cache_bufsize);
	return (WALK_NEXT);
}

/*
 * We sort our results by allocation size before printing them.
 */
static int
kmownercmp(const void *lp, const void *rp)
{
	const kmowner_t *lhs = lp;
	const kmowner_t *rhs = rp;

	return (rhs->kmo_total_size - lhs->kmo_total_size);
}

/*
 * The main engine of ::kmausers is relatively straightforward: First we
 * accumulate our list of kmem_cache_t addresses into the kmclist_t. Next we
 * iterate over the allocated bufctls of each cache in the list.  Finally,
 * we sort and print our results.
 */
/*ARGSUSED*/
int
kmausers(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv)
{
	int mem_threshold = 8192;	/* Minimum # bytes for printing */
	int cnt_threshold = 100;	/* Minimum # blocks for printing */
	int audited_caches = 0;		/* Number of KMF_AUDIT caches found */
	int do_all_caches = 1;		/* Do all caches (no arguments) */
	int opt_e = FALSE;		/* Include "small" users */
	int opt_f = FALSE;		/* Print stack traces */

	mdb_walk_cb_t callback = (mdb_walk_cb_t)kmause1;
	kmowner_t *kmo, *kmoend;
	int i, oelems;

	kmclist_t kmc;
	kmusers_t kmu;

	bzero(&kmc, sizeof (kmc));
	bzero(&kmu, sizeof (kmu));

	while ((i = mdb_getopts(argc, argv,
	    'e', MDB_OPT_SETBITS, TRUE, &opt_e,
	    'f', MDB_OPT_SETBITS, TRUE, &opt_f, NULL)) != argc) {

		argv += i;	/* skip past options we just processed */
		argc -= i;	/* adjust argc */

		if (argv->a_type != MDB_TYPE_STRING || *argv->a_un.a_str == '-')
			return (DCMD_USAGE);

		oelems = kmc.kmc_nelems;
		kmc.kmc_name = argv->a_un.a_str;
		(void) mdb_walk("kmem_cache", (mdb_walk_cb_t)kmc_add, &kmc);

		if (kmc.kmc_nelems == oelems) {
			mdb_warn("unknown kmem cache: %s\n", kmc.kmc_name);
			return (DCMD_ERR);
		}

		do_all_caches = 0;
		argv++;
		argc--;
	}

	if (flags & DCMD_ADDRSPEC) {
		opt_f = TRUE;
		kmu.kmu_addr = addr;
	} else {
		kmu.kmu_addr = NULL;
	}

	if (opt_e)
		mem_threshold = cnt_threshold = 0;

	if (opt_f)
		callback = (mdb_walk_cb_t)kmause2;

	if (do_all_caches) {
		kmc.kmc_name = NULL; /* match all cache names */
		(void) mdb_walk("kmem_cache", (mdb_walk_cb_t)kmc_add, &kmc);
	}

	for (i = 0; i < kmc.kmc_nelems; i++) {
		uintptr_t cp = kmc.kmc_caches[i];
		kmem_cache_t c;

		if (mdb_vread(&c, sizeof (c), cp) == -1) {
			mdb_warn("failed to read cache at %p", cp);
			continue;
		}

		if (!(c.cache_flags & KMF_AUDIT)) {
			if (!do_all_caches) {
				mdb_warn("KMF_AUDIT is not enabled for %s\n",
				    c.cache_name);
			}
			continue;
		}

		kmu.kmu_cache = &c;
		(void) mdb_pwalk("bufctl", callback, &kmu, cp);
		audited_caches++;
	}

	if (audited_caches == 0 && do_all_caches) {
		mdb_warn("KMF_AUDIT is not enabled for any caches\n");
		return (DCMD_ERR);
	}

	qsort(kmu.kmu_hash, kmu.kmu_nelems, sizeof (kmowner_t), kmownercmp);
	kmoend = kmu.kmu_hash + kmu.kmu_nelems;

	for (kmo = kmu.kmu_hash; kmo < kmoend; kmo++) {
		if (kmo->kmo_total_size < mem_threshold &&
		    kmo->kmo_num < cnt_threshold)
			continue;
		mdb_printf("%lu bytes for %u allocations with data size %lu:\n",
		    kmo->kmo_total_size, kmo->kmo_num, kmo->kmo_data_size);
		for (i = 0; i < kmo->kmo_depth; i++)
			mdb_printf("\t %a\n", kmo->kmo_stack[i]);
	}

	return (DCMD_OK);
}

void
kmausers_help(void)
{
	mdb_printf(
	    "Displays the largest users of the kmem allocator, sorted by \n"
	    "trace.  If one or more caches is specified, only those caches\n"
	    "will be searched.  By default, all caches are searched.  If an\n"
	    "address is specified, then only those allocations which include\n"
	    "the given address are displayed.  Specifying an address implies\n"
	    "-f.\n"
	    "\n"
	    "\t-e\tInclude all users, not just the largest\n"
	    "\t-f\tDisplay individual allocations.  By default, users are\n"
	    "\t\tgrouped by stack\n");
}

static int
kmem_ready_check(void)
{
	int ready;

	if (mdb_readvar(&ready, "kmem_ready") < 0)
		return (-1); /* errno is set for us */

	return (ready);
}

void
kmem_statechange(void)
{
	static int been_ready = 0;

	if (been_ready)
		return;

	if (kmem_ready_check() <= 0)
		return;

	been_ready = 1;
	(void) mdb_walk("kmem_cache", (mdb_walk_cb_t)kmem_init_walkers, NULL);
}

void
kmem_init(void)
{
	mdb_walker_t w = {
		"kmem_cache", "walk list of kmem caches", kmem_cache_walk_init,
		list_walk_step, list_walk_fini
	};

	/*
	 * If kmem is ready, we'll need to invoke the kmem_cache walker
	 * immediately.  Walkers in the linkage structure won't be ready until
	 * _mdb_init returns, so we'll need to add this one manually.  If kmem
	 * is ready, we'll use the walker to initialize the caches.  If kmem
	 * isn't ready, we'll register a callback that will allow us to defer
	 * cache walking until it is.
	 */
	if (mdb_add_walker(&w) != 0) {
		mdb_warn("failed to add kmem_cache walker");
		return;
	}

	kmem_statechange();

	/* register our ::whatis handlers */
	mdb_whatis_register("modules", whatis_run_modules, NULL,
	    WHATIS_PRIO_EARLY, WHATIS_REG_NO_ID);
	mdb_whatis_register("threads", whatis_run_threads, NULL,
	    WHATIS_PRIO_EARLY, WHATIS_REG_NO_ID);
	mdb_whatis_register("pages", whatis_run_pages, NULL,
	    WHATIS_PRIO_EARLY, WHATIS_REG_NO_ID);
	mdb_whatis_register("kmem", whatis_run_kmem, NULL,
	    WHATIS_PRIO_ALLOCATOR, 0);
	mdb_whatis_register("vmem", whatis_run_vmem, NULL,
	    WHATIS_PRIO_ALLOCATOR, 0);
}

typedef struct whatthread {
	uintptr_t	wt_target;
	int		wt_verbose;
} whatthread_t;

static int
whatthread_walk_thread(uintptr_t addr, const kthread_t *t, whatthread_t *w)
{
	uintptr_t current, data;

	if (t->t_stkbase == NULL)
		return (WALK_NEXT);

	/*
	 * Warn about swapped out threads, but drive on anyway
	 */
	if (!(t->t_schedflag & TS_LOAD)) {
		mdb_warn("thread %p's stack swapped out\n", addr);
		return (WALK_NEXT);
	}

	/*
	 * Search the thread's stack for the given pointer.  Note that it would
	 * be more efficient to follow ::kgrep's lead and read in page-sized
	 * chunks, but this routine is already fast and simple.
	 */
	for (current = (uintptr_t)t->t_stkbase; current < (uintptr_t)t->t_stk;
	    current += sizeof (uintptr_t)) {
		if (mdb_vread(&data, sizeof (data), current) == -1) {
			mdb_warn("couldn't read thread %p's stack at %p",
			    addr, current);
			return (WALK_ERR);
		}

		if (data == w->wt_target) {
			if (w->wt_verbose) {
				mdb_printf("%p in thread %p's stack%s\n",
				    current, addr, stack_active(t, current));
			} else {
				mdb_printf("%#lr\n", addr);
				return (WALK_NEXT);
			}
		}
	}

	return (WALK_NEXT);
}

int
whatthread(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv)
{
	whatthread_t w;

	if (!(flags & DCMD_ADDRSPEC))
		return (DCMD_USAGE);

	w.wt_verbose = FALSE;
	w.wt_target = addr;

	if (mdb_getopts(argc, argv,
	    'v', MDB_OPT_SETBITS, TRUE, &w.wt_verbose, NULL) != argc)
		return (DCMD_USAGE);

	if (mdb_walk("thread", (mdb_walk_cb_t)whatthread_walk_thread, &w)
	    == -1) {
		mdb_warn("couldn't walk threads");
		return (DCMD_ERR);
	}

	return (DCMD_OK);
}