1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
|
/*
* CDDL HEADER START
*
* The contents of this file are subject to the terms of the
* Common Development and Distribution License (the "License").
* You may not use this file except in compliance with the License.
*
* You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
* or http://www.opensolaris.org/os/licensing.
* See the License for the specific language governing permissions
* and limitations under the License.
*
* When distributing Covered Code, include this CDDL HEADER in each
* file and include the License file at usr/src/OPENSOLARIS.LICENSE.
* If applicable, add the following below this CDDL HEADER, with the
* fields enclosed by brackets "[]" replaced with your own identifying
* information: Portions Copyright [yyyy] [name of copyright owner]
*
* CDDL HEADER END
*/
/*
* Copyright 2010 Sun Microsystems, Inc. All rights reserved.
* Use is subject to license terms.
*/
/*
* The debugger/PROM interface
*/
#include <sys/types.h>
#include <sys/mmu.h>
#ifndef sun4v
#include <sys/spitregs.h>
#endif /* sun4v */
#include <sys/machasi.h>
#include <sys/machtrap.h>
#include <sys/trap.h>
#include <sys/privregs.h>
#include <kmdb/kaif.h>
#include <kmdb/kaif_regs.h>
#include <kmdb/kmdb_asmutil.h>
#include <kmdb/kmdb_kdi.h>
#include <kmdb/kmdb_promif_isadep.h>
#include <kmdb/kmdb_dpi_impl.h>
#include <mdb/mdb_debug.h>
#include <mdb/mdb_err.h>
#include <mdb/mdb_modapi.h>
#include <mdb/mdb_nv.h>
#include <mdb/mdb_kreg_impl.h>
#include <mdb/mdb_v9util.h>
#include <mdb/mdb.h>
#define KAIF_PREGNO_PSTATE 0x6 /* %pstate is priv reg 6 */
#define KAIF_BRKPT_INSTR 0x91d0207e /* ta 0x7e */
#define OP(x) ((x) >> 30)
#define OP2(x) (((x) >> 22) & 0x07)
#define OP3(x) (((x) >> 19) & 0x3f)
#define COND(x) (((x) >> 25) & 0x0f)
#define RD(x) (((x) >> 25) & 0x1f)
#define RS1(x) (((x) >> 14) & 0x1f)
#define RS2(x) ((x) & 0x1f)
#define OP_BRANCH 0x0
#define OP_ARITH 0x2
#define OP2_BPcc 0x1
#define OP2_Bicc 0x2
#define OP2_BPr 0x3
#define OP2_FBPfcc 0x5
#define OP2_FBfcc 0x6
#define OP3_RDPR 0x2a
#define OP3_WRPR 0x32
#define A(x) (((x) >> 29) & 0x01)
#define I(x) (((x) >> 13) & 0x01)
#define DISP16(x) ((((x) >> 6) & 0xc000) | ((x) & 0x3fff))
#define DISP22(x) ((x) & 0x3fffff)
#define DISP19(x) ((x) & 0x7ffff)
#define SIMM13(x) ((x) & 0x1fff)
static uint64_t kaif_vwapt_addr;
static uint64_t kaif_pwapt_addr;
#ifndef sun4v
static uint64_t kaif_lsuctl;
#endif /* sun4v */
kaif_cpusave_t *kaif_cpusave;
int kaif_ncpusave;
caddr_t kaif_dseg;
caddr_t kaif_dseg_lim;
caddr_t kaif_tba; /* table currently in use */
caddr_t kaif_tba_obp; /* obp's trap table */
caddr_t kaif_tba_native; /* our table; needs khat */
#ifdef sun4v
caddr_t kaif_tba_kernel; /* kernel's trap table */
#endif /* sun4v */
size_t kaif_tba_native_sz;
int *kaif_promexitarmp;
int kaif_trap_switch;
void (*kaif_modchg_cb)(struct modctl *, int);
void (*kaif_ktrap_install)(int, void (*)(void));
void (*kaif_ktrap_restore)(void);
static int
kaif_get_master_cpuid(void)
{
return (kaif_master_cpuid);
}
/*ARGSUSED*/
static int
kaif_get_nwin(int cpuid)
{
return (get_nwin());
}
static kaif_cpusave_t *
kaif_cpuid2save(int cpuid)
{
kaif_cpusave_t *save;
if (cpuid == DPI_MASTER_CPUID)
return (&kaif_cpusave[kaif_master_cpuid]);
if (cpuid < 0 || cpuid >= kaif_ncpusave) {
(void) set_errno(EINVAL);
return (NULL);
}
save = &kaif_cpusave[cpuid];
if (save->krs_cpu_state != KAIF_CPU_STATE_MASTER &&
save->krs_cpu_state != KAIF_CPU_STATE_SLAVE) {
(void) set_errno(EINVAL);
return (NULL);
}
return (save);
}
static int
kaif_get_cpu_state(int cpuid)
{
kaif_cpusave_t *save;
if ((save = kaif_cpuid2save(cpuid)) == NULL)
return (-1); /* errno is set for us */
switch (save->krs_cpu_state) {
case KAIF_CPU_STATE_MASTER:
return (DPI_CPU_STATE_MASTER);
case KAIF_CPU_STATE_SLAVE:
return (DPI_CPU_STATE_SLAVE);
default:
return (set_errno(EINVAL));
}
}
static const mdb_tgt_gregset_t *
kaif_get_gregs(int cpuid)
{
kaif_cpusave_t *save;
mdb_tgt_gregset_t *gregs;
int wp, i;
if ((save = kaif_cpuid2save(cpuid)) == NULL)
return (NULL); /* errno is set for us */
gregs = &save->krs_gregs;
/*
* The DPI startup routine populates the register window portions of
* the kaif_cpusave_t. We copy the current set of ins, outs, and
* locals to the gregs. We also extract %pstate from %tstate.
*/
wp = gregs->kregs[KREG_CWP];
for (i = 0; i < 8; i++) {
gregs->kregs[KREG_L0 + i] = save->krs_rwins[wp].rw_local[i];
gregs->kregs[KREG_I0 + i] = save->krs_rwins[wp].rw_in[i];
}
gregs->kregs[KREG_PSTATE] = KREG_TSTATE_PSTATE(save->krs_tstate);
if (++wp == kaif_get_nwin(cpuid))
wp = 0;
for (i = 0; i < 8; i++)
gregs->kregs[KREG_O0 + i] = save->krs_rwins[wp].rw_in[i];
return (gregs);
}
static kreg_t *
kaif_find_regp(kaif_cpusave_t *save, const char *regname)
{
mdb_tgt_gregset_t *gregs;
int nwin, i;
int win;
nwin = kaif_get_nwin(DPI_MASTER_CPUID);
gregs = &save->krs_gregs;
win = gregs->kregs[KREG_CWP];
if (strcmp(regname, "sp") == 0)
regname = "o6";
else if (strcmp(regname, "fp") == 0)
regname = "i6";
if (strlen(regname) == 2 && regname[1] >= '0' && regname[1] <= '7') {
int idx = regname[1] - '0';
switch (regname[0]) {
case 'o':
if (++win == nwin)
win = 0;
/*FALLTHROUGH*/
case 'i':
return ((kreg_t *)&save->krs_rwins[win].rw_in[idx]);
case 'l':
return ((kreg_t *)&save->krs_rwins[win].rw_local[idx]);
}
}
for (i = 0; mdb_sparcv9_kregs[i].rd_name != NULL; i++) {
const mdb_tgt_regdesc_t *rd = &mdb_sparcv9_kregs[i];
if (strcmp(rd->rd_name, regname) == 0)
return (&gregs->kregs[rd->rd_num]);
}
(void) set_errno(ENOENT);
return (NULL);
}
static int
kaif_get_register(const char *regname, kreg_t *valp)
{
kaif_cpusave_t *save;
kreg_t *regp;
save = kaif_cpuid2save(DPI_MASTER_CPUID);
if (strcmp(regname, "pstate") == 0) {
*valp = KREG_TSTATE_PSTATE(save->krs_tstate);
return (0);
}
if ((regp = kaif_find_regp(save, regname)) == NULL)
return (-1);
*valp = *regp;
return (0);
}
static int
kaif_set_register(const char *regname, kreg_t val)
{
kaif_cpusave_t *save;
kreg_t *regp;
save = kaif_cpuid2save(DPI_MASTER_CPUID);
if (strcmp(regname, "g0") == 0) {
return (0);
} else if (strcmp(regname, "pstate") == 0) {
save->krs_tstate &= ~KREG_TSTATE_PSTATE_MASK;
save->krs_tstate |= (val & KREG_PSTATE_MASK) <<
KREG_TSTATE_PSTATE_SHIFT;
return (0);
}
if ((regp = kaif_find_regp(save, regname)) == NULL)
return (-1);
*regp = val;
return (0);
}
static int
kaif_brkpt_arm(uintptr_t addr, mdb_instr_t *instrp)
{
mdb_instr_t bkpt = KAIF_BRKPT_INSTR;
if (mdb_tgt_vread(mdb.m_target, instrp, sizeof (mdb_instr_t), addr) !=
sizeof (mdb_instr_t))
return (-1); /* errno is set for us */
if (mdb_tgt_vwrite(mdb.m_target, &bkpt, sizeof (mdb_instr_t), addr) !=
sizeof (mdb_instr_t))
return (-1); /* errno is set for us */
return (0);
}
static int
kaif_brkpt_disarm(uintptr_t addr, mdb_instr_t instrp)
{
if (mdb_tgt_vwrite(mdb.m_target, &instrp, sizeof (mdb_instr_t), addr) !=
sizeof (mdb_instr_t))
return (-1); /* errno is set for us */
return (0);
}
/*
* Calculate the watchpoint mask byte (VM or PM, as appropriate). A 1 bit in
* the mask indicates that the corresponding byte in the watchpoint address
* should be used for activation comparison.
*/
/*
* Sun4v doesn't have watchpoint regs
*/
#ifndef sun4v
static uchar_t
kaif_wapt_calc_mask(size_t len)
{
int pow;
if (len == 8)
return (0xff);
for (pow = 0; len > 1; len /= 256, pow++)
;
return (~((1 << pow) - 1));
}
#endif
/*
* UltraSPARC processors have one physical and one virtual watchpoint. These
* watchpoints are specified by setting the address in a register, and by
* setting a selector byte in another register to determine which bytes of the
* address are to be used for comparison. For simplicity, we only support
* selector byte values whose bit patterns match the regexp "1+0*". Watchpoint
* addresses must be 8-byte aligned on these chips, so a selector byte of 0xff
* indicates an 8-byte watchpoint. Successive valid sizes are powers of 256,
* starting with 256.
*/
static int
kaif_wapt_validate(kmdb_wapt_t *wp)
{
if (wp->wp_wflags & MDB_TGT_WA_X) {
warn("execute watchpoints are not supported on this "
"platform\n");
return (set_errno(EMDB_TGTNOTSUP));
}
if (wp->wp_size % 0xff != 0 && wp->wp_size != 8) {
warn("watchpoint size must be 8 or a power of 256 bytes\n");
return (set_errno(EINVAL));
}
if (wp->wp_addr & (wp->wp_size - 1)) {
warn("%lu-byte watchpoints must be %lu-byte aligned\n",
wp->wp_size, wp->wp_size);
return (set_errno(EINVAL));
}
if (wp->wp_type != DPI_WAPT_TYPE_PHYS &&
wp->wp_type != DPI_WAPT_TYPE_VIRT) {
warn("requested watchpoint type not supported on this "
"platform\n");
return (set_errno(EMDB_TGTHWNOTSUP));
}
return (0);
}
static int
kaif_wapt_reserve(kmdb_wapt_t *wp)
{
#ifdef sun4v
#ifdef lint
ASSERT(wp == (kmdb_wapt_t *)wp);
#endif /* !lint */
/* Watchpoints not supported */
return (set_errno(EMDB_TGTHWNOTSUP));
#else
uint64_t *addrp;
if (wp->wp_type == DPI_WAPT_TYPE_PHYS)
addrp = &kaif_pwapt_addr;
else
addrp = &kaif_vwapt_addr;
if (*addrp != 0)
return (set_errno(EMDB_WPTOOMANY));
*addrp = wp->wp_addr;
return (0);
#endif
}
static void
kaif_wapt_release(kmdb_wapt_t *wp)
{
uint64_t *addrp = (wp->wp_type == DPI_WAPT_TYPE_PHYS ?
&kaif_pwapt_addr : &kaif_vwapt_addr);
ASSERT(*addrp != 0);
*addrp = 0;
}
/*ARGSUSED*/
static void
kaif_wapt_arm(kmdb_wapt_t *wp)
{
/*
* Sun4v doesn't have watch point regs
*/
#ifndef sun4v
uint64_t mask = kaif_wapt_calc_mask(wp->wp_size);
if (wp->wp_type == DPI_WAPT_TYPE_PHYS) {
kaif_lsuctl &= ~KAIF_LSUCTL_PWAPT_MASK;
if (wp->wp_wflags & MDB_TGT_WA_R)
kaif_lsuctl |= LSU_PR;
if (wp->wp_wflags & MDB_TGT_WA_W)
kaif_lsuctl |= LSU_PW;
kaif_lsuctl |= ((mask << LSU_PM_SHIFT) & LSU_PM);
} else if (wp->wp_type == DPI_WAPT_TYPE_VIRT) {
kaif_lsuctl &= ~KAIF_LSUCTL_VWAPT_MASK;
if (wp->wp_wflags & MDB_TGT_WA_R)
kaif_lsuctl |= LSU_VR;
if (wp->wp_wflags & MDB_TGT_WA_W)
kaif_lsuctl |= LSU_VW;
kaif_lsuctl |= ((mask << LSU_VM_SHIFT) & LSU_VM);
}
#endif /* sun4v */
}
/*ARGSUSED*/
static void
kaif_wapt_disarm(kmdb_wapt_t *wp)
{
/*
* Sun4v doesn't have watch point regs
*/
#ifndef sun4v
if (wp->wp_type == DPI_WAPT_TYPE_PHYS) {
ASSERT(kaif_pwapt_addr != NULL);
kaif_lsuctl &= ~(LSU_PR|LSU_PW);
} else {
ASSERT(kaif_vwapt_addr != NULL);
kaif_lsuctl &= ~(LSU_VR|LSU_VW);
}
#endif
}
/*
* `kaif_wapt_arm' and `kaif_wapt_disarm' modify the global state we keep that
* indicates what the values of the wapt control registers should be. These
* values must be individually set and cleared on each active CPU, a task which
* is performed by `kaif_wapt_clear_regs' and `kaif_wapt_set_regs', invoked as
* the world is stopped and resumed, respectively. `kaif_wapt_set_regs' is also
* used for CPU initialization.
*/
void
kaif_wapt_set_regs(void)
{
/*
* Sun4v doesn't have watch point regs
*/
#ifndef sun4v
uint64_t lsu;
wrasi(ASI_DMMU, MMU_VAW, kaif_vwapt_addr);
wrasi(ASI_DMMU, MMU_PAW, kaif_pwapt_addr);
ASSERT((kaif_lsuctl & ~KAIF_LSUCTL_WAPT_MASK) == NULL);
lsu = rdasi(ASI_LSU, (uintptr_t)NULL);
lsu &= ~KAIF_LSUCTL_WAPT_MASK;
lsu |= kaif_lsuctl;
wrasi(ASI_LSU, (uintptr_t)NULL, lsu);
#endif /* sun4v */
}
void
kaif_wapt_clear_regs(void)
{
/*
* Sun4v doesn't have watch point regs
*/
#ifndef sun4v
uint64_t lsu = rdasi(ASI_LSU, (uintptr_t)NULL);
lsu &= ~KAIF_LSUCTL_WAPT_MASK;
wrasi(ASI_LSU, (uintptr_t)NULL, lsu);
#endif /* sun4v */
}
/*
* UltraSPARC has one PA watchpoint and one VA watchpoint. The trap we get will
* tell us which one we hit, but it won't tell us where. We could attempt to
* dissect the instruction at %pc to see where it was reading from or writing
* to, but that gets messy in a hurry. We can, however, make a couple of
* assumptions:
*
* - kaif_set_watchpoint and kaif_delete_watchpoint will enforce the limits as
* to the number of watch points. As such, at most one VA watchpoint and one
* PA watchpoint will be on the active list.
*
* - We'll only be called on watchpoints that are on the active list.
*
* Taking these two assumptions, we can conclude that, if we're stopped due to
* a watchpoint and we're asked to match against a watchpoint, we must have
* stopped due to the watchpoint. This is all very terrifying, but the
* alternative (taking instructions apart) is worse.
*/
/*ARGSUSED*/
static int
kaif_wapt_match(kmdb_wapt_t *wp)
{
int state, why, deswhy;
state = kmdb_dpi_get_state(&why);
if (wp->wp_type == DPI_WAPT_TYPE_PHYS)
deswhy = DPI_STATE_WHY_P_WAPT;
else
deswhy = DPI_STATE_WHY_V_WAPT;
return (state == DPI_STATE_FAULTED && why == deswhy);
}
static const char *
regno2name(int idx)
{
const mdb_tgt_regdesc_t *rd;
for (rd = mdb_sparcv9_kregs; rd->rd_name != NULL; rd++) {
if (idx == rd->rd_num)
return (rd->rd_name);
}
ASSERT(rd->rd_name != NULL);
return ("unknown");
}
/*
* UltraSPARC doesn't support single-step natively, so we have to do it
* ourselves, by placing breakpoints at the instruction after the current one.
* Note that "after" will be %npc in the simple case, but can be one of
* several places if %pc is a branch.
*
* If %pc is an unconditional annulled branch, we put a breakpoint at the branch
* target. If it is a conditional annulled branch, we put breakpoints at %pc +
* 8 and the branch target. For all other branches, %npc will be set correctly
* as determined by the branch condition, and thus we can step through the
* branch by putting a breakpoint at %npc. If %pc contains a non-branch
* instruction (with the exception of certain rdpr and wrpr instructions,
* described more below), we step over it by placing a breakpoint at %npc.
*/
static int
kaif_step(void)
{
kreg_t pc, npc, brtgt, pstate, tt;
int bptgt = 0, bpnpc = 0, bppc8 = 0;
mdb_instr_t svtgt = 0, svnpc = 0, svpc8 = 0;
mdb_instr_t instr;
int ie, err;
(void) kmdb_dpi_get_register("pc", &pc);
(void) kmdb_dpi_get_register("npc", &npc);
if (mdb_tgt_vread(mdb.m_target, &instr, sizeof (instr), pc) !=
sizeof (instr)) {
warn("failed to read %%pc at %p for step", (void *)pc);
return (-1);
}
/*
* If the current instruction is a read or write of PSTATE we need
* to emulate it because we've taken over management of PSTATE and
* we need keep interrupts disabled. If it's a branch, we may need
* to set two breakpoints -- one at the target and one at the
* subsequent instruction.
*/
if (OP(instr) == OP_ARITH) {
if (OP3(instr) == OP3_RDPR &&
RS1(instr) == KAIF_PREGNO_PSTATE) {
const char *tgtreg =
mdb_sparcv9_kregs[RD(instr)].rd_name;
kreg_t pstate;
(void) kmdb_dpi_get_register("pstate", &pstate);
(void) kmdb_dpi_set_register(tgtreg, pstate);
(void) kmdb_dpi_set_register("pc", npc);
(void) kmdb_dpi_set_register("npc", npc + 4);
return (0);
} else if (OP3(instr) == OP3_WRPR &&
RD(instr) == KAIF_PREGNO_PSTATE) {
kreg_t rs1, rs2, val;
(void) kmdb_dpi_get_register(regno2name(RS1(instr)),
&rs1);
if (I(instr)) {
int imm = SIMM13(instr);
imm <<= 19;
imm >>= 19;
rs2 = imm;
} else {
(void) kmdb_dpi_get_register(
regno2name(RS2(instr)), &rs2);
}
val = rs1 ^ rs2;
(void) kmdb_dpi_set_register("pstate", val);
(void) kmdb_dpi_set_register("pc", npc);
(void) kmdb_dpi_set_register("npc", npc + 4);
return (0);
}
bpnpc = 1;
} else if (OP(instr) == OP_BRANCH) {
int disp, cond, annul;
switch (OP2(instr)) {
case OP2_BPcc:
case OP2_FBPfcc:
cond = (COND(instr) != 8);
disp = DISP19(instr);
disp <<= 13;
disp >>= 11;
break;
case OP2_Bicc:
case OP2_FBfcc:
cond = (COND(instr) != 8);
disp = DISP22(instr);
disp <<= 10;
disp >>= 8;
break;
case OP2_BPr:
cond = 1;
disp = DISP16(instr);
disp <<= 16;
disp >>= 14;
break;
default:
bpnpc = 1;
}
if (!bpnpc) {
annul = A(instr);
if (!cond && annul) {
brtgt = pc + disp;
bptgt = 1;
} else {
bpnpc = 1;
if (cond && annul)
bppc8 = 1;
}
}
} else {
bpnpc = 1;
}
/*
* Place the breakpoints and resume this CPU with IE off. We'll come
* back after having encountered either one of the breakpoints we placed
* or a trap.
*/
err = 0;
if ((bpnpc && kaif_brkpt_arm(npc, &svnpc) != 0) ||
(bppc8 && kaif_brkpt_arm(pc + 8, &svpc8) != 0) ||
(bptgt && kaif_brkpt_arm(brtgt, &svtgt) != 0)) {
err = errno;
goto step_done;
}
(void) kmdb_dpi_get_register("pstate", &pstate);
ie = pstate & KREG_PSTATE_IE_MASK;
(void) kmdb_dpi_set_register("pstate", (pstate & ~KREG_PSTATE_IE_MASK));
kmdb_dpi_resume_master(); /* ... there and back again ... */
(void) kmdb_dpi_get_register("pstate", &pstate);
(void) kmdb_dpi_set_register("pstate",
((pstate & ~KREG_PSTATE_IE_MASK) | ie));
(void) kmdb_dpi_get_register("tt", &tt);
step_done:
if (svnpc)
(void) kaif_brkpt_disarm(npc, svnpc);
if (svpc8)
(void) kaif_brkpt_disarm(pc + 8, svpc8);
if (svtgt)
(void) kaif_brkpt_disarm(brtgt, svtgt);
return (err == 0 ? 0 : set_errno(err));
}
static uintptr_t
kaif_call(uintptr_t funcva, uint_t argc, const uintptr_t *argv)
{
kreg_t g6, g7;
(void) kmdb_dpi_get_register("g6", &g6);
(void) kmdb_dpi_get_register("g7", &g7);
return (kaif_invoke(funcva, argc, argv, g6, g7));
}
static const mdb_bitmask_t krm_flag_bits[] = {
{ "M_W", KAIF_CRUMB_F_MAIN_OBPWAPT, KAIF_CRUMB_F_MAIN_OBPWAPT },
{ "M_PE", KAIF_CRUMB_F_MAIN_OBPPENT, KAIF_CRUMB_F_MAIN_OBPPENT },
{ "M_NRM", KAIF_CRUMB_F_MAIN_NORMAL, KAIF_CRUMB_F_MAIN_NORMAL },
{ "I_RE", KAIF_CRUMB_F_IVEC_REENTER, KAIF_CRUMB_F_IVEC_REENTER },
{ "I_OBP", KAIF_CRUMB_F_IVEC_INOBP, KAIF_CRUMB_F_IVEC_INOBP },
{ "I_NRM", KAIF_CRUMB_F_IVEC_NORMAL, KAIF_CRUMB_F_IVEC_NORMAL },
{ "O_NRM", KAIF_CRUMB_F_OBP_NORMAL, KAIF_CRUMB_F_OBP_NORMAL },
{ "O_REVEC", KAIF_CRUMB_F_OBP_REVECT, KAIF_CRUMB_F_OBP_REVECT },
{ NULL }
};
static void
dump_crumb(kaif_crumb_t *krmp)
{
kaif_crumb_t krm;
if (mdb_vread(&krm, sizeof (kaif_crumb_t), (uintptr_t)krmp) !=
sizeof (kaif_crumb_t)) {
warn("failed to read crumb at %p", krmp);
return;
}
mdb_printf(" src: ");
switch (krm.krm_src) {
case KAIF_CRUMB_SRC_OBP:
mdb_printf("O");
break;
case KAIF_CRUMB_SRC_IVEC:
mdb_printf("I");
break;
case KAIF_CRUMB_SRC_MAIN:
mdb_printf("M");
break;
case 0:
mdb_printf("-");
break;
default:
mdb_printf("%d", krm.krm_src);
}
mdb_printf(" tt %3x pc %8p %-20A <%b>\n",
krm.krm_tt, krm.krm_pc, krm.krm_pc, krm.krm_flag, krm_flag_bits);
}
static void
dump_crumbs(kaif_cpusave_t *save)
{
int i;
for (i = KAIF_NCRUMBS; i > 0; i--) {
uint_t idx = (save->krs_curcrumbidx + i) % KAIF_NCRUMBS;
dump_crumb(&save->krs_crumbs[idx]);
}
}
static void
kaif_dump_crumbs(uintptr_t addr, int cpuid)
{
int i;
if (addr != (uintptr_t)NULL) {
/* dump_crumb will protect us from bogus addresses */
dump_crumb((kaif_crumb_t *)addr);
} else if (cpuid != -1) {
if (cpuid >= kaif_ncpusave)
return;
dump_crumbs(&kaif_cpusave[cpuid]);
} else {
for (i = 0; i < kaif_ncpusave; i++) {
kaif_cpusave_t *save = &kaif_cpusave[i];
if (save->krs_cpu_state == KAIF_CPU_STATE_NONE)
continue;
mdb_printf("%sCPU %d crumbs: (curidx %d)\n",
(i == 0 ? "" : "\n"), i, save->krs_curcrumbidx);
dump_crumbs(save);
}
}
}
static int
kaif_get_rwin(int cpuid, int win, struct rwindow *rwin)
{
kaif_cpusave_t *save;
if ((save = kaif_cpuid2save(cpuid)) == NULL)
return (-1); /* errno is set for us */
if (win < 0 || win >= kaif_get_nwin(cpuid))
return (-1);
bcopy(&save->krs_rwins[win], rwin, sizeof (struct rwindow));
return (0);
}
static void
kaif_enter_mon(void)
{
kmdb_prom_enter_mon();
kaif_prom_rearm();
kaif_slave_loop_barrier();
}
static void
kaif_modchg_register(void (*func)(struct modctl *, int))
{
kaif_modchg_cb = func;
}
static void
kaif_modchg_cancel(void)
{
ASSERT(kaif_modchg_cb != NULL);
kaif_modchg_cb = NULL;
}
void
kaif_mod_loaded(struct modctl *modp)
{
if (kaif_modchg_cb != NULL)
kaif_modchg_cb(modp, 1);
}
void
kaif_mod_unloading(struct modctl *modp)
{
if (kaif_modchg_cb != NULL)
kaif_modchg_cb(modp, 0);
}
void
kaif_trap_set_debugger(void)
{
(void) set_tba((void *)kaif_tba);
}
void
kaif_trap_set_saved(kaif_cpusave_t *save)
{
(void) set_tba((void *)save->krs_gregs.kregs[KREG_TBA]);
}
static void
kaif_kernpanic(int cpuid)
{
struct regs regs;
/*
* We're going to try to panic the system by using the same entry point
* used by the PROM when told to `sync'. The kernel wants a
* fully-populated struct regs, which we're going to build using the
* state captured at the time of the debugger fault. Said state lives
* in kaif_cb_save, since we haven't yet copied it over to the cpusave
* structure for the current master.
*/
regs.r_tstate = kaif_cb_save.krs_tstate;
regs.r_g1 = kaif_cb_save.krs_gregs.kregs[KREG_G1];
regs.r_g2 = kaif_cb_save.krs_gregs.kregs[KREG_G2];
regs.r_g3 = kaif_cb_save.krs_gregs.kregs[KREG_G3];
regs.r_g4 = kaif_cb_save.krs_gregs.kregs[KREG_G4];
regs.r_g5 = kaif_cb_save.krs_gregs.kregs[KREG_G5];
regs.r_g6 = kaif_cb_save.krs_gregs.kregs[KREG_G6];
regs.r_g7 = kaif_cb_save.krs_gregs.kregs[KREG_G7];
regs.r_o0 = kaif_cb_save.krs_gregs.kregs[KREG_O0];
regs.r_o1 = kaif_cb_save.krs_gregs.kregs[KREG_O1];
regs.r_o2 = kaif_cb_save.krs_gregs.kregs[KREG_O2];
regs.r_o3 = kaif_cb_save.krs_gregs.kregs[KREG_O3];
regs.r_o4 = kaif_cb_save.krs_gregs.kregs[KREG_O4];
regs.r_o5 = kaif_cb_save.krs_gregs.kregs[KREG_O5];
regs.r_o6 = kaif_cb_save.krs_gregs.kregs[KREG_O6];
regs.r_o7 = kaif_cb_save.krs_gregs.kregs[KREG_O7];
regs.r_pc = kaif_cb_save.krs_gregs.kregs[KREG_PC];
regs.r_npc = kaif_cb_save.krs_gregs.kregs[KREG_NPC];
regs.r_y = kaif_cb_save.krs_gregs.kregs[KREG_Y];
/*
* The %tba is, as ever, different. We don't want the %tba from the
* time of the fault -- that'll be the debugger's. We want the %tba
* saved when the debugger was initially entered. It'll be saved in
* the cpusave area for the current CPU.
*/
(void) set_tba((void *)kaif_cpusave[cpuid].krs_gregs.kregs[KREG_TBA]);
kmdb_kdi_kernpanic(®s, kaif_cb_save.krs_gregs.kregs[KREG_TT]);
}
static int
kaif_init(kmdb_auxv_t *kav)
{
struct rwindow *rwins;
int nwin = get_nwin();
int i;
kaif_vwapt_addr = kaif_pwapt_addr = 0;
kaif_tba = kav->kav_tba_active;
kaif_tba_obp = kav->kav_tba_obp;
kaif_tba_native = kav->kav_tba_native;
kaif_tba_native_sz = kav->kav_tba_native_sz;
#ifdef sun4v
kaif_tba_kernel = kav->kav_tba_kernel;
#endif
/* Allocate the per-CPU save areas */
kaif_cpusave = mdb_zalloc(sizeof (kaif_cpusave_t) * kav->kav_ncpu,
UM_SLEEP);
kaif_ncpusave = kav->kav_ncpu;
rwins = mdb_zalloc(sizeof (struct rwindow) * nwin * kav->kav_ncpu,
UM_SLEEP);
for (i = 0; i < kaif_ncpusave; i++) {
kaif_cpusave_t *save = &kaif_cpusave[i];
save->krs_cpu_id = i;
save->krs_rwins = &rwins[nwin * i];
save->krs_curcrumbidx = KAIF_NCRUMBS - 1;
save->krs_curcrumb = &save->krs_crumbs[save->krs_curcrumbidx];
}
kaif_dseg = kav->kav_dseg;
kaif_dseg_lim = kav->kav_dseg + kav->kav_dseg_size;
kaif_promexitarmp = kav->kav_promexitarmp;
kaif_ktrap_install = kav->kav_ktrap_install;
kaif_ktrap_restore = kav->kav_ktrap_restore;
kaif_modchg_cb = NULL;
kaif_trap_switch = (kav->kav_flags & KMDB_AUXV_FL_NOTRPSWTCH) == 0;
return (0);
}
dpi_ops_t kmdb_dpi_ops = {
kaif_init,
kaif_activate,
kaif_deactivate,
kaif_enter_mon,
kaif_modchg_register,
kaif_modchg_cancel,
kaif_get_cpu_state,
kaif_get_master_cpuid,
kaif_get_gregs,
kaif_get_register,
kaif_set_register,
kaif_get_rwin,
kaif_get_nwin,
kaif_brkpt_arm,
kaif_brkpt_disarm,
kaif_wapt_validate,
kaif_wapt_reserve,
kaif_wapt_release,
kaif_wapt_arm,
kaif_wapt_disarm,
kaif_wapt_match,
kaif_step,
kaif_call,
kaif_dump_crumbs,
kaif_kernpanic
};
|